1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/printk.h> 77 #include <linux/cgroup.h> 78 #include <linux/cpuset.h> 79 #include <linux/audit.h> 80 #include <linux/poll.h> 81 #include <linux/nsproxy.h> 82 #include <linux/oom.h> 83 #include <linux/elf.h> 84 #include <linux/pid_namespace.h> 85 #include <linux/user_namespace.h> 86 #include <linux/fs_struct.h> 87 #include <linux/slab.h> 88 #include <linux/flex_array.h> 89 #include <linux/posix-timers.h> 90 #ifdef CONFIG_HARDWALL 91 #include <asm/hardwall.h> 92 #endif 93 #include <trace/events/oom.h> 94 #include "internal.h" 95 #include "fd.h" 96 97 /* NOTE: 98 * Implementing inode permission operations in /proc is almost 99 * certainly an error. Permission checks need to happen during 100 * each system call not at open time. The reason is that most of 101 * what we wish to check for permissions in /proc varies at runtime. 102 * 103 * The classic example of a problem is opening file descriptors 104 * in /proc for a task before it execs a suid executable. 105 */ 106 107 struct pid_entry { 108 const char *name; 109 int len; 110 umode_t mode; 111 const struct inode_operations *iop; 112 const struct file_operations *fop; 113 union proc_op op; 114 }; 115 116 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 117 .name = (NAME), \ 118 .len = sizeof(NAME) - 1, \ 119 .mode = MODE, \ 120 .iop = IOP, \ 121 .fop = FOP, \ 122 .op = OP, \ 123 } 124 125 #define DIR(NAME, MODE, iops, fops) \ 126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 127 #define LNK(NAME, get_link) \ 128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 129 &proc_pid_link_inode_operations, NULL, \ 130 { .proc_get_link = get_link } ) 131 #define REG(NAME, MODE, fops) \ 132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 133 #define ONE(NAME, MODE, show) \ 134 NOD(NAME, (S_IFREG|(MODE)), \ 135 NULL, &proc_single_file_operations, \ 136 { .proc_show = show } ) 137 138 /* 139 * Count the number of hardlinks for the pid_entry table, excluding the . 140 * and .. links. 141 */ 142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 143 unsigned int n) 144 { 145 unsigned int i; 146 unsigned int count; 147 148 count = 0; 149 for (i = 0; i < n; ++i) { 150 if (S_ISDIR(entries[i].mode)) 151 ++count; 152 } 153 154 return count; 155 } 156 157 static int get_task_root(struct task_struct *task, struct path *root) 158 { 159 int result = -ENOENT; 160 161 task_lock(task); 162 if (task->fs) { 163 get_fs_root(task->fs, root); 164 result = 0; 165 } 166 task_unlock(task); 167 return result; 168 } 169 170 static int proc_cwd_link(struct dentry *dentry, struct path *path) 171 { 172 struct task_struct *task = get_proc_task(d_inode(dentry)); 173 int result = -ENOENT; 174 175 if (task) { 176 task_lock(task); 177 if (task->fs) { 178 get_fs_pwd(task->fs, path); 179 result = 0; 180 } 181 task_unlock(task); 182 put_task_struct(task); 183 } 184 return result; 185 } 186 187 static int proc_root_link(struct dentry *dentry, struct path *path) 188 { 189 struct task_struct *task = get_proc_task(d_inode(dentry)); 190 int result = -ENOENT; 191 192 if (task) { 193 result = get_task_root(task, path); 194 put_task_struct(task); 195 } 196 return result; 197 } 198 199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 200 size_t _count, loff_t *pos) 201 { 202 struct task_struct *tsk; 203 struct mm_struct *mm; 204 char *page; 205 unsigned long count = _count; 206 unsigned long arg_start, arg_end, env_start, env_end; 207 unsigned long len1, len2, len; 208 unsigned long p; 209 char c; 210 ssize_t rv; 211 212 BUG_ON(*pos < 0); 213 214 tsk = get_proc_task(file_inode(file)); 215 if (!tsk) 216 return -ESRCH; 217 mm = get_task_mm(tsk); 218 put_task_struct(tsk); 219 if (!mm) 220 return 0; 221 /* Check if process spawned far enough to have cmdline. */ 222 if (!mm->env_end) { 223 rv = 0; 224 goto out_mmput; 225 } 226 227 page = (char *)__get_free_page(GFP_TEMPORARY); 228 if (!page) { 229 rv = -ENOMEM; 230 goto out_mmput; 231 } 232 233 down_read(&mm->mmap_sem); 234 arg_start = mm->arg_start; 235 arg_end = mm->arg_end; 236 env_start = mm->env_start; 237 env_end = mm->env_end; 238 up_read(&mm->mmap_sem); 239 240 BUG_ON(arg_start > arg_end); 241 BUG_ON(env_start > env_end); 242 243 len1 = arg_end - arg_start; 244 len2 = env_end - env_start; 245 246 /* Empty ARGV. */ 247 if (len1 == 0) { 248 rv = 0; 249 goto out_free_page; 250 } 251 /* 252 * Inherently racy -- command line shares address space 253 * with code and data. 254 */ 255 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0); 256 if (rv <= 0) 257 goto out_free_page; 258 259 rv = 0; 260 261 if (c == '\0') { 262 /* Command line (set of strings) occupies whole ARGV. */ 263 if (len1 <= *pos) 264 goto out_free_page; 265 266 p = arg_start + *pos; 267 len = len1 - *pos; 268 while (count > 0 && len > 0) { 269 unsigned int _count; 270 int nr_read; 271 272 _count = min3(count, len, PAGE_SIZE); 273 nr_read = access_remote_vm(mm, p, page, _count, 0); 274 if (nr_read < 0) 275 rv = nr_read; 276 if (nr_read <= 0) 277 goto out_free_page; 278 279 if (copy_to_user(buf, page, nr_read)) { 280 rv = -EFAULT; 281 goto out_free_page; 282 } 283 284 p += nr_read; 285 len -= nr_read; 286 buf += nr_read; 287 count -= nr_read; 288 rv += nr_read; 289 } 290 } else { 291 /* 292 * Command line (1 string) occupies ARGV and maybe 293 * extends into ENVP. 294 */ 295 if (len1 + len2 <= *pos) 296 goto skip_argv_envp; 297 if (len1 <= *pos) 298 goto skip_argv; 299 300 p = arg_start + *pos; 301 len = len1 - *pos; 302 while (count > 0 && len > 0) { 303 unsigned int _count, l; 304 int nr_read; 305 bool final; 306 307 _count = min3(count, len, PAGE_SIZE); 308 nr_read = access_remote_vm(mm, p, page, _count, 0); 309 if (nr_read < 0) 310 rv = nr_read; 311 if (nr_read <= 0) 312 goto out_free_page; 313 314 /* 315 * Command line can be shorter than whole ARGV 316 * even if last "marker" byte says it is not. 317 */ 318 final = false; 319 l = strnlen(page, nr_read); 320 if (l < nr_read) { 321 nr_read = l; 322 final = true; 323 } 324 325 if (copy_to_user(buf, page, nr_read)) { 326 rv = -EFAULT; 327 goto out_free_page; 328 } 329 330 p += nr_read; 331 len -= nr_read; 332 buf += nr_read; 333 count -= nr_read; 334 rv += nr_read; 335 336 if (final) 337 goto out_free_page; 338 } 339 skip_argv: 340 /* 341 * Command line (1 string) occupies ARGV and 342 * extends into ENVP. 343 */ 344 if (len1 <= *pos) { 345 p = env_start + *pos - len1; 346 len = len1 + len2 - *pos; 347 } else { 348 p = env_start; 349 len = len2; 350 } 351 while (count > 0 && len > 0) { 352 unsigned int _count, l; 353 int nr_read; 354 bool final; 355 356 _count = min3(count, len, PAGE_SIZE); 357 nr_read = access_remote_vm(mm, p, page, _count, 0); 358 if (nr_read < 0) 359 rv = nr_read; 360 if (nr_read <= 0) 361 goto out_free_page; 362 363 /* Find EOS. */ 364 final = false; 365 l = strnlen(page, nr_read); 366 if (l < nr_read) { 367 nr_read = l; 368 final = true; 369 } 370 371 if (copy_to_user(buf, page, nr_read)) { 372 rv = -EFAULT; 373 goto out_free_page; 374 } 375 376 p += nr_read; 377 len -= nr_read; 378 buf += nr_read; 379 count -= nr_read; 380 rv += nr_read; 381 382 if (final) 383 goto out_free_page; 384 } 385 skip_argv_envp: 386 ; 387 } 388 389 out_free_page: 390 free_page((unsigned long)page); 391 out_mmput: 392 mmput(mm); 393 if (rv > 0) 394 *pos += rv; 395 return rv; 396 } 397 398 static const struct file_operations proc_pid_cmdline_ops = { 399 .read = proc_pid_cmdline_read, 400 .llseek = generic_file_llseek, 401 }; 402 403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns, 404 struct pid *pid, struct task_struct *task) 405 { 406 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 407 if (mm && !IS_ERR(mm)) { 408 unsigned int nwords = 0; 409 do { 410 nwords += 2; 411 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 412 seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0])); 413 mmput(mm); 414 return 0; 415 } else 416 return PTR_ERR(mm); 417 } 418 419 420 #ifdef CONFIG_KALLSYMS 421 /* 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 423 * Returns the resolved symbol. If that fails, simply return the address. 424 */ 425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 426 struct pid *pid, struct task_struct *task) 427 { 428 unsigned long wchan; 429 char symname[KSYM_NAME_LEN]; 430 431 wchan = get_wchan(task); 432 433 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS) 434 && !lookup_symbol_name(wchan, symname)) 435 seq_printf(m, "%s", symname); 436 else 437 seq_putc(m, '0'); 438 439 return 0; 440 } 441 #endif /* CONFIG_KALLSYMS */ 442 443 static int lock_trace(struct task_struct *task) 444 { 445 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 446 if (err) 447 return err; 448 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 449 mutex_unlock(&task->signal->cred_guard_mutex); 450 return -EPERM; 451 } 452 return 0; 453 } 454 455 static void unlock_trace(struct task_struct *task) 456 { 457 mutex_unlock(&task->signal->cred_guard_mutex); 458 } 459 460 #ifdef CONFIG_STACKTRACE 461 462 #define MAX_STACK_TRACE_DEPTH 64 463 464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 465 struct pid *pid, struct task_struct *task) 466 { 467 struct stack_trace trace; 468 unsigned long *entries; 469 int err; 470 int i; 471 472 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 473 if (!entries) 474 return -ENOMEM; 475 476 trace.nr_entries = 0; 477 trace.max_entries = MAX_STACK_TRACE_DEPTH; 478 trace.entries = entries; 479 trace.skip = 0; 480 481 err = lock_trace(task); 482 if (!err) { 483 save_stack_trace_tsk(task, &trace); 484 485 for (i = 0; i < trace.nr_entries; i++) { 486 seq_printf(m, "[<%pK>] %pS\n", 487 (void *)entries[i], (void *)entries[i]); 488 } 489 unlock_trace(task); 490 } 491 kfree(entries); 492 493 return err; 494 } 495 #endif 496 497 #ifdef CONFIG_SCHED_INFO 498 /* 499 * Provides /proc/PID/schedstat 500 */ 501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 502 struct pid *pid, struct task_struct *task) 503 { 504 if (unlikely(!sched_info_on())) 505 seq_printf(m, "0 0 0\n"); 506 else 507 seq_printf(m, "%llu %llu %lu\n", 508 (unsigned long long)task->se.sum_exec_runtime, 509 (unsigned long long)task->sched_info.run_delay, 510 task->sched_info.pcount); 511 512 return 0; 513 } 514 #endif 515 516 #ifdef CONFIG_LATENCYTOP 517 static int lstats_show_proc(struct seq_file *m, void *v) 518 { 519 int i; 520 struct inode *inode = m->private; 521 struct task_struct *task = get_proc_task(inode); 522 523 if (!task) 524 return -ESRCH; 525 seq_puts(m, "Latency Top version : v0.1\n"); 526 for (i = 0; i < 32; i++) { 527 struct latency_record *lr = &task->latency_record[i]; 528 if (lr->backtrace[0]) { 529 int q; 530 seq_printf(m, "%i %li %li", 531 lr->count, lr->time, lr->max); 532 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 533 unsigned long bt = lr->backtrace[q]; 534 if (!bt) 535 break; 536 if (bt == ULONG_MAX) 537 break; 538 seq_printf(m, " %ps", (void *)bt); 539 } 540 seq_putc(m, '\n'); 541 } 542 543 } 544 put_task_struct(task); 545 return 0; 546 } 547 548 static int lstats_open(struct inode *inode, struct file *file) 549 { 550 return single_open(file, lstats_show_proc, inode); 551 } 552 553 static ssize_t lstats_write(struct file *file, const char __user *buf, 554 size_t count, loff_t *offs) 555 { 556 struct task_struct *task = get_proc_task(file_inode(file)); 557 558 if (!task) 559 return -ESRCH; 560 clear_all_latency_tracing(task); 561 put_task_struct(task); 562 563 return count; 564 } 565 566 static const struct file_operations proc_lstats_operations = { 567 .open = lstats_open, 568 .read = seq_read, 569 .write = lstats_write, 570 .llseek = seq_lseek, 571 .release = single_release, 572 }; 573 574 #endif 575 576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 577 struct pid *pid, struct task_struct *task) 578 { 579 unsigned long totalpages = totalram_pages + total_swap_pages; 580 unsigned long points = 0; 581 582 read_lock(&tasklist_lock); 583 if (pid_alive(task)) 584 points = oom_badness(task, NULL, NULL, totalpages) * 585 1000 / totalpages; 586 read_unlock(&tasklist_lock); 587 seq_printf(m, "%lu\n", points); 588 589 return 0; 590 } 591 592 struct limit_names { 593 const char *name; 594 const char *unit; 595 }; 596 597 static const struct limit_names lnames[RLIM_NLIMITS] = { 598 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 599 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 600 [RLIMIT_DATA] = {"Max data size", "bytes"}, 601 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 602 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 603 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 604 [RLIMIT_NPROC] = {"Max processes", "processes"}, 605 [RLIMIT_NOFILE] = {"Max open files", "files"}, 606 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 607 [RLIMIT_AS] = {"Max address space", "bytes"}, 608 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 609 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 610 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 611 [RLIMIT_NICE] = {"Max nice priority", NULL}, 612 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 613 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 614 }; 615 616 /* Display limits for a process */ 617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 618 struct pid *pid, struct task_struct *task) 619 { 620 unsigned int i; 621 unsigned long flags; 622 623 struct rlimit rlim[RLIM_NLIMITS]; 624 625 if (!lock_task_sighand(task, &flags)) 626 return 0; 627 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 628 unlock_task_sighand(task, &flags); 629 630 /* 631 * print the file header 632 */ 633 seq_printf(m, "%-25s %-20s %-20s %-10s\n", 634 "Limit", "Soft Limit", "Hard Limit", "Units"); 635 636 for (i = 0; i < RLIM_NLIMITS; i++) { 637 if (rlim[i].rlim_cur == RLIM_INFINITY) 638 seq_printf(m, "%-25s %-20s ", 639 lnames[i].name, "unlimited"); 640 else 641 seq_printf(m, "%-25s %-20lu ", 642 lnames[i].name, rlim[i].rlim_cur); 643 644 if (rlim[i].rlim_max == RLIM_INFINITY) 645 seq_printf(m, "%-20s ", "unlimited"); 646 else 647 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 648 649 if (lnames[i].unit) 650 seq_printf(m, "%-10s\n", lnames[i].unit); 651 else 652 seq_putc(m, '\n'); 653 } 654 655 return 0; 656 } 657 658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 660 struct pid *pid, struct task_struct *task) 661 { 662 long nr; 663 unsigned long args[6], sp, pc; 664 int res; 665 666 res = lock_trace(task); 667 if (res) 668 return res; 669 670 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 671 seq_puts(m, "running\n"); 672 else if (nr < 0) 673 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 674 else 675 seq_printf(m, 676 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 677 nr, 678 args[0], args[1], args[2], args[3], args[4], args[5], 679 sp, pc); 680 unlock_trace(task); 681 682 return 0; 683 } 684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 685 686 /************************************************************************/ 687 /* Here the fs part begins */ 688 /************************************************************************/ 689 690 /* permission checks */ 691 static int proc_fd_access_allowed(struct inode *inode) 692 { 693 struct task_struct *task; 694 int allowed = 0; 695 /* Allow access to a task's file descriptors if it is us or we 696 * may use ptrace attach to the process and find out that 697 * information. 698 */ 699 task = get_proc_task(inode); 700 if (task) { 701 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 702 put_task_struct(task); 703 } 704 return allowed; 705 } 706 707 int proc_setattr(struct dentry *dentry, struct iattr *attr) 708 { 709 int error; 710 struct inode *inode = d_inode(dentry); 711 712 if (attr->ia_valid & ATTR_MODE) 713 return -EPERM; 714 715 error = inode_change_ok(inode, attr); 716 if (error) 717 return error; 718 719 setattr_copy(inode, attr); 720 mark_inode_dirty(inode); 721 return 0; 722 } 723 724 /* 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 726 * or euid/egid (for hide_pid_min=2)? 727 */ 728 static bool has_pid_permissions(struct pid_namespace *pid, 729 struct task_struct *task, 730 int hide_pid_min) 731 { 732 if (pid->hide_pid < hide_pid_min) 733 return true; 734 if (in_group_p(pid->pid_gid)) 735 return true; 736 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 737 } 738 739 740 static int proc_pid_permission(struct inode *inode, int mask) 741 { 742 struct pid_namespace *pid = inode->i_sb->s_fs_info; 743 struct task_struct *task; 744 bool has_perms; 745 746 task = get_proc_task(inode); 747 if (!task) 748 return -ESRCH; 749 has_perms = has_pid_permissions(pid, task, 1); 750 put_task_struct(task); 751 752 if (!has_perms) { 753 if (pid->hide_pid == 2) { 754 /* 755 * Let's make getdents(), stat(), and open() 756 * consistent with each other. If a process 757 * may not stat() a file, it shouldn't be seen 758 * in procfs at all. 759 */ 760 return -ENOENT; 761 } 762 763 return -EPERM; 764 } 765 return generic_permission(inode, mask); 766 } 767 768 769 770 static const struct inode_operations proc_def_inode_operations = { 771 .setattr = proc_setattr, 772 }; 773 774 static int proc_single_show(struct seq_file *m, void *v) 775 { 776 struct inode *inode = m->private; 777 struct pid_namespace *ns; 778 struct pid *pid; 779 struct task_struct *task; 780 int ret; 781 782 ns = inode->i_sb->s_fs_info; 783 pid = proc_pid(inode); 784 task = get_pid_task(pid, PIDTYPE_PID); 785 if (!task) 786 return -ESRCH; 787 788 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 789 790 put_task_struct(task); 791 return ret; 792 } 793 794 static int proc_single_open(struct inode *inode, struct file *filp) 795 { 796 return single_open(filp, proc_single_show, inode); 797 } 798 799 static const struct file_operations proc_single_file_operations = { 800 .open = proc_single_open, 801 .read = seq_read, 802 .llseek = seq_lseek, 803 .release = single_release, 804 }; 805 806 807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 808 { 809 struct task_struct *task = get_proc_task(inode); 810 struct mm_struct *mm = ERR_PTR(-ESRCH); 811 812 if (task) { 813 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 814 put_task_struct(task); 815 816 if (!IS_ERR_OR_NULL(mm)) { 817 /* ensure this mm_struct can't be freed */ 818 atomic_inc(&mm->mm_count); 819 /* but do not pin its memory */ 820 mmput(mm); 821 } 822 } 823 824 return mm; 825 } 826 827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 828 { 829 struct mm_struct *mm = proc_mem_open(inode, mode); 830 831 if (IS_ERR(mm)) 832 return PTR_ERR(mm); 833 834 file->private_data = mm; 835 return 0; 836 } 837 838 static int mem_open(struct inode *inode, struct file *file) 839 { 840 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 841 842 /* OK to pass negative loff_t, we can catch out-of-range */ 843 file->f_mode |= FMODE_UNSIGNED_OFFSET; 844 845 return ret; 846 } 847 848 static ssize_t mem_rw(struct file *file, char __user *buf, 849 size_t count, loff_t *ppos, int write) 850 { 851 struct mm_struct *mm = file->private_data; 852 unsigned long addr = *ppos; 853 ssize_t copied; 854 char *page; 855 856 if (!mm) 857 return 0; 858 859 page = (char *)__get_free_page(GFP_TEMPORARY); 860 if (!page) 861 return -ENOMEM; 862 863 copied = 0; 864 if (!atomic_inc_not_zero(&mm->mm_users)) 865 goto free; 866 867 while (count > 0) { 868 int this_len = min_t(int, count, PAGE_SIZE); 869 870 if (write && copy_from_user(page, buf, this_len)) { 871 copied = -EFAULT; 872 break; 873 } 874 875 this_len = access_remote_vm(mm, addr, page, this_len, write); 876 if (!this_len) { 877 if (!copied) 878 copied = -EIO; 879 break; 880 } 881 882 if (!write && copy_to_user(buf, page, this_len)) { 883 copied = -EFAULT; 884 break; 885 } 886 887 buf += this_len; 888 addr += this_len; 889 copied += this_len; 890 count -= this_len; 891 } 892 *ppos = addr; 893 894 mmput(mm); 895 free: 896 free_page((unsigned long) page); 897 return copied; 898 } 899 900 static ssize_t mem_read(struct file *file, char __user *buf, 901 size_t count, loff_t *ppos) 902 { 903 return mem_rw(file, buf, count, ppos, 0); 904 } 905 906 static ssize_t mem_write(struct file *file, const char __user *buf, 907 size_t count, loff_t *ppos) 908 { 909 return mem_rw(file, (char __user*)buf, count, ppos, 1); 910 } 911 912 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 913 { 914 switch (orig) { 915 case 0: 916 file->f_pos = offset; 917 break; 918 case 1: 919 file->f_pos += offset; 920 break; 921 default: 922 return -EINVAL; 923 } 924 force_successful_syscall_return(); 925 return file->f_pos; 926 } 927 928 static int mem_release(struct inode *inode, struct file *file) 929 { 930 struct mm_struct *mm = file->private_data; 931 if (mm) 932 mmdrop(mm); 933 return 0; 934 } 935 936 static const struct file_operations proc_mem_operations = { 937 .llseek = mem_lseek, 938 .read = mem_read, 939 .write = mem_write, 940 .open = mem_open, 941 .release = mem_release, 942 }; 943 944 static int environ_open(struct inode *inode, struct file *file) 945 { 946 return __mem_open(inode, file, PTRACE_MODE_READ); 947 } 948 949 static ssize_t environ_read(struct file *file, char __user *buf, 950 size_t count, loff_t *ppos) 951 { 952 char *page; 953 unsigned long src = *ppos; 954 int ret = 0; 955 struct mm_struct *mm = file->private_data; 956 unsigned long env_start, env_end; 957 958 /* Ensure the process spawned far enough to have an environment. */ 959 if (!mm || !mm->env_end) 960 return 0; 961 962 page = (char *)__get_free_page(GFP_TEMPORARY); 963 if (!page) 964 return -ENOMEM; 965 966 ret = 0; 967 if (!atomic_inc_not_zero(&mm->mm_users)) 968 goto free; 969 970 down_read(&mm->mmap_sem); 971 env_start = mm->env_start; 972 env_end = mm->env_end; 973 up_read(&mm->mmap_sem); 974 975 while (count > 0) { 976 size_t this_len, max_len; 977 int retval; 978 979 if (src >= (env_end - env_start)) 980 break; 981 982 this_len = env_end - (env_start + src); 983 984 max_len = min_t(size_t, PAGE_SIZE, count); 985 this_len = min(max_len, this_len); 986 987 retval = access_remote_vm(mm, (env_start + src), 988 page, this_len, 0); 989 990 if (retval <= 0) { 991 ret = retval; 992 break; 993 } 994 995 if (copy_to_user(buf, page, retval)) { 996 ret = -EFAULT; 997 break; 998 } 999 1000 ret += retval; 1001 src += retval; 1002 buf += retval; 1003 count -= retval; 1004 } 1005 *ppos = src; 1006 mmput(mm); 1007 1008 free: 1009 free_page((unsigned long) page); 1010 return ret; 1011 } 1012 1013 static const struct file_operations proc_environ_operations = { 1014 .open = environ_open, 1015 .read = environ_read, 1016 .llseek = generic_file_llseek, 1017 .release = mem_release, 1018 }; 1019 1020 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1021 loff_t *ppos) 1022 { 1023 struct task_struct *task = get_proc_task(file_inode(file)); 1024 char buffer[PROC_NUMBUF]; 1025 int oom_adj = OOM_ADJUST_MIN; 1026 size_t len; 1027 1028 if (!task) 1029 return -ESRCH; 1030 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1031 oom_adj = OOM_ADJUST_MAX; 1032 else 1033 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1034 OOM_SCORE_ADJ_MAX; 1035 put_task_struct(task); 1036 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1037 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1038 } 1039 1040 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1041 { 1042 static DEFINE_MUTEX(oom_adj_mutex); 1043 struct mm_struct *mm = NULL; 1044 struct task_struct *task; 1045 int err = 0; 1046 1047 task = get_proc_task(file_inode(file)); 1048 if (!task) 1049 return -ESRCH; 1050 1051 mutex_lock(&oom_adj_mutex); 1052 if (legacy) { 1053 if (oom_adj < task->signal->oom_score_adj && 1054 !capable(CAP_SYS_RESOURCE)) { 1055 err = -EACCES; 1056 goto err_unlock; 1057 } 1058 /* 1059 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1060 * /proc/pid/oom_score_adj instead. 1061 */ 1062 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1063 current->comm, task_pid_nr(current), task_pid_nr(task), 1064 task_pid_nr(task)); 1065 } else { 1066 if ((short)oom_adj < task->signal->oom_score_adj_min && 1067 !capable(CAP_SYS_RESOURCE)) { 1068 err = -EACCES; 1069 goto err_unlock; 1070 } 1071 } 1072 1073 /* 1074 * Make sure we will check other processes sharing the mm if this is 1075 * not vfrok which wants its own oom_score_adj. 1076 * pin the mm so it doesn't go away and get reused after task_unlock 1077 */ 1078 if (!task->vfork_done) { 1079 struct task_struct *p = find_lock_task_mm(task); 1080 1081 if (p) { 1082 if (atomic_read(&p->mm->mm_users) > 1) { 1083 mm = p->mm; 1084 atomic_inc(&mm->mm_count); 1085 } 1086 task_unlock(p); 1087 } 1088 } 1089 1090 task->signal->oom_score_adj = oom_adj; 1091 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1092 task->signal->oom_score_adj_min = (short)oom_adj; 1093 trace_oom_score_adj_update(task); 1094 1095 if (mm) { 1096 struct task_struct *p; 1097 1098 rcu_read_lock(); 1099 for_each_process(p) { 1100 if (same_thread_group(task, p)) 1101 continue; 1102 1103 /* do not touch kernel threads or the global init */ 1104 if (p->flags & PF_KTHREAD || is_global_init(p)) 1105 continue; 1106 1107 task_lock(p); 1108 if (!p->vfork_done && process_shares_mm(p, mm)) { 1109 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1110 task_pid_nr(p), p->comm, 1111 p->signal->oom_score_adj, oom_adj, 1112 task_pid_nr(task), task->comm); 1113 p->signal->oom_score_adj = oom_adj; 1114 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1115 p->signal->oom_score_adj_min = (short)oom_adj; 1116 } 1117 task_unlock(p); 1118 } 1119 rcu_read_unlock(); 1120 mmdrop(mm); 1121 } 1122 err_unlock: 1123 mutex_unlock(&oom_adj_mutex); 1124 put_task_struct(task); 1125 return err; 1126 } 1127 1128 /* 1129 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1130 * kernels. The effective policy is defined by oom_score_adj, which has a 1131 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1132 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1133 * Processes that become oom disabled via oom_adj will still be oom disabled 1134 * with this implementation. 1135 * 1136 * oom_adj cannot be removed since existing userspace binaries use it. 1137 */ 1138 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1139 size_t count, loff_t *ppos) 1140 { 1141 char buffer[PROC_NUMBUF]; 1142 int oom_adj; 1143 int err; 1144 1145 memset(buffer, 0, sizeof(buffer)); 1146 if (count > sizeof(buffer) - 1) 1147 count = sizeof(buffer) - 1; 1148 if (copy_from_user(buffer, buf, count)) { 1149 err = -EFAULT; 1150 goto out; 1151 } 1152 1153 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1154 if (err) 1155 goto out; 1156 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1157 oom_adj != OOM_DISABLE) { 1158 err = -EINVAL; 1159 goto out; 1160 } 1161 1162 /* 1163 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1164 * value is always attainable. 1165 */ 1166 if (oom_adj == OOM_ADJUST_MAX) 1167 oom_adj = OOM_SCORE_ADJ_MAX; 1168 else 1169 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1170 1171 err = __set_oom_adj(file, oom_adj, true); 1172 out: 1173 return err < 0 ? err : count; 1174 } 1175 1176 static const struct file_operations proc_oom_adj_operations = { 1177 .read = oom_adj_read, 1178 .write = oom_adj_write, 1179 .llseek = generic_file_llseek, 1180 }; 1181 1182 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1183 size_t count, loff_t *ppos) 1184 { 1185 struct task_struct *task = get_proc_task(file_inode(file)); 1186 char buffer[PROC_NUMBUF]; 1187 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1188 size_t len; 1189 1190 if (!task) 1191 return -ESRCH; 1192 oom_score_adj = task->signal->oom_score_adj; 1193 put_task_struct(task); 1194 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1195 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1196 } 1197 1198 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1199 size_t count, loff_t *ppos) 1200 { 1201 char buffer[PROC_NUMBUF]; 1202 int oom_score_adj; 1203 int err; 1204 1205 memset(buffer, 0, sizeof(buffer)); 1206 if (count > sizeof(buffer) - 1) 1207 count = sizeof(buffer) - 1; 1208 if (copy_from_user(buffer, buf, count)) { 1209 err = -EFAULT; 1210 goto out; 1211 } 1212 1213 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1214 if (err) 1215 goto out; 1216 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1217 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1218 err = -EINVAL; 1219 goto out; 1220 } 1221 1222 err = __set_oom_adj(file, oom_score_adj, false); 1223 out: 1224 return err < 0 ? err : count; 1225 } 1226 1227 static const struct file_operations proc_oom_score_adj_operations = { 1228 .read = oom_score_adj_read, 1229 .write = oom_score_adj_write, 1230 .llseek = default_llseek, 1231 }; 1232 1233 #ifdef CONFIG_AUDITSYSCALL 1234 #define TMPBUFLEN 21 1235 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1236 size_t count, loff_t *ppos) 1237 { 1238 struct inode * inode = file_inode(file); 1239 struct task_struct *task = get_proc_task(inode); 1240 ssize_t length; 1241 char tmpbuf[TMPBUFLEN]; 1242 1243 if (!task) 1244 return -ESRCH; 1245 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1246 from_kuid(file->f_cred->user_ns, 1247 audit_get_loginuid(task))); 1248 put_task_struct(task); 1249 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1250 } 1251 1252 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1253 size_t count, loff_t *ppos) 1254 { 1255 struct inode * inode = file_inode(file); 1256 uid_t loginuid; 1257 kuid_t kloginuid; 1258 int rv; 1259 1260 rcu_read_lock(); 1261 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1262 rcu_read_unlock(); 1263 return -EPERM; 1264 } 1265 rcu_read_unlock(); 1266 1267 if (*ppos != 0) { 1268 /* No partial writes. */ 1269 return -EINVAL; 1270 } 1271 1272 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1273 if (rv < 0) 1274 return rv; 1275 1276 /* is userspace tring to explicitly UNSET the loginuid? */ 1277 if (loginuid == AUDIT_UID_UNSET) { 1278 kloginuid = INVALID_UID; 1279 } else { 1280 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1281 if (!uid_valid(kloginuid)) 1282 return -EINVAL; 1283 } 1284 1285 rv = audit_set_loginuid(kloginuid); 1286 if (rv < 0) 1287 return rv; 1288 return count; 1289 } 1290 1291 static const struct file_operations proc_loginuid_operations = { 1292 .read = proc_loginuid_read, 1293 .write = proc_loginuid_write, 1294 .llseek = generic_file_llseek, 1295 }; 1296 1297 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1298 size_t count, loff_t *ppos) 1299 { 1300 struct inode * inode = file_inode(file); 1301 struct task_struct *task = get_proc_task(inode); 1302 ssize_t length; 1303 char tmpbuf[TMPBUFLEN]; 1304 1305 if (!task) 1306 return -ESRCH; 1307 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1308 audit_get_sessionid(task)); 1309 put_task_struct(task); 1310 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1311 } 1312 1313 static const struct file_operations proc_sessionid_operations = { 1314 .read = proc_sessionid_read, 1315 .llseek = generic_file_llseek, 1316 }; 1317 #endif 1318 1319 #ifdef CONFIG_FAULT_INJECTION 1320 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1321 size_t count, loff_t *ppos) 1322 { 1323 struct task_struct *task = get_proc_task(file_inode(file)); 1324 char buffer[PROC_NUMBUF]; 1325 size_t len; 1326 int make_it_fail; 1327 1328 if (!task) 1329 return -ESRCH; 1330 make_it_fail = task->make_it_fail; 1331 put_task_struct(task); 1332 1333 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1334 1335 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1336 } 1337 1338 static ssize_t proc_fault_inject_write(struct file * file, 1339 const char __user * buf, size_t count, loff_t *ppos) 1340 { 1341 struct task_struct *task; 1342 char buffer[PROC_NUMBUF]; 1343 int make_it_fail; 1344 int rv; 1345 1346 if (!capable(CAP_SYS_RESOURCE)) 1347 return -EPERM; 1348 memset(buffer, 0, sizeof(buffer)); 1349 if (count > sizeof(buffer) - 1) 1350 count = sizeof(buffer) - 1; 1351 if (copy_from_user(buffer, buf, count)) 1352 return -EFAULT; 1353 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1354 if (rv < 0) 1355 return rv; 1356 if (make_it_fail < 0 || make_it_fail > 1) 1357 return -EINVAL; 1358 1359 task = get_proc_task(file_inode(file)); 1360 if (!task) 1361 return -ESRCH; 1362 task->make_it_fail = make_it_fail; 1363 put_task_struct(task); 1364 1365 return count; 1366 } 1367 1368 static const struct file_operations proc_fault_inject_operations = { 1369 .read = proc_fault_inject_read, 1370 .write = proc_fault_inject_write, 1371 .llseek = generic_file_llseek, 1372 }; 1373 #endif 1374 1375 1376 #ifdef CONFIG_SCHED_DEBUG 1377 /* 1378 * Print out various scheduling related per-task fields: 1379 */ 1380 static int sched_show(struct seq_file *m, void *v) 1381 { 1382 struct inode *inode = m->private; 1383 struct task_struct *p; 1384 1385 p = get_proc_task(inode); 1386 if (!p) 1387 return -ESRCH; 1388 proc_sched_show_task(p, m); 1389 1390 put_task_struct(p); 1391 1392 return 0; 1393 } 1394 1395 static ssize_t 1396 sched_write(struct file *file, const char __user *buf, 1397 size_t count, loff_t *offset) 1398 { 1399 struct inode *inode = file_inode(file); 1400 struct task_struct *p; 1401 1402 p = get_proc_task(inode); 1403 if (!p) 1404 return -ESRCH; 1405 proc_sched_set_task(p); 1406 1407 put_task_struct(p); 1408 1409 return count; 1410 } 1411 1412 static int sched_open(struct inode *inode, struct file *filp) 1413 { 1414 return single_open(filp, sched_show, inode); 1415 } 1416 1417 static const struct file_operations proc_pid_sched_operations = { 1418 .open = sched_open, 1419 .read = seq_read, 1420 .write = sched_write, 1421 .llseek = seq_lseek, 1422 .release = single_release, 1423 }; 1424 1425 #endif 1426 1427 #ifdef CONFIG_SCHED_AUTOGROUP 1428 /* 1429 * Print out autogroup related information: 1430 */ 1431 static int sched_autogroup_show(struct seq_file *m, void *v) 1432 { 1433 struct inode *inode = m->private; 1434 struct task_struct *p; 1435 1436 p = get_proc_task(inode); 1437 if (!p) 1438 return -ESRCH; 1439 proc_sched_autogroup_show_task(p, m); 1440 1441 put_task_struct(p); 1442 1443 return 0; 1444 } 1445 1446 static ssize_t 1447 sched_autogroup_write(struct file *file, const char __user *buf, 1448 size_t count, loff_t *offset) 1449 { 1450 struct inode *inode = file_inode(file); 1451 struct task_struct *p; 1452 char buffer[PROC_NUMBUF]; 1453 int nice; 1454 int err; 1455 1456 memset(buffer, 0, sizeof(buffer)); 1457 if (count > sizeof(buffer) - 1) 1458 count = sizeof(buffer) - 1; 1459 if (copy_from_user(buffer, buf, count)) 1460 return -EFAULT; 1461 1462 err = kstrtoint(strstrip(buffer), 0, &nice); 1463 if (err < 0) 1464 return err; 1465 1466 p = get_proc_task(inode); 1467 if (!p) 1468 return -ESRCH; 1469 1470 err = proc_sched_autogroup_set_nice(p, nice); 1471 if (err) 1472 count = err; 1473 1474 put_task_struct(p); 1475 1476 return count; 1477 } 1478 1479 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1480 { 1481 int ret; 1482 1483 ret = single_open(filp, sched_autogroup_show, NULL); 1484 if (!ret) { 1485 struct seq_file *m = filp->private_data; 1486 1487 m->private = inode; 1488 } 1489 return ret; 1490 } 1491 1492 static const struct file_operations proc_pid_sched_autogroup_operations = { 1493 .open = sched_autogroup_open, 1494 .read = seq_read, 1495 .write = sched_autogroup_write, 1496 .llseek = seq_lseek, 1497 .release = single_release, 1498 }; 1499 1500 #endif /* CONFIG_SCHED_AUTOGROUP */ 1501 1502 static ssize_t comm_write(struct file *file, const char __user *buf, 1503 size_t count, loff_t *offset) 1504 { 1505 struct inode *inode = file_inode(file); 1506 struct task_struct *p; 1507 char buffer[TASK_COMM_LEN]; 1508 const size_t maxlen = sizeof(buffer) - 1; 1509 1510 memset(buffer, 0, sizeof(buffer)); 1511 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1512 return -EFAULT; 1513 1514 p = get_proc_task(inode); 1515 if (!p) 1516 return -ESRCH; 1517 1518 if (same_thread_group(current, p)) 1519 set_task_comm(p, buffer); 1520 else 1521 count = -EINVAL; 1522 1523 put_task_struct(p); 1524 1525 return count; 1526 } 1527 1528 static int comm_show(struct seq_file *m, void *v) 1529 { 1530 struct inode *inode = m->private; 1531 struct task_struct *p; 1532 1533 p = get_proc_task(inode); 1534 if (!p) 1535 return -ESRCH; 1536 1537 task_lock(p); 1538 seq_printf(m, "%s\n", p->comm); 1539 task_unlock(p); 1540 1541 put_task_struct(p); 1542 1543 return 0; 1544 } 1545 1546 static int comm_open(struct inode *inode, struct file *filp) 1547 { 1548 return single_open(filp, comm_show, inode); 1549 } 1550 1551 static const struct file_operations proc_pid_set_comm_operations = { 1552 .open = comm_open, 1553 .read = seq_read, 1554 .write = comm_write, 1555 .llseek = seq_lseek, 1556 .release = single_release, 1557 }; 1558 1559 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1560 { 1561 struct task_struct *task; 1562 struct mm_struct *mm; 1563 struct file *exe_file; 1564 1565 task = get_proc_task(d_inode(dentry)); 1566 if (!task) 1567 return -ENOENT; 1568 mm = get_task_mm(task); 1569 put_task_struct(task); 1570 if (!mm) 1571 return -ENOENT; 1572 exe_file = get_mm_exe_file(mm); 1573 mmput(mm); 1574 if (exe_file) { 1575 *exe_path = exe_file->f_path; 1576 path_get(&exe_file->f_path); 1577 fput(exe_file); 1578 return 0; 1579 } else 1580 return -ENOENT; 1581 } 1582 1583 static const char *proc_pid_get_link(struct dentry *dentry, 1584 struct inode *inode, 1585 struct delayed_call *done) 1586 { 1587 struct path path; 1588 int error = -EACCES; 1589 1590 if (!dentry) 1591 return ERR_PTR(-ECHILD); 1592 1593 /* Are we allowed to snoop on the tasks file descriptors? */ 1594 if (!proc_fd_access_allowed(inode)) 1595 goto out; 1596 1597 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1598 if (error) 1599 goto out; 1600 1601 nd_jump_link(&path); 1602 return NULL; 1603 out: 1604 return ERR_PTR(error); 1605 } 1606 1607 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1608 { 1609 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1610 char *pathname; 1611 int len; 1612 1613 if (!tmp) 1614 return -ENOMEM; 1615 1616 pathname = d_path(path, tmp, PAGE_SIZE); 1617 len = PTR_ERR(pathname); 1618 if (IS_ERR(pathname)) 1619 goto out; 1620 len = tmp + PAGE_SIZE - 1 - pathname; 1621 1622 if (len > buflen) 1623 len = buflen; 1624 if (copy_to_user(buffer, pathname, len)) 1625 len = -EFAULT; 1626 out: 1627 free_page((unsigned long)tmp); 1628 return len; 1629 } 1630 1631 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1632 { 1633 int error = -EACCES; 1634 struct inode *inode = d_inode(dentry); 1635 struct path path; 1636 1637 /* Are we allowed to snoop on the tasks file descriptors? */ 1638 if (!proc_fd_access_allowed(inode)) 1639 goto out; 1640 1641 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1642 if (error) 1643 goto out; 1644 1645 error = do_proc_readlink(&path, buffer, buflen); 1646 path_put(&path); 1647 out: 1648 return error; 1649 } 1650 1651 const struct inode_operations proc_pid_link_inode_operations = { 1652 .readlink = proc_pid_readlink, 1653 .get_link = proc_pid_get_link, 1654 .setattr = proc_setattr, 1655 }; 1656 1657 1658 /* building an inode */ 1659 1660 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1661 { 1662 struct inode * inode; 1663 struct proc_inode *ei; 1664 const struct cred *cred; 1665 1666 /* We need a new inode */ 1667 1668 inode = new_inode(sb); 1669 if (!inode) 1670 goto out; 1671 1672 /* Common stuff */ 1673 ei = PROC_I(inode); 1674 inode->i_ino = get_next_ino(); 1675 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1676 inode->i_op = &proc_def_inode_operations; 1677 1678 /* 1679 * grab the reference to task. 1680 */ 1681 ei->pid = get_task_pid(task, PIDTYPE_PID); 1682 if (!ei->pid) 1683 goto out_unlock; 1684 1685 if (task_dumpable(task)) { 1686 rcu_read_lock(); 1687 cred = __task_cred(task); 1688 inode->i_uid = cred->euid; 1689 inode->i_gid = cred->egid; 1690 rcu_read_unlock(); 1691 } 1692 security_task_to_inode(task, inode); 1693 1694 out: 1695 return inode; 1696 1697 out_unlock: 1698 iput(inode); 1699 return NULL; 1700 } 1701 1702 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1703 { 1704 struct inode *inode = d_inode(dentry); 1705 struct task_struct *task; 1706 const struct cred *cred; 1707 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1708 1709 generic_fillattr(inode, stat); 1710 1711 rcu_read_lock(); 1712 stat->uid = GLOBAL_ROOT_UID; 1713 stat->gid = GLOBAL_ROOT_GID; 1714 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1715 if (task) { 1716 if (!has_pid_permissions(pid, task, 2)) { 1717 rcu_read_unlock(); 1718 /* 1719 * This doesn't prevent learning whether PID exists, 1720 * it only makes getattr() consistent with readdir(). 1721 */ 1722 return -ENOENT; 1723 } 1724 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1725 task_dumpable(task)) { 1726 cred = __task_cred(task); 1727 stat->uid = cred->euid; 1728 stat->gid = cred->egid; 1729 } 1730 } 1731 rcu_read_unlock(); 1732 return 0; 1733 } 1734 1735 /* dentry stuff */ 1736 1737 /* 1738 * Exceptional case: normally we are not allowed to unhash a busy 1739 * directory. In this case, however, we can do it - no aliasing problems 1740 * due to the way we treat inodes. 1741 * 1742 * Rewrite the inode's ownerships here because the owning task may have 1743 * performed a setuid(), etc. 1744 * 1745 * Before the /proc/pid/status file was created the only way to read 1746 * the effective uid of a /process was to stat /proc/pid. Reading 1747 * /proc/pid/status is slow enough that procps and other packages 1748 * kept stating /proc/pid. To keep the rules in /proc simple I have 1749 * made this apply to all per process world readable and executable 1750 * directories. 1751 */ 1752 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1753 { 1754 struct inode *inode; 1755 struct task_struct *task; 1756 const struct cred *cred; 1757 1758 if (flags & LOOKUP_RCU) 1759 return -ECHILD; 1760 1761 inode = d_inode(dentry); 1762 task = get_proc_task(inode); 1763 1764 if (task) { 1765 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1766 task_dumpable(task)) { 1767 rcu_read_lock(); 1768 cred = __task_cred(task); 1769 inode->i_uid = cred->euid; 1770 inode->i_gid = cred->egid; 1771 rcu_read_unlock(); 1772 } else { 1773 inode->i_uid = GLOBAL_ROOT_UID; 1774 inode->i_gid = GLOBAL_ROOT_GID; 1775 } 1776 inode->i_mode &= ~(S_ISUID | S_ISGID); 1777 security_task_to_inode(task, inode); 1778 put_task_struct(task); 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 1784 static inline bool proc_inode_is_dead(struct inode *inode) 1785 { 1786 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1787 } 1788 1789 int pid_delete_dentry(const struct dentry *dentry) 1790 { 1791 /* Is the task we represent dead? 1792 * If so, then don't put the dentry on the lru list, 1793 * kill it immediately. 1794 */ 1795 return proc_inode_is_dead(d_inode(dentry)); 1796 } 1797 1798 const struct dentry_operations pid_dentry_operations = 1799 { 1800 .d_revalidate = pid_revalidate, 1801 .d_delete = pid_delete_dentry, 1802 }; 1803 1804 /* Lookups */ 1805 1806 /* 1807 * Fill a directory entry. 1808 * 1809 * If possible create the dcache entry and derive our inode number and 1810 * file type from dcache entry. 1811 * 1812 * Since all of the proc inode numbers are dynamically generated, the inode 1813 * numbers do not exist until the inode is cache. This means creating the 1814 * the dcache entry in readdir is necessary to keep the inode numbers 1815 * reported by readdir in sync with the inode numbers reported 1816 * by stat. 1817 */ 1818 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1819 const char *name, int len, 1820 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1821 { 1822 struct dentry *child, *dir = file->f_path.dentry; 1823 struct qstr qname = QSTR_INIT(name, len); 1824 struct inode *inode; 1825 unsigned type; 1826 ino_t ino; 1827 1828 child = d_hash_and_lookup(dir, &qname); 1829 if (!child) { 1830 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1831 child = d_alloc_parallel(dir, &qname, &wq); 1832 if (IS_ERR(child)) 1833 goto end_instantiate; 1834 if (d_in_lookup(child)) { 1835 int err = instantiate(d_inode(dir), child, task, ptr); 1836 d_lookup_done(child); 1837 if (err < 0) { 1838 dput(child); 1839 goto end_instantiate; 1840 } 1841 } 1842 } 1843 inode = d_inode(child); 1844 ino = inode->i_ino; 1845 type = inode->i_mode >> 12; 1846 dput(child); 1847 return dir_emit(ctx, name, len, ino, type); 1848 1849 end_instantiate: 1850 return dir_emit(ctx, name, len, 1, DT_UNKNOWN); 1851 } 1852 1853 /* 1854 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1855 * which represent vma start and end addresses. 1856 */ 1857 static int dname_to_vma_addr(struct dentry *dentry, 1858 unsigned long *start, unsigned long *end) 1859 { 1860 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 1861 return -EINVAL; 1862 1863 return 0; 1864 } 1865 1866 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1867 { 1868 unsigned long vm_start, vm_end; 1869 bool exact_vma_exists = false; 1870 struct mm_struct *mm = NULL; 1871 struct task_struct *task; 1872 const struct cred *cred; 1873 struct inode *inode; 1874 int status = 0; 1875 1876 if (flags & LOOKUP_RCU) 1877 return -ECHILD; 1878 1879 inode = d_inode(dentry); 1880 task = get_proc_task(inode); 1881 if (!task) 1882 goto out_notask; 1883 1884 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1885 if (IS_ERR_OR_NULL(mm)) 1886 goto out; 1887 1888 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1889 down_read(&mm->mmap_sem); 1890 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1891 up_read(&mm->mmap_sem); 1892 } 1893 1894 mmput(mm); 1895 1896 if (exact_vma_exists) { 1897 if (task_dumpable(task)) { 1898 rcu_read_lock(); 1899 cred = __task_cred(task); 1900 inode->i_uid = cred->euid; 1901 inode->i_gid = cred->egid; 1902 rcu_read_unlock(); 1903 } else { 1904 inode->i_uid = GLOBAL_ROOT_UID; 1905 inode->i_gid = GLOBAL_ROOT_GID; 1906 } 1907 security_task_to_inode(task, inode); 1908 status = 1; 1909 } 1910 1911 out: 1912 put_task_struct(task); 1913 1914 out_notask: 1915 return status; 1916 } 1917 1918 static const struct dentry_operations tid_map_files_dentry_operations = { 1919 .d_revalidate = map_files_d_revalidate, 1920 .d_delete = pid_delete_dentry, 1921 }; 1922 1923 static int map_files_get_link(struct dentry *dentry, struct path *path) 1924 { 1925 unsigned long vm_start, vm_end; 1926 struct vm_area_struct *vma; 1927 struct task_struct *task; 1928 struct mm_struct *mm; 1929 int rc; 1930 1931 rc = -ENOENT; 1932 task = get_proc_task(d_inode(dentry)); 1933 if (!task) 1934 goto out; 1935 1936 mm = get_task_mm(task); 1937 put_task_struct(task); 1938 if (!mm) 1939 goto out; 1940 1941 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 1942 if (rc) 1943 goto out_mmput; 1944 1945 rc = -ENOENT; 1946 down_read(&mm->mmap_sem); 1947 vma = find_exact_vma(mm, vm_start, vm_end); 1948 if (vma && vma->vm_file) { 1949 *path = vma->vm_file->f_path; 1950 path_get(path); 1951 rc = 0; 1952 } 1953 up_read(&mm->mmap_sem); 1954 1955 out_mmput: 1956 mmput(mm); 1957 out: 1958 return rc; 1959 } 1960 1961 struct map_files_info { 1962 fmode_t mode; 1963 unsigned long len; 1964 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 1965 }; 1966 1967 /* 1968 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 1969 * symlinks may be used to bypass permissions on ancestor directories in the 1970 * path to the file in question. 1971 */ 1972 static const char * 1973 proc_map_files_get_link(struct dentry *dentry, 1974 struct inode *inode, 1975 struct delayed_call *done) 1976 { 1977 if (!capable(CAP_SYS_ADMIN)) 1978 return ERR_PTR(-EPERM); 1979 1980 return proc_pid_get_link(dentry, inode, done); 1981 } 1982 1983 /* 1984 * Identical to proc_pid_link_inode_operations except for get_link() 1985 */ 1986 static const struct inode_operations proc_map_files_link_inode_operations = { 1987 .readlink = proc_pid_readlink, 1988 .get_link = proc_map_files_get_link, 1989 .setattr = proc_setattr, 1990 }; 1991 1992 static int 1993 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 1994 struct task_struct *task, const void *ptr) 1995 { 1996 fmode_t mode = (fmode_t)(unsigned long)ptr; 1997 struct proc_inode *ei; 1998 struct inode *inode; 1999 2000 inode = proc_pid_make_inode(dir->i_sb, task); 2001 if (!inode) 2002 return -ENOENT; 2003 2004 ei = PROC_I(inode); 2005 ei->op.proc_get_link = map_files_get_link; 2006 2007 inode->i_op = &proc_map_files_link_inode_operations; 2008 inode->i_size = 64; 2009 inode->i_mode = S_IFLNK; 2010 2011 if (mode & FMODE_READ) 2012 inode->i_mode |= S_IRUSR; 2013 if (mode & FMODE_WRITE) 2014 inode->i_mode |= S_IWUSR; 2015 2016 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2017 d_add(dentry, inode); 2018 2019 return 0; 2020 } 2021 2022 static struct dentry *proc_map_files_lookup(struct inode *dir, 2023 struct dentry *dentry, unsigned int flags) 2024 { 2025 unsigned long vm_start, vm_end; 2026 struct vm_area_struct *vma; 2027 struct task_struct *task; 2028 int result; 2029 struct mm_struct *mm; 2030 2031 result = -ENOENT; 2032 task = get_proc_task(dir); 2033 if (!task) 2034 goto out; 2035 2036 result = -EACCES; 2037 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2038 goto out_put_task; 2039 2040 result = -ENOENT; 2041 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2042 goto out_put_task; 2043 2044 mm = get_task_mm(task); 2045 if (!mm) 2046 goto out_put_task; 2047 2048 down_read(&mm->mmap_sem); 2049 vma = find_exact_vma(mm, vm_start, vm_end); 2050 if (!vma) 2051 goto out_no_vma; 2052 2053 if (vma->vm_file) 2054 result = proc_map_files_instantiate(dir, dentry, task, 2055 (void *)(unsigned long)vma->vm_file->f_mode); 2056 2057 out_no_vma: 2058 up_read(&mm->mmap_sem); 2059 mmput(mm); 2060 out_put_task: 2061 put_task_struct(task); 2062 out: 2063 return ERR_PTR(result); 2064 } 2065 2066 static const struct inode_operations proc_map_files_inode_operations = { 2067 .lookup = proc_map_files_lookup, 2068 .permission = proc_fd_permission, 2069 .setattr = proc_setattr, 2070 }; 2071 2072 static int 2073 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2074 { 2075 struct vm_area_struct *vma; 2076 struct task_struct *task; 2077 struct mm_struct *mm; 2078 unsigned long nr_files, pos, i; 2079 struct flex_array *fa = NULL; 2080 struct map_files_info info; 2081 struct map_files_info *p; 2082 int ret; 2083 2084 ret = -ENOENT; 2085 task = get_proc_task(file_inode(file)); 2086 if (!task) 2087 goto out; 2088 2089 ret = -EACCES; 2090 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2091 goto out_put_task; 2092 2093 ret = 0; 2094 if (!dir_emit_dots(file, ctx)) 2095 goto out_put_task; 2096 2097 mm = get_task_mm(task); 2098 if (!mm) 2099 goto out_put_task; 2100 down_read(&mm->mmap_sem); 2101 2102 nr_files = 0; 2103 2104 /* 2105 * We need two passes here: 2106 * 2107 * 1) Collect vmas of mapped files with mmap_sem taken 2108 * 2) Release mmap_sem and instantiate entries 2109 * 2110 * otherwise we get lockdep complained, since filldir() 2111 * routine might require mmap_sem taken in might_fault(). 2112 */ 2113 2114 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2115 if (vma->vm_file && ++pos > ctx->pos) 2116 nr_files++; 2117 } 2118 2119 if (nr_files) { 2120 fa = flex_array_alloc(sizeof(info), nr_files, 2121 GFP_KERNEL); 2122 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2123 GFP_KERNEL)) { 2124 ret = -ENOMEM; 2125 if (fa) 2126 flex_array_free(fa); 2127 up_read(&mm->mmap_sem); 2128 mmput(mm); 2129 goto out_put_task; 2130 } 2131 for (i = 0, vma = mm->mmap, pos = 2; vma; 2132 vma = vma->vm_next) { 2133 if (!vma->vm_file) 2134 continue; 2135 if (++pos <= ctx->pos) 2136 continue; 2137 2138 info.mode = vma->vm_file->f_mode; 2139 info.len = snprintf(info.name, 2140 sizeof(info.name), "%lx-%lx", 2141 vma->vm_start, vma->vm_end); 2142 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2143 BUG(); 2144 } 2145 } 2146 up_read(&mm->mmap_sem); 2147 2148 for (i = 0; i < nr_files; i++) { 2149 p = flex_array_get(fa, i); 2150 if (!proc_fill_cache(file, ctx, 2151 p->name, p->len, 2152 proc_map_files_instantiate, 2153 task, 2154 (void *)(unsigned long)p->mode)) 2155 break; 2156 ctx->pos++; 2157 } 2158 if (fa) 2159 flex_array_free(fa); 2160 mmput(mm); 2161 2162 out_put_task: 2163 put_task_struct(task); 2164 out: 2165 return ret; 2166 } 2167 2168 static const struct file_operations proc_map_files_operations = { 2169 .read = generic_read_dir, 2170 .iterate_shared = proc_map_files_readdir, 2171 .llseek = generic_file_llseek, 2172 }; 2173 2174 #ifdef CONFIG_CHECKPOINT_RESTORE 2175 struct timers_private { 2176 struct pid *pid; 2177 struct task_struct *task; 2178 struct sighand_struct *sighand; 2179 struct pid_namespace *ns; 2180 unsigned long flags; 2181 }; 2182 2183 static void *timers_start(struct seq_file *m, loff_t *pos) 2184 { 2185 struct timers_private *tp = m->private; 2186 2187 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2188 if (!tp->task) 2189 return ERR_PTR(-ESRCH); 2190 2191 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2192 if (!tp->sighand) 2193 return ERR_PTR(-ESRCH); 2194 2195 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2196 } 2197 2198 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2199 { 2200 struct timers_private *tp = m->private; 2201 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2202 } 2203 2204 static void timers_stop(struct seq_file *m, void *v) 2205 { 2206 struct timers_private *tp = m->private; 2207 2208 if (tp->sighand) { 2209 unlock_task_sighand(tp->task, &tp->flags); 2210 tp->sighand = NULL; 2211 } 2212 2213 if (tp->task) { 2214 put_task_struct(tp->task); 2215 tp->task = NULL; 2216 } 2217 } 2218 2219 static int show_timer(struct seq_file *m, void *v) 2220 { 2221 struct k_itimer *timer; 2222 struct timers_private *tp = m->private; 2223 int notify; 2224 static const char * const nstr[] = { 2225 [SIGEV_SIGNAL] = "signal", 2226 [SIGEV_NONE] = "none", 2227 [SIGEV_THREAD] = "thread", 2228 }; 2229 2230 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2231 notify = timer->it_sigev_notify; 2232 2233 seq_printf(m, "ID: %d\n", timer->it_id); 2234 seq_printf(m, "signal: %d/%p\n", 2235 timer->sigq->info.si_signo, 2236 timer->sigq->info.si_value.sival_ptr); 2237 seq_printf(m, "notify: %s/%s.%d\n", 2238 nstr[notify & ~SIGEV_THREAD_ID], 2239 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2240 pid_nr_ns(timer->it_pid, tp->ns)); 2241 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2242 2243 return 0; 2244 } 2245 2246 static const struct seq_operations proc_timers_seq_ops = { 2247 .start = timers_start, 2248 .next = timers_next, 2249 .stop = timers_stop, 2250 .show = show_timer, 2251 }; 2252 2253 static int proc_timers_open(struct inode *inode, struct file *file) 2254 { 2255 struct timers_private *tp; 2256 2257 tp = __seq_open_private(file, &proc_timers_seq_ops, 2258 sizeof(struct timers_private)); 2259 if (!tp) 2260 return -ENOMEM; 2261 2262 tp->pid = proc_pid(inode); 2263 tp->ns = inode->i_sb->s_fs_info; 2264 return 0; 2265 } 2266 2267 static const struct file_operations proc_timers_operations = { 2268 .open = proc_timers_open, 2269 .read = seq_read, 2270 .llseek = seq_lseek, 2271 .release = seq_release_private, 2272 }; 2273 #endif 2274 2275 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2276 size_t count, loff_t *offset) 2277 { 2278 struct inode *inode = file_inode(file); 2279 struct task_struct *p; 2280 u64 slack_ns; 2281 int err; 2282 2283 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2284 if (err < 0) 2285 return err; 2286 2287 p = get_proc_task(inode); 2288 if (!p) 2289 return -ESRCH; 2290 2291 if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) { 2292 task_lock(p); 2293 if (slack_ns == 0) 2294 p->timer_slack_ns = p->default_timer_slack_ns; 2295 else 2296 p->timer_slack_ns = slack_ns; 2297 task_unlock(p); 2298 } else 2299 count = -EPERM; 2300 2301 put_task_struct(p); 2302 2303 return count; 2304 } 2305 2306 static int timerslack_ns_show(struct seq_file *m, void *v) 2307 { 2308 struct inode *inode = m->private; 2309 struct task_struct *p; 2310 int err = 0; 2311 2312 p = get_proc_task(inode); 2313 if (!p) 2314 return -ESRCH; 2315 2316 if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) { 2317 task_lock(p); 2318 seq_printf(m, "%llu\n", p->timer_slack_ns); 2319 task_unlock(p); 2320 } else 2321 err = -EPERM; 2322 2323 put_task_struct(p); 2324 2325 return err; 2326 } 2327 2328 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2329 { 2330 return single_open(filp, timerslack_ns_show, inode); 2331 } 2332 2333 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2334 .open = timerslack_ns_open, 2335 .read = seq_read, 2336 .write = timerslack_ns_write, 2337 .llseek = seq_lseek, 2338 .release = single_release, 2339 }; 2340 2341 static int proc_pident_instantiate(struct inode *dir, 2342 struct dentry *dentry, struct task_struct *task, const void *ptr) 2343 { 2344 const struct pid_entry *p = ptr; 2345 struct inode *inode; 2346 struct proc_inode *ei; 2347 2348 inode = proc_pid_make_inode(dir->i_sb, task); 2349 if (!inode) 2350 goto out; 2351 2352 ei = PROC_I(inode); 2353 inode->i_mode = p->mode; 2354 if (S_ISDIR(inode->i_mode)) 2355 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2356 if (p->iop) 2357 inode->i_op = p->iop; 2358 if (p->fop) 2359 inode->i_fop = p->fop; 2360 ei->op = p->op; 2361 d_set_d_op(dentry, &pid_dentry_operations); 2362 d_add(dentry, inode); 2363 /* Close the race of the process dying before we return the dentry */ 2364 if (pid_revalidate(dentry, 0)) 2365 return 0; 2366 out: 2367 return -ENOENT; 2368 } 2369 2370 static struct dentry *proc_pident_lookup(struct inode *dir, 2371 struct dentry *dentry, 2372 const struct pid_entry *ents, 2373 unsigned int nents) 2374 { 2375 int error; 2376 struct task_struct *task = get_proc_task(dir); 2377 const struct pid_entry *p, *last; 2378 2379 error = -ENOENT; 2380 2381 if (!task) 2382 goto out_no_task; 2383 2384 /* 2385 * Yes, it does not scale. And it should not. Don't add 2386 * new entries into /proc/<tgid>/ without very good reasons. 2387 */ 2388 last = &ents[nents - 1]; 2389 for (p = ents; p <= last; p++) { 2390 if (p->len != dentry->d_name.len) 2391 continue; 2392 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2393 break; 2394 } 2395 if (p > last) 2396 goto out; 2397 2398 error = proc_pident_instantiate(dir, dentry, task, p); 2399 out: 2400 put_task_struct(task); 2401 out_no_task: 2402 return ERR_PTR(error); 2403 } 2404 2405 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2406 const struct pid_entry *ents, unsigned int nents) 2407 { 2408 struct task_struct *task = get_proc_task(file_inode(file)); 2409 const struct pid_entry *p; 2410 2411 if (!task) 2412 return -ENOENT; 2413 2414 if (!dir_emit_dots(file, ctx)) 2415 goto out; 2416 2417 if (ctx->pos >= nents + 2) 2418 goto out; 2419 2420 for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) { 2421 if (!proc_fill_cache(file, ctx, p->name, p->len, 2422 proc_pident_instantiate, task, p)) 2423 break; 2424 ctx->pos++; 2425 } 2426 out: 2427 put_task_struct(task); 2428 return 0; 2429 } 2430 2431 #ifdef CONFIG_SECURITY 2432 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2433 size_t count, loff_t *ppos) 2434 { 2435 struct inode * inode = file_inode(file); 2436 char *p = NULL; 2437 ssize_t length; 2438 struct task_struct *task = get_proc_task(inode); 2439 2440 if (!task) 2441 return -ESRCH; 2442 2443 length = security_getprocattr(task, 2444 (char*)file->f_path.dentry->d_name.name, 2445 &p); 2446 put_task_struct(task); 2447 if (length > 0) 2448 length = simple_read_from_buffer(buf, count, ppos, p, length); 2449 kfree(p); 2450 return length; 2451 } 2452 2453 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2454 size_t count, loff_t *ppos) 2455 { 2456 struct inode * inode = file_inode(file); 2457 void *page; 2458 ssize_t length; 2459 struct task_struct *task = get_proc_task(inode); 2460 2461 length = -ESRCH; 2462 if (!task) 2463 goto out_no_task; 2464 if (count > PAGE_SIZE) 2465 count = PAGE_SIZE; 2466 2467 /* No partial writes. */ 2468 length = -EINVAL; 2469 if (*ppos != 0) 2470 goto out; 2471 2472 page = memdup_user(buf, count); 2473 if (IS_ERR(page)) { 2474 length = PTR_ERR(page); 2475 goto out; 2476 } 2477 2478 /* Guard against adverse ptrace interaction */ 2479 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2480 if (length < 0) 2481 goto out_free; 2482 2483 length = security_setprocattr(task, 2484 (char*)file->f_path.dentry->d_name.name, 2485 page, count); 2486 mutex_unlock(&task->signal->cred_guard_mutex); 2487 out_free: 2488 kfree(page); 2489 out: 2490 put_task_struct(task); 2491 out_no_task: 2492 return length; 2493 } 2494 2495 static const struct file_operations proc_pid_attr_operations = { 2496 .read = proc_pid_attr_read, 2497 .write = proc_pid_attr_write, 2498 .llseek = generic_file_llseek, 2499 }; 2500 2501 static const struct pid_entry attr_dir_stuff[] = { 2502 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2503 REG("prev", S_IRUGO, proc_pid_attr_operations), 2504 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2505 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2506 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2507 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2508 }; 2509 2510 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2511 { 2512 return proc_pident_readdir(file, ctx, 2513 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2514 } 2515 2516 static const struct file_operations proc_attr_dir_operations = { 2517 .read = generic_read_dir, 2518 .iterate_shared = proc_attr_dir_readdir, 2519 .llseek = generic_file_llseek, 2520 }; 2521 2522 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2523 struct dentry *dentry, unsigned int flags) 2524 { 2525 return proc_pident_lookup(dir, dentry, 2526 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2527 } 2528 2529 static const struct inode_operations proc_attr_dir_inode_operations = { 2530 .lookup = proc_attr_dir_lookup, 2531 .getattr = pid_getattr, 2532 .setattr = proc_setattr, 2533 }; 2534 2535 #endif 2536 2537 #ifdef CONFIG_ELF_CORE 2538 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2539 size_t count, loff_t *ppos) 2540 { 2541 struct task_struct *task = get_proc_task(file_inode(file)); 2542 struct mm_struct *mm; 2543 char buffer[PROC_NUMBUF]; 2544 size_t len; 2545 int ret; 2546 2547 if (!task) 2548 return -ESRCH; 2549 2550 ret = 0; 2551 mm = get_task_mm(task); 2552 if (mm) { 2553 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2554 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2555 MMF_DUMP_FILTER_SHIFT)); 2556 mmput(mm); 2557 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2558 } 2559 2560 put_task_struct(task); 2561 2562 return ret; 2563 } 2564 2565 static ssize_t proc_coredump_filter_write(struct file *file, 2566 const char __user *buf, 2567 size_t count, 2568 loff_t *ppos) 2569 { 2570 struct task_struct *task; 2571 struct mm_struct *mm; 2572 unsigned int val; 2573 int ret; 2574 int i; 2575 unsigned long mask; 2576 2577 ret = kstrtouint_from_user(buf, count, 0, &val); 2578 if (ret < 0) 2579 return ret; 2580 2581 ret = -ESRCH; 2582 task = get_proc_task(file_inode(file)); 2583 if (!task) 2584 goto out_no_task; 2585 2586 mm = get_task_mm(task); 2587 if (!mm) 2588 goto out_no_mm; 2589 ret = 0; 2590 2591 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2592 if (val & mask) 2593 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2594 else 2595 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2596 } 2597 2598 mmput(mm); 2599 out_no_mm: 2600 put_task_struct(task); 2601 out_no_task: 2602 if (ret < 0) 2603 return ret; 2604 return count; 2605 } 2606 2607 static const struct file_operations proc_coredump_filter_operations = { 2608 .read = proc_coredump_filter_read, 2609 .write = proc_coredump_filter_write, 2610 .llseek = generic_file_llseek, 2611 }; 2612 #endif 2613 2614 #ifdef CONFIG_TASK_IO_ACCOUNTING 2615 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2616 { 2617 struct task_io_accounting acct = task->ioac; 2618 unsigned long flags; 2619 int result; 2620 2621 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2622 if (result) 2623 return result; 2624 2625 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2626 result = -EACCES; 2627 goto out_unlock; 2628 } 2629 2630 if (whole && lock_task_sighand(task, &flags)) { 2631 struct task_struct *t = task; 2632 2633 task_io_accounting_add(&acct, &task->signal->ioac); 2634 while_each_thread(task, t) 2635 task_io_accounting_add(&acct, &t->ioac); 2636 2637 unlock_task_sighand(task, &flags); 2638 } 2639 seq_printf(m, 2640 "rchar: %llu\n" 2641 "wchar: %llu\n" 2642 "syscr: %llu\n" 2643 "syscw: %llu\n" 2644 "read_bytes: %llu\n" 2645 "write_bytes: %llu\n" 2646 "cancelled_write_bytes: %llu\n", 2647 (unsigned long long)acct.rchar, 2648 (unsigned long long)acct.wchar, 2649 (unsigned long long)acct.syscr, 2650 (unsigned long long)acct.syscw, 2651 (unsigned long long)acct.read_bytes, 2652 (unsigned long long)acct.write_bytes, 2653 (unsigned long long)acct.cancelled_write_bytes); 2654 result = 0; 2655 2656 out_unlock: 2657 mutex_unlock(&task->signal->cred_guard_mutex); 2658 return result; 2659 } 2660 2661 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2662 struct pid *pid, struct task_struct *task) 2663 { 2664 return do_io_accounting(task, m, 0); 2665 } 2666 2667 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2668 struct pid *pid, struct task_struct *task) 2669 { 2670 return do_io_accounting(task, m, 1); 2671 } 2672 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2673 2674 #ifdef CONFIG_USER_NS 2675 static int proc_id_map_open(struct inode *inode, struct file *file, 2676 const struct seq_operations *seq_ops) 2677 { 2678 struct user_namespace *ns = NULL; 2679 struct task_struct *task; 2680 struct seq_file *seq; 2681 int ret = -EINVAL; 2682 2683 task = get_proc_task(inode); 2684 if (task) { 2685 rcu_read_lock(); 2686 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2687 rcu_read_unlock(); 2688 put_task_struct(task); 2689 } 2690 if (!ns) 2691 goto err; 2692 2693 ret = seq_open(file, seq_ops); 2694 if (ret) 2695 goto err_put_ns; 2696 2697 seq = file->private_data; 2698 seq->private = ns; 2699 2700 return 0; 2701 err_put_ns: 2702 put_user_ns(ns); 2703 err: 2704 return ret; 2705 } 2706 2707 static int proc_id_map_release(struct inode *inode, struct file *file) 2708 { 2709 struct seq_file *seq = file->private_data; 2710 struct user_namespace *ns = seq->private; 2711 put_user_ns(ns); 2712 return seq_release(inode, file); 2713 } 2714 2715 static int proc_uid_map_open(struct inode *inode, struct file *file) 2716 { 2717 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2718 } 2719 2720 static int proc_gid_map_open(struct inode *inode, struct file *file) 2721 { 2722 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2723 } 2724 2725 static int proc_projid_map_open(struct inode *inode, struct file *file) 2726 { 2727 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2728 } 2729 2730 static const struct file_operations proc_uid_map_operations = { 2731 .open = proc_uid_map_open, 2732 .write = proc_uid_map_write, 2733 .read = seq_read, 2734 .llseek = seq_lseek, 2735 .release = proc_id_map_release, 2736 }; 2737 2738 static const struct file_operations proc_gid_map_operations = { 2739 .open = proc_gid_map_open, 2740 .write = proc_gid_map_write, 2741 .read = seq_read, 2742 .llseek = seq_lseek, 2743 .release = proc_id_map_release, 2744 }; 2745 2746 static const struct file_operations proc_projid_map_operations = { 2747 .open = proc_projid_map_open, 2748 .write = proc_projid_map_write, 2749 .read = seq_read, 2750 .llseek = seq_lseek, 2751 .release = proc_id_map_release, 2752 }; 2753 2754 static int proc_setgroups_open(struct inode *inode, struct file *file) 2755 { 2756 struct user_namespace *ns = NULL; 2757 struct task_struct *task; 2758 int ret; 2759 2760 ret = -ESRCH; 2761 task = get_proc_task(inode); 2762 if (task) { 2763 rcu_read_lock(); 2764 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2765 rcu_read_unlock(); 2766 put_task_struct(task); 2767 } 2768 if (!ns) 2769 goto err; 2770 2771 if (file->f_mode & FMODE_WRITE) { 2772 ret = -EACCES; 2773 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2774 goto err_put_ns; 2775 } 2776 2777 ret = single_open(file, &proc_setgroups_show, ns); 2778 if (ret) 2779 goto err_put_ns; 2780 2781 return 0; 2782 err_put_ns: 2783 put_user_ns(ns); 2784 err: 2785 return ret; 2786 } 2787 2788 static int proc_setgroups_release(struct inode *inode, struct file *file) 2789 { 2790 struct seq_file *seq = file->private_data; 2791 struct user_namespace *ns = seq->private; 2792 int ret = single_release(inode, file); 2793 put_user_ns(ns); 2794 return ret; 2795 } 2796 2797 static const struct file_operations proc_setgroups_operations = { 2798 .open = proc_setgroups_open, 2799 .write = proc_setgroups_write, 2800 .read = seq_read, 2801 .llseek = seq_lseek, 2802 .release = proc_setgroups_release, 2803 }; 2804 #endif /* CONFIG_USER_NS */ 2805 2806 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2807 struct pid *pid, struct task_struct *task) 2808 { 2809 int err = lock_trace(task); 2810 if (!err) { 2811 seq_printf(m, "%08x\n", task->personality); 2812 unlock_trace(task); 2813 } 2814 return err; 2815 } 2816 2817 /* 2818 * Thread groups 2819 */ 2820 static const struct file_operations proc_task_operations; 2821 static const struct inode_operations proc_task_inode_operations; 2822 2823 static const struct pid_entry tgid_base_stuff[] = { 2824 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2825 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2826 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2827 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2828 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2829 #ifdef CONFIG_NET 2830 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2831 #endif 2832 REG("environ", S_IRUSR, proc_environ_operations), 2833 ONE("auxv", S_IRUSR, proc_pid_auxv), 2834 ONE("status", S_IRUGO, proc_pid_status), 2835 ONE("personality", S_IRUSR, proc_pid_personality), 2836 ONE("limits", S_IRUGO, proc_pid_limits), 2837 #ifdef CONFIG_SCHED_DEBUG 2838 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2839 #endif 2840 #ifdef CONFIG_SCHED_AUTOGROUP 2841 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2842 #endif 2843 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2844 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2845 ONE("syscall", S_IRUSR, proc_pid_syscall), 2846 #endif 2847 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2848 ONE("stat", S_IRUGO, proc_tgid_stat), 2849 ONE("statm", S_IRUGO, proc_pid_statm), 2850 REG("maps", S_IRUGO, proc_pid_maps_operations), 2851 #ifdef CONFIG_NUMA 2852 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2853 #endif 2854 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2855 LNK("cwd", proc_cwd_link), 2856 LNK("root", proc_root_link), 2857 LNK("exe", proc_exe_link), 2858 REG("mounts", S_IRUGO, proc_mounts_operations), 2859 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2860 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2861 #ifdef CONFIG_PROC_PAGE_MONITOR 2862 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2863 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2864 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2865 #endif 2866 #ifdef CONFIG_SECURITY 2867 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2868 #endif 2869 #ifdef CONFIG_KALLSYMS 2870 ONE("wchan", S_IRUGO, proc_pid_wchan), 2871 #endif 2872 #ifdef CONFIG_STACKTRACE 2873 ONE("stack", S_IRUSR, proc_pid_stack), 2874 #endif 2875 #ifdef CONFIG_SCHED_INFO 2876 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 2877 #endif 2878 #ifdef CONFIG_LATENCYTOP 2879 REG("latency", S_IRUGO, proc_lstats_operations), 2880 #endif 2881 #ifdef CONFIG_PROC_PID_CPUSET 2882 ONE("cpuset", S_IRUGO, proc_cpuset_show), 2883 #endif 2884 #ifdef CONFIG_CGROUPS 2885 ONE("cgroup", S_IRUGO, proc_cgroup_show), 2886 #endif 2887 ONE("oom_score", S_IRUGO, proc_oom_score), 2888 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2889 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2890 #ifdef CONFIG_AUDITSYSCALL 2891 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2892 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2893 #endif 2894 #ifdef CONFIG_FAULT_INJECTION 2895 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2896 #endif 2897 #ifdef CONFIG_ELF_CORE 2898 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2899 #endif 2900 #ifdef CONFIG_TASK_IO_ACCOUNTING 2901 ONE("io", S_IRUSR, proc_tgid_io_accounting), 2902 #endif 2903 #ifdef CONFIG_HARDWALL 2904 ONE("hardwall", S_IRUGO, proc_pid_hardwall), 2905 #endif 2906 #ifdef CONFIG_USER_NS 2907 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2908 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2909 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2910 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 2911 #endif 2912 #ifdef CONFIG_CHECKPOINT_RESTORE 2913 REG("timers", S_IRUGO, proc_timers_operations), 2914 #endif 2915 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 2916 }; 2917 2918 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 2919 { 2920 return proc_pident_readdir(file, ctx, 2921 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2922 } 2923 2924 static const struct file_operations proc_tgid_base_operations = { 2925 .read = generic_read_dir, 2926 .iterate_shared = proc_tgid_base_readdir, 2927 .llseek = generic_file_llseek, 2928 }; 2929 2930 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 2931 { 2932 return proc_pident_lookup(dir, dentry, 2933 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2934 } 2935 2936 static const struct inode_operations proc_tgid_base_inode_operations = { 2937 .lookup = proc_tgid_base_lookup, 2938 .getattr = pid_getattr, 2939 .setattr = proc_setattr, 2940 .permission = proc_pid_permission, 2941 }; 2942 2943 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2944 { 2945 struct dentry *dentry, *leader, *dir; 2946 char buf[PROC_NUMBUF]; 2947 struct qstr name; 2948 2949 name.name = buf; 2950 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2951 /* no ->d_hash() rejects on procfs */ 2952 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2953 if (dentry) { 2954 d_invalidate(dentry); 2955 dput(dentry); 2956 } 2957 2958 if (pid == tgid) 2959 return; 2960 2961 name.name = buf; 2962 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2963 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2964 if (!leader) 2965 goto out; 2966 2967 name.name = "task"; 2968 name.len = strlen(name.name); 2969 dir = d_hash_and_lookup(leader, &name); 2970 if (!dir) 2971 goto out_put_leader; 2972 2973 name.name = buf; 2974 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2975 dentry = d_hash_and_lookup(dir, &name); 2976 if (dentry) { 2977 d_invalidate(dentry); 2978 dput(dentry); 2979 } 2980 2981 dput(dir); 2982 out_put_leader: 2983 dput(leader); 2984 out: 2985 return; 2986 } 2987 2988 /** 2989 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2990 * @task: task that should be flushed. 2991 * 2992 * When flushing dentries from proc, one needs to flush them from global 2993 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2994 * in. This call is supposed to do all of this job. 2995 * 2996 * Looks in the dcache for 2997 * /proc/@pid 2998 * /proc/@tgid/task/@pid 2999 * if either directory is present flushes it and all of it'ts children 3000 * from the dcache. 3001 * 3002 * It is safe and reasonable to cache /proc entries for a task until 3003 * that task exits. After that they just clog up the dcache with 3004 * useless entries, possibly causing useful dcache entries to be 3005 * flushed instead. This routine is proved to flush those useless 3006 * dcache entries at process exit time. 3007 * 3008 * NOTE: This routine is just an optimization so it does not guarantee 3009 * that no dcache entries will exist at process exit time it 3010 * just makes it very unlikely that any will persist. 3011 */ 3012 3013 void proc_flush_task(struct task_struct *task) 3014 { 3015 int i; 3016 struct pid *pid, *tgid; 3017 struct upid *upid; 3018 3019 pid = task_pid(task); 3020 tgid = task_tgid(task); 3021 3022 for (i = 0; i <= pid->level; i++) { 3023 upid = &pid->numbers[i]; 3024 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3025 tgid->numbers[i].nr); 3026 } 3027 } 3028 3029 static int proc_pid_instantiate(struct inode *dir, 3030 struct dentry * dentry, 3031 struct task_struct *task, const void *ptr) 3032 { 3033 struct inode *inode; 3034 3035 inode = proc_pid_make_inode(dir->i_sb, task); 3036 if (!inode) 3037 goto out; 3038 3039 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3040 inode->i_op = &proc_tgid_base_inode_operations; 3041 inode->i_fop = &proc_tgid_base_operations; 3042 inode->i_flags|=S_IMMUTABLE; 3043 3044 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 3045 ARRAY_SIZE(tgid_base_stuff))); 3046 3047 d_set_d_op(dentry, &pid_dentry_operations); 3048 3049 d_add(dentry, inode); 3050 /* Close the race of the process dying before we return the dentry */ 3051 if (pid_revalidate(dentry, 0)) 3052 return 0; 3053 out: 3054 return -ENOENT; 3055 } 3056 3057 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3058 { 3059 int result = -ENOENT; 3060 struct task_struct *task; 3061 unsigned tgid; 3062 struct pid_namespace *ns; 3063 3064 tgid = name_to_int(&dentry->d_name); 3065 if (tgid == ~0U) 3066 goto out; 3067 3068 ns = dentry->d_sb->s_fs_info; 3069 rcu_read_lock(); 3070 task = find_task_by_pid_ns(tgid, ns); 3071 if (task) 3072 get_task_struct(task); 3073 rcu_read_unlock(); 3074 if (!task) 3075 goto out; 3076 3077 result = proc_pid_instantiate(dir, dentry, task, NULL); 3078 put_task_struct(task); 3079 out: 3080 return ERR_PTR(result); 3081 } 3082 3083 /* 3084 * Find the first task with tgid >= tgid 3085 * 3086 */ 3087 struct tgid_iter { 3088 unsigned int tgid; 3089 struct task_struct *task; 3090 }; 3091 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3092 { 3093 struct pid *pid; 3094 3095 if (iter.task) 3096 put_task_struct(iter.task); 3097 rcu_read_lock(); 3098 retry: 3099 iter.task = NULL; 3100 pid = find_ge_pid(iter.tgid, ns); 3101 if (pid) { 3102 iter.tgid = pid_nr_ns(pid, ns); 3103 iter.task = pid_task(pid, PIDTYPE_PID); 3104 /* What we to know is if the pid we have find is the 3105 * pid of a thread_group_leader. Testing for task 3106 * being a thread_group_leader is the obvious thing 3107 * todo but there is a window when it fails, due to 3108 * the pid transfer logic in de_thread. 3109 * 3110 * So we perform the straight forward test of seeing 3111 * if the pid we have found is the pid of a thread 3112 * group leader, and don't worry if the task we have 3113 * found doesn't happen to be a thread group leader. 3114 * As we don't care in the case of readdir. 3115 */ 3116 if (!iter.task || !has_group_leader_pid(iter.task)) { 3117 iter.tgid += 1; 3118 goto retry; 3119 } 3120 get_task_struct(iter.task); 3121 } 3122 rcu_read_unlock(); 3123 return iter; 3124 } 3125 3126 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3127 3128 /* for the /proc/ directory itself, after non-process stuff has been done */ 3129 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3130 { 3131 struct tgid_iter iter; 3132 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info; 3133 loff_t pos = ctx->pos; 3134 3135 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3136 return 0; 3137 3138 if (pos == TGID_OFFSET - 2) { 3139 struct inode *inode = d_inode(ns->proc_self); 3140 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3141 return 0; 3142 ctx->pos = pos = pos + 1; 3143 } 3144 if (pos == TGID_OFFSET - 1) { 3145 struct inode *inode = d_inode(ns->proc_thread_self); 3146 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3147 return 0; 3148 ctx->pos = pos = pos + 1; 3149 } 3150 iter.tgid = pos - TGID_OFFSET; 3151 iter.task = NULL; 3152 for (iter = next_tgid(ns, iter); 3153 iter.task; 3154 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3155 char name[PROC_NUMBUF]; 3156 int len; 3157 if (!has_pid_permissions(ns, iter.task, 2)) 3158 continue; 3159 3160 len = snprintf(name, sizeof(name), "%d", iter.tgid); 3161 ctx->pos = iter.tgid + TGID_OFFSET; 3162 if (!proc_fill_cache(file, ctx, name, len, 3163 proc_pid_instantiate, iter.task, NULL)) { 3164 put_task_struct(iter.task); 3165 return 0; 3166 } 3167 } 3168 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3169 return 0; 3170 } 3171 3172 /* 3173 * proc_tid_comm_permission is a special permission function exclusively 3174 * used for the node /proc/<pid>/task/<tid>/comm. 3175 * It bypasses generic permission checks in the case where a task of the same 3176 * task group attempts to access the node. 3177 * The rationale behind this is that glibc and bionic access this node for 3178 * cross thread naming (pthread_set/getname_np(!self)). However, if 3179 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3180 * which locks out the cross thread naming implementation. 3181 * This function makes sure that the node is always accessible for members of 3182 * same thread group. 3183 */ 3184 static int proc_tid_comm_permission(struct inode *inode, int mask) 3185 { 3186 bool is_same_tgroup; 3187 struct task_struct *task; 3188 3189 task = get_proc_task(inode); 3190 if (!task) 3191 return -ESRCH; 3192 is_same_tgroup = same_thread_group(current, task); 3193 put_task_struct(task); 3194 3195 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3196 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3197 * read or written by the members of the corresponding 3198 * thread group. 3199 */ 3200 return 0; 3201 } 3202 3203 return generic_permission(inode, mask); 3204 } 3205 3206 static const struct inode_operations proc_tid_comm_inode_operations = { 3207 .permission = proc_tid_comm_permission, 3208 }; 3209 3210 /* 3211 * Tasks 3212 */ 3213 static const struct pid_entry tid_base_stuff[] = { 3214 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3215 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3216 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3217 #ifdef CONFIG_NET 3218 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3219 #endif 3220 REG("environ", S_IRUSR, proc_environ_operations), 3221 ONE("auxv", S_IRUSR, proc_pid_auxv), 3222 ONE("status", S_IRUGO, proc_pid_status), 3223 ONE("personality", S_IRUSR, proc_pid_personality), 3224 ONE("limits", S_IRUGO, proc_pid_limits), 3225 #ifdef CONFIG_SCHED_DEBUG 3226 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3227 #endif 3228 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3229 &proc_tid_comm_inode_operations, 3230 &proc_pid_set_comm_operations, {}), 3231 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3232 ONE("syscall", S_IRUSR, proc_pid_syscall), 3233 #endif 3234 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3235 ONE("stat", S_IRUGO, proc_tid_stat), 3236 ONE("statm", S_IRUGO, proc_pid_statm), 3237 REG("maps", S_IRUGO, proc_tid_maps_operations), 3238 #ifdef CONFIG_PROC_CHILDREN 3239 REG("children", S_IRUGO, proc_tid_children_operations), 3240 #endif 3241 #ifdef CONFIG_NUMA 3242 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3243 #endif 3244 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3245 LNK("cwd", proc_cwd_link), 3246 LNK("root", proc_root_link), 3247 LNK("exe", proc_exe_link), 3248 REG("mounts", S_IRUGO, proc_mounts_operations), 3249 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3250 #ifdef CONFIG_PROC_PAGE_MONITOR 3251 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3252 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3253 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3254 #endif 3255 #ifdef CONFIG_SECURITY 3256 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3257 #endif 3258 #ifdef CONFIG_KALLSYMS 3259 ONE("wchan", S_IRUGO, proc_pid_wchan), 3260 #endif 3261 #ifdef CONFIG_STACKTRACE 3262 ONE("stack", S_IRUSR, proc_pid_stack), 3263 #endif 3264 #ifdef CONFIG_SCHED_INFO 3265 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3266 #endif 3267 #ifdef CONFIG_LATENCYTOP 3268 REG("latency", S_IRUGO, proc_lstats_operations), 3269 #endif 3270 #ifdef CONFIG_PROC_PID_CPUSET 3271 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3272 #endif 3273 #ifdef CONFIG_CGROUPS 3274 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3275 #endif 3276 ONE("oom_score", S_IRUGO, proc_oom_score), 3277 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3278 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3279 #ifdef CONFIG_AUDITSYSCALL 3280 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3281 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3282 #endif 3283 #ifdef CONFIG_FAULT_INJECTION 3284 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3285 #endif 3286 #ifdef CONFIG_TASK_IO_ACCOUNTING 3287 ONE("io", S_IRUSR, proc_tid_io_accounting), 3288 #endif 3289 #ifdef CONFIG_HARDWALL 3290 ONE("hardwall", S_IRUGO, proc_pid_hardwall), 3291 #endif 3292 #ifdef CONFIG_USER_NS 3293 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3294 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3295 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3296 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3297 #endif 3298 }; 3299 3300 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3301 { 3302 return proc_pident_readdir(file, ctx, 3303 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3304 } 3305 3306 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3307 { 3308 return proc_pident_lookup(dir, dentry, 3309 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3310 } 3311 3312 static const struct file_operations proc_tid_base_operations = { 3313 .read = generic_read_dir, 3314 .iterate_shared = proc_tid_base_readdir, 3315 .llseek = generic_file_llseek, 3316 }; 3317 3318 static const struct inode_operations proc_tid_base_inode_operations = { 3319 .lookup = proc_tid_base_lookup, 3320 .getattr = pid_getattr, 3321 .setattr = proc_setattr, 3322 }; 3323 3324 static int proc_task_instantiate(struct inode *dir, 3325 struct dentry *dentry, struct task_struct *task, const void *ptr) 3326 { 3327 struct inode *inode; 3328 inode = proc_pid_make_inode(dir->i_sb, task); 3329 3330 if (!inode) 3331 goto out; 3332 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3333 inode->i_op = &proc_tid_base_inode_operations; 3334 inode->i_fop = &proc_tid_base_operations; 3335 inode->i_flags|=S_IMMUTABLE; 3336 3337 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3338 ARRAY_SIZE(tid_base_stuff))); 3339 3340 d_set_d_op(dentry, &pid_dentry_operations); 3341 3342 d_add(dentry, inode); 3343 /* Close the race of the process dying before we return the dentry */ 3344 if (pid_revalidate(dentry, 0)) 3345 return 0; 3346 out: 3347 return -ENOENT; 3348 } 3349 3350 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3351 { 3352 int result = -ENOENT; 3353 struct task_struct *task; 3354 struct task_struct *leader = get_proc_task(dir); 3355 unsigned tid; 3356 struct pid_namespace *ns; 3357 3358 if (!leader) 3359 goto out_no_task; 3360 3361 tid = name_to_int(&dentry->d_name); 3362 if (tid == ~0U) 3363 goto out; 3364 3365 ns = dentry->d_sb->s_fs_info; 3366 rcu_read_lock(); 3367 task = find_task_by_pid_ns(tid, ns); 3368 if (task) 3369 get_task_struct(task); 3370 rcu_read_unlock(); 3371 if (!task) 3372 goto out; 3373 if (!same_thread_group(leader, task)) 3374 goto out_drop_task; 3375 3376 result = proc_task_instantiate(dir, dentry, task, NULL); 3377 out_drop_task: 3378 put_task_struct(task); 3379 out: 3380 put_task_struct(leader); 3381 out_no_task: 3382 return ERR_PTR(result); 3383 } 3384 3385 /* 3386 * Find the first tid of a thread group to return to user space. 3387 * 3388 * Usually this is just the thread group leader, but if the users 3389 * buffer was too small or there was a seek into the middle of the 3390 * directory we have more work todo. 3391 * 3392 * In the case of a short read we start with find_task_by_pid. 3393 * 3394 * In the case of a seek we start with the leader and walk nr 3395 * threads past it. 3396 */ 3397 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3398 struct pid_namespace *ns) 3399 { 3400 struct task_struct *pos, *task; 3401 unsigned long nr = f_pos; 3402 3403 if (nr != f_pos) /* 32bit overflow? */ 3404 return NULL; 3405 3406 rcu_read_lock(); 3407 task = pid_task(pid, PIDTYPE_PID); 3408 if (!task) 3409 goto fail; 3410 3411 /* Attempt to start with the tid of a thread */ 3412 if (tid && nr) { 3413 pos = find_task_by_pid_ns(tid, ns); 3414 if (pos && same_thread_group(pos, task)) 3415 goto found; 3416 } 3417 3418 /* If nr exceeds the number of threads there is nothing todo */ 3419 if (nr >= get_nr_threads(task)) 3420 goto fail; 3421 3422 /* If we haven't found our starting place yet start 3423 * with the leader and walk nr threads forward. 3424 */ 3425 pos = task = task->group_leader; 3426 do { 3427 if (!nr--) 3428 goto found; 3429 } while_each_thread(task, pos); 3430 fail: 3431 pos = NULL; 3432 goto out; 3433 found: 3434 get_task_struct(pos); 3435 out: 3436 rcu_read_unlock(); 3437 return pos; 3438 } 3439 3440 /* 3441 * Find the next thread in the thread list. 3442 * Return NULL if there is an error or no next thread. 3443 * 3444 * The reference to the input task_struct is released. 3445 */ 3446 static struct task_struct *next_tid(struct task_struct *start) 3447 { 3448 struct task_struct *pos = NULL; 3449 rcu_read_lock(); 3450 if (pid_alive(start)) { 3451 pos = next_thread(start); 3452 if (thread_group_leader(pos)) 3453 pos = NULL; 3454 else 3455 get_task_struct(pos); 3456 } 3457 rcu_read_unlock(); 3458 put_task_struct(start); 3459 return pos; 3460 } 3461 3462 /* for the /proc/TGID/task/ directories */ 3463 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3464 { 3465 struct inode *inode = file_inode(file); 3466 struct task_struct *task; 3467 struct pid_namespace *ns; 3468 int tid; 3469 3470 if (proc_inode_is_dead(inode)) 3471 return -ENOENT; 3472 3473 if (!dir_emit_dots(file, ctx)) 3474 return 0; 3475 3476 /* f_version caches the tgid value that the last readdir call couldn't 3477 * return. lseek aka telldir automagically resets f_version to 0. 3478 */ 3479 ns = inode->i_sb->s_fs_info; 3480 tid = (int)file->f_version; 3481 file->f_version = 0; 3482 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3483 task; 3484 task = next_tid(task), ctx->pos++) { 3485 char name[PROC_NUMBUF]; 3486 int len; 3487 tid = task_pid_nr_ns(task, ns); 3488 len = snprintf(name, sizeof(name), "%d", tid); 3489 if (!proc_fill_cache(file, ctx, name, len, 3490 proc_task_instantiate, task, NULL)) { 3491 /* returning this tgid failed, save it as the first 3492 * pid for the next readir call */ 3493 file->f_version = (u64)tid; 3494 put_task_struct(task); 3495 break; 3496 } 3497 } 3498 3499 return 0; 3500 } 3501 3502 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3503 { 3504 struct inode *inode = d_inode(dentry); 3505 struct task_struct *p = get_proc_task(inode); 3506 generic_fillattr(inode, stat); 3507 3508 if (p) { 3509 stat->nlink += get_nr_threads(p); 3510 put_task_struct(p); 3511 } 3512 3513 return 0; 3514 } 3515 3516 static const struct inode_operations proc_task_inode_operations = { 3517 .lookup = proc_task_lookup, 3518 .getattr = proc_task_getattr, 3519 .setattr = proc_setattr, 3520 .permission = proc_pid_permission, 3521 }; 3522 3523 static const struct file_operations proc_task_operations = { 3524 .read = generic_read_dir, 3525 .iterate_shared = proc_task_readdir, 3526 .llseek = generic_file_llseek, 3527 }; 3528