xref: /openbmc/linux/fs/proc/base.c (revision 79f382b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <trace/events/oom.h>
99 #include "internal.h"
100 #include "fd.h"
101 
102 #include "../../lib/kstrtox.h"
103 
104 /* NOTE:
105  *	Implementing inode permission operations in /proc is almost
106  *	certainly an error.  Permission checks need to happen during
107  *	each system call not at open time.  The reason is that most of
108  *	what we wish to check for permissions in /proc varies at runtime.
109  *
110  *	The classic example of a problem is opening file descriptors
111  *	in /proc for a task before it execs a suid executable.
112  */
113 
114 static u8 nlink_tid __ro_after_init;
115 static u8 nlink_tgid __ro_after_init;
116 
117 struct pid_entry {
118 	const char *name;
119 	unsigned int len;
120 	umode_t mode;
121 	const struct inode_operations *iop;
122 	const struct file_operations *fop;
123 	union proc_op op;
124 };
125 
126 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
127 	.name = (NAME),					\
128 	.len  = sizeof(NAME) - 1,			\
129 	.mode = MODE,					\
130 	.iop  = IOP,					\
131 	.fop  = FOP,					\
132 	.op   = OP,					\
133 }
134 
135 #define DIR(NAME, MODE, iops, fops)	\
136 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
137 #define LNK(NAME, get_link)					\
138 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
139 		&proc_pid_link_inode_operations, NULL,		\
140 		{ .proc_get_link = get_link } )
141 #define REG(NAME, MODE, fops)				\
142 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
143 #define ONE(NAME, MODE, show)				\
144 	NOD(NAME, (S_IFREG|(MODE)),			\
145 		NULL, &proc_single_file_operations,	\
146 		{ .proc_show = show } )
147 #define ATTR(LSM, NAME, MODE)				\
148 	NOD(NAME, (S_IFREG|(MODE)),			\
149 		NULL, &proc_pid_attr_operations,	\
150 		{ .lsm = LSM })
151 
152 /*
153  * Count the number of hardlinks for the pid_entry table, excluding the .
154  * and .. links.
155  */
156 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
157 	unsigned int n)
158 {
159 	unsigned int i;
160 	unsigned int count;
161 
162 	count = 2;
163 	for (i = 0; i < n; ++i) {
164 		if (S_ISDIR(entries[i].mode))
165 			++count;
166 	}
167 
168 	return count;
169 }
170 
171 static int get_task_root(struct task_struct *task, struct path *root)
172 {
173 	int result = -ENOENT;
174 
175 	task_lock(task);
176 	if (task->fs) {
177 		get_fs_root(task->fs, root);
178 		result = 0;
179 	}
180 	task_unlock(task);
181 	return result;
182 }
183 
184 static int proc_cwd_link(struct dentry *dentry, struct path *path)
185 {
186 	struct task_struct *task = get_proc_task(d_inode(dentry));
187 	int result = -ENOENT;
188 
189 	if (task) {
190 		task_lock(task);
191 		if (task->fs) {
192 			get_fs_pwd(task->fs, path);
193 			result = 0;
194 		}
195 		task_unlock(task);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static int proc_root_link(struct dentry *dentry, struct path *path)
202 {
203 	struct task_struct *task = get_proc_task(d_inode(dentry));
204 	int result = -ENOENT;
205 
206 	if (task) {
207 		result = get_task_root(task, path);
208 		put_task_struct(task);
209 	}
210 	return result;
211 }
212 
213 /*
214  * If the user used setproctitle(), we just get the string from
215  * user space at arg_start, and limit it to a maximum of one page.
216  */
217 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
218 				size_t count, unsigned long pos,
219 				unsigned long arg_start)
220 {
221 	char *page;
222 	int ret, got;
223 
224 	if (pos >= PAGE_SIZE)
225 		return 0;
226 
227 	page = (char *)__get_free_page(GFP_KERNEL);
228 	if (!page)
229 		return -ENOMEM;
230 
231 	ret = 0;
232 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
233 	if (got > 0) {
234 		int len = strnlen(page, got);
235 
236 		/* Include the NUL character if it was found */
237 		if (len < got)
238 			len++;
239 
240 		if (len > pos) {
241 			len -= pos;
242 			if (len > count)
243 				len = count;
244 			len -= copy_to_user(buf, page+pos, len);
245 			if (!len)
246 				len = -EFAULT;
247 			ret = len;
248 		}
249 	}
250 	free_page((unsigned long)page);
251 	return ret;
252 }
253 
254 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
255 			      size_t count, loff_t *ppos)
256 {
257 	unsigned long arg_start, arg_end, env_start, env_end;
258 	unsigned long pos, len;
259 	char *page, c;
260 
261 	/* Check if process spawned far enough to have cmdline. */
262 	if (!mm->env_end)
263 		return 0;
264 
265 	spin_lock(&mm->arg_lock);
266 	arg_start = mm->arg_start;
267 	arg_end = mm->arg_end;
268 	env_start = mm->env_start;
269 	env_end = mm->env_end;
270 	spin_unlock(&mm->arg_lock);
271 
272 	if (arg_start >= arg_end)
273 		return 0;
274 
275 	/*
276 	 * We allow setproctitle() to overwrite the argument
277 	 * strings, and overflow past the original end. But
278 	 * only when it overflows into the environment area.
279 	 */
280 	if (env_start != arg_end || env_end < env_start)
281 		env_start = env_end = arg_end;
282 	len = env_end - arg_start;
283 
284 	/* We're not going to care if "*ppos" has high bits set */
285 	pos = *ppos;
286 	if (pos >= len)
287 		return 0;
288 	if (count > len - pos)
289 		count = len - pos;
290 	if (!count)
291 		return 0;
292 
293 	/*
294 	 * Magical special case: if the argv[] end byte is not
295 	 * zero, the user has overwritten it with setproctitle(3).
296 	 *
297 	 * Possible future enhancement: do this only once when
298 	 * pos is 0, and set a flag in the 'struct file'.
299 	 */
300 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
301 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
302 
303 	/*
304 	 * For the non-setproctitle() case we limit things strictly
305 	 * to the [arg_start, arg_end[ range.
306 	 */
307 	pos += arg_start;
308 	if (pos < arg_start || pos >= arg_end)
309 		return 0;
310 	if (count > arg_end - pos)
311 		count = arg_end - pos;
312 
313 	page = (char *)__get_free_page(GFP_KERNEL);
314 	if (!page)
315 		return -ENOMEM;
316 
317 	len = 0;
318 	while (count) {
319 		int got;
320 		size_t size = min_t(size_t, PAGE_SIZE, count);
321 
322 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
323 		if (got <= 0)
324 			break;
325 		got -= copy_to_user(buf, page, got);
326 		if (unlikely(!got)) {
327 			if (!len)
328 				len = -EFAULT;
329 			break;
330 		}
331 		pos += got;
332 		buf += got;
333 		len += got;
334 		count -= got;
335 	}
336 
337 	free_page((unsigned long)page);
338 	return len;
339 }
340 
341 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
342 				size_t count, loff_t *pos)
343 {
344 	struct mm_struct *mm;
345 	ssize_t ret;
346 
347 	mm = get_task_mm(tsk);
348 	if (!mm)
349 		return 0;
350 
351 	ret = get_mm_cmdline(mm, buf, count, pos);
352 	mmput(mm);
353 	return ret;
354 }
355 
356 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
357 				     size_t count, loff_t *pos)
358 {
359 	struct task_struct *tsk;
360 	ssize_t ret;
361 
362 	BUG_ON(*pos < 0);
363 
364 	tsk = get_proc_task(file_inode(file));
365 	if (!tsk)
366 		return -ESRCH;
367 	ret = get_task_cmdline(tsk, buf, count, pos);
368 	put_task_struct(tsk);
369 	if (ret > 0)
370 		*pos += ret;
371 	return ret;
372 }
373 
374 static const struct file_operations proc_pid_cmdline_ops = {
375 	.read	= proc_pid_cmdline_read,
376 	.llseek	= generic_file_llseek,
377 };
378 
379 #ifdef CONFIG_KALLSYMS
380 /*
381  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382  * Returns the resolved symbol.  If that fails, simply return the address.
383  */
384 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
385 			  struct pid *pid, struct task_struct *task)
386 {
387 	unsigned long wchan;
388 
389 	if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
390 		wchan = get_wchan(task);
391 	else
392 		wchan = 0;
393 
394 	if (wchan)
395 		seq_printf(m, "%ps", (void *) wchan);
396 	else
397 		seq_putc(m, '0');
398 
399 	return 0;
400 }
401 #endif /* CONFIG_KALLSYMS */
402 
403 static int lock_trace(struct task_struct *task)
404 {
405 	int err = down_read_killable(&task->signal->exec_update_lock);
406 	if (err)
407 		return err;
408 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
409 		up_read(&task->signal->exec_update_lock);
410 		return -EPERM;
411 	}
412 	return 0;
413 }
414 
415 static void unlock_trace(struct task_struct *task)
416 {
417 	up_read(&task->signal->exec_update_lock);
418 }
419 
420 #ifdef CONFIG_STACKTRACE
421 
422 #define MAX_STACK_TRACE_DEPTH	64
423 
424 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
425 			  struct pid *pid, struct task_struct *task)
426 {
427 	unsigned long *entries;
428 	int err;
429 
430 	/*
431 	 * The ability to racily run the kernel stack unwinder on a running task
432 	 * and then observe the unwinder output is scary; while it is useful for
433 	 * debugging kernel issues, it can also allow an attacker to leak kernel
434 	 * stack contents.
435 	 * Doing this in a manner that is at least safe from races would require
436 	 * some work to ensure that the remote task can not be scheduled; and
437 	 * even then, this would still expose the unwinder as local attack
438 	 * surface.
439 	 * Therefore, this interface is restricted to root.
440 	 */
441 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
442 		return -EACCES;
443 
444 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
445 				GFP_KERNEL);
446 	if (!entries)
447 		return -ENOMEM;
448 
449 	err = lock_trace(task);
450 	if (!err) {
451 		unsigned int i, nr_entries;
452 
453 		nr_entries = stack_trace_save_tsk(task, entries,
454 						  MAX_STACK_TRACE_DEPTH, 0);
455 
456 		for (i = 0; i < nr_entries; i++) {
457 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
458 		}
459 
460 		unlock_trace(task);
461 	}
462 	kfree(entries);
463 
464 	return err;
465 }
466 #endif
467 
468 #ifdef CONFIG_SCHED_INFO
469 /*
470  * Provides /proc/PID/schedstat
471  */
472 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
473 			      struct pid *pid, struct task_struct *task)
474 {
475 	if (unlikely(!sched_info_on()))
476 		seq_puts(m, "0 0 0\n");
477 	else
478 		seq_printf(m, "%llu %llu %lu\n",
479 		   (unsigned long long)task->se.sum_exec_runtime,
480 		   (unsigned long long)task->sched_info.run_delay,
481 		   task->sched_info.pcount);
482 
483 	return 0;
484 }
485 #endif
486 
487 #ifdef CONFIG_LATENCYTOP
488 static int lstats_show_proc(struct seq_file *m, void *v)
489 {
490 	int i;
491 	struct inode *inode = m->private;
492 	struct task_struct *task = get_proc_task(inode);
493 
494 	if (!task)
495 		return -ESRCH;
496 	seq_puts(m, "Latency Top version : v0.1\n");
497 	for (i = 0; i < LT_SAVECOUNT; i++) {
498 		struct latency_record *lr = &task->latency_record[i];
499 		if (lr->backtrace[0]) {
500 			int q;
501 			seq_printf(m, "%i %li %li",
502 				   lr->count, lr->time, lr->max);
503 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
504 				unsigned long bt = lr->backtrace[q];
505 
506 				if (!bt)
507 					break;
508 				seq_printf(m, " %ps", (void *)bt);
509 			}
510 			seq_putc(m, '\n');
511 		}
512 
513 	}
514 	put_task_struct(task);
515 	return 0;
516 }
517 
518 static int lstats_open(struct inode *inode, struct file *file)
519 {
520 	return single_open(file, lstats_show_proc, inode);
521 }
522 
523 static ssize_t lstats_write(struct file *file, const char __user *buf,
524 			    size_t count, loff_t *offs)
525 {
526 	struct task_struct *task = get_proc_task(file_inode(file));
527 
528 	if (!task)
529 		return -ESRCH;
530 	clear_tsk_latency_tracing(task);
531 	put_task_struct(task);
532 
533 	return count;
534 }
535 
536 static const struct file_operations proc_lstats_operations = {
537 	.open		= lstats_open,
538 	.read		= seq_read,
539 	.write		= lstats_write,
540 	.llseek		= seq_lseek,
541 	.release	= single_release,
542 };
543 
544 #endif
545 
546 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
547 			  struct pid *pid, struct task_struct *task)
548 {
549 	unsigned long totalpages = totalram_pages() + total_swap_pages;
550 	unsigned long points = 0;
551 	long badness;
552 
553 	badness = oom_badness(task, totalpages);
554 	/*
555 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
556 	 * badness value into [0, 2000] range which we have been
557 	 * exporting for a long time so userspace might depend on it.
558 	 */
559 	if (badness != LONG_MIN)
560 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
561 
562 	seq_printf(m, "%lu\n", points);
563 
564 	return 0;
565 }
566 
567 struct limit_names {
568 	const char *name;
569 	const char *unit;
570 };
571 
572 static const struct limit_names lnames[RLIM_NLIMITS] = {
573 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
574 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
575 	[RLIMIT_DATA] = {"Max data size", "bytes"},
576 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
577 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
578 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
579 	[RLIMIT_NPROC] = {"Max processes", "processes"},
580 	[RLIMIT_NOFILE] = {"Max open files", "files"},
581 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
582 	[RLIMIT_AS] = {"Max address space", "bytes"},
583 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
584 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
585 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
586 	[RLIMIT_NICE] = {"Max nice priority", NULL},
587 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
588 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
589 };
590 
591 /* Display limits for a process */
592 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
593 			   struct pid *pid, struct task_struct *task)
594 {
595 	unsigned int i;
596 	unsigned long flags;
597 
598 	struct rlimit rlim[RLIM_NLIMITS];
599 
600 	if (!lock_task_sighand(task, &flags))
601 		return 0;
602 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
603 	unlock_task_sighand(task, &flags);
604 
605 	/*
606 	 * print the file header
607 	 */
608 	seq_puts(m, "Limit                     "
609 		"Soft Limit           "
610 		"Hard Limit           "
611 		"Units     \n");
612 
613 	for (i = 0; i < RLIM_NLIMITS; i++) {
614 		if (rlim[i].rlim_cur == RLIM_INFINITY)
615 			seq_printf(m, "%-25s %-20s ",
616 				   lnames[i].name, "unlimited");
617 		else
618 			seq_printf(m, "%-25s %-20lu ",
619 				   lnames[i].name, rlim[i].rlim_cur);
620 
621 		if (rlim[i].rlim_max == RLIM_INFINITY)
622 			seq_printf(m, "%-20s ", "unlimited");
623 		else
624 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
625 
626 		if (lnames[i].unit)
627 			seq_printf(m, "%-10s\n", lnames[i].unit);
628 		else
629 			seq_putc(m, '\n');
630 	}
631 
632 	return 0;
633 }
634 
635 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
636 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
637 			    struct pid *pid, struct task_struct *task)
638 {
639 	struct syscall_info info;
640 	u64 *args = &info.data.args[0];
641 	int res;
642 
643 	res = lock_trace(task);
644 	if (res)
645 		return res;
646 
647 	if (task_current_syscall(task, &info))
648 		seq_puts(m, "running\n");
649 	else if (info.data.nr < 0)
650 		seq_printf(m, "%d 0x%llx 0x%llx\n",
651 			   info.data.nr, info.sp, info.data.instruction_pointer);
652 	else
653 		seq_printf(m,
654 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
655 		       info.data.nr,
656 		       args[0], args[1], args[2], args[3], args[4], args[5],
657 		       info.sp, info.data.instruction_pointer);
658 	unlock_trace(task);
659 
660 	return 0;
661 }
662 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
663 
664 /************************************************************************/
665 /*                       Here the fs part begins                        */
666 /************************************************************************/
667 
668 /* permission checks */
669 static int proc_fd_access_allowed(struct inode *inode)
670 {
671 	struct task_struct *task;
672 	int allowed = 0;
673 	/* Allow access to a task's file descriptors if it is us or we
674 	 * may use ptrace attach to the process and find out that
675 	 * information.
676 	 */
677 	task = get_proc_task(inode);
678 	if (task) {
679 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
680 		put_task_struct(task);
681 	}
682 	return allowed;
683 }
684 
685 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
686 		 struct iattr *attr)
687 {
688 	int error;
689 	struct inode *inode = d_inode(dentry);
690 
691 	if (attr->ia_valid & ATTR_MODE)
692 		return -EPERM;
693 
694 	error = setattr_prepare(&init_user_ns, dentry, attr);
695 	if (error)
696 		return error;
697 
698 	setattr_copy(&init_user_ns, inode, attr);
699 	mark_inode_dirty(inode);
700 	return 0;
701 }
702 
703 /*
704  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
705  * or euid/egid (for hide_pid_min=2)?
706  */
707 static bool has_pid_permissions(struct proc_fs_info *fs_info,
708 				 struct task_struct *task,
709 				 enum proc_hidepid hide_pid_min)
710 {
711 	/*
712 	 * If 'hidpid' mount option is set force a ptrace check,
713 	 * we indicate that we are using a filesystem syscall
714 	 * by passing PTRACE_MODE_READ_FSCREDS
715 	 */
716 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
717 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
718 
719 	if (fs_info->hide_pid < hide_pid_min)
720 		return true;
721 	if (in_group_p(fs_info->pid_gid))
722 		return true;
723 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
724 }
725 
726 
727 static int proc_pid_permission(struct user_namespace *mnt_userns,
728 			       struct inode *inode, int mask)
729 {
730 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
731 	struct task_struct *task;
732 	bool has_perms;
733 
734 	task = get_proc_task(inode);
735 	if (!task)
736 		return -ESRCH;
737 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
738 	put_task_struct(task);
739 
740 	if (!has_perms) {
741 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
742 			/*
743 			 * Let's make getdents(), stat(), and open()
744 			 * consistent with each other.  If a process
745 			 * may not stat() a file, it shouldn't be seen
746 			 * in procfs at all.
747 			 */
748 			return -ENOENT;
749 		}
750 
751 		return -EPERM;
752 	}
753 	return generic_permission(&init_user_ns, inode, mask);
754 }
755 
756 
757 
758 static const struct inode_operations proc_def_inode_operations = {
759 	.setattr	= proc_setattr,
760 };
761 
762 static int proc_single_show(struct seq_file *m, void *v)
763 {
764 	struct inode *inode = m->private;
765 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
766 	struct pid *pid = proc_pid(inode);
767 	struct task_struct *task;
768 	int ret;
769 
770 	task = get_pid_task(pid, PIDTYPE_PID);
771 	if (!task)
772 		return -ESRCH;
773 
774 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
775 
776 	put_task_struct(task);
777 	return ret;
778 }
779 
780 static int proc_single_open(struct inode *inode, struct file *filp)
781 {
782 	return single_open(filp, proc_single_show, inode);
783 }
784 
785 static const struct file_operations proc_single_file_operations = {
786 	.open		= proc_single_open,
787 	.read		= seq_read,
788 	.llseek		= seq_lseek,
789 	.release	= single_release,
790 };
791 
792 
793 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
794 {
795 	struct task_struct *task = get_proc_task(inode);
796 	struct mm_struct *mm = ERR_PTR(-ESRCH);
797 
798 	if (task) {
799 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
800 		put_task_struct(task);
801 
802 		if (!IS_ERR_OR_NULL(mm)) {
803 			/* ensure this mm_struct can't be freed */
804 			mmgrab(mm);
805 			/* but do not pin its memory */
806 			mmput(mm);
807 		}
808 	}
809 
810 	return mm;
811 }
812 
813 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
814 {
815 	struct mm_struct *mm = proc_mem_open(inode, mode);
816 
817 	if (IS_ERR(mm))
818 		return PTR_ERR(mm);
819 
820 	file->private_data = mm;
821 	return 0;
822 }
823 
824 static int mem_open(struct inode *inode, struct file *file)
825 {
826 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
827 
828 	/* OK to pass negative loff_t, we can catch out-of-range */
829 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
830 
831 	return ret;
832 }
833 
834 static ssize_t mem_rw(struct file *file, char __user *buf,
835 			size_t count, loff_t *ppos, int write)
836 {
837 	struct mm_struct *mm = file->private_data;
838 	unsigned long addr = *ppos;
839 	ssize_t copied;
840 	char *page;
841 	unsigned int flags;
842 
843 	if (!mm)
844 		return 0;
845 
846 	page = (char *)__get_free_page(GFP_KERNEL);
847 	if (!page)
848 		return -ENOMEM;
849 
850 	copied = 0;
851 	if (!mmget_not_zero(mm))
852 		goto free;
853 
854 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
855 
856 	while (count > 0) {
857 		int this_len = min_t(int, count, PAGE_SIZE);
858 
859 		if (write && copy_from_user(page, buf, this_len)) {
860 			copied = -EFAULT;
861 			break;
862 		}
863 
864 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
865 		if (!this_len) {
866 			if (!copied)
867 				copied = -EIO;
868 			break;
869 		}
870 
871 		if (!write && copy_to_user(buf, page, this_len)) {
872 			copied = -EFAULT;
873 			break;
874 		}
875 
876 		buf += this_len;
877 		addr += this_len;
878 		copied += this_len;
879 		count -= this_len;
880 	}
881 	*ppos = addr;
882 
883 	mmput(mm);
884 free:
885 	free_page((unsigned long) page);
886 	return copied;
887 }
888 
889 static ssize_t mem_read(struct file *file, char __user *buf,
890 			size_t count, loff_t *ppos)
891 {
892 	return mem_rw(file, buf, count, ppos, 0);
893 }
894 
895 static ssize_t mem_write(struct file *file, const char __user *buf,
896 			 size_t count, loff_t *ppos)
897 {
898 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
899 }
900 
901 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
902 {
903 	switch (orig) {
904 	case 0:
905 		file->f_pos = offset;
906 		break;
907 	case 1:
908 		file->f_pos += offset;
909 		break;
910 	default:
911 		return -EINVAL;
912 	}
913 	force_successful_syscall_return();
914 	return file->f_pos;
915 }
916 
917 static int mem_release(struct inode *inode, struct file *file)
918 {
919 	struct mm_struct *mm = file->private_data;
920 	if (mm)
921 		mmdrop(mm);
922 	return 0;
923 }
924 
925 static const struct file_operations proc_mem_operations = {
926 	.llseek		= mem_lseek,
927 	.read		= mem_read,
928 	.write		= mem_write,
929 	.open		= mem_open,
930 	.release	= mem_release,
931 };
932 
933 static int environ_open(struct inode *inode, struct file *file)
934 {
935 	return __mem_open(inode, file, PTRACE_MODE_READ);
936 }
937 
938 static ssize_t environ_read(struct file *file, char __user *buf,
939 			size_t count, loff_t *ppos)
940 {
941 	char *page;
942 	unsigned long src = *ppos;
943 	int ret = 0;
944 	struct mm_struct *mm = file->private_data;
945 	unsigned long env_start, env_end;
946 
947 	/* Ensure the process spawned far enough to have an environment. */
948 	if (!mm || !mm->env_end)
949 		return 0;
950 
951 	page = (char *)__get_free_page(GFP_KERNEL);
952 	if (!page)
953 		return -ENOMEM;
954 
955 	ret = 0;
956 	if (!mmget_not_zero(mm))
957 		goto free;
958 
959 	spin_lock(&mm->arg_lock);
960 	env_start = mm->env_start;
961 	env_end = mm->env_end;
962 	spin_unlock(&mm->arg_lock);
963 
964 	while (count > 0) {
965 		size_t this_len, max_len;
966 		int retval;
967 
968 		if (src >= (env_end - env_start))
969 			break;
970 
971 		this_len = env_end - (env_start + src);
972 
973 		max_len = min_t(size_t, PAGE_SIZE, count);
974 		this_len = min(max_len, this_len);
975 
976 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
977 
978 		if (retval <= 0) {
979 			ret = retval;
980 			break;
981 		}
982 
983 		if (copy_to_user(buf, page, retval)) {
984 			ret = -EFAULT;
985 			break;
986 		}
987 
988 		ret += retval;
989 		src += retval;
990 		buf += retval;
991 		count -= retval;
992 	}
993 	*ppos = src;
994 	mmput(mm);
995 
996 free:
997 	free_page((unsigned long) page);
998 	return ret;
999 }
1000 
1001 static const struct file_operations proc_environ_operations = {
1002 	.open		= environ_open,
1003 	.read		= environ_read,
1004 	.llseek		= generic_file_llseek,
1005 	.release	= mem_release,
1006 };
1007 
1008 static int auxv_open(struct inode *inode, struct file *file)
1009 {
1010 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011 }
1012 
1013 static ssize_t auxv_read(struct file *file, char __user *buf,
1014 			size_t count, loff_t *ppos)
1015 {
1016 	struct mm_struct *mm = file->private_data;
1017 	unsigned int nwords = 0;
1018 
1019 	if (!mm)
1020 		return 0;
1021 	do {
1022 		nwords += 2;
1023 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025 				       nwords * sizeof(mm->saved_auxv[0]));
1026 }
1027 
1028 static const struct file_operations proc_auxv_operations = {
1029 	.open		= auxv_open,
1030 	.read		= auxv_read,
1031 	.llseek		= generic_file_llseek,
1032 	.release	= mem_release,
1033 };
1034 
1035 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036 			    loff_t *ppos)
1037 {
1038 	struct task_struct *task = get_proc_task(file_inode(file));
1039 	char buffer[PROC_NUMBUF];
1040 	int oom_adj = OOM_ADJUST_MIN;
1041 	size_t len;
1042 
1043 	if (!task)
1044 		return -ESRCH;
1045 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046 		oom_adj = OOM_ADJUST_MAX;
1047 	else
1048 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049 			  OOM_SCORE_ADJ_MAX;
1050 	put_task_struct(task);
1051 	if (oom_adj > OOM_ADJUST_MAX)
1052 		oom_adj = OOM_ADJUST_MAX;
1053 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1054 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055 }
1056 
1057 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1058 {
1059 	struct mm_struct *mm = NULL;
1060 	struct task_struct *task;
1061 	int err = 0;
1062 
1063 	task = get_proc_task(file_inode(file));
1064 	if (!task)
1065 		return -ESRCH;
1066 
1067 	mutex_lock(&oom_adj_mutex);
1068 	if (legacy) {
1069 		if (oom_adj < task->signal->oom_score_adj &&
1070 				!capable(CAP_SYS_RESOURCE)) {
1071 			err = -EACCES;
1072 			goto err_unlock;
1073 		}
1074 		/*
1075 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076 		 * /proc/pid/oom_score_adj instead.
1077 		 */
1078 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1080 			  task_pid_nr(task));
1081 	} else {
1082 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083 				!capable(CAP_SYS_RESOURCE)) {
1084 			err = -EACCES;
1085 			goto err_unlock;
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Make sure we will check other processes sharing the mm if this is
1091 	 * not vfrok which wants its own oom_score_adj.
1092 	 * pin the mm so it doesn't go away and get reused after task_unlock
1093 	 */
1094 	if (!task->vfork_done) {
1095 		struct task_struct *p = find_lock_task_mm(task);
1096 
1097 		if (p) {
1098 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1099 				mm = p->mm;
1100 				mmgrab(mm);
1101 			}
1102 			task_unlock(p);
1103 		}
1104 	}
1105 
1106 	task->signal->oom_score_adj = oom_adj;
1107 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 		task->signal->oom_score_adj_min = (short)oom_adj;
1109 	trace_oom_score_adj_update(task);
1110 
1111 	if (mm) {
1112 		struct task_struct *p;
1113 
1114 		rcu_read_lock();
1115 		for_each_process(p) {
1116 			if (same_thread_group(task, p))
1117 				continue;
1118 
1119 			/* do not touch kernel threads or the global init */
1120 			if (p->flags & PF_KTHREAD || is_global_init(p))
1121 				continue;
1122 
1123 			task_lock(p);
1124 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1125 				p->signal->oom_score_adj = oom_adj;
1126 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 					p->signal->oom_score_adj_min = (short)oom_adj;
1128 			}
1129 			task_unlock(p);
1130 		}
1131 		rcu_read_unlock();
1132 		mmdrop(mm);
1133 	}
1134 err_unlock:
1135 	mutex_unlock(&oom_adj_mutex);
1136 	put_task_struct(task);
1137 	return err;
1138 }
1139 
1140 /*
1141  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142  * kernels.  The effective policy is defined by oom_score_adj, which has a
1143  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145  * Processes that become oom disabled via oom_adj will still be oom disabled
1146  * with this implementation.
1147  *
1148  * oom_adj cannot be removed since existing userspace binaries use it.
1149  */
1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 			     size_t count, loff_t *ppos)
1152 {
1153 	char buffer[PROC_NUMBUF];
1154 	int oom_adj;
1155 	int err;
1156 
1157 	memset(buffer, 0, sizeof(buffer));
1158 	if (count > sizeof(buffer) - 1)
1159 		count = sizeof(buffer) - 1;
1160 	if (copy_from_user(buffer, buf, count)) {
1161 		err = -EFAULT;
1162 		goto out;
1163 	}
1164 
1165 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166 	if (err)
1167 		goto out;
1168 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 	     oom_adj != OOM_DISABLE) {
1170 		err = -EINVAL;
1171 		goto out;
1172 	}
1173 
1174 	/*
1175 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 	 * value is always attainable.
1177 	 */
1178 	if (oom_adj == OOM_ADJUST_MAX)
1179 		oom_adj = OOM_SCORE_ADJ_MAX;
1180 	else
1181 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182 
1183 	err = __set_oom_adj(file, oom_adj, true);
1184 out:
1185 	return err < 0 ? err : count;
1186 }
1187 
1188 static const struct file_operations proc_oom_adj_operations = {
1189 	.read		= oom_adj_read,
1190 	.write		= oom_adj_write,
1191 	.llseek		= generic_file_llseek,
1192 };
1193 
1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 					size_t count, loff_t *ppos)
1196 {
1197 	struct task_struct *task = get_proc_task(file_inode(file));
1198 	char buffer[PROC_NUMBUF];
1199 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200 	size_t len;
1201 
1202 	if (!task)
1203 		return -ESRCH;
1204 	oom_score_adj = task->signal->oom_score_adj;
1205 	put_task_struct(task);
1206 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208 }
1209 
1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 					size_t count, loff_t *ppos)
1212 {
1213 	char buffer[PROC_NUMBUF];
1214 	int oom_score_adj;
1215 	int err;
1216 
1217 	memset(buffer, 0, sizeof(buffer));
1218 	if (count > sizeof(buffer) - 1)
1219 		count = sizeof(buffer) - 1;
1220 	if (copy_from_user(buffer, buf, count)) {
1221 		err = -EFAULT;
1222 		goto out;
1223 	}
1224 
1225 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226 	if (err)
1227 		goto out;
1228 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230 		err = -EINVAL;
1231 		goto out;
1232 	}
1233 
1234 	err = __set_oom_adj(file, oom_score_adj, false);
1235 out:
1236 	return err < 0 ? err : count;
1237 }
1238 
1239 static const struct file_operations proc_oom_score_adj_operations = {
1240 	.read		= oom_score_adj_read,
1241 	.write		= oom_score_adj_write,
1242 	.llseek		= default_llseek,
1243 };
1244 
1245 #ifdef CONFIG_AUDIT
1246 #define TMPBUFLEN 11
1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 				  size_t count, loff_t *ppos)
1249 {
1250 	struct inode * inode = file_inode(file);
1251 	struct task_struct *task = get_proc_task(inode);
1252 	ssize_t length;
1253 	char tmpbuf[TMPBUFLEN];
1254 
1255 	if (!task)
1256 		return -ESRCH;
1257 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 			   from_kuid(file->f_cred->user_ns,
1259 				     audit_get_loginuid(task)));
1260 	put_task_struct(task);
1261 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262 }
1263 
1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 				   size_t count, loff_t *ppos)
1266 {
1267 	struct inode * inode = file_inode(file);
1268 	uid_t loginuid;
1269 	kuid_t kloginuid;
1270 	int rv;
1271 
1272 	/* Don't let kthreads write their own loginuid */
1273 	if (current->flags & PF_KTHREAD)
1274 		return -EPERM;
1275 
1276 	rcu_read_lock();
1277 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278 		rcu_read_unlock();
1279 		return -EPERM;
1280 	}
1281 	rcu_read_unlock();
1282 
1283 	if (*ppos != 0) {
1284 		/* No partial writes. */
1285 		return -EINVAL;
1286 	}
1287 
1288 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1289 	if (rv < 0)
1290 		return rv;
1291 
1292 	/* is userspace tring to explicitly UNSET the loginuid? */
1293 	if (loginuid == AUDIT_UID_UNSET) {
1294 		kloginuid = INVALID_UID;
1295 	} else {
1296 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1297 		if (!uid_valid(kloginuid))
1298 			return -EINVAL;
1299 	}
1300 
1301 	rv = audit_set_loginuid(kloginuid);
1302 	if (rv < 0)
1303 		return rv;
1304 	return count;
1305 }
1306 
1307 static const struct file_operations proc_loginuid_operations = {
1308 	.read		= proc_loginuid_read,
1309 	.write		= proc_loginuid_write,
1310 	.llseek		= generic_file_llseek,
1311 };
1312 
1313 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1314 				  size_t count, loff_t *ppos)
1315 {
1316 	struct inode * inode = file_inode(file);
1317 	struct task_struct *task = get_proc_task(inode);
1318 	ssize_t length;
1319 	char tmpbuf[TMPBUFLEN];
1320 
1321 	if (!task)
1322 		return -ESRCH;
1323 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1324 				audit_get_sessionid(task));
1325 	put_task_struct(task);
1326 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1327 }
1328 
1329 static const struct file_operations proc_sessionid_operations = {
1330 	.read		= proc_sessionid_read,
1331 	.llseek		= generic_file_llseek,
1332 };
1333 #endif
1334 
1335 #ifdef CONFIG_FAULT_INJECTION
1336 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1337 				      size_t count, loff_t *ppos)
1338 {
1339 	struct task_struct *task = get_proc_task(file_inode(file));
1340 	char buffer[PROC_NUMBUF];
1341 	size_t len;
1342 	int make_it_fail;
1343 
1344 	if (!task)
1345 		return -ESRCH;
1346 	make_it_fail = task->make_it_fail;
1347 	put_task_struct(task);
1348 
1349 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1350 
1351 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1352 }
1353 
1354 static ssize_t proc_fault_inject_write(struct file * file,
1355 			const char __user * buf, size_t count, loff_t *ppos)
1356 {
1357 	struct task_struct *task;
1358 	char buffer[PROC_NUMBUF];
1359 	int make_it_fail;
1360 	int rv;
1361 
1362 	if (!capable(CAP_SYS_RESOURCE))
1363 		return -EPERM;
1364 	memset(buffer, 0, sizeof(buffer));
1365 	if (count > sizeof(buffer) - 1)
1366 		count = sizeof(buffer) - 1;
1367 	if (copy_from_user(buffer, buf, count))
1368 		return -EFAULT;
1369 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1370 	if (rv < 0)
1371 		return rv;
1372 	if (make_it_fail < 0 || make_it_fail > 1)
1373 		return -EINVAL;
1374 
1375 	task = get_proc_task(file_inode(file));
1376 	if (!task)
1377 		return -ESRCH;
1378 	task->make_it_fail = make_it_fail;
1379 	put_task_struct(task);
1380 
1381 	return count;
1382 }
1383 
1384 static const struct file_operations proc_fault_inject_operations = {
1385 	.read		= proc_fault_inject_read,
1386 	.write		= proc_fault_inject_write,
1387 	.llseek		= generic_file_llseek,
1388 };
1389 
1390 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1391 				   size_t count, loff_t *ppos)
1392 {
1393 	struct task_struct *task;
1394 	int err;
1395 	unsigned int n;
1396 
1397 	err = kstrtouint_from_user(buf, count, 0, &n);
1398 	if (err)
1399 		return err;
1400 
1401 	task = get_proc_task(file_inode(file));
1402 	if (!task)
1403 		return -ESRCH;
1404 	task->fail_nth = n;
1405 	put_task_struct(task);
1406 
1407 	return count;
1408 }
1409 
1410 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1411 				  size_t count, loff_t *ppos)
1412 {
1413 	struct task_struct *task;
1414 	char numbuf[PROC_NUMBUF];
1415 	ssize_t len;
1416 
1417 	task = get_proc_task(file_inode(file));
1418 	if (!task)
1419 		return -ESRCH;
1420 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1421 	put_task_struct(task);
1422 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1423 }
1424 
1425 static const struct file_operations proc_fail_nth_operations = {
1426 	.read		= proc_fail_nth_read,
1427 	.write		= proc_fail_nth_write,
1428 };
1429 #endif
1430 
1431 
1432 #ifdef CONFIG_SCHED_DEBUG
1433 /*
1434  * Print out various scheduling related per-task fields:
1435  */
1436 static int sched_show(struct seq_file *m, void *v)
1437 {
1438 	struct inode *inode = m->private;
1439 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1440 	struct task_struct *p;
1441 
1442 	p = get_proc_task(inode);
1443 	if (!p)
1444 		return -ESRCH;
1445 	proc_sched_show_task(p, ns, m);
1446 
1447 	put_task_struct(p);
1448 
1449 	return 0;
1450 }
1451 
1452 static ssize_t
1453 sched_write(struct file *file, const char __user *buf,
1454 	    size_t count, loff_t *offset)
1455 {
1456 	struct inode *inode = file_inode(file);
1457 	struct task_struct *p;
1458 
1459 	p = get_proc_task(inode);
1460 	if (!p)
1461 		return -ESRCH;
1462 	proc_sched_set_task(p);
1463 
1464 	put_task_struct(p);
1465 
1466 	return count;
1467 }
1468 
1469 static int sched_open(struct inode *inode, struct file *filp)
1470 {
1471 	return single_open(filp, sched_show, inode);
1472 }
1473 
1474 static const struct file_operations proc_pid_sched_operations = {
1475 	.open		= sched_open,
1476 	.read		= seq_read,
1477 	.write		= sched_write,
1478 	.llseek		= seq_lseek,
1479 	.release	= single_release,
1480 };
1481 
1482 #endif
1483 
1484 #ifdef CONFIG_SCHED_AUTOGROUP
1485 /*
1486  * Print out autogroup related information:
1487  */
1488 static int sched_autogroup_show(struct seq_file *m, void *v)
1489 {
1490 	struct inode *inode = m->private;
1491 	struct task_struct *p;
1492 
1493 	p = get_proc_task(inode);
1494 	if (!p)
1495 		return -ESRCH;
1496 	proc_sched_autogroup_show_task(p, m);
1497 
1498 	put_task_struct(p);
1499 
1500 	return 0;
1501 }
1502 
1503 static ssize_t
1504 sched_autogroup_write(struct file *file, const char __user *buf,
1505 	    size_t count, loff_t *offset)
1506 {
1507 	struct inode *inode = file_inode(file);
1508 	struct task_struct *p;
1509 	char buffer[PROC_NUMBUF];
1510 	int nice;
1511 	int err;
1512 
1513 	memset(buffer, 0, sizeof(buffer));
1514 	if (count > sizeof(buffer) - 1)
1515 		count = sizeof(buffer) - 1;
1516 	if (copy_from_user(buffer, buf, count))
1517 		return -EFAULT;
1518 
1519 	err = kstrtoint(strstrip(buffer), 0, &nice);
1520 	if (err < 0)
1521 		return err;
1522 
1523 	p = get_proc_task(inode);
1524 	if (!p)
1525 		return -ESRCH;
1526 
1527 	err = proc_sched_autogroup_set_nice(p, nice);
1528 	if (err)
1529 		count = err;
1530 
1531 	put_task_struct(p);
1532 
1533 	return count;
1534 }
1535 
1536 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537 {
1538 	int ret;
1539 
1540 	ret = single_open(filp, sched_autogroup_show, NULL);
1541 	if (!ret) {
1542 		struct seq_file *m = filp->private_data;
1543 
1544 		m->private = inode;
1545 	}
1546 	return ret;
1547 }
1548 
1549 static const struct file_operations proc_pid_sched_autogroup_operations = {
1550 	.open		= sched_autogroup_open,
1551 	.read		= seq_read,
1552 	.write		= sched_autogroup_write,
1553 	.llseek		= seq_lseek,
1554 	.release	= single_release,
1555 };
1556 
1557 #endif /* CONFIG_SCHED_AUTOGROUP */
1558 
1559 #ifdef CONFIG_TIME_NS
1560 static int timens_offsets_show(struct seq_file *m, void *v)
1561 {
1562 	struct task_struct *p;
1563 
1564 	p = get_proc_task(file_inode(m->file));
1565 	if (!p)
1566 		return -ESRCH;
1567 	proc_timens_show_offsets(p, m);
1568 
1569 	put_task_struct(p);
1570 
1571 	return 0;
1572 }
1573 
1574 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575 				    size_t count, loff_t *ppos)
1576 {
1577 	struct inode *inode = file_inode(file);
1578 	struct proc_timens_offset offsets[2];
1579 	char *kbuf = NULL, *pos, *next_line;
1580 	struct task_struct *p;
1581 	int ret, noffsets;
1582 
1583 	/* Only allow < page size writes at the beginning of the file */
1584 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1585 		return -EINVAL;
1586 
1587 	/* Slurp in the user data */
1588 	kbuf = memdup_user_nul(buf, count);
1589 	if (IS_ERR(kbuf))
1590 		return PTR_ERR(kbuf);
1591 
1592 	/* Parse the user data */
1593 	ret = -EINVAL;
1594 	noffsets = 0;
1595 	for (pos = kbuf; pos; pos = next_line) {
1596 		struct proc_timens_offset *off = &offsets[noffsets];
1597 		char clock[10];
1598 		int err;
1599 
1600 		/* Find the end of line and ensure we don't look past it */
1601 		next_line = strchr(pos, '\n');
1602 		if (next_line) {
1603 			*next_line = '\0';
1604 			next_line++;
1605 			if (*next_line == '\0')
1606 				next_line = NULL;
1607 		}
1608 
1609 		err = sscanf(pos, "%9s %lld %lu", clock,
1610 				&off->val.tv_sec, &off->val.tv_nsec);
1611 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612 			goto out;
1613 
1614 		clock[sizeof(clock) - 1] = 0;
1615 		if (strcmp(clock, "monotonic") == 0 ||
1616 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617 			off->clockid = CLOCK_MONOTONIC;
1618 		else if (strcmp(clock, "boottime") == 0 ||
1619 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620 			off->clockid = CLOCK_BOOTTIME;
1621 		else
1622 			goto out;
1623 
1624 		noffsets++;
1625 		if (noffsets == ARRAY_SIZE(offsets)) {
1626 			if (next_line)
1627 				count = next_line - kbuf;
1628 			break;
1629 		}
1630 	}
1631 
1632 	ret = -ESRCH;
1633 	p = get_proc_task(inode);
1634 	if (!p)
1635 		goto out;
1636 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637 	put_task_struct(p);
1638 	if (ret)
1639 		goto out;
1640 
1641 	ret = count;
1642 out:
1643 	kfree(kbuf);
1644 	return ret;
1645 }
1646 
1647 static int timens_offsets_open(struct inode *inode, struct file *filp)
1648 {
1649 	return single_open(filp, timens_offsets_show, inode);
1650 }
1651 
1652 static const struct file_operations proc_timens_offsets_operations = {
1653 	.open		= timens_offsets_open,
1654 	.read		= seq_read,
1655 	.write		= timens_offsets_write,
1656 	.llseek		= seq_lseek,
1657 	.release	= single_release,
1658 };
1659 #endif /* CONFIG_TIME_NS */
1660 
1661 static ssize_t comm_write(struct file *file, const char __user *buf,
1662 				size_t count, loff_t *offset)
1663 {
1664 	struct inode *inode = file_inode(file);
1665 	struct task_struct *p;
1666 	char buffer[TASK_COMM_LEN];
1667 	const size_t maxlen = sizeof(buffer) - 1;
1668 
1669 	memset(buffer, 0, sizeof(buffer));
1670 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671 		return -EFAULT;
1672 
1673 	p = get_proc_task(inode);
1674 	if (!p)
1675 		return -ESRCH;
1676 
1677 	if (same_thread_group(current, p))
1678 		set_task_comm(p, buffer);
1679 	else
1680 		count = -EINVAL;
1681 
1682 	put_task_struct(p);
1683 
1684 	return count;
1685 }
1686 
1687 static int comm_show(struct seq_file *m, void *v)
1688 {
1689 	struct inode *inode = m->private;
1690 	struct task_struct *p;
1691 
1692 	p = get_proc_task(inode);
1693 	if (!p)
1694 		return -ESRCH;
1695 
1696 	proc_task_name(m, p, false);
1697 	seq_putc(m, '\n');
1698 
1699 	put_task_struct(p);
1700 
1701 	return 0;
1702 }
1703 
1704 static int comm_open(struct inode *inode, struct file *filp)
1705 {
1706 	return single_open(filp, comm_show, inode);
1707 }
1708 
1709 static const struct file_operations proc_pid_set_comm_operations = {
1710 	.open		= comm_open,
1711 	.read		= seq_read,
1712 	.write		= comm_write,
1713 	.llseek		= seq_lseek,
1714 	.release	= single_release,
1715 };
1716 
1717 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1718 {
1719 	struct task_struct *task;
1720 	struct file *exe_file;
1721 
1722 	task = get_proc_task(d_inode(dentry));
1723 	if (!task)
1724 		return -ENOENT;
1725 	exe_file = get_task_exe_file(task);
1726 	put_task_struct(task);
1727 	if (exe_file) {
1728 		*exe_path = exe_file->f_path;
1729 		path_get(&exe_file->f_path);
1730 		fput(exe_file);
1731 		return 0;
1732 	} else
1733 		return -ENOENT;
1734 }
1735 
1736 static const char *proc_pid_get_link(struct dentry *dentry,
1737 				     struct inode *inode,
1738 				     struct delayed_call *done)
1739 {
1740 	struct path path;
1741 	int error = -EACCES;
1742 
1743 	if (!dentry)
1744 		return ERR_PTR(-ECHILD);
1745 
1746 	/* Are we allowed to snoop on the tasks file descriptors? */
1747 	if (!proc_fd_access_allowed(inode))
1748 		goto out;
1749 
1750 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1751 	if (error)
1752 		goto out;
1753 
1754 	error = nd_jump_link(&path);
1755 out:
1756 	return ERR_PTR(error);
1757 }
1758 
1759 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1760 {
1761 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1762 	char *pathname;
1763 	int len;
1764 
1765 	if (!tmp)
1766 		return -ENOMEM;
1767 
1768 	pathname = d_path(path, tmp, PAGE_SIZE);
1769 	len = PTR_ERR(pathname);
1770 	if (IS_ERR(pathname))
1771 		goto out;
1772 	len = tmp + PAGE_SIZE - 1 - pathname;
1773 
1774 	if (len > buflen)
1775 		len = buflen;
1776 	if (copy_to_user(buffer, pathname, len))
1777 		len = -EFAULT;
1778  out:
1779 	free_page((unsigned long)tmp);
1780 	return len;
1781 }
1782 
1783 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1784 {
1785 	int error = -EACCES;
1786 	struct inode *inode = d_inode(dentry);
1787 	struct path path;
1788 
1789 	/* Are we allowed to snoop on the tasks file descriptors? */
1790 	if (!proc_fd_access_allowed(inode))
1791 		goto out;
1792 
1793 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1794 	if (error)
1795 		goto out;
1796 
1797 	error = do_proc_readlink(&path, buffer, buflen);
1798 	path_put(&path);
1799 out:
1800 	return error;
1801 }
1802 
1803 const struct inode_operations proc_pid_link_inode_operations = {
1804 	.readlink	= proc_pid_readlink,
1805 	.get_link	= proc_pid_get_link,
1806 	.setattr	= proc_setattr,
1807 };
1808 
1809 
1810 /* building an inode */
1811 
1812 void task_dump_owner(struct task_struct *task, umode_t mode,
1813 		     kuid_t *ruid, kgid_t *rgid)
1814 {
1815 	/* Depending on the state of dumpable compute who should own a
1816 	 * proc file for a task.
1817 	 */
1818 	const struct cred *cred;
1819 	kuid_t uid;
1820 	kgid_t gid;
1821 
1822 	if (unlikely(task->flags & PF_KTHREAD)) {
1823 		*ruid = GLOBAL_ROOT_UID;
1824 		*rgid = GLOBAL_ROOT_GID;
1825 		return;
1826 	}
1827 
1828 	/* Default to the tasks effective ownership */
1829 	rcu_read_lock();
1830 	cred = __task_cred(task);
1831 	uid = cred->euid;
1832 	gid = cred->egid;
1833 	rcu_read_unlock();
1834 
1835 	/*
1836 	 * Before the /proc/pid/status file was created the only way to read
1837 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1838 	 * /proc/pid/status is slow enough that procps and other packages
1839 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1840 	 * made this apply to all per process world readable and executable
1841 	 * directories.
1842 	 */
1843 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1844 		struct mm_struct *mm;
1845 		task_lock(task);
1846 		mm = task->mm;
1847 		/* Make non-dumpable tasks owned by some root */
1848 		if (mm) {
1849 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1850 				struct user_namespace *user_ns = mm->user_ns;
1851 
1852 				uid = make_kuid(user_ns, 0);
1853 				if (!uid_valid(uid))
1854 					uid = GLOBAL_ROOT_UID;
1855 
1856 				gid = make_kgid(user_ns, 0);
1857 				if (!gid_valid(gid))
1858 					gid = GLOBAL_ROOT_GID;
1859 			}
1860 		} else {
1861 			uid = GLOBAL_ROOT_UID;
1862 			gid = GLOBAL_ROOT_GID;
1863 		}
1864 		task_unlock(task);
1865 	}
1866 	*ruid = uid;
1867 	*rgid = gid;
1868 }
1869 
1870 void proc_pid_evict_inode(struct proc_inode *ei)
1871 {
1872 	struct pid *pid = ei->pid;
1873 
1874 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1875 		spin_lock(&pid->lock);
1876 		hlist_del_init_rcu(&ei->sibling_inodes);
1877 		spin_unlock(&pid->lock);
1878 	}
1879 
1880 	put_pid(pid);
1881 }
1882 
1883 struct inode *proc_pid_make_inode(struct super_block * sb,
1884 				  struct task_struct *task, umode_t mode)
1885 {
1886 	struct inode * inode;
1887 	struct proc_inode *ei;
1888 	struct pid *pid;
1889 
1890 	/* We need a new inode */
1891 
1892 	inode = new_inode(sb);
1893 	if (!inode)
1894 		goto out;
1895 
1896 	/* Common stuff */
1897 	ei = PROC_I(inode);
1898 	inode->i_mode = mode;
1899 	inode->i_ino = get_next_ino();
1900 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1901 	inode->i_op = &proc_def_inode_operations;
1902 
1903 	/*
1904 	 * grab the reference to task.
1905 	 */
1906 	pid = get_task_pid(task, PIDTYPE_PID);
1907 	if (!pid)
1908 		goto out_unlock;
1909 
1910 	/* Let the pid remember us for quick removal */
1911 	ei->pid = pid;
1912 	if (S_ISDIR(mode)) {
1913 		spin_lock(&pid->lock);
1914 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1915 		spin_unlock(&pid->lock);
1916 	}
1917 
1918 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 	security_task_to_inode(task, inode);
1920 
1921 out:
1922 	return inode;
1923 
1924 out_unlock:
1925 	iput(inode);
1926 	return NULL;
1927 }
1928 
1929 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1930 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1931 {
1932 	struct inode *inode = d_inode(path->dentry);
1933 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1934 	struct task_struct *task;
1935 
1936 	generic_fillattr(&init_user_ns, inode, stat);
1937 
1938 	stat->uid = GLOBAL_ROOT_UID;
1939 	stat->gid = GLOBAL_ROOT_GID;
1940 	rcu_read_lock();
1941 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1942 	if (task) {
1943 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1944 			rcu_read_unlock();
1945 			/*
1946 			 * This doesn't prevent learning whether PID exists,
1947 			 * it only makes getattr() consistent with readdir().
1948 			 */
1949 			return -ENOENT;
1950 		}
1951 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1952 	}
1953 	rcu_read_unlock();
1954 	return 0;
1955 }
1956 
1957 /* dentry stuff */
1958 
1959 /*
1960  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1961  */
1962 void pid_update_inode(struct task_struct *task, struct inode *inode)
1963 {
1964 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1965 
1966 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1967 	security_task_to_inode(task, inode);
1968 }
1969 
1970 /*
1971  * Rewrite the inode's ownerships here because the owning task may have
1972  * performed a setuid(), etc.
1973  *
1974  */
1975 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1976 {
1977 	struct inode *inode;
1978 	struct task_struct *task;
1979 
1980 	if (flags & LOOKUP_RCU)
1981 		return -ECHILD;
1982 
1983 	inode = d_inode(dentry);
1984 	task = get_proc_task(inode);
1985 
1986 	if (task) {
1987 		pid_update_inode(task, inode);
1988 		put_task_struct(task);
1989 		return 1;
1990 	}
1991 	return 0;
1992 }
1993 
1994 static inline bool proc_inode_is_dead(struct inode *inode)
1995 {
1996 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1997 }
1998 
1999 int pid_delete_dentry(const struct dentry *dentry)
2000 {
2001 	/* Is the task we represent dead?
2002 	 * If so, then don't put the dentry on the lru list,
2003 	 * kill it immediately.
2004 	 */
2005 	return proc_inode_is_dead(d_inode(dentry));
2006 }
2007 
2008 const struct dentry_operations pid_dentry_operations =
2009 {
2010 	.d_revalidate	= pid_revalidate,
2011 	.d_delete	= pid_delete_dentry,
2012 };
2013 
2014 /* Lookups */
2015 
2016 /*
2017  * Fill a directory entry.
2018  *
2019  * If possible create the dcache entry and derive our inode number and
2020  * file type from dcache entry.
2021  *
2022  * Since all of the proc inode numbers are dynamically generated, the inode
2023  * numbers do not exist until the inode is cache.  This means creating
2024  * the dcache entry in readdir is necessary to keep the inode numbers
2025  * reported by readdir in sync with the inode numbers reported
2026  * by stat.
2027  */
2028 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2029 	const char *name, unsigned int len,
2030 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2031 {
2032 	struct dentry *child, *dir = file->f_path.dentry;
2033 	struct qstr qname = QSTR_INIT(name, len);
2034 	struct inode *inode;
2035 	unsigned type = DT_UNKNOWN;
2036 	ino_t ino = 1;
2037 
2038 	child = d_hash_and_lookup(dir, &qname);
2039 	if (!child) {
2040 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041 		child = d_alloc_parallel(dir, &qname, &wq);
2042 		if (IS_ERR(child))
2043 			goto end_instantiate;
2044 		if (d_in_lookup(child)) {
2045 			struct dentry *res;
2046 			res = instantiate(child, task, ptr);
2047 			d_lookup_done(child);
2048 			if (unlikely(res)) {
2049 				dput(child);
2050 				child = res;
2051 				if (IS_ERR(child))
2052 					goto end_instantiate;
2053 			}
2054 		}
2055 	}
2056 	inode = d_inode(child);
2057 	ino = inode->i_ino;
2058 	type = inode->i_mode >> 12;
2059 	dput(child);
2060 end_instantiate:
2061 	return dir_emit(ctx, name, len, ino, type);
2062 }
2063 
2064 /*
2065  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2066  * which represent vma start and end addresses.
2067  */
2068 static int dname_to_vma_addr(struct dentry *dentry,
2069 			     unsigned long *start, unsigned long *end)
2070 {
2071 	const char *str = dentry->d_name.name;
2072 	unsigned long long sval, eval;
2073 	unsigned int len;
2074 
2075 	if (str[0] == '0' && str[1] != '-')
2076 		return -EINVAL;
2077 	len = _parse_integer(str, 16, &sval);
2078 	if (len & KSTRTOX_OVERFLOW)
2079 		return -EINVAL;
2080 	if (sval != (unsigned long)sval)
2081 		return -EINVAL;
2082 	str += len;
2083 
2084 	if (*str != '-')
2085 		return -EINVAL;
2086 	str++;
2087 
2088 	if (str[0] == '0' && str[1])
2089 		return -EINVAL;
2090 	len = _parse_integer(str, 16, &eval);
2091 	if (len & KSTRTOX_OVERFLOW)
2092 		return -EINVAL;
2093 	if (eval != (unsigned long)eval)
2094 		return -EINVAL;
2095 	str += len;
2096 
2097 	if (*str != '\0')
2098 		return -EINVAL;
2099 
2100 	*start = sval;
2101 	*end = eval;
2102 
2103 	return 0;
2104 }
2105 
2106 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2107 {
2108 	unsigned long vm_start, vm_end;
2109 	bool exact_vma_exists = false;
2110 	struct mm_struct *mm = NULL;
2111 	struct task_struct *task;
2112 	struct inode *inode;
2113 	int status = 0;
2114 
2115 	if (flags & LOOKUP_RCU)
2116 		return -ECHILD;
2117 
2118 	inode = d_inode(dentry);
2119 	task = get_proc_task(inode);
2120 	if (!task)
2121 		goto out_notask;
2122 
2123 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2124 	if (IS_ERR_OR_NULL(mm))
2125 		goto out;
2126 
2127 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2128 		status = mmap_read_lock_killable(mm);
2129 		if (!status) {
2130 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2131 							    vm_end);
2132 			mmap_read_unlock(mm);
2133 		}
2134 	}
2135 
2136 	mmput(mm);
2137 
2138 	if (exact_vma_exists) {
2139 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2140 
2141 		security_task_to_inode(task, inode);
2142 		status = 1;
2143 	}
2144 
2145 out:
2146 	put_task_struct(task);
2147 
2148 out_notask:
2149 	return status;
2150 }
2151 
2152 static const struct dentry_operations tid_map_files_dentry_operations = {
2153 	.d_revalidate	= map_files_d_revalidate,
2154 	.d_delete	= pid_delete_dentry,
2155 };
2156 
2157 static int map_files_get_link(struct dentry *dentry, struct path *path)
2158 {
2159 	unsigned long vm_start, vm_end;
2160 	struct vm_area_struct *vma;
2161 	struct task_struct *task;
2162 	struct mm_struct *mm;
2163 	int rc;
2164 
2165 	rc = -ENOENT;
2166 	task = get_proc_task(d_inode(dentry));
2167 	if (!task)
2168 		goto out;
2169 
2170 	mm = get_task_mm(task);
2171 	put_task_struct(task);
2172 	if (!mm)
2173 		goto out;
2174 
2175 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2176 	if (rc)
2177 		goto out_mmput;
2178 
2179 	rc = mmap_read_lock_killable(mm);
2180 	if (rc)
2181 		goto out_mmput;
2182 
2183 	rc = -ENOENT;
2184 	vma = find_exact_vma(mm, vm_start, vm_end);
2185 	if (vma && vma->vm_file) {
2186 		*path = vma->vm_file->f_path;
2187 		path_get(path);
2188 		rc = 0;
2189 	}
2190 	mmap_read_unlock(mm);
2191 
2192 out_mmput:
2193 	mmput(mm);
2194 out:
2195 	return rc;
2196 }
2197 
2198 struct map_files_info {
2199 	unsigned long	start;
2200 	unsigned long	end;
2201 	fmode_t		mode;
2202 };
2203 
2204 /*
2205  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2206  * to concerns about how the symlinks may be used to bypass permissions on
2207  * ancestor directories in the path to the file in question.
2208  */
2209 static const char *
2210 proc_map_files_get_link(struct dentry *dentry,
2211 			struct inode *inode,
2212 		        struct delayed_call *done)
2213 {
2214 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2215 		return ERR_PTR(-EPERM);
2216 
2217 	return proc_pid_get_link(dentry, inode, done);
2218 }
2219 
2220 /*
2221  * Identical to proc_pid_link_inode_operations except for get_link()
2222  */
2223 static const struct inode_operations proc_map_files_link_inode_operations = {
2224 	.readlink	= proc_pid_readlink,
2225 	.get_link	= proc_map_files_get_link,
2226 	.setattr	= proc_setattr,
2227 };
2228 
2229 static struct dentry *
2230 proc_map_files_instantiate(struct dentry *dentry,
2231 			   struct task_struct *task, const void *ptr)
2232 {
2233 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2234 	struct proc_inode *ei;
2235 	struct inode *inode;
2236 
2237 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2238 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2239 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2240 	if (!inode)
2241 		return ERR_PTR(-ENOENT);
2242 
2243 	ei = PROC_I(inode);
2244 	ei->op.proc_get_link = map_files_get_link;
2245 
2246 	inode->i_op = &proc_map_files_link_inode_operations;
2247 	inode->i_size = 64;
2248 
2249 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2250 	return d_splice_alias(inode, dentry);
2251 }
2252 
2253 static struct dentry *proc_map_files_lookup(struct inode *dir,
2254 		struct dentry *dentry, unsigned int flags)
2255 {
2256 	unsigned long vm_start, vm_end;
2257 	struct vm_area_struct *vma;
2258 	struct task_struct *task;
2259 	struct dentry *result;
2260 	struct mm_struct *mm;
2261 
2262 	result = ERR_PTR(-ENOENT);
2263 	task = get_proc_task(dir);
2264 	if (!task)
2265 		goto out;
2266 
2267 	result = ERR_PTR(-EACCES);
2268 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2269 		goto out_put_task;
2270 
2271 	result = ERR_PTR(-ENOENT);
2272 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2273 		goto out_put_task;
2274 
2275 	mm = get_task_mm(task);
2276 	if (!mm)
2277 		goto out_put_task;
2278 
2279 	result = ERR_PTR(-EINTR);
2280 	if (mmap_read_lock_killable(mm))
2281 		goto out_put_mm;
2282 
2283 	result = ERR_PTR(-ENOENT);
2284 	vma = find_exact_vma(mm, vm_start, vm_end);
2285 	if (!vma)
2286 		goto out_no_vma;
2287 
2288 	if (vma->vm_file)
2289 		result = proc_map_files_instantiate(dentry, task,
2290 				(void *)(unsigned long)vma->vm_file->f_mode);
2291 
2292 out_no_vma:
2293 	mmap_read_unlock(mm);
2294 out_put_mm:
2295 	mmput(mm);
2296 out_put_task:
2297 	put_task_struct(task);
2298 out:
2299 	return result;
2300 }
2301 
2302 static const struct inode_operations proc_map_files_inode_operations = {
2303 	.lookup		= proc_map_files_lookup,
2304 	.permission	= proc_fd_permission,
2305 	.setattr	= proc_setattr,
2306 };
2307 
2308 static int
2309 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2310 {
2311 	struct vm_area_struct *vma;
2312 	struct task_struct *task;
2313 	struct mm_struct *mm;
2314 	unsigned long nr_files, pos, i;
2315 	GENRADIX(struct map_files_info) fa;
2316 	struct map_files_info *p;
2317 	int ret;
2318 
2319 	genradix_init(&fa);
2320 
2321 	ret = -ENOENT;
2322 	task = get_proc_task(file_inode(file));
2323 	if (!task)
2324 		goto out;
2325 
2326 	ret = -EACCES;
2327 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2328 		goto out_put_task;
2329 
2330 	ret = 0;
2331 	if (!dir_emit_dots(file, ctx))
2332 		goto out_put_task;
2333 
2334 	mm = get_task_mm(task);
2335 	if (!mm)
2336 		goto out_put_task;
2337 
2338 	ret = mmap_read_lock_killable(mm);
2339 	if (ret) {
2340 		mmput(mm);
2341 		goto out_put_task;
2342 	}
2343 
2344 	nr_files = 0;
2345 
2346 	/*
2347 	 * We need two passes here:
2348 	 *
2349 	 *  1) Collect vmas of mapped files with mmap_lock taken
2350 	 *  2) Release mmap_lock and instantiate entries
2351 	 *
2352 	 * otherwise we get lockdep complained, since filldir()
2353 	 * routine might require mmap_lock taken in might_fault().
2354 	 */
2355 
2356 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2357 		if (!vma->vm_file)
2358 			continue;
2359 		if (++pos <= ctx->pos)
2360 			continue;
2361 
2362 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2363 		if (!p) {
2364 			ret = -ENOMEM;
2365 			mmap_read_unlock(mm);
2366 			mmput(mm);
2367 			goto out_put_task;
2368 		}
2369 
2370 		p->start = vma->vm_start;
2371 		p->end = vma->vm_end;
2372 		p->mode = vma->vm_file->f_mode;
2373 	}
2374 	mmap_read_unlock(mm);
2375 	mmput(mm);
2376 
2377 	for (i = 0; i < nr_files; i++) {
2378 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2379 		unsigned int len;
2380 
2381 		p = genradix_ptr(&fa, i);
2382 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2383 		if (!proc_fill_cache(file, ctx,
2384 				      buf, len,
2385 				      proc_map_files_instantiate,
2386 				      task,
2387 				      (void *)(unsigned long)p->mode))
2388 			break;
2389 		ctx->pos++;
2390 	}
2391 
2392 out_put_task:
2393 	put_task_struct(task);
2394 out:
2395 	genradix_free(&fa);
2396 	return ret;
2397 }
2398 
2399 static const struct file_operations proc_map_files_operations = {
2400 	.read		= generic_read_dir,
2401 	.iterate_shared	= proc_map_files_readdir,
2402 	.llseek		= generic_file_llseek,
2403 };
2404 
2405 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2406 struct timers_private {
2407 	struct pid *pid;
2408 	struct task_struct *task;
2409 	struct sighand_struct *sighand;
2410 	struct pid_namespace *ns;
2411 	unsigned long flags;
2412 };
2413 
2414 static void *timers_start(struct seq_file *m, loff_t *pos)
2415 {
2416 	struct timers_private *tp = m->private;
2417 
2418 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2419 	if (!tp->task)
2420 		return ERR_PTR(-ESRCH);
2421 
2422 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2423 	if (!tp->sighand)
2424 		return ERR_PTR(-ESRCH);
2425 
2426 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2427 }
2428 
2429 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2430 {
2431 	struct timers_private *tp = m->private;
2432 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2433 }
2434 
2435 static void timers_stop(struct seq_file *m, void *v)
2436 {
2437 	struct timers_private *tp = m->private;
2438 
2439 	if (tp->sighand) {
2440 		unlock_task_sighand(tp->task, &tp->flags);
2441 		tp->sighand = NULL;
2442 	}
2443 
2444 	if (tp->task) {
2445 		put_task_struct(tp->task);
2446 		tp->task = NULL;
2447 	}
2448 }
2449 
2450 static int show_timer(struct seq_file *m, void *v)
2451 {
2452 	struct k_itimer *timer;
2453 	struct timers_private *tp = m->private;
2454 	int notify;
2455 	static const char * const nstr[] = {
2456 		[SIGEV_SIGNAL] = "signal",
2457 		[SIGEV_NONE] = "none",
2458 		[SIGEV_THREAD] = "thread",
2459 	};
2460 
2461 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2462 	notify = timer->it_sigev_notify;
2463 
2464 	seq_printf(m, "ID: %d\n", timer->it_id);
2465 	seq_printf(m, "signal: %d/%px\n",
2466 		   timer->sigq->info.si_signo,
2467 		   timer->sigq->info.si_value.sival_ptr);
2468 	seq_printf(m, "notify: %s/%s.%d\n",
2469 		   nstr[notify & ~SIGEV_THREAD_ID],
2470 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2471 		   pid_nr_ns(timer->it_pid, tp->ns));
2472 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2473 
2474 	return 0;
2475 }
2476 
2477 static const struct seq_operations proc_timers_seq_ops = {
2478 	.start	= timers_start,
2479 	.next	= timers_next,
2480 	.stop	= timers_stop,
2481 	.show	= show_timer,
2482 };
2483 
2484 static int proc_timers_open(struct inode *inode, struct file *file)
2485 {
2486 	struct timers_private *tp;
2487 
2488 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2489 			sizeof(struct timers_private));
2490 	if (!tp)
2491 		return -ENOMEM;
2492 
2493 	tp->pid = proc_pid(inode);
2494 	tp->ns = proc_pid_ns(inode->i_sb);
2495 	return 0;
2496 }
2497 
2498 static const struct file_operations proc_timers_operations = {
2499 	.open		= proc_timers_open,
2500 	.read		= seq_read,
2501 	.llseek		= seq_lseek,
2502 	.release	= seq_release_private,
2503 };
2504 #endif
2505 
2506 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2507 					size_t count, loff_t *offset)
2508 {
2509 	struct inode *inode = file_inode(file);
2510 	struct task_struct *p;
2511 	u64 slack_ns;
2512 	int err;
2513 
2514 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2515 	if (err < 0)
2516 		return err;
2517 
2518 	p = get_proc_task(inode);
2519 	if (!p)
2520 		return -ESRCH;
2521 
2522 	if (p != current) {
2523 		rcu_read_lock();
2524 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2525 			rcu_read_unlock();
2526 			count = -EPERM;
2527 			goto out;
2528 		}
2529 		rcu_read_unlock();
2530 
2531 		err = security_task_setscheduler(p);
2532 		if (err) {
2533 			count = err;
2534 			goto out;
2535 		}
2536 	}
2537 
2538 	task_lock(p);
2539 	if (slack_ns == 0)
2540 		p->timer_slack_ns = p->default_timer_slack_ns;
2541 	else
2542 		p->timer_slack_ns = slack_ns;
2543 	task_unlock(p);
2544 
2545 out:
2546 	put_task_struct(p);
2547 
2548 	return count;
2549 }
2550 
2551 static int timerslack_ns_show(struct seq_file *m, void *v)
2552 {
2553 	struct inode *inode = m->private;
2554 	struct task_struct *p;
2555 	int err = 0;
2556 
2557 	p = get_proc_task(inode);
2558 	if (!p)
2559 		return -ESRCH;
2560 
2561 	if (p != current) {
2562 		rcu_read_lock();
2563 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2564 			rcu_read_unlock();
2565 			err = -EPERM;
2566 			goto out;
2567 		}
2568 		rcu_read_unlock();
2569 
2570 		err = security_task_getscheduler(p);
2571 		if (err)
2572 			goto out;
2573 	}
2574 
2575 	task_lock(p);
2576 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2577 	task_unlock(p);
2578 
2579 out:
2580 	put_task_struct(p);
2581 
2582 	return err;
2583 }
2584 
2585 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2586 {
2587 	return single_open(filp, timerslack_ns_show, inode);
2588 }
2589 
2590 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2591 	.open		= timerslack_ns_open,
2592 	.read		= seq_read,
2593 	.write		= timerslack_ns_write,
2594 	.llseek		= seq_lseek,
2595 	.release	= single_release,
2596 };
2597 
2598 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2599 	struct task_struct *task, const void *ptr)
2600 {
2601 	const struct pid_entry *p = ptr;
2602 	struct inode *inode;
2603 	struct proc_inode *ei;
2604 
2605 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2606 	if (!inode)
2607 		return ERR_PTR(-ENOENT);
2608 
2609 	ei = PROC_I(inode);
2610 	if (S_ISDIR(inode->i_mode))
2611 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2612 	if (p->iop)
2613 		inode->i_op = p->iop;
2614 	if (p->fop)
2615 		inode->i_fop = p->fop;
2616 	ei->op = p->op;
2617 	pid_update_inode(task, inode);
2618 	d_set_d_op(dentry, &pid_dentry_operations);
2619 	return d_splice_alias(inode, dentry);
2620 }
2621 
2622 static struct dentry *proc_pident_lookup(struct inode *dir,
2623 					 struct dentry *dentry,
2624 					 const struct pid_entry *p,
2625 					 const struct pid_entry *end)
2626 {
2627 	struct task_struct *task = get_proc_task(dir);
2628 	struct dentry *res = ERR_PTR(-ENOENT);
2629 
2630 	if (!task)
2631 		goto out_no_task;
2632 
2633 	/*
2634 	 * Yes, it does not scale. And it should not. Don't add
2635 	 * new entries into /proc/<tgid>/ without very good reasons.
2636 	 */
2637 	for (; p < end; p++) {
2638 		if (p->len != dentry->d_name.len)
2639 			continue;
2640 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2641 			res = proc_pident_instantiate(dentry, task, p);
2642 			break;
2643 		}
2644 	}
2645 	put_task_struct(task);
2646 out_no_task:
2647 	return res;
2648 }
2649 
2650 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2651 		const struct pid_entry *ents, unsigned int nents)
2652 {
2653 	struct task_struct *task = get_proc_task(file_inode(file));
2654 	const struct pid_entry *p;
2655 
2656 	if (!task)
2657 		return -ENOENT;
2658 
2659 	if (!dir_emit_dots(file, ctx))
2660 		goto out;
2661 
2662 	if (ctx->pos >= nents + 2)
2663 		goto out;
2664 
2665 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2666 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2667 				proc_pident_instantiate, task, p))
2668 			break;
2669 		ctx->pos++;
2670 	}
2671 out:
2672 	put_task_struct(task);
2673 	return 0;
2674 }
2675 
2676 #ifdef CONFIG_SECURITY
2677 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2678 				  size_t count, loff_t *ppos)
2679 {
2680 	struct inode * inode = file_inode(file);
2681 	char *p = NULL;
2682 	ssize_t length;
2683 	struct task_struct *task = get_proc_task(inode);
2684 
2685 	if (!task)
2686 		return -ESRCH;
2687 
2688 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2689 				      (char*)file->f_path.dentry->d_name.name,
2690 				      &p);
2691 	put_task_struct(task);
2692 	if (length > 0)
2693 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2694 	kfree(p);
2695 	return length;
2696 }
2697 
2698 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2699 				   size_t count, loff_t *ppos)
2700 {
2701 	struct inode * inode = file_inode(file);
2702 	struct task_struct *task;
2703 	void *page;
2704 	int rv;
2705 
2706 	rcu_read_lock();
2707 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2708 	if (!task) {
2709 		rcu_read_unlock();
2710 		return -ESRCH;
2711 	}
2712 	/* A task may only write its own attributes. */
2713 	if (current != task) {
2714 		rcu_read_unlock();
2715 		return -EACCES;
2716 	}
2717 	/* Prevent changes to overridden credentials. */
2718 	if (current_cred() != current_real_cred()) {
2719 		rcu_read_unlock();
2720 		return -EBUSY;
2721 	}
2722 	rcu_read_unlock();
2723 
2724 	if (count > PAGE_SIZE)
2725 		count = PAGE_SIZE;
2726 
2727 	/* No partial writes. */
2728 	if (*ppos != 0)
2729 		return -EINVAL;
2730 
2731 	page = memdup_user(buf, count);
2732 	if (IS_ERR(page)) {
2733 		rv = PTR_ERR(page);
2734 		goto out;
2735 	}
2736 
2737 	/* Guard against adverse ptrace interaction */
2738 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2739 	if (rv < 0)
2740 		goto out_free;
2741 
2742 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2743 				  file->f_path.dentry->d_name.name, page,
2744 				  count);
2745 	mutex_unlock(&current->signal->cred_guard_mutex);
2746 out_free:
2747 	kfree(page);
2748 out:
2749 	return rv;
2750 }
2751 
2752 static const struct file_operations proc_pid_attr_operations = {
2753 	.read		= proc_pid_attr_read,
2754 	.write		= proc_pid_attr_write,
2755 	.llseek		= generic_file_llseek,
2756 };
2757 
2758 #define LSM_DIR_OPS(LSM) \
2759 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2760 			     struct dir_context *ctx) \
2761 { \
2762 	return proc_pident_readdir(filp, ctx, \
2763 				   LSM##_attr_dir_stuff, \
2764 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2765 } \
2766 \
2767 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2768 	.read		= generic_read_dir, \
2769 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2770 	.llseek		= default_llseek, \
2771 }; \
2772 \
2773 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2774 				struct dentry *dentry, unsigned int flags) \
2775 { \
2776 	return proc_pident_lookup(dir, dentry, \
2777 				  LSM##_attr_dir_stuff, \
2778 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2779 } \
2780 \
2781 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2782 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2783 	.getattr	= pid_getattr, \
2784 	.setattr	= proc_setattr, \
2785 }
2786 
2787 #ifdef CONFIG_SECURITY_SMACK
2788 static const struct pid_entry smack_attr_dir_stuff[] = {
2789 	ATTR("smack", "current",	0666),
2790 };
2791 LSM_DIR_OPS(smack);
2792 #endif
2793 
2794 #ifdef CONFIG_SECURITY_APPARMOR
2795 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2796 	ATTR("apparmor", "current",	0666),
2797 	ATTR("apparmor", "prev",	0444),
2798 	ATTR("apparmor", "exec",	0666),
2799 };
2800 LSM_DIR_OPS(apparmor);
2801 #endif
2802 
2803 static const struct pid_entry attr_dir_stuff[] = {
2804 	ATTR(NULL, "current",		0666),
2805 	ATTR(NULL, "prev",		0444),
2806 	ATTR(NULL, "exec",		0666),
2807 	ATTR(NULL, "fscreate",		0666),
2808 	ATTR(NULL, "keycreate",		0666),
2809 	ATTR(NULL, "sockcreate",	0666),
2810 #ifdef CONFIG_SECURITY_SMACK
2811 	DIR("smack",			0555,
2812 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2813 #endif
2814 #ifdef CONFIG_SECURITY_APPARMOR
2815 	DIR("apparmor",			0555,
2816 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2817 #endif
2818 };
2819 
2820 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2821 {
2822 	return proc_pident_readdir(file, ctx,
2823 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2824 }
2825 
2826 static const struct file_operations proc_attr_dir_operations = {
2827 	.read		= generic_read_dir,
2828 	.iterate_shared	= proc_attr_dir_readdir,
2829 	.llseek		= generic_file_llseek,
2830 };
2831 
2832 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2833 				struct dentry *dentry, unsigned int flags)
2834 {
2835 	return proc_pident_lookup(dir, dentry,
2836 				  attr_dir_stuff,
2837 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2838 }
2839 
2840 static const struct inode_operations proc_attr_dir_inode_operations = {
2841 	.lookup		= proc_attr_dir_lookup,
2842 	.getattr	= pid_getattr,
2843 	.setattr	= proc_setattr,
2844 };
2845 
2846 #endif
2847 
2848 #ifdef CONFIG_ELF_CORE
2849 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2850 					 size_t count, loff_t *ppos)
2851 {
2852 	struct task_struct *task = get_proc_task(file_inode(file));
2853 	struct mm_struct *mm;
2854 	char buffer[PROC_NUMBUF];
2855 	size_t len;
2856 	int ret;
2857 
2858 	if (!task)
2859 		return -ESRCH;
2860 
2861 	ret = 0;
2862 	mm = get_task_mm(task);
2863 	if (mm) {
2864 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2865 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2866 				MMF_DUMP_FILTER_SHIFT));
2867 		mmput(mm);
2868 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2869 	}
2870 
2871 	put_task_struct(task);
2872 
2873 	return ret;
2874 }
2875 
2876 static ssize_t proc_coredump_filter_write(struct file *file,
2877 					  const char __user *buf,
2878 					  size_t count,
2879 					  loff_t *ppos)
2880 {
2881 	struct task_struct *task;
2882 	struct mm_struct *mm;
2883 	unsigned int val;
2884 	int ret;
2885 	int i;
2886 	unsigned long mask;
2887 
2888 	ret = kstrtouint_from_user(buf, count, 0, &val);
2889 	if (ret < 0)
2890 		return ret;
2891 
2892 	ret = -ESRCH;
2893 	task = get_proc_task(file_inode(file));
2894 	if (!task)
2895 		goto out_no_task;
2896 
2897 	mm = get_task_mm(task);
2898 	if (!mm)
2899 		goto out_no_mm;
2900 	ret = 0;
2901 
2902 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2903 		if (val & mask)
2904 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2905 		else
2906 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2907 	}
2908 
2909 	mmput(mm);
2910  out_no_mm:
2911 	put_task_struct(task);
2912  out_no_task:
2913 	if (ret < 0)
2914 		return ret;
2915 	return count;
2916 }
2917 
2918 static const struct file_operations proc_coredump_filter_operations = {
2919 	.read		= proc_coredump_filter_read,
2920 	.write		= proc_coredump_filter_write,
2921 	.llseek		= generic_file_llseek,
2922 };
2923 #endif
2924 
2925 #ifdef CONFIG_TASK_IO_ACCOUNTING
2926 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2927 {
2928 	struct task_io_accounting acct = task->ioac;
2929 	unsigned long flags;
2930 	int result;
2931 
2932 	result = down_read_killable(&task->signal->exec_update_lock);
2933 	if (result)
2934 		return result;
2935 
2936 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2937 		result = -EACCES;
2938 		goto out_unlock;
2939 	}
2940 
2941 	if (whole && lock_task_sighand(task, &flags)) {
2942 		struct task_struct *t = task;
2943 
2944 		task_io_accounting_add(&acct, &task->signal->ioac);
2945 		while_each_thread(task, t)
2946 			task_io_accounting_add(&acct, &t->ioac);
2947 
2948 		unlock_task_sighand(task, &flags);
2949 	}
2950 	seq_printf(m,
2951 		   "rchar: %llu\n"
2952 		   "wchar: %llu\n"
2953 		   "syscr: %llu\n"
2954 		   "syscw: %llu\n"
2955 		   "read_bytes: %llu\n"
2956 		   "write_bytes: %llu\n"
2957 		   "cancelled_write_bytes: %llu\n",
2958 		   (unsigned long long)acct.rchar,
2959 		   (unsigned long long)acct.wchar,
2960 		   (unsigned long long)acct.syscr,
2961 		   (unsigned long long)acct.syscw,
2962 		   (unsigned long long)acct.read_bytes,
2963 		   (unsigned long long)acct.write_bytes,
2964 		   (unsigned long long)acct.cancelled_write_bytes);
2965 	result = 0;
2966 
2967 out_unlock:
2968 	up_read(&task->signal->exec_update_lock);
2969 	return result;
2970 }
2971 
2972 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2973 				  struct pid *pid, struct task_struct *task)
2974 {
2975 	return do_io_accounting(task, m, 0);
2976 }
2977 
2978 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2979 				   struct pid *pid, struct task_struct *task)
2980 {
2981 	return do_io_accounting(task, m, 1);
2982 }
2983 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2984 
2985 #ifdef CONFIG_USER_NS
2986 static int proc_id_map_open(struct inode *inode, struct file *file,
2987 	const struct seq_operations *seq_ops)
2988 {
2989 	struct user_namespace *ns = NULL;
2990 	struct task_struct *task;
2991 	struct seq_file *seq;
2992 	int ret = -EINVAL;
2993 
2994 	task = get_proc_task(inode);
2995 	if (task) {
2996 		rcu_read_lock();
2997 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2998 		rcu_read_unlock();
2999 		put_task_struct(task);
3000 	}
3001 	if (!ns)
3002 		goto err;
3003 
3004 	ret = seq_open(file, seq_ops);
3005 	if (ret)
3006 		goto err_put_ns;
3007 
3008 	seq = file->private_data;
3009 	seq->private = ns;
3010 
3011 	return 0;
3012 err_put_ns:
3013 	put_user_ns(ns);
3014 err:
3015 	return ret;
3016 }
3017 
3018 static int proc_id_map_release(struct inode *inode, struct file *file)
3019 {
3020 	struct seq_file *seq = file->private_data;
3021 	struct user_namespace *ns = seq->private;
3022 	put_user_ns(ns);
3023 	return seq_release(inode, file);
3024 }
3025 
3026 static int proc_uid_map_open(struct inode *inode, struct file *file)
3027 {
3028 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3029 }
3030 
3031 static int proc_gid_map_open(struct inode *inode, struct file *file)
3032 {
3033 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3034 }
3035 
3036 static int proc_projid_map_open(struct inode *inode, struct file *file)
3037 {
3038 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3039 }
3040 
3041 static const struct file_operations proc_uid_map_operations = {
3042 	.open		= proc_uid_map_open,
3043 	.write		= proc_uid_map_write,
3044 	.read		= seq_read,
3045 	.llseek		= seq_lseek,
3046 	.release	= proc_id_map_release,
3047 };
3048 
3049 static const struct file_operations proc_gid_map_operations = {
3050 	.open		= proc_gid_map_open,
3051 	.write		= proc_gid_map_write,
3052 	.read		= seq_read,
3053 	.llseek		= seq_lseek,
3054 	.release	= proc_id_map_release,
3055 };
3056 
3057 static const struct file_operations proc_projid_map_operations = {
3058 	.open		= proc_projid_map_open,
3059 	.write		= proc_projid_map_write,
3060 	.read		= seq_read,
3061 	.llseek		= seq_lseek,
3062 	.release	= proc_id_map_release,
3063 };
3064 
3065 static int proc_setgroups_open(struct inode *inode, struct file *file)
3066 {
3067 	struct user_namespace *ns = NULL;
3068 	struct task_struct *task;
3069 	int ret;
3070 
3071 	ret = -ESRCH;
3072 	task = get_proc_task(inode);
3073 	if (task) {
3074 		rcu_read_lock();
3075 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3076 		rcu_read_unlock();
3077 		put_task_struct(task);
3078 	}
3079 	if (!ns)
3080 		goto err;
3081 
3082 	if (file->f_mode & FMODE_WRITE) {
3083 		ret = -EACCES;
3084 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3085 			goto err_put_ns;
3086 	}
3087 
3088 	ret = single_open(file, &proc_setgroups_show, ns);
3089 	if (ret)
3090 		goto err_put_ns;
3091 
3092 	return 0;
3093 err_put_ns:
3094 	put_user_ns(ns);
3095 err:
3096 	return ret;
3097 }
3098 
3099 static int proc_setgroups_release(struct inode *inode, struct file *file)
3100 {
3101 	struct seq_file *seq = file->private_data;
3102 	struct user_namespace *ns = seq->private;
3103 	int ret = single_release(inode, file);
3104 	put_user_ns(ns);
3105 	return ret;
3106 }
3107 
3108 static const struct file_operations proc_setgroups_operations = {
3109 	.open		= proc_setgroups_open,
3110 	.write		= proc_setgroups_write,
3111 	.read		= seq_read,
3112 	.llseek		= seq_lseek,
3113 	.release	= proc_setgroups_release,
3114 };
3115 #endif /* CONFIG_USER_NS */
3116 
3117 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3118 				struct pid *pid, struct task_struct *task)
3119 {
3120 	int err = lock_trace(task);
3121 	if (!err) {
3122 		seq_printf(m, "%08x\n", task->personality);
3123 		unlock_trace(task);
3124 	}
3125 	return err;
3126 }
3127 
3128 #ifdef CONFIG_LIVEPATCH
3129 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3130 				struct pid *pid, struct task_struct *task)
3131 {
3132 	seq_printf(m, "%d\n", task->patch_state);
3133 	return 0;
3134 }
3135 #endif /* CONFIG_LIVEPATCH */
3136 
3137 #ifdef CONFIG_STACKLEAK_METRICS
3138 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3139 				struct pid *pid, struct task_struct *task)
3140 {
3141 	unsigned long prev_depth = THREAD_SIZE -
3142 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3143 	unsigned long depth = THREAD_SIZE -
3144 				(task->lowest_stack & (THREAD_SIZE - 1));
3145 
3146 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3147 							prev_depth, depth);
3148 	return 0;
3149 }
3150 #endif /* CONFIG_STACKLEAK_METRICS */
3151 
3152 /*
3153  * Thread groups
3154  */
3155 static const struct file_operations proc_task_operations;
3156 static const struct inode_operations proc_task_inode_operations;
3157 
3158 static const struct pid_entry tgid_base_stuff[] = {
3159 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3160 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3161 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3162 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3163 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3164 #ifdef CONFIG_NET
3165 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3166 #endif
3167 	REG("environ",    S_IRUSR, proc_environ_operations),
3168 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3169 	ONE("status",     S_IRUGO, proc_pid_status),
3170 	ONE("personality", S_IRUSR, proc_pid_personality),
3171 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3172 #ifdef CONFIG_SCHED_DEBUG
3173 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3174 #endif
3175 #ifdef CONFIG_SCHED_AUTOGROUP
3176 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3177 #endif
3178 #ifdef CONFIG_TIME_NS
3179 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3180 #endif
3181 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3182 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3183 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3184 #endif
3185 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3186 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3187 	ONE("statm",      S_IRUGO, proc_pid_statm),
3188 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3189 #ifdef CONFIG_NUMA
3190 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3191 #endif
3192 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3193 	LNK("cwd",        proc_cwd_link),
3194 	LNK("root",       proc_root_link),
3195 	LNK("exe",        proc_exe_link),
3196 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3197 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3198 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3199 #ifdef CONFIG_PROC_PAGE_MONITOR
3200 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3201 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3202 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3203 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3204 #endif
3205 #ifdef CONFIG_SECURITY
3206 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3207 #endif
3208 #ifdef CONFIG_KALLSYMS
3209 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3210 #endif
3211 #ifdef CONFIG_STACKTRACE
3212 	ONE("stack",      S_IRUSR, proc_pid_stack),
3213 #endif
3214 #ifdef CONFIG_SCHED_INFO
3215 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3216 #endif
3217 #ifdef CONFIG_LATENCYTOP
3218 	REG("latency",  S_IRUGO, proc_lstats_operations),
3219 #endif
3220 #ifdef CONFIG_PROC_PID_CPUSET
3221 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3222 #endif
3223 #ifdef CONFIG_CGROUPS
3224 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3225 #endif
3226 #ifdef CONFIG_PROC_CPU_RESCTRL
3227 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3228 #endif
3229 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3230 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3231 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3232 #ifdef CONFIG_AUDIT
3233 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3234 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3235 #endif
3236 #ifdef CONFIG_FAULT_INJECTION
3237 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3238 	REG("fail-nth", 0644, proc_fail_nth_operations),
3239 #endif
3240 #ifdef CONFIG_ELF_CORE
3241 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3242 #endif
3243 #ifdef CONFIG_TASK_IO_ACCOUNTING
3244 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3245 #endif
3246 #ifdef CONFIG_USER_NS
3247 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3248 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3249 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3250 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3251 #endif
3252 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3253 	REG("timers",	  S_IRUGO, proc_timers_operations),
3254 #endif
3255 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3256 #ifdef CONFIG_LIVEPATCH
3257 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3258 #endif
3259 #ifdef CONFIG_STACKLEAK_METRICS
3260 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3261 #endif
3262 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3263 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3264 #endif
3265 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3266 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3267 #endif
3268 };
3269 
3270 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3271 {
3272 	return proc_pident_readdir(file, ctx,
3273 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3274 }
3275 
3276 static const struct file_operations proc_tgid_base_operations = {
3277 	.read		= generic_read_dir,
3278 	.iterate_shared	= proc_tgid_base_readdir,
3279 	.llseek		= generic_file_llseek,
3280 };
3281 
3282 struct pid *tgid_pidfd_to_pid(const struct file *file)
3283 {
3284 	if (file->f_op != &proc_tgid_base_operations)
3285 		return ERR_PTR(-EBADF);
3286 
3287 	return proc_pid(file_inode(file));
3288 }
3289 
3290 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3291 {
3292 	return proc_pident_lookup(dir, dentry,
3293 				  tgid_base_stuff,
3294 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3295 }
3296 
3297 static const struct inode_operations proc_tgid_base_inode_operations = {
3298 	.lookup		= proc_tgid_base_lookup,
3299 	.getattr	= pid_getattr,
3300 	.setattr	= proc_setattr,
3301 	.permission	= proc_pid_permission,
3302 };
3303 
3304 /**
3305  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3306  * @pid: pid that should be flushed.
3307  *
3308  * This function walks a list of inodes (that belong to any proc
3309  * filesystem) that are attached to the pid and flushes them from
3310  * the dentry cache.
3311  *
3312  * It is safe and reasonable to cache /proc entries for a task until
3313  * that task exits.  After that they just clog up the dcache with
3314  * useless entries, possibly causing useful dcache entries to be
3315  * flushed instead.  This routine is provided to flush those useless
3316  * dcache entries when a process is reaped.
3317  *
3318  * NOTE: This routine is just an optimization so it does not guarantee
3319  *       that no dcache entries will exist after a process is reaped
3320  *       it just makes it very unlikely that any will persist.
3321  */
3322 
3323 void proc_flush_pid(struct pid *pid)
3324 {
3325 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3326 }
3327 
3328 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3329 				   struct task_struct *task, const void *ptr)
3330 {
3331 	struct inode *inode;
3332 
3333 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3334 	if (!inode)
3335 		return ERR_PTR(-ENOENT);
3336 
3337 	inode->i_op = &proc_tgid_base_inode_operations;
3338 	inode->i_fop = &proc_tgid_base_operations;
3339 	inode->i_flags|=S_IMMUTABLE;
3340 
3341 	set_nlink(inode, nlink_tgid);
3342 	pid_update_inode(task, inode);
3343 
3344 	d_set_d_op(dentry, &pid_dentry_operations);
3345 	return d_splice_alias(inode, dentry);
3346 }
3347 
3348 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3349 {
3350 	struct task_struct *task;
3351 	unsigned tgid;
3352 	struct proc_fs_info *fs_info;
3353 	struct pid_namespace *ns;
3354 	struct dentry *result = ERR_PTR(-ENOENT);
3355 
3356 	tgid = name_to_int(&dentry->d_name);
3357 	if (tgid == ~0U)
3358 		goto out;
3359 
3360 	fs_info = proc_sb_info(dentry->d_sb);
3361 	ns = fs_info->pid_ns;
3362 	rcu_read_lock();
3363 	task = find_task_by_pid_ns(tgid, ns);
3364 	if (task)
3365 		get_task_struct(task);
3366 	rcu_read_unlock();
3367 	if (!task)
3368 		goto out;
3369 
3370 	/* Limit procfs to only ptraceable tasks */
3371 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3372 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3373 			goto out_put_task;
3374 	}
3375 
3376 	result = proc_pid_instantiate(dentry, task, NULL);
3377 out_put_task:
3378 	put_task_struct(task);
3379 out:
3380 	return result;
3381 }
3382 
3383 /*
3384  * Find the first task with tgid >= tgid
3385  *
3386  */
3387 struct tgid_iter {
3388 	unsigned int tgid;
3389 	struct task_struct *task;
3390 };
3391 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3392 {
3393 	struct pid *pid;
3394 
3395 	if (iter.task)
3396 		put_task_struct(iter.task);
3397 	rcu_read_lock();
3398 retry:
3399 	iter.task = NULL;
3400 	pid = find_ge_pid(iter.tgid, ns);
3401 	if (pid) {
3402 		iter.tgid = pid_nr_ns(pid, ns);
3403 		iter.task = pid_task(pid, PIDTYPE_TGID);
3404 		if (!iter.task) {
3405 			iter.tgid += 1;
3406 			goto retry;
3407 		}
3408 		get_task_struct(iter.task);
3409 	}
3410 	rcu_read_unlock();
3411 	return iter;
3412 }
3413 
3414 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3415 
3416 /* for the /proc/ directory itself, after non-process stuff has been done */
3417 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3418 {
3419 	struct tgid_iter iter;
3420 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3421 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3422 	loff_t pos = ctx->pos;
3423 
3424 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3425 		return 0;
3426 
3427 	if (pos == TGID_OFFSET - 2) {
3428 		struct inode *inode = d_inode(fs_info->proc_self);
3429 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3430 			return 0;
3431 		ctx->pos = pos = pos + 1;
3432 	}
3433 	if (pos == TGID_OFFSET - 1) {
3434 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3435 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3436 			return 0;
3437 		ctx->pos = pos = pos + 1;
3438 	}
3439 	iter.tgid = pos - TGID_OFFSET;
3440 	iter.task = NULL;
3441 	for (iter = next_tgid(ns, iter);
3442 	     iter.task;
3443 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3444 		char name[10 + 1];
3445 		unsigned int len;
3446 
3447 		cond_resched();
3448 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3449 			continue;
3450 
3451 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3452 		ctx->pos = iter.tgid + TGID_OFFSET;
3453 		if (!proc_fill_cache(file, ctx, name, len,
3454 				     proc_pid_instantiate, iter.task, NULL)) {
3455 			put_task_struct(iter.task);
3456 			return 0;
3457 		}
3458 	}
3459 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3460 	return 0;
3461 }
3462 
3463 /*
3464  * proc_tid_comm_permission is a special permission function exclusively
3465  * used for the node /proc/<pid>/task/<tid>/comm.
3466  * It bypasses generic permission checks in the case where a task of the same
3467  * task group attempts to access the node.
3468  * The rationale behind this is that glibc and bionic access this node for
3469  * cross thread naming (pthread_set/getname_np(!self)). However, if
3470  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3471  * which locks out the cross thread naming implementation.
3472  * This function makes sure that the node is always accessible for members of
3473  * same thread group.
3474  */
3475 static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3476 				    struct inode *inode, int mask)
3477 {
3478 	bool is_same_tgroup;
3479 	struct task_struct *task;
3480 
3481 	task = get_proc_task(inode);
3482 	if (!task)
3483 		return -ESRCH;
3484 	is_same_tgroup = same_thread_group(current, task);
3485 	put_task_struct(task);
3486 
3487 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3488 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3489 		 * read or written by the members of the corresponding
3490 		 * thread group.
3491 		 */
3492 		return 0;
3493 	}
3494 
3495 	return generic_permission(&init_user_ns, inode, mask);
3496 }
3497 
3498 static const struct inode_operations proc_tid_comm_inode_operations = {
3499 		.permission = proc_tid_comm_permission,
3500 };
3501 
3502 /*
3503  * Tasks
3504  */
3505 static const struct pid_entry tid_base_stuff[] = {
3506 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3507 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3508 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3509 #ifdef CONFIG_NET
3510 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3511 #endif
3512 	REG("environ",   S_IRUSR, proc_environ_operations),
3513 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3514 	ONE("status",    S_IRUGO, proc_pid_status),
3515 	ONE("personality", S_IRUSR, proc_pid_personality),
3516 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3517 #ifdef CONFIG_SCHED_DEBUG
3518 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3519 #endif
3520 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3521 			 &proc_tid_comm_inode_operations,
3522 			 &proc_pid_set_comm_operations, {}),
3523 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3524 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3525 #endif
3526 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3527 	ONE("stat",      S_IRUGO, proc_tid_stat),
3528 	ONE("statm",     S_IRUGO, proc_pid_statm),
3529 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3530 #ifdef CONFIG_PROC_CHILDREN
3531 	REG("children",  S_IRUGO, proc_tid_children_operations),
3532 #endif
3533 #ifdef CONFIG_NUMA
3534 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3535 #endif
3536 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3537 	LNK("cwd",       proc_cwd_link),
3538 	LNK("root",      proc_root_link),
3539 	LNK("exe",       proc_exe_link),
3540 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3541 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3542 #ifdef CONFIG_PROC_PAGE_MONITOR
3543 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3544 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3545 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3546 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3547 #endif
3548 #ifdef CONFIG_SECURITY
3549 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3550 #endif
3551 #ifdef CONFIG_KALLSYMS
3552 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3553 #endif
3554 #ifdef CONFIG_STACKTRACE
3555 	ONE("stack",      S_IRUSR, proc_pid_stack),
3556 #endif
3557 #ifdef CONFIG_SCHED_INFO
3558 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3559 #endif
3560 #ifdef CONFIG_LATENCYTOP
3561 	REG("latency",  S_IRUGO, proc_lstats_operations),
3562 #endif
3563 #ifdef CONFIG_PROC_PID_CPUSET
3564 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3565 #endif
3566 #ifdef CONFIG_CGROUPS
3567 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3568 #endif
3569 #ifdef CONFIG_PROC_CPU_RESCTRL
3570 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3571 #endif
3572 	ONE("oom_score", S_IRUGO, proc_oom_score),
3573 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3574 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3575 #ifdef CONFIG_AUDIT
3576 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3577 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3578 #endif
3579 #ifdef CONFIG_FAULT_INJECTION
3580 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3581 	REG("fail-nth", 0644, proc_fail_nth_operations),
3582 #endif
3583 #ifdef CONFIG_TASK_IO_ACCOUNTING
3584 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3585 #endif
3586 #ifdef CONFIG_USER_NS
3587 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3588 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3589 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3590 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3591 #endif
3592 #ifdef CONFIG_LIVEPATCH
3593 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3594 #endif
3595 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3596 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3597 #endif
3598 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3599 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3600 #endif
3601 };
3602 
3603 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3604 {
3605 	return proc_pident_readdir(file, ctx,
3606 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3607 }
3608 
3609 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3610 {
3611 	return proc_pident_lookup(dir, dentry,
3612 				  tid_base_stuff,
3613 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3614 }
3615 
3616 static const struct file_operations proc_tid_base_operations = {
3617 	.read		= generic_read_dir,
3618 	.iterate_shared	= proc_tid_base_readdir,
3619 	.llseek		= generic_file_llseek,
3620 };
3621 
3622 static const struct inode_operations proc_tid_base_inode_operations = {
3623 	.lookup		= proc_tid_base_lookup,
3624 	.getattr	= pid_getattr,
3625 	.setattr	= proc_setattr,
3626 };
3627 
3628 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3629 	struct task_struct *task, const void *ptr)
3630 {
3631 	struct inode *inode;
3632 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3633 	if (!inode)
3634 		return ERR_PTR(-ENOENT);
3635 
3636 	inode->i_op = &proc_tid_base_inode_operations;
3637 	inode->i_fop = &proc_tid_base_operations;
3638 	inode->i_flags |= S_IMMUTABLE;
3639 
3640 	set_nlink(inode, nlink_tid);
3641 	pid_update_inode(task, inode);
3642 
3643 	d_set_d_op(dentry, &pid_dentry_operations);
3644 	return d_splice_alias(inode, dentry);
3645 }
3646 
3647 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3648 {
3649 	struct task_struct *task;
3650 	struct task_struct *leader = get_proc_task(dir);
3651 	unsigned tid;
3652 	struct proc_fs_info *fs_info;
3653 	struct pid_namespace *ns;
3654 	struct dentry *result = ERR_PTR(-ENOENT);
3655 
3656 	if (!leader)
3657 		goto out_no_task;
3658 
3659 	tid = name_to_int(&dentry->d_name);
3660 	if (tid == ~0U)
3661 		goto out;
3662 
3663 	fs_info = proc_sb_info(dentry->d_sb);
3664 	ns = fs_info->pid_ns;
3665 	rcu_read_lock();
3666 	task = find_task_by_pid_ns(tid, ns);
3667 	if (task)
3668 		get_task_struct(task);
3669 	rcu_read_unlock();
3670 	if (!task)
3671 		goto out;
3672 	if (!same_thread_group(leader, task))
3673 		goto out_drop_task;
3674 
3675 	result = proc_task_instantiate(dentry, task, NULL);
3676 out_drop_task:
3677 	put_task_struct(task);
3678 out:
3679 	put_task_struct(leader);
3680 out_no_task:
3681 	return result;
3682 }
3683 
3684 /*
3685  * Find the first tid of a thread group to return to user space.
3686  *
3687  * Usually this is just the thread group leader, but if the users
3688  * buffer was too small or there was a seek into the middle of the
3689  * directory we have more work todo.
3690  *
3691  * In the case of a short read we start with find_task_by_pid.
3692  *
3693  * In the case of a seek we start with the leader and walk nr
3694  * threads past it.
3695  */
3696 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3697 					struct pid_namespace *ns)
3698 {
3699 	struct task_struct *pos, *task;
3700 	unsigned long nr = f_pos;
3701 
3702 	if (nr != f_pos)	/* 32bit overflow? */
3703 		return NULL;
3704 
3705 	rcu_read_lock();
3706 	task = pid_task(pid, PIDTYPE_PID);
3707 	if (!task)
3708 		goto fail;
3709 
3710 	/* Attempt to start with the tid of a thread */
3711 	if (tid && nr) {
3712 		pos = find_task_by_pid_ns(tid, ns);
3713 		if (pos && same_thread_group(pos, task))
3714 			goto found;
3715 	}
3716 
3717 	/* If nr exceeds the number of threads there is nothing todo */
3718 	if (nr >= get_nr_threads(task))
3719 		goto fail;
3720 
3721 	/* If we haven't found our starting place yet start
3722 	 * with the leader and walk nr threads forward.
3723 	 */
3724 	pos = task = task->group_leader;
3725 	do {
3726 		if (!nr--)
3727 			goto found;
3728 	} while_each_thread(task, pos);
3729 fail:
3730 	pos = NULL;
3731 	goto out;
3732 found:
3733 	get_task_struct(pos);
3734 out:
3735 	rcu_read_unlock();
3736 	return pos;
3737 }
3738 
3739 /*
3740  * Find the next thread in the thread list.
3741  * Return NULL if there is an error or no next thread.
3742  *
3743  * The reference to the input task_struct is released.
3744  */
3745 static struct task_struct *next_tid(struct task_struct *start)
3746 {
3747 	struct task_struct *pos = NULL;
3748 	rcu_read_lock();
3749 	if (pid_alive(start)) {
3750 		pos = next_thread(start);
3751 		if (thread_group_leader(pos))
3752 			pos = NULL;
3753 		else
3754 			get_task_struct(pos);
3755 	}
3756 	rcu_read_unlock();
3757 	put_task_struct(start);
3758 	return pos;
3759 }
3760 
3761 /* for the /proc/TGID/task/ directories */
3762 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3763 {
3764 	struct inode *inode = file_inode(file);
3765 	struct task_struct *task;
3766 	struct pid_namespace *ns;
3767 	int tid;
3768 
3769 	if (proc_inode_is_dead(inode))
3770 		return -ENOENT;
3771 
3772 	if (!dir_emit_dots(file, ctx))
3773 		return 0;
3774 
3775 	/* f_version caches the tgid value that the last readdir call couldn't
3776 	 * return. lseek aka telldir automagically resets f_version to 0.
3777 	 */
3778 	ns = proc_pid_ns(inode->i_sb);
3779 	tid = (int)file->f_version;
3780 	file->f_version = 0;
3781 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3782 	     task;
3783 	     task = next_tid(task), ctx->pos++) {
3784 		char name[10 + 1];
3785 		unsigned int len;
3786 		tid = task_pid_nr_ns(task, ns);
3787 		len = snprintf(name, sizeof(name), "%u", tid);
3788 		if (!proc_fill_cache(file, ctx, name, len,
3789 				proc_task_instantiate, task, NULL)) {
3790 			/* returning this tgid failed, save it as the first
3791 			 * pid for the next readir call */
3792 			file->f_version = (u64)tid;
3793 			put_task_struct(task);
3794 			break;
3795 		}
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 static int proc_task_getattr(struct user_namespace *mnt_userns,
3802 			     const struct path *path, struct kstat *stat,
3803 			     u32 request_mask, unsigned int query_flags)
3804 {
3805 	struct inode *inode = d_inode(path->dentry);
3806 	struct task_struct *p = get_proc_task(inode);
3807 	generic_fillattr(&init_user_ns, inode, stat);
3808 
3809 	if (p) {
3810 		stat->nlink += get_nr_threads(p);
3811 		put_task_struct(p);
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 static const struct inode_operations proc_task_inode_operations = {
3818 	.lookup		= proc_task_lookup,
3819 	.getattr	= proc_task_getattr,
3820 	.setattr	= proc_setattr,
3821 	.permission	= proc_pid_permission,
3822 };
3823 
3824 static const struct file_operations proc_task_operations = {
3825 	.read		= generic_read_dir,
3826 	.iterate_shared	= proc_task_readdir,
3827 	.llseek		= generic_file_llseek,
3828 };
3829 
3830 void __init set_proc_pid_nlink(void)
3831 {
3832 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3833 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3834 }
3835