xref: /openbmc/linux/fs/proc/base.c (revision 77a87824)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434 			&& !lookup_symbol_name(wchan, symname))
435 		seq_printf(m, "%s", symname);
436 	else
437 		seq_putc(m, '0');
438 
439 	return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442 
443 static int lock_trace(struct task_struct *task)
444 {
445 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446 	if (err)
447 		return err;
448 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 		mutex_unlock(&task->signal->cred_guard_mutex);
450 		return -EPERM;
451 	}
452 	return 0;
453 }
454 
455 static void unlock_trace(struct task_struct *task)
456 {
457 	mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459 
460 #ifdef CONFIG_STACKTRACE
461 
462 #define MAX_STACK_TRACE_DEPTH	64
463 
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 			  struct pid *pid, struct task_struct *task)
466 {
467 	struct stack_trace trace;
468 	unsigned long *entries;
469 	int err;
470 	int i;
471 
472 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473 	if (!entries)
474 		return -ENOMEM;
475 
476 	trace.nr_entries	= 0;
477 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
478 	trace.entries		= entries;
479 	trace.skip		= 0;
480 
481 	err = lock_trace(task);
482 	if (!err) {
483 		save_stack_trace_tsk(task, &trace);
484 
485 		for (i = 0; i < trace.nr_entries; i++) {
486 			seq_printf(m, "[<%pK>] %pS\n",
487 				   (void *)entries[i], (void *)entries[i]);
488 		}
489 		unlock_trace(task);
490 	}
491 	kfree(entries);
492 
493 	return err;
494 }
495 #endif
496 
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502 			      struct pid *pid, struct task_struct *task)
503 {
504 	if (unlikely(!sched_info_on()))
505 		seq_printf(m, "0 0 0\n");
506 	else
507 		seq_printf(m, "%llu %llu %lu\n",
508 		   (unsigned long long)task->se.sum_exec_runtime,
509 		   (unsigned long long)task->sched_info.run_delay,
510 		   task->sched_info.pcount);
511 
512 	return 0;
513 }
514 #endif
515 
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519 	int i;
520 	struct inode *inode = m->private;
521 	struct task_struct *task = get_proc_task(inode);
522 
523 	if (!task)
524 		return -ESRCH;
525 	seq_puts(m, "Latency Top version : v0.1\n");
526 	for (i = 0; i < 32; i++) {
527 		struct latency_record *lr = &task->latency_record[i];
528 		if (lr->backtrace[0]) {
529 			int q;
530 			seq_printf(m, "%i %li %li",
531 				   lr->count, lr->time, lr->max);
532 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533 				unsigned long bt = lr->backtrace[q];
534 				if (!bt)
535 					break;
536 				if (bt == ULONG_MAX)
537 					break;
538 				seq_printf(m, " %ps", (void *)bt);
539 			}
540 			seq_putc(m, '\n');
541 		}
542 
543 	}
544 	put_task_struct(task);
545 	return 0;
546 }
547 
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550 	return single_open(file, lstats_show_proc, inode);
551 }
552 
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554 			    size_t count, loff_t *offs)
555 {
556 	struct task_struct *task = get_proc_task(file_inode(file));
557 
558 	if (!task)
559 		return -ESRCH;
560 	clear_all_latency_tracing(task);
561 	put_task_struct(task);
562 
563 	return count;
564 }
565 
566 static const struct file_operations proc_lstats_operations = {
567 	.open		= lstats_open,
568 	.read		= seq_read,
569 	.write		= lstats_write,
570 	.llseek		= seq_lseek,
571 	.release	= single_release,
572 };
573 
574 #endif
575 
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577 			  struct pid *pid, struct task_struct *task)
578 {
579 	unsigned long totalpages = totalram_pages + total_swap_pages;
580 	unsigned long points = 0;
581 
582 	read_lock(&tasklist_lock);
583 	if (pid_alive(task))
584 		points = oom_badness(task, NULL, NULL, totalpages) *
585 						1000 / totalpages;
586 	read_unlock(&tasklist_lock);
587 	seq_printf(m, "%lu\n", points);
588 
589 	return 0;
590 }
591 
592 struct limit_names {
593 	const char *name;
594 	const char *unit;
595 };
596 
597 static const struct limit_names lnames[RLIM_NLIMITS] = {
598 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
599 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
600 	[RLIMIT_DATA] = {"Max data size", "bytes"},
601 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
602 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
603 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
604 	[RLIMIT_NPROC] = {"Max processes", "processes"},
605 	[RLIMIT_NOFILE] = {"Max open files", "files"},
606 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
607 	[RLIMIT_AS] = {"Max address space", "bytes"},
608 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
609 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
610 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
611 	[RLIMIT_NICE] = {"Max nice priority", NULL},
612 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
613 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
614 };
615 
616 /* Display limits for a process */
617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
618 			   struct pid *pid, struct task_struct *task)
619 {
620 	unsigned int i;
621 	unsigned long flags;
622 
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 	if (!lock_task_sighand(task, &flags))
626 		return 0;
627 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
628 	unlock_task_sighand(task, &flags);
629 
630 	/*
631 	 * print the file header
632 	 */
633        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
634 		  "Limit", "Soft Limit", "Hard Limit", "Units");
635 
636 	for (i = 0; i < RLIM_NLIMITS; i++) {
637 		if (rlim[i].rlim_cur == RLIM_INFINITY)
638 			seq_printf(m, "%-25s %-20s ",
639 				   lnames[i].name, "unlimited");
640 		else
641 			seq_printf(m, "%-25s %-20lu ",
642 				   lnames[i].name, rlim[i].rlim_cur);
643 
644 		if (rlim[i].rlim_max == RLIM_INFINITY)
645 			seq_printf(m, "%-20s ", "unlimited");
646 		else
647 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
648 
649 		if (lnames[i].unit)
650 			seq_printf(m, "%-10s\n", lnames[i].unit);
651 		else
652 			seq_putc(m, '\n');
653 	}
654 
655 	return 0;
656 }
657 
658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
660 			    struct pid *pid, struct task_struct *task)
661 {
662 	long nr;
663 	unsigned long args[6], sp, pc;
664 	int res;
665 
666 	res = lock_trace(task);
667 	if (res)
668 		return res;
669 
670 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
671 		seq_puts(m, "running\n");
672 	else if (nr < 0)
673 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
674 	else
675 		seq_printf(m,
676 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
677 		       nr,
678 		       args[0], args[1], args[2], args[3], args[4], args[5],
679 		       sp, pc);
680 	unlock_trace(task);
681 
682 	return 0;
683 }
684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
685 
686 /************************************************************************/
687 /*                       Here the fs part begins                        */
688 /************************************************************************/
689 
690 /* permission checks */
691 static int proc_fd_access_allowed(struct inode *inode)
692 {
693 	struct task_struct *task;
694 	int allowed = 0;
695 	/* Allow access to a task's file descriptors if it is us or we
696 	 * may use ptrace attach to the process and find out that
697 	 * information.
698 	 */
699 	task = get_proc_task(inode);
700 	if (task) {
701 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
702 		put_task_struct(task);
703 	}
704 	return allowed;
705 }
706 
707 int proc_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709 	int error;
710 	struct inode *inode = d_inode(dentry);
711 
712 	if (attr->ia_valid & ATTR_MODE)
713 		return -EPERM;
714 
715 	error = inode_change_ok(inode, attr);
716 	if (error)
717 		return error;
718 
719 	setattr_copy(inode, attr);
720 	mark_inode_dirty(inode);
721 	return 0;
722 }
723 
724 /*
725  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
726  * or euid/egid (for hide_pid_min=2)?
727  */
728 static bool has_pid_permissions(struct pid_namespace *pid,
729 				 struct task_struct *task,
730 				 int hide_pid_min)
731 {
732 	if (pid->hide_pid < hide_pid_min)
733 		return true;
734 	if (in_group_p(pid->pid_gid))
735 		return true;
736 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
737 }
738 
739 
740 static int proc_pid_permission(struct inode *inode, int mask)
741 {
742 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
743 	struct task_struct *task;
744 	bool has_perms;
745 
746 	task = get_proc_task(inode);
747 	if (!task)
748 		return -ESRCH;
749 	has_perms = has_pid_permissions(pid, task, 1);
750 	put_task_struct(task);
751 
752 	if (!has_perms) {
753 		if (pid->hide_pid == 2) {
754 			/*
755 			 * Let's make getdents(), stat(), and open()
756 			 * consistent with each other.  If a process
757 			 * may not stat() a file, it shouldn't be seen
758 			 * in procfs at all.
759 			 */
760 			return -ENOENT;
761 		}
762 
763 		return -EPERM;
764 	}
765 	return generic_permission(inode, mask);
766 }
767 
768 
769 
770 static const struct inode_operations proc_def_inode_operations = {
771 	.setattr	= proc_setattr,
772 };
773 
774 static int proc_single_show(struct seq_file *m, void *v)
775 {
776 	struct inode *inode = m->private;
777 	struct pid_namespace *ns;
778 	struct pid *pid;
779 	struct task_struct *task;
780 	int ret;
781 
782 	ns = inode->i_sb->s_fs_info;
783 	pid = proc_pid(inode);
784 	task = get_pid_task(pid, PIDTYPE_PID);
785 	if (!task)
786 		return -ESRCH;
787 
788 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
789 
790 	put_task_struct(task);
791 	return ret;
792 }
793 
794 static int proc_single_open(struct inode *inode, struct file *filp)
795 {
796 	return single_open(filp, proc_single_show, inode);
797 }
798 
799 static const struct file_operations proc_single_file_operations = {
800 	.open		= proc_single_open,
801 	.read		= seq_read,
802 	.llseek		= seq_lseek,
803 	.release	= single_release,
804 };
805 
806 
807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
808 {
809 	struct task_struct *task = get_proc_task(inode);
810 	struct mm_struct *mm = ERR_PTR(-ESRCH);
811 
812 	if (task) {
813 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
814 		put_task_struct(task);
815 
816 		if (!IS_ERR_OR_NULL(mm)) {
817 			/* ensure this mm_struct can't be freed */
818 			atomic_inc(&mm->mm_count);
819 			/* but do not pin its memory */
820 			mmput(mm);
821 		}
822 	}
823 
824 	return mm;
825 }
826 
827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
828 {
829 	struct mm_struct *mm = proc_mem_open(inode, mode);
830 
831 	if (IS_ERR(mm))
832 		return PTR_ERR(mm);
833 
834 	file->private_data = mm;
835 	return 0;
836 }
837 
838 static int mem_open(struct inode *inode, struct file *file)
839 {
840 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
841 
842 	/* OK to pass negative loff_t, we can catch out-of-range */
843 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
844 
845 	return ret;
846 }
847 
848 static ssize_t mem_rw(struct file *file, char __user *buf,
849 			size_t count, loff_t *ppos, int write)
850 {
851 	struct mm_struct *mm = file->private_data;
852 	unsigned long addr = *ppos;
853 	ssize_t copied;
854 	char *page;
855 
856 	if (!mm)
857 		return 0;
858 
859 	page = (char *)__get_free_page(GFP_TEMPORARY);
860 	if (!page)
861 		return -ENOMEM;
862 
863 	copied = 0;
864 	if (!atomic_inc_not_zero(&mm->mm_users))
865 		goto free;
866 
867 	while (count > 0) {
868 		int this_len = min_t(int, count, PAGE_SIZE);
869 
870 		if (write && copy_from_user(page, buf, this_len)) {
871 			copied = -EFAULT;
872 			break;
873 		}
874 
875 		this_len = access_remote_vm(mm, addr, page, this_len, write);
876 		if (!this_len) {
877 			if (!copied)
878 				copied = -EIO;
879 			break;
880 		}
881 
882 		if (!write && copy_to_user(buf, page, this_len)) {
883 			copied = -EFAULT;
884 			break;
885 		}
886 
887 		buf += this_len;
888 		addr += this_len;
889 		copied += this_len;
890 		count -= this_len;
891 	}
892 	*ppos = addr;
893 
894 	mmput(mm);
895 free:
896 	free_page((unsigned long) page);
897 	return copied;
898 }
899 
900 static ssize_t mem_read(struct file *file, char __user *buf,
901 			size_t count, loff_t *ppos)
902 {
903 	return mem_rw(file, buf, count, ppos, 0);
904 }
905 
906 static ssize_t mem_write(struct file *file, const char __user *buf,
907 			 size_t count, loff_t *ppos)
908 {
909 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
910 }
911 
912 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
913 {
914 	switch (orig) {
915 	case 0:
916 		file->f_pos = offset;
917 		break;
918 	case 1:
919 		file->f_pos += offset;
920 		break;
921 	default:
922 		return -EINVAL;
923 	}
924 	force_successful_syscall_return();
925 	return file->f_pos;
926 }
927 
928 static int mem_release(struct inode *inode, struct file *file)
929 {
930 	struct mm_struct *mm = file->private_data;
931 	if (mm)
932 		mmdrop(mm);
933 	return 0;
934 }
935 
936 static const struct file_operations proc_mem_operations = {
937 	.llseek		= mem_lseek,
938 	.read		= mem_read,
939 	.write		= mem_write,
940 	.open		= mem_open,
941 	.release	= mem_release,
942 };
943 
944 static int environ_open(struct inode *inode, struct file *file)
945 {
946 	return __mem_open(inode, file, PTRACE_MODE_READ);
947 }
948 
949 static ssize_t environ_read(struct file *file, char __user *buf,
950 			size_t count, loff_t *ppos)
951 {
952 	char *page;
953 	unsigned long src = *ppos;
954 	int ret = 0;
955 	struct mm_struct *mm = file->private_data;
956 	unsigned long env_start, env_end;
957 
958 	/* Ensure the process spawned far enough to have an environment. */
959 	if (!mm || !mm->env_end)
960 		return 0;
961 
962 	page = (char *)__get_free_page(GFP_TEMPORARY);
963 	if (!page)
964 		return -ENOMEM;
965 
966 	ret = 0;
967 	if (!atomic_inc_not_zero(&mm->mm_users))
968 		goto free;
969 
970 	down_read(&mm->mmap_sem);
971 	env_start = mm->env_start;
972 	env_end = mm->env_end;
973 	up_read(&mm->mmap_sem);
974 
975 	while (count > 0) {
976 		size_t this_len, max_len;
977 		int retval;
978 
979 		if (src >= (env_end - env_start))
980 			break;
981 
982 		this_len = env_end - (env_start + src);
983 
984 		max_len = min_t(size_t, PAGE_SIZE, count);
985 		this_len = min(max_len, this_len);
986 
987 		retval = access_remote_vm(mm, (env_start + src),
988 			page, this_len, 0);
989 
990 		if (retval <= 0) {
991 			ret = retval;
992 			break;
993 		}
994 
995 		if (copy_to_user(buf, page, retval)) {
996 			ret = -EFAULT;
997 			break;
998 		}
999 
1000 		ret += retval;
1001 		src += retval;
1002 		buf += retval;
1003 		count -= retval;
1004 	}
1005 	*ppos = src;
1006 	mmput(mm);
1007 
1008 free:
1009 	free_page((unsigned long) page);
1010 	return ret;
1011 }
1012 
1013 static const struct file_operations proc_environ_operations = {
1014 	.open		= environ_open,
1015 	.read		= environ_read,
1016 	.llseek		= generic_file_llseek,
1017 	.release	= mem_release,
1018 };
1019 
1020 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021 			    loff_t *ppos)
1022 {
1023 	struct task_struct *task = get_proc_task(file_inode(file));
1024 	char buffer[PROC_NUMBUF];
1025 	int oom_adj = OOM_ADJUST_MIN;
1026 	size_t len;
1027 
1028 	if (!task)
1029 		return -ESRCH;
1030 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1031 		oom_adj = OOM_ADJUST_MAX;
1032 	else
1033 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1034 			  OOM_SCORE_ADJ_MAX;
1035 	put_task_struct(task);
1036 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1037 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1038 }
1039 
1040 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1041 {
1042 	static DEFINE_MUTEX(oom_adj_mutex);
1043 	struct mm_struct *mm = NULL;
1044 	struct task_struct *task;
1045 	int err = 0;
1046 
1047 	task = get_proc_task(file_inode(file));
1048 	if (!task)
1049 		return -ESRCH;
1050 
1051 	mutex_lock(&oom_adj_mutex);
1052 	if (legacy) {
1053 		if (oom_adj < task->signal->oom_score_adj &&
1054 				!capable(CAP_SYS_RESOURCE)) {
1055 			err = -EACCES;
1056 			goto err_unlock;
1057 		}
1058 		/*
1059 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1060 		 * /proc/pid/oom_score_adj instead.
1061 		 */
1062 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1063 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1064 			  task_pid_nr(task));
1065 	} else {
1066 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1067 				!capable(CAP_SYS_RESOURCE)) {
1068 			err = -EACCES;
1069 			goto err_unlock;
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * Make sure we will check other processes sharing the mm if this is
1075 	 * not vfrok which wants its own oom_score_adj.
1076 	 * pin the mm so it doesn't go away and get reused after task_unlock
1077 	 */
1078 	if (!task->vfork_done) {
1079 		struct task_struct *p = find_lock_task_mm(task);
1080 
1081 		if (p) {
1082 			if (atomic_read(&p->mm->mm_users) > 1) {
1083 				mm = p->mm;
1084 				atomic_inc(&mm->mm_count);
1085 			}
1086 			task_unlock(p);
1087 		}
1088 	}
1089 
1090 	task->signal->oom_score_adj = oom_adj;
1091 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1092 		task->signal->oom_score_adj_min = (short)oom_adj;
1093 	trace_oom_score_adj_update(task);
1094 
1095 	if (mm) {
1096 		struct task_struct *p;
1097 
1098 		rcu_read_lock();
1099 		for_each_process(p) {
1100 			if (same_thread_group(task, p))
1101 				continue;
1102 
1103 			/* do not touch kernel threads or the global init */
1104 			if (p->flags & PF_KTHREAD || is_global_init(p))
1105 				continue;
1106 
1107 			task_lock(p);
1108 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1109 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1110 						task_pid_nr(p), p->comm,
1111 						p->signal->oom_score_adj, oom_adj,
1112 						task_pid_nr(task), task->comm);
1113 				p->signal->oom_score_adj = oom_adj;
1114 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1115 					p->signal->oom_score_adj_min = (short)oom_adj;
1116 			}
1117 			task_unlock(p);
1118 		}
1119 		rcu_read_unlock();
1120 		mmdrop(mm);
1121 	}
1122 err_unlock:
1123 	mutex_unlock(&oom_adj_mutex);
1124 	put_task_struct(task);
1125 	return err;
1126 }
1127 
1128 /*
1129  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1130  * kernels.  The effective policy is defined by oom_score_adj, which has a
1131  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1132  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1133  * Processes that become oom disabled via oom_adj will still be oom disabled
1134  * with this implementation.
1135  *
1136  * oom_adj cannot be removed since existing userspace binaries use it.
1137  */
1138 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1139 			     size_t count, loff_t *ppos)
1140 {
1141 	char buffer[PROC_NUMBUF];
1142 	int oom_adj;
1143 	int err;
1144 
1145 	memset(buffer, 0, sizeof(buffer));
1146 	if (count > sizeof(buffer) - 1)
1147 		count = sizeof(buffer) - 1;
1148 	if (copy_from_user(buffer, buf, count)) {
1149 		err = -EFAULT;
1150 		goto out;
1151 	}
1152 
1153 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1154 	if (err)
1155 		goto out;
1156 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1157 	     oom_adj != OOM_DISABLE) {
1158 		err = -EINVAL;
1159 		goto out;
1160 	}
1161 
1162 	/*
1163 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1164 	 * value is always attainable.
1165 	 */
1166 	if (oom_adj == OOM_ADJUST_MAX)
1167 		oom_adj = OOM_SCORE_ADJ_MAX;
1168 	else
1169 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1170 
1171 	err = __set_oom_adj(file, oom_adj, true);
1172 out:
1173 	return err < 0 ? err : count;
1174 }
1175 
1176 static const struct file_operations proc_oom_adj_operations = {
1177 	.read		= oom_adj_read,
1178 	.write		= oom_adj_write,
1179 	.llseek		= generic_file_llseek,
1180 };
1181 
1182 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1183 					size_t count, loff_t *ppos)
1184 {
1185 	struct task_struct *task = get_proc_task(file_inode(file));
1186 	char buffer[PROC_NUMBUF];
1187 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1188 	size_t len;
1189 
1190 	if (!task)
1191 		return -ESRCH;
1192 	oom_score_adj = task->signal->oom_score_adj;
1193 	put_task_struct(task);
1194 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1195 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1196 }
1197 
1198 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1199 					size_t count, loff_t *ppos)
1200 {
1201 	char buffer[PROC_NUMBUF];
1202 	int oom_score_adj;
1203 	int err;
1204 
1205 	memset(buffer, 0, sizeof(buffer));
1206 	if (count > sizeof(buffer) - 1)
1207 		count = sizeof(buffer) - 1;
1208 	if (copy_from_user(buffer, buf, count)) {
1209 		err = -EFAULT;
1210 		goto out;
1211 	}
1212 
1213 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1214 	if (err)
1215 		goto out;
1216 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1217 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1218 		err = -EINVAL;
1219 		goto out;
1220 	}
1221 
1222 	err = __set_oom_adj(file, oom_score_adj, false);
1223 out:
1224 	return err < 0 ? err : count;
1225 }
1226 
1227 static const struct file_operations proc_oom_score_adj_operations = {
1228 	.read		= oom_score_adj_read,
1229 	.write		= oom_score_adj_write,
1230 	.llseek		= default_llseek,
1231 };
1232 
1233 #ifdef CONFIG_AUDITSYSCALL
1234 #define TMPBUFLEN 21
1235 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1236 				  size_t count, loff_t *ppos)
1237 {
1238 	struct inode * inode = file_inode(file);
1239 	struct task_struct *task = get_proc_task(inode);
1240 	ssize_t length;
1241 	char tmpbuf[TMPBUFLEN];
1242 
1243 	if (!task)
1244 		return -ESRCH;
1245 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1246 			   from_kuid(file->f_cred->user_ns,
1247 				     audit_get_loginuid(task)));
1248 	put_task_struct(task);
1249 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1250 }
1251 
1252 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1253 				   size_t count, loff_t *ppos)
1254 {
1255 	struct inode * inode = file_inode(file);
1256 	uid_t loginuid;
1257 	kuid_t kloginuid;
1258 	int rv;
1259 
1260 	rcu_read_lock();
1261 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1262 		rcu_read_unlock();
1263 		return -EPERM;
1264 	}
1265 	rcu_read_unlock();
1266 
1267 	if (*ppos != 0) {
1268 		/* No partial writes. */
1269 		return -EINVAL;
1270 	}
1271 
1272 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1273 	if (rv < 0)
1274 		return rv;
1275 
1276 	/* is userspace tring to explicitly UNSET the loginuid? */
1277 	if (loginuid == AUDIT_UID_UNSET) {
1278 		kloginuid = INVALID_UID;
1279 	} else {
1280 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1281 		if (!uid_valid(kloginuid))
1282 			return -EINVAL;
1283 	}
1284 
1285 	rv = audit_set_loginuid(kloginuid);
1286 	if (rv < 0)
1287 		return rv;
1288 	return count;
1289 }
1290 
1291 static const struct file_operations proc_loginuid_operations = {
1292 	.read		= proc_loginuid_read,
1293 	.write		= proc_loginuid_write,
1294 	.llseek		= generic_file_llseek,
1295 };
1296 
1297 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1298 				  size_t count, loff_t *ppos)
1299 {
1300 	struct inode * inode = file_inode(file);
1301 	struct task_struct *task = get_proc_task(inode);
1302 	ssize_t length;
1303 	char tmpbuf[TMPBUFLEN];
1304 
1305 	if (!task)
1306 		return -ESRCH;
1307 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1308 				audit_get_sessionid(task));
1309 	put_task_struct(task);
1310 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1311 }
1312 
1313 static const struct file_operations proc_sessionid_operations = {
1314 	.read		= proc_sessionid_read,
1315 	.llseek		= generic_file_llseek,
1316 };
1317 #endif
1318 
1319 #ifdef CONFIG_FAULT_INJECTION
1320 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1321 				      size_t count, loff_t *ppos)
1322 {
1323 	struct task_struct *task = get_proc_task(file_inode(file));
1324 	char buffer[PROC_NUMBUF];
1325 	size_t len;
1326 	int make_it_fail;
1327 
1328 	if (!task)
1329 		return -ESRCH;
1330 	make_it_fail = task->make_it_fail;
1331 	put_task_struct(task);
1332 
1333 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1334 
1335 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1336 }
1337 
1338 static ssize_t proc_fault_inject_write(struct file * file,
1339 			const char __user * buf, size_t count, loff_t *ppos)
1340 {
1341 	struct task_struct *task;
1342 	char buffer[PROC_NUMBUF];
1343 	int make_it_fail;
1344 	int rv;
1345 
1346 	if (!capable(CAP_SYS_RESOURCE))
1347 		return -EPERM;
1348 	memset(buffer, 0, sizeof(buffer));
1349 	if (count > sizeof(buffer) - 1)
1350 		count = sizeof(buffer) - 1;
1351 	if (copy_from_user(buffer, buf, count))
1352 		return -EFAULT;
1353 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1354 	if (rv < 0)
1355 		return rv;
1356 	if (make_it_fail < 0 || make_it_fail > 1)
1357 		return -EINVAL;
1358 
1359 	task = get_proc_task(file_inode(file));
1360 	if (!task)
1361 		return -ESRCH;
1362 	task->make_it_fail = make_it_fail;
1363 	put_task_struct(task);
1364 
1365 	return count;
1366 }
1367 
1368 static const struct file_operations proc_fault_inject_operations = {
1369 	.read		= proc_fault_inject_read,
1370 	.write		= proc_fault_inject_write,
1371 	.llseek		= generic_file_llseek,
1372 };
1373 #endif
1374 
1375 
1376 #ifdef CONFIG_SCHED_DEBUG
1377 /*
1378  * Print out various scheduling related per-task fields:
1379  */
1380 static int sched_show(struct seq_file *m, void *v)
1381 {
1382 	struct inode *inode = m->private;
1383 	struct task_struct *p;
1384 
1385 	p = get_proc_task(inode);
1386 	if (!p)
1387 		return -ESRCH;
1388 	proc_sched_show_task(p, m);
1389 
1390 	put_task_struct(p);
1391 
1392 	return 0;
1393 }
1394 
1395 static ssize_t
1396 sched_write(struct file *file, const char __user *buf,
1397 	    size_t count, loff_t *offset)
1398 {
1399 	struct inode *inode = file_inode(file);
1400 	struct task_struct *p;
1401 
1402 	p = get_proc_task(inode);
1403 	if (!p)
1404 		return -ESRCH;
1405 	proc_sched_set_task(p);
1406 
1407 	put_task_struct(p);
1408 
1409 	return count;
1410 }
1411 
1412 static int sched_open(struct inode *inode, struct file *filp)
1413 {
1414 	return single_open(filp, sched_show, inode);
1415 }
1416 
1417 static const struct file_operations proc_pid_sched_operations = {
1418 	.open		= sched_open,
1419 	.read		= seq_read,
1420 	.write		= sched_write,
1421 	.llseek		= seq_lseek,
1422 	.release	= single_release,
1423 };
1424 
1425 #endif
1426 
1427 #ifdef CONFIG_SCHED_AUTOGROUP
1428 /*
1429  * Print out autogroup related information:
1430  */
1431 static int sched_autogroup_show(struct seq_file *m, void *v)
1432 {
1433 	struct inode *inode = m->private;
1434 	struct task_struct *p;
1435 
1436 	p = get_proc_task(inode);
1437 	if (!p)
1438 		return -ESRCH;
1439 	proc_sched_autogroup_show_task(p, m);
1440 
1441 	put_task_struct(p);
1442 
1443 	return 0;
1444 }
1445 
1446 static ssize_t
1447 sched_autogroup_write(struct file *file, const char __user *buf,
1448 	    size_t count, loff_t *offset)
1449 {
1450 	struct inode *inode = file_inode(file);
1451 	struct task_struct *p;
1452 	char buffer[PROC_NUMBUF];
1453 	int nice;
1454 	int err;
1455 
1456 	memset(buffer, 0, sizeof(buffer));
1457 	if (count > sizeof(buffer) - 1)
1458 		count = sizeof(buffer) - 1;
1459 	if (copy_from_user(buffer, buf, count))
1460 		return -EFAULT;
1461 
1462 	err = kstrtoint(strstrip(buffer), 0, &nice);
1463 	if (err < 0)
1464 		return err;
1465 
1466 	p = get_proc_task(inode);
1467 	if (!p)
1468 		return -ESRCH;
1469 
1470 	err = proc_sched_autogroup_set_nice(p, nice);
1471 	if (err)
1472 		count = err;
1473 
1474 	put_task_struct(p);
1475 
1476 	return count;
1477 }
1478 
1479 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1480 {
1481 	int ret;
1482 
1483 	ret = single_open(filp, sched_autogroup_show, NULL);
1484 	if (!ret) {
1485 		struct seq_file *m = filp->private_data;
1486 
1487 		m->private = inode;
1488 	}
1489 	return ret;
1490 }
1491 
1492 static const struct file_operations proc_pid_sched_autogroup_operations = {
1493 	.open		= sched_autogroup_open,
1494 	.read		= seq_read,
1495 	.write		= sched_autogroup_write,
1496 	.llseek		= seq_lseek,
1497 	.release	= single_release,
1498 };
1499 
1500 #endif /* CONFIG_SCHED_AUTOGROUP */
1501 
1502 static ssize_t comm_write(struct file *file, const char __user *buf,
1503 				size_t count, loff_t *offset)
1504 {
1505 	struct inode *inode = file_inode(file);
1506 	struct task_struct *p;
1507 	char buffer[TASK_COMM_LEN];
1508 	const size_t maxlen = sizeof(buffer) - 1;
1509 
1510 	memset(buffer, 0, sizeof(buffer));
1511 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1512 		return -EFAULT;
1513 
1514 	p = get_proc_task(inode);
1515 	if (!p)
1516 		return -ESRCH;
1517 
1518 	if (same_thread_group(current, p))
1519 		set_task_comm(p, buffer);
1520 	else
1521 		count = -EINVAL;
1522 
1523 	put_task_struct(p);
1524 
1525 	return count;
1526 }
1527 
1528 static int comm_show(struct seq_file *m, void *v)
1529 {
1530 	struct inode *inode = m->private;
1531 	struct task_struct *p;
1532 
1533 	p = get_proc_task(inode);
1534 	if (!p)
1535 		return -ESRCH;
1536 
1537 	task_lock(p);
1538 	seq_printf(m, "%s\n", p->comm);
1539 	task_unlock(p);
1540 
1541 	put_task_struct(p);
1542 
1543 	return 0;
1544 }
1545 
1546 static int comm_open(struct inode *inode, struct file *filp)
1547 {
1548 	return single_open(filp, comm_show, inode);
1549 }
1550 
1551 static const struct file_operations proc_pid_set_comm_operations = {
1552 	.open		= comm_open,
1553 	.read		= seq_read,
1554 	.write		= comm_write,
1555 	.llseek		= seq_lseek,
1556 	.release	= single_release,
1557 };
1558 
1559 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1560 {
1561 	struct task_struct *task;
1562 	struct mm_struct *mm;
1563 	struct file *exe_file;
1564 
1565 	task = get_proc_task(d_inode(dentry));
1566 	if (!task)
1567 		return -ENOENT;
1568 	mm = get_task_mm(task);
1569 	put_task_struct(task);
1570 	if (!mm)
1571 		return -ENOENT;
1572 	exe_file = get_mm_exe_file(mm);
1573 	mmput(mm);
1574 	if (exe_file) {
1575 		*exe_path = exe_file->f_path;
1576 		path_get(&exe_file->f_path);
1577 		fput(exe_file);
1578 		return 0;
1579 	} else
1580 		return -ENOENT;
1581 }
1582 
1583 static const char *proc_pid_get_link(struct dentry *dentry,
1584 				     struct inode *inode,
1585 				     struct delayed_call *done)
1586 {
1587 	struct path path;
1588 	int error = -EACCES;
1589 
1590 	if (!dentry)
1591 		return ERR_PTR(-ECHILD);
1592 
1593 	/* Are we allowed to snoop on the tasks file descriptors? */
1594 	if (!proc_fd_access_allowed(inode))
1595 		goto out;
1596 
1597 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1598 	if (error)
1599 		goto out;
1600 
1601 	nd_jump_link(&path);
1602 	return NULL;
1603 out:
1604 	return ERR_PTR(error);
1605 }
1606 
1607 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1608 {
1609 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1610 	char *pathname;
1611 	int len;
1612 
1613 	if (!tmp)
1614 		return -ENOMEM;
1615 
1616 	pathname = d_path(path, tmp, PAGE_SIZE);
1617 	len = PTR_ERR(pathname);
1618 	if (IS_ERR(pathname))
1619 		goto out;
1620 	len = tmp + PAGE_SIZE - 1 - pathname;
1621 
1622 	if (len > buflen)
1623 		len = buflen;
1624 	if (copy_to_user(buffer, pathname, len))
1625 		len = -EFAULT;
1626  out:
1627 	free_page((unsigned long)tmp);
1628 	return len;
1629 }
1630 
1631 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1632 {
1633 	int error = -EACCES;
1634 	struct inode *inode = d_inode(dentry);
1635 	struct path path;
1636 
1637 	/* Are we allowed to snoop on the tasks file descriptors? */
1638 	if (!proc_fd_access_allowed(inode))
1639 		goto out;
1640 
1641 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1642 	if (error)
1643 		goto out;
1644 
1645 	error = do_proc_readlink(&path, buffer, buflen);
1646 	path_put(&path);
1647 out:
1648 	return error;
1649 }
1650 
1651 const struct inode_operations proc_pid_link_inode_operations = {
1652 	.readlink	= proc_pid_readlink,
1653 	.get_link	= proc_pid_get_link,
1654 	.setattr	= proc_setattr,
1655 };
1656 
1657 
1658 /* building an inode */
1659 
1660 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1661 {
1662 	struct inode * inode;
1663 	struct proc_inode *ei;
1664 	const struct cred *cred;
1665 
1666 	/* We need a new inode */
1667 
1668 	inode = new_inode(sb);
1669 	if (!inode)
1670 		goto out;
1671 
1672 	/* Common stuff */
1673 	ei = PROC_I(inode);
1674 	inode->i_ino = get_next_ino();
1675 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1676 	inode->i_op = &proc_def_inode_operations;
1677 
1678 	/*
1679 	 * grab the reference to task.
1680 	 */
1681 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1682 	if (!ei->pid)
1683 		goto out_unlock;
1684 
1685 	if (task_dumpable(task)) {
1686 		rcu_read_lock();
1687 		cred = __task_cred(task);
1688 		inode->i_uid = cred->euid;
1689 		inode->i_gid = cred->egid;
1690 		rcu_read_unlock();
1691 	}
1692 	security_task_to_inode(task, inode);
1693 
1694 out:
1695 	return inode;
1696 
1697 out_unlock:
1698 	iput(inode);
1699 	return NULL;
1700 }
1701 
1702 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1703 {
1704 	struct inode *inode = d_inode(dentry);
1705 	struct task_struct *task;
1706 	const struct cred *cred;
1707 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1708 
1709 	generic_fillattr(inode, stat);
1710 
1711 	rcu_read_lock();
1712 	stat->uid = GLOBAL_ROOT_UID;
1713 	stat->gid = GLOBAL_ROOT_GID;
1714 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1715 	if (task) {
1716 		if (!has_pid_permissions(pid, task, 2)) {
1717 			rcu_read_unlock();
1718 			/*
1719 			 * This doesn't prevent learning whether PID exists,
1720 			 * it only makes getattr() consistent with readdir().
1721 			 */
1722 			return -ENOENT;
1723 		}
1724 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1725 		    task_dumpable(task)) {
1726 			cred = __task_cred(task);
1727 			stat->uid = cred->euid;
1728 			stat->gid = cred->egid;
1729 		}
1730 	}
1731 	rcu_read_unlock();
1732 	return 0;
1733 }
1734 
1735 /* dentry stuff */
1736 
1737 /*
1738  *	Exceptional case: normally we are not allowed to unhash a busy
1739  * directory. In this case, however, we can do it - no aliasing problems
1740  * due to the way we treat inodes.
1741  *
1742  * Rewrite the inode's ownerships here because the owning task may have
1743  * performed a setuid(), etc.
1744  *
1745  * Before the /proc/pid/status file was created the only way to read
1746  * the effective uid of a /process was to stat /proc/pid.  Reading
1747  * /proc/pid/status is slow enough that procps and other packages
1748  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1749  * made this apply to all per process world readable and executable
1750  * directories.
1751  */
1752 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1753 {
1754 	struct inode *inode;
1755 	struct task_struct *task;
1756 	const struct cred *cred;
1757 
1758 	if (flags & LOOKUP_RCU)
1759 		return -ECHILD;
1760 
1761 	inode = d_inode(dentry);
1762 	task = get_proc_task(inode);
1763 
1764 	if (task) {
1765 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1766 		    task_dumpable(task)) {
1767 			rcu_read_lock();
1768 			cred = __task_cred(task);
1769 			inode->i_uid = cred->euid;
1770 			inode->i_gid = cred->egid;
1771 			rcu_read_unlock();
1772 		} else {
1773 			inode->i_uid = GLOBAL_ROOT_UID;
1774 			inode->i_gid = GLOBAL_ROOT_GID;
1775 		}
1776 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1777 		security_task_to_inode(task, inode);
1778 		put_task_struct(task);
1779 		return 1;
1780 	}
1781 	return 0;
1782 }
1783 
1784 static inline bool proc_inode_is_dead(struct inode *inode)
1785 {
1786 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1787 }
1788 
1789 int pid_delete_dentry(const struct dentry *dentry)
1790 {
1791 	/* Is the task we represent dead?
1792 	 * If so, then don't put the dentry on the lru list,
1793 	 * kill it immediately.
1794 	 */
1795 	return proc_inode_is_dead(d_inode(dentry));
1796 }
1797 
1798 const struct dentry_operations pid_dentry_operations =
1799 {
1800 	.d_revalidate	= pid_revalidate,
1801 	.d_delete	= pid_delete_dentry,
1802 };
1803 
1804 /* Lookups */
1805 
1806 /*
1807  * Fill a directory entry.
1808  *
1809  * If possible create the dcache entry and derive our inode number and
1810  * file type from dcache entry.
1811  *
1812  * Since all of the proc inode numbers are dynamically generated, the inode
1813  * numbers do not exist until the inode is cache.  This means creating the
1814  * the dcache entry in readdir is necessary to keep the inode numbers
1815  * reported by readdir in sync with the inode numbers reported
1816  * by stat.
1817  */
1818 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1819 	const char *name, int len,
1820 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1821 {
1822 	struct dentry *child, *dir = file->f_path.dentry;
1823 	struct qstr qname = QSTR_INIT(name, len);
1824 	struct inode *inode;
1825 	unsigned type;
1826 	ino_t ino;
1827 
1828 	child = d_hash_and_lookup(dir, &qname);
1829 	if (!child) {
1830 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1831 		child = d_alloc_parallel(dir, &qname, &wq);
1832 		if (IS_ERR(child))
1833 			goto end_instantiate;
1834 		if (d_in_lookup(child)) {
1835 			int err = instantiate(d_inode(dir), child, task, ptr);
1836 			d_lookup_done(child);
1837 			if (err < 0) {
1838 				dput(child);
1839 				goto end_instantiate;
1840 			}
1841 		}
1842 	}
1843 	inode = d_inode(child);
1844 	ino = inode->i_ino;
1845 	type = inode->i_mode >> 12;
1846 	dput(child);
1847 	return dir_emit(ctx, name, len, ino, type);
1848 
1849 end_instantiate:
1850 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1851 }
1852 
1853 /*
1854  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1855  * which represent vma start and end addresses.
1856  */
1857 static int dname_to_vma_addr(struct dentry *dentry,
1858 			     unsigned long *start, unsigned long *end)
1859 {
1860 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1861 		return -EINVAL;
1862 
1863 	return 0;
1864 }
1865 
1866 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1867 {
1868 	unsigned long vm_start, vm_end;
1869 	bool exact_vma_exists = false;
1870 	struct mm_struct *mm = NULL;
1871 	struct task_struct *task;
1872 	const struct cred *cred;
1873 	struct inode *inode;
1874 	int status = 0;
1875 
1876 	if (flags & LOOKUP_RCU)
1877 		return -ECHILD;
1878 
1879 	inode = d_inode(dentry);
1880 	task = get_proc_task(inode);
1881 	if (!task)
1882 		goto out_notask;
1883 
1884 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1885 	if (IS_ERR_OR_NULL(mm))
1886 		goto out;
1887 
1888 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1889 		down_read(&mm->mmap_sem);
1890 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1891 		up_read(&mm->mmap_sem);
1892 	}
1893 
1894 	mmput(mm);
1895 
1896 	if (exact_vma_exists) {
1897 		if (task_dumpable(task)) {
1898 			rcu_read_lock();
1899 			cred = __task_cred(task);
1900 			inode->i_uid = cred->euid;
1901 			inode->i_gid = cred->egid;
1902 			rcu_read_unlock();
1903 		} else {
1904 			inode->i_uid = GLOBAL_ROOT_UID;
1905 			inode->i_gid = GLOBAL_ROOT_GID;
1906 		}
1907 		security_task_to_inode(task, inode);
1908 		status = 1;
1909 	}
1910 
1911 out:
1912 	put_task_struct(task);
1913 
1914 out_notask:
1915 	return status;
1916 }
1917 
1918 static const struct dentry_operations tid_map_files_dentry_operations = {
1919 	.d_revalidate	= map_files_d_revalidate,
1920 	.d_delete	= pid_delete_dentry,
1921 };
1922 
1923 static int map_files_get_link(struct dentry *dentry, struct path *path)
1924 {
1925 	unsigned long vm_start, vm_end;
1926 	struct vm_area_struct *vma;
1927 	struct task_struct *task;
1928 	struct mm_struct *mm;
1929 	int rc;
1930 
1931 	rc = -ENOENT;
1932 	task = get_proc_task(d_inode(dentry));
1933 	if (!task)
1934 		goto out;
1935 
1936 	mm = get_task_mm(task);
1937 	put_task_struct(task);
1938 	if (!mm)
1939 		goto out;
1940 
1941 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1942 	if (rc)
1943 		goto out_mmput;
1944 
1945 	rc = -ENOENT;
1946 	down_read(&mm->mmap_sem);
1947 	vma = find_exact_vma(mm, vm_start, vm_end);
1948 	if (vma && vma->vm_file) {
1949 		*path = vma->vm_file->f_path;
1950 		path_get(path);
1951 		rc = 0;
1952 	}
1953 	up_read(&mm->mmap_sem);
1954 
1955 out_mmput:
1956 	mmput(mm);
1957 out:
1958 	return rc;
1959 }
1960 
1961 struct map_files_info {
1962 	fmode_t		mode;
1963 	unsigned long	len;
1964 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1965 };
1966 
1967 /*
1968  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1969  * symlinks may be used to bypass permissions on ancestor directories in the
1970  * path to the file in question.
1971  */
1972 static const char *
1973 proc_map_files_get_link(struct dentry *dentry,
1974 			struct inode *inode,
1975 		        struct delayed_call *done)
1976 {
1977 	if (!capable(CAP_SYS_ADMIN))
1978 		return ERR_PTR(-EPERM);
1979 
1980 	return proc_pid_get_link(dentry, inode, done);
1981 }
1982 
1983 /*
1984  * Identical to proc_pid_link_inode_operations except for get_link()
1985  */
1986 static const struct inode_operations proc_map_files_link_inode_operations = {
1987 	.readlink	= proc_pid_readlink,
1988 	.get_link	= proc_map_files_get_link,
1989 	.setattr	= proc_setattr,
1990 };
1991 
1992 static int
1993 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1994 			   struct task_struct *task, const void *ptr)
1995 {
1996 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1997 	struct proc_inode *ei;
1998 	struct inode *inode;
1999 
2000 	inode = proc_pid_make_inode(dir->i_sb, task);
2001 	if (!inode)
2002 		return -ENOENT;
2003 
2004 	ei = PROC_I(inode);
2005 	ei->op.proc_get_link = map_files_get_link;
2006 
2007 	inode->i_op = &proc_map_files_link_inode_operations;
2008 	inode->i_size = 64;
2009 	inode->i_mode = S_IFLNK;
2010 
2011 	if (mode & FMODE_READ)
2012 		inode->i_mode |= S_IRUSR;
2013 	if (mode & FMODE_WRITE)
2014 		inode->i_mode |= S_IWUSR;
2015 
2016 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2017 	d_add(dentry, inode);
2018 
2019 	return 0;
2020 }
2021 
2022 static struct dentry *proc_map_files_lookup(struct inode *dir,
2023 		struct dentry *dentry, unsigned int flags)
2024 {
2025 	unsigned long vm_start, vm_end;
2026 	struct vm_area_struct *vma;
2027 	struct task_struct *task;
2028 	int result;
2029 	struct mm_struct *mm;
2030 
2031 	result = -ENOENT;
2032 	task = get_proc_task(dir);
2033 	if (!task)
2034 		goto out;
2035 
2036 	result = -EACCES;
2037 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2038 		goto out_put_task;
2039 
2040 	result = -ENOENT;
2041 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2042 		goto out_put_task;
2043 
2044 	mm = get_task_mm(task);
2045 	if (!mm)
2046 		goto out_put_task;
2047 
2048 	down_read(&mm->mmap_sem);
2049 	vma = find_exact_vma(mm, vm_start, vm_end);
2050 	if (!vma)
2051 		goto out_no_vma;
2052 
2053 	if (vma->vm_file)
2054 		result = proc_map_files_instantiate(dir, dentry, task,
2055 				(void *)(unsigned long)vma->vm_file->f_mode);
2056 
2057 out_no_vma:
2058 	up_read(&mm->mmap_sem);
2059 	mmput(mm);
2060 out_put_task:
2061 	put_task_struct(task);
2062 out:
2063 	return ERR_PTR(result);
2064 }
2065 
2066 static const struct inode_operations proc_map_files_inode_operations = {
2067 	.lookup		= proc_map_files_lookup,
2068 	.permission	= proc_fd_permission,
2069 	.setattr	= proc_setattr,
2070 };
2071 
2072 static int
2073 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2074 {
2075 	struct vm_area_struct *vma;
2076 	struct task_struct *task;
2077 	struct mm_struct *mm;
2078 	unsigned long nr_files, pos, i;
2079 	struct flex_array *fa = NULL;
2080 	struct map_files_info info;
2081 	struct map_files_info *p;
2082 	int ret;
2083 
2084 	ret = -ENOENT;
2085 	task = get_proc_task(file_inode(file));
2086 	if (!task)
2087 		goto out;
2088 
2089 	ret = -EACCES;
2090 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2091 		goto out_put_task;
2092 
2093 	ret = 0;
2094 	if (!dir_emit_dots(file, ctx))
2095 		goto out_put_task;
2096 
2097 	mm = get_task_mm(task);
2098 	if (!mm)
2099 		goto out_put_task;
2100 	down_read(&mm->mmap_sem);
2101 
2102 	nr_files = 0;
2103 
2104 	/*
2105 	 * We need two passes here:
2106 	 *
2107 	 *  1) Collect vmas of mapped files with mmap_sem taken
2108 	 *  2) Release mmap_sem and instantiate entries
2109 	 *
2110 	 * otherwise we get lockdep complained, since filldir()
2111 	 * routine might require mmap_sem taken in might_fault().
2112 	 */
2113 
2114 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2115 		if (vma->vm_file && ++pos > ctx->pos)
2116 			nr_files++;
2117 	}
2118 
2119 	if (nr_files) {
2120 		fa = flex_array_alloc(sizeof(info), nr_files,
2121 					GFP_KERNEL);
2122 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2123 						GFP_KERNEL)) {
2124 			ret = -ENOMEM;
2125 			if (fa)
2126 				flex_array_free(fa);
2127 			up_read(&mm->mmap_sem);
2128 			mmput(mm);
2129 			goto out_put_task;
2130 		}
2131 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2132 				vma = vma->vm_next) {
2133 			if (!vma->vm_file)
2134 				continue;
2135 			if (++pos <= ctx->pos)
2136 				continue;
2137 
2138 			info.mode = vma->vm_file->f_mode;
2139 			info.len = snprintf(info.name,
2140 					sizeof(info.name), "%lx-%lx",
2141 					vma->vm_start, vma->vm_end);
2142 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2143 				BUG();
2144 		}
2145 	}
2146 	up_read(&mm->mmap_sem);
2147 
2148 	for (i = 0; i < nr_files; i++) {
2149 		p = flex_array_get(fa, i);
2150 		if (!proc_fill_cache(file, ctx,
2151 				      p->name, p->len,
2152 				      proc_map_files_instantiate,
2153 				      task,
2154 				      (void *)(unsigned long)p->mode))
2155 			break;
2156 		ctx->pos++;
2157 	}
2158 	if (fa)
2159 		flex_array_free(fa);
2160 	mmput(mm);
2161 
2162 out_put_task:
2163 	put_task_struct(task);
2164 out:
2165 	return ret;
2166 }
2167 
2168 static const struct file_operations proc_map_files_operations = {
2169 	.read		= generic_read_dir,
2170 	.iterate_shared	= proc_map_files_readdir,
2171 	.llseek		= generic_file_llseek,
2172 };
2173 
2174 #ifdef CONFIG_CHECKPOINT_RESTORE
2175 struct timers_private {
2176 	struct pid *pid;
2177 	struct task_struct *task;
2178 	struct sighand_struct *sighand;
2179 	struct pid_namespace *ns;
2180 	unsigned long flags;
2181 };
2182 
2183 static void *timers_start(struct seq_file *m, loff_t *pos)
2184 {
2185 	struct timers_private *tp = m->private;
2186 
2187 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2188 	if (!tp->task)
2189 		return ERR_PTR(-ESRCH);
2190 
2191 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2192 	if (!tp->sighand)
2193 		return ERR_PTR(-ESRCH);
2194 
2195 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2196 }
2197 
2198 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2199 {
2200 	struct timers_private *tp = m->private;
2201 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2202 }
2203 
2204 static void timers_stop(struct seq_file *m, void *v)
2205 {
2206 	struct timers_private *tp = m->private;
2207 
2208 	if (tp->sighand) {
2209 		unlock_task_sighand(tp->task, &tp->flags);
2210 		tp->sighand = NULL;
2211 	}
2212 
2213 	if (tp->task) {
2214 		put_task_struct(tp->task);
2215 		tp->task = NULL;
2216 	}
2217 }
2218 
2219 static int show_timer(struct seq_file *m, void *v)
2220 {
2221 	struct k_itimer *timer;
2222 	struct timers_private *tp = m->private;
2223 	int notify;
2224 	static const char * const nstr[] = {
2225 		[SIGEV_SIGNAL] = "signal",
2226 		[SIGEV_NONE] = "none",
2227 		[SIGEV_THREAD] = "thread",
2228 	};
2229 
2230 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2231 	notify = timer->it_sigev_notify;
2232 
2233 	seq_printf(m, "ID: %d\n", timer->it_id);
2234 	seq_printf(m, "signal: %d/%p\n",
2235 		   timer->sigq->info.si_signo,
2236 		   timer->sigq->info.si_value.sival_ptr);
2237 	seq_printf(m, "notify: %s/%s.%d\n",
2238 		   nstr[notify & ~SIGEV_THREAD_ID],
2239 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2240 		   pid_nr_ns(timer->it_pid, tp->ns));
2241 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2242 
2243 	return 0;
2244 }
2245 
2246 static const struct seq_operations proc_timers_seq_ops = {
2247 	.start	= timers_start,
2248 	.next	= timers_next,
2249 	.stop	= timers_stop,
2250 	.show	= show_timer,
2251 };
2252 
2253 static int proc_timers_open(struct inode *inode, struct file *file)
2254 {
2255 	struct timers_private *tp;
2256 
2257 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2258 			sizeof(struct timers_private));
2259 	if (!tp)
2260 		return -ENOMEM;
2261 
2262 	tp->pid = proc_pid(inode);
2263 	tp->ns = inode->i_sb->s_fs_info;
2264 	return 0;
2265 }
2266 
2267 static const struct file_operations proc_timers_operations = {
2268 	.open		= proc_timers_open,
2269 	.read		= seq_read,
2270 	.llseek		= seq_lseek,
2271 	.release	= seq_release_private,
2272 };
2273 #endif
2274 
2275 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2276 					size_t count, loff_t *offset)
2277 {
2278 	struct inode *inode = file_inode(file);
2279 	struct task_struct *p;
2280 	u64 slack_ns;
2281 	int err;
2282 
2283 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2284 	if (err < 0)
2285 		return err;
2286 
2287 	p = get_proc_task(inode);
2288 	if (!p)
2289 		return -ESRCH;
2290 
2291 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2292 		task_lock(p);
2293 		if (slack_ns == 0)
2294 			p->timer_slack_ns = p->default_timer_slack_ns;
2295 		else
2296 			p->timer_slack_ns = slack_ns;
2297 		task_unlock(p);
2298 	} else
2299 		count = -EPERM;
2300 
2301 	put_task_struct(p);
2302 
2303 	return count;
2304 }
2305 
2306 static int timerslack_ns_show(struct seq_file *m, void *v)
2307 {
2308 	struct inode *inode = m->private;
2309 	struct task_struct *p;
2310 	int err =  0;
2311 
2312 	p = get_proc_task(inode);
2313 	if (!p)
2314 		return -ESRCH;
2315 
2316 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2317 		task_lock(p);
2318 		seq_printf(m, "%llu\n", p->timer_slack_ns);
2319 		task_unlock(p);
2320 	} else
2321 		err = -EPERM;
2322 
2323 	put_task_struct(p);
2324 
2325 	return err;
2326 }
2327 
2328 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2329 {
2330 	return single_open(filp, timerslack_ns_show, inode);
2331 }
2332 
2333 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2334 	.open		= timerslack_ns_open,
2335 	.read		= seq_read,
2336 	.write		= timerslack_ns_write,
2337 	.llseek		= seq_lseek,
2338 	.release	= single_release,
2339 };
2340 
2341 static int proc_pident_instantiate(struct inode *dir,
2342 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2343 {
2344 	const struct pid_entry *p = ptr;
2345 	struct inode *inode;
2346 	struct proc_inode *ei;
2347 
2348 	inode = proc_pid_make_inode(dir->i_sb, task);
2349 	if (!inode)
2350 		goto out;
2351 
2352 	ei = PROC_I(inode);
2353 	inode->i_mode = p->mode;
2354 	if (S_ISDIR(inode->i_mode))
2355 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2356 	if (p->iop)
2357 		inode->i_op = p->iop;
2358 	if (p->fop)
2359 		inode->i_fop = p->fop;
2360 	ei->op = p->op;
2361 	d_set_d_op(dentry, &pid_dentry_operations);
2362 	d_add(dentry, inode);
2363 	/* Close the race of the process dying before we return the dentry */
2364 	if (pid_revalidate(dentry, 0))
2365 		return 0;
2366 out:
2367 	return -ENOENT;
2368 }
2369 
2370 static struct dentry *proc_pident_lookup(struct inode *dir,
2371 					 struct dentry *dentry,
2372 					 const struct pid_entry *ents,
2373 					 unsigned int nents)
2374 {
2375 	int error;
2376 	struct task_struct *task = get_proc_task(dir);
2377 	const struct pid_entry *p, *last;
2378 
2379 	error = -ENOENT;
2380 
2381 	if (!task)
2382 		goto out_no_task;
2383 
2384 	/*
2385 	 * Yes, it does not scale. And it should not. Don't add
2386 	 * new entries into /proc/<tgid>/ without very good reasons.
2387 	 */
2388 	last = &ents[nents - 1];
2389 	for (p = ents; p <= last; p++) {
2390 		if (p->len != dentry->d_name.len)
2391 			continue;
2392 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2393 			break;
2394 	}
2395 	if (p > last)
2396 		goto out;
2397 
2398 	error = proc_pident_instantiate(dir, dentry, task, p);
2399 out:
2400 	put_task_struct(task);
2401 out_no_task:
2402 	return ERR_PTR(error);
2403 }
2404 
2405 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2406 		const struct pid_entry *ents, unsigned int nents)
2407 {
2408 	struct task_struct *task = get_proc_task(file_inode(file));
2409 	const struct pid_entry *p;
2410 
2411 	if (!task)
2412 		return -ENOENT;
2413 
2414 	if (!dir_emit_dots(file, ctx))
2415 		goto out;
2416 
2417 	if (ctx->pos >= nents + 2)
2418 		goto out;
2419 
2420 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2421 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2422 				proc_pident_instantiate, task, p))
2423 			break;
2424 		ctx->pos++;
2425 	}
2426 out:
2427 	put_task_struct(task);
2428 	return 0;
2429 }
2430 
2431 #ifdef CONFIG_SECURITY
2432 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2433 				  size_t count, loff_t *ppos)
2434 {
2435 	struct inode * inode = file_inode(file);
2436 	char *p = NULL;
2437 	ssize_t length;
2438 	struct task_struct *task = get_proc_task(inode);
2439 
2440 	if (!task)
2441 		return -ESRCH;
2442 
2443 	length = security_getprocattr(task,
2444 				      (char*)file->f_path.dentry->d_name.name,
2445 				      &p);
2446 	put_task_struct(task);
2447 	if (length > 0)
2448 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2449 	kfree(p);
2450 	return length;
2451 }
2452 
2453 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2454 				   size_t count, loff_t *ppos)
2455 {
2456 	struct inode * inode = file_inode(file);
2457 	void *page;
2458 	ssize_t length;
2459 	struct task_struct *task = get_proc_task(inode);
2460 
2461 	length = -ESRCH;
2462 	if (!task)
2463 		goto out_no_task;
2464 	if (count > PAGE_SIZE)
2465 		count = PAGE_SIZE;
2466 
2467 	/* No partial writes. */
2468 	length = -EINVAL;
2469 	if (*ppos != 0)
2470 		goto out;
2471 
2472 	page = memdup_user(buf, count);
2473 	if (IS_ERR(page)) {
2474 		length = PTR_ERR(page);
2475 		goto out;
2476 	}
2477 
2478 	/* Guard against adverse ptrace interaction */
2479 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2480 	if (length < 0)
2481 		goto out_free;
2482 
2483 	length = security_setprocattr(task,
2484 				      (char*)file->f_path.dentry->d_name.name,
2485 				      page, count);
2486 	mutex_unlock(&task->signal->cred_guard_mutex);
2487 out_free:
2488 	kfree(page);
2489 out:
2490 	put_task_struct(task);
2491 out_no_task:
2492 	return length;
2493 }
2494 
2495 static const struct file_operations proc_pid_attr_operations = {
2496 	.read		= proc_pid_attr_read,
2497 	.write		= proc_pid_attr_write,
2498 	.llseek		= generic_file_llseek,
2499 };
2500 
2501 static const struct pid_entry attr_dir_stuff[] = {
2502 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2503 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2504 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2505 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2506 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2507 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2508 };
2509 
2510 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2511 {
2512 	return proc_pident_readdir(file, ctx,
2513 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2514 }
2515 
2516 static const struct file_operations proc_attr_dir_operations = {
2517 	.read		= generic_read_dir,
2518 	.iterate_shared	= proc_attr_dir_readdir,
2519 	.llseek		= generic_file_llseek,
2520 };
2521 
2522 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2523 				struct dentry *dentry, unsigned int flags)
2524 {
2525 	return proc_pident_lookup(dir, dentry,
2526 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2527 }
2528 
2529 static const struct inode_operations proc_attr_dir_inode_operations = {
2530 	.lookup		= proc_attr_dir_lookup,
2531 	.getattr	= pid_getattr,
2532 	.setattr	= proc_setattr,
2533 };
2534 
2535 #endif
2536 
2537 #ifdef CONFIG_ELF_CORE
2538 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2539 					 size_t count, loff_t *ppos)
2540 {
2541 	struct task_struct *task = get_proc_task(file_inode(file));
2542 	struct mm_struct *mm;
2543 	char buffer[PROC_NUMBUF];
2544 	size_t len;
2545 	int ret;
2546 
2547 	if (!task)
2548 		return -ESRCH;
2549 
2550 	ret = 0;
2551 	mm = get_task_mm(task);
2552 	if (mm) {
2553 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2554 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2555 				MMF_DUMP_FILTER_SHIFT));
2556 		mmput(mm);
2557 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2558 	}
2559 
2560 	put_task_struct(task);
2561 
2562 	return ret;
2563 }
2564 
2565 static ssize_t proc_coredump_filter_write(struct file *file,
2566 					  const char __user *buf,
2567 					  size_t count,
2568 					  loff_t *ppos)
2569 {
2570 	struct task_struct *task;
2571 	struct mm_struct *mm;
2572 	unsigned int val;
2573 	int ret;
2574 	int i;
2575 	unsigned long mask;
2576 
2577 	ret = kstrtouint_from_user(buf, count, 0, &val);
2578 	if (ret < 0)
2579 		return ret;
2580 
2581 	ret = -ESRCH;
2582 	task = get_proc_task(file_inode(file));
2583 	if (!task)
2584 		goto out_no_task;
2585 
2586 	mm = get_task_mm(task);
2587 	if (!mm)
2588 		goto out_no_mm;
2589 	ret = 0;
2590 
2591 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2592 		if (val & mask)
2593 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2594 		else
2595 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2596 	}
2597 
2598 	mmput(mm);
2599  out_no_mm:
2600 	put_task_struct(task);
2601  out_no_task:
2602 	if (ret < 0)
2603 		return ret;
2604 	return count;
2605 }
2606 
2607 static const struct file_operations proc_coredump_filter_operations = {
2608 	.read		= proc_coredump_filter_read,
2609 	.write		= proc_coredump_filter_write,
2610 	.llseek		= generic_file_llseek,
2611 };
2612 #endif
2613 
2614 #ifdef CONFIG_TASK_IO_ACCOUNTING
2615 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2616 {
2617 	struct task_io_accounting acct = task->ioac;
2618 	unsigned long flags;
2619 	int result;
2620 
2621 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2622 	if (result)
2623 		return result;
2624 
2625 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2626 		result = -EACCES;
2627 		goto out_unlock;
2628 	}
2629 
2630 	if (whole && lock_task_sighand(task, &flags)) {
2631 		struct task_struct *t = task;
2632 
2633 		task_io_accounting_add(&acct, &task->signal->ioac);
2634 		while_each_thread(task, t)
2635 			task_io_accounting_add(&acct, &t->ioac);
2636 
2637 		unlock_task_sighand(task, &flags);
2638 	}
2639 	seq_printf(m,
2640 		   "rchar: %llu\n"
2641 		   "wchar: %llu\n"
2642 		   "syscr: %llu\n"
2643 		   "syscw: %llu\n"
2644 		   "read_bytes: %llu\n"
2645 		   "write_bytes: %llu\n"
2646 		   "cancelled_write_bytes: %llu\n",
2647 		   (unsigned long long)acct.rchar,
2648 		   (unsigned long long)acct.wchar,
2649 		   (unsigned long long)acct.syscr,
2650 		   (unsigned long long)acct.syscw,
2651 		   (unsigned long long)acct.read_bytes,
2652 		   (unsigned long long)acct.write_bytes,
2653 		   (unsigned long long)acct.cancelled_write_bytes);
2654 	result = 0;
2655 
2656 out_unlock:
2657 	mutex_unlock(&task->signal->cred_guard_mutex);
2658 	return result;
2659 }
2660 
2661 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2662 				  struct pid *pid, struct task_struct *task)
2663 {
2664 	return do_io_accounting(task, m, 0);
2665 }
2666 
2667 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2668 				   struct pid *pid, struct task_struct *task)
2669 {
2670 	return do_io_accounting(task, m, 1);
2671 }
2672 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2673 
2674 #ifdef CONFIG_USER_NS
2675 static int proc_id_map_open(struct inode *inode, struct file *file,
2676 	const struct seq_operations *seq_ops)
2677 {
2678 	struct user_namespace *ns = NULL;
2679 	struct task_struct *task;
2680 	struct seq_file *seq;
2681 	int ret = -EINVAL;
2682 
2683 	task = get_proc_task(inode);
2684 	if (task) {
2685 		rcu_read_lock();
2686 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2687 		rcu_read_unlock();
2688 		put_task_struct(task);
2689 	}
2690 	if (!ns)
2691 		goto err;
2692 
2693 	ret = seq_open(file, seq_ops);
2694 	if (ret)
2695 		goto err_put_ns;
2696 
2697 	seq = file->private_data;
2698 	seq->private = ns;
2699 
2700 	return 0;
2701 err_put_ns:
2702 	put_user_ns(ns);
2703 err:
2704 	return ret;
2705 }
2706 
2707 static int proc_id_map_release(struct inode *inode, struct file *file)
2708 {
2709 	struct seq_file *seq = file->private_data;
2710 	struct user_namespace *ns = seq->private;
2711 	put_user_ns(ns);
2712 	return seq_release(inode, file);
2713 }
2714 
2715 static int proc_uid_map_open(struct inode *inode, struct file *file)
2716 {
2717 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2718 }
2719 
2720 static int proc_gid_map_open(struct inode *inode, struct file *file)
2721 {
2722 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2723 }
2724 
2725 static int proc_projid_map_open(struct inode *inode, struct file *file)
2726 {
2727 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2728 }
2729 
2730 static const struct file_operations proc_uid_map_operations = {
2731 	.open		= proc_uid_map_open,
2732 	.write		= proc_uid_map_write,
2733 	.read		= seq_read,
2734 	.llseek		= seq_lseek,
2735 	.release	= proc_id_map_release,
2736 };
2737 
2738 static const struct file_operations proc_gid_map_operations = {
2739 	.open		= proc_gid_map_open,
2740 	.write		= proc_gid_map_write,
2741 	.read		= seq_read,
2742 	.llseek		= seq_lseek,
2743 	.release	= proc_id_map_release,
2744 };
2745 
2746 static const struct file_operations proc_projid_map_operations = {
2747 	.open		= proc_projid_map_open,
2748 	.write		= proc_projid_map_write,
2749 	.read		= seq_read,
2750 	.llseek		= seq_lseek,
2751 	.release	= proc_id_map_release,
2752 };
2753 
2754 static int proc_setgroups_open(struct inode *inode, struct file *file)
2755 {
2756 	struct user_namespace *ns = NULL;
2757 	struct task_struct *task;
2758 	int ret;
2759 
2760 	ret = -ESRCH;
2761 	task = get_proc_task(inode);
2762 	if (task) {
2763 		rcu_read_lock();
2764 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2765 		rcu_read_unlock();
2766 		put_task_struct(task);
2767 	}
2768 	if (!ns)
2769 		goto err;
2770 
2771 	if (file->f_mode & FMODE_WRITE) {
2772 		ret = -EACCES;
2773 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2774 			goto err_put_ns;
2775 	}
2776 
2777 	ret = single_open(file, &proc_setgroups_show, ns);
2778 	if (ret)
2779 		goto err_put_ns;
2780 
2781 	return 0;
2782 err_put_ns:
2783 	put_user_ns(ns);
2784 err:
2785 	return ret;
2786 }
2787 
2788 static int proc_setgroups_release(struct inode *inode, struct file *file)
2789 {
2790 	struct seq_file *seq = file->private_data;
2791 	struct user_namespace *ns = seq->private;
2792 	int ret = single_release(inode, file);
2793 	put_user_ns(ns);
2794 	return ret;
2795 }
2796 
2797 static const struct file_operations proc_setgroups_operations = {
2798 	.open		= proc_setgroups_open,
2799 	.write		= proc_setgroups_write,
2800 	.read		= seq_read,
2801 	.llseek		= seq_lseek,
2802 	.release	= proc_setgroups_release,
2803 };
2804 #endif /* CONFIG_USER_NS */
2805 
2806 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2807 				struct pid *pid, struct task_struct *task)
2808 {
2809 	int err = lock_trace(task);
2810 	if (!err) {
2811 		seq_printf(m, "%08x\n", task->personality);
2812 		unlock_trace(task);
2813 	}
2814 	return err;
2815 }
2816 
2817 /*
2818  * Thread groups
2819  */
2820 static const struct file_operations proc_task_operations;
2821 static const struct inode_operations proc_task_inode_operations;
2822 
2823 static const struct pid_entry tgid_base_stuff[] = {
2824 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2825 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2826 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2827 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2828 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2829 #ifdef CONFIG_NET
2830 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2831 #endif
2832 	REG("environ",    S_IRUSR, proc_environ_operations),
2833 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2834 	ONE("status",     S_IRUGO, proc_pid_status),
2835 	ONE("personality", S_IRUSR, proc_pid_personality),
2836 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2837 #ifdef CONFIG_SCHED_DEBUG
2838 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2839 #endif
2840 #ifdef CONFIG_SCHED_AUTOGROUP
2841 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2842 #endif
2843 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2844 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2845 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2846 #endif
2847 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2848 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2849 	ONE("statm",      S_IRUGO, proc_pid_statm),
2850 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2851 #ifdef CONFIG_NUMA
2852 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2853 #endif
2854 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2855 	LNK("cwd",        proc_cwd_link),
2856 	LNK("root",       proc_root_link),
2857 	LNK("exe",        proc_exe_link),
2858 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2859 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2860 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2861 #ifdef CONFIG_PROC_PAGE_MONITOR
2862 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2863 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2864 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2865 #endif
2866 #ifdef CONFIG_SECURITY
2867 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2868 #endif
2869 #ifdef CONFIG_KALLSYMS
2870 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2871 #endif
2872 #ifdef CONFIG_STACKTRACE
2873 	ONE("stack",      S_IRUSR, proc_pid_stack),
2874 #endif
2875 #ifdef CONFIG_SCHED_INFO
2876 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2877 #endif
2878 #ifdef CONFIG_LATENCYTOP
2879 	REG("latency",  S_IRUGO, proc_lstats_operations),
2880 #endif
2881 #ifdef CONFIG_PROC_PID_CPUSET
2882 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2883 #endif
2884 #ifdef CONFIG_CGROUPS
2885 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2886 #endif
2887 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2888 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2889 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2890 #ifdef CONFIG_AUDITSYSCALL
2891 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2892 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2893 #endif
2894 #ifdef CONFIG_FAULT_INJECTION
2895 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2896 #endif
2897 #ifdef CONFIG_ELF_CORE
2898 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2899 #endif
2900 #ifdef CONFIG_TASK_IO_ACCOUNTING
2901 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2902 #endif
2903 #ifdef CONFIG_HARDWALL
2904 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2905 #endif
2906 #ifdef CONFIG_USER_NS
2907 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2908 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2909 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2910 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2911 #endif
2912 #ifdef CONFIG_CHECKPOINT_RESTORE
2913 	REG("timers",	  S_IRUGO, proc_timers_operations),
2914 #endif
2915 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2916 };
2917 
2918 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2919 {
2920 	return proc_pident_readdir(file, ctx,
2921 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2922 }
2923 
2924 static const struct file_operations proc_tgid_base_operations = {
2925 	.read		= generic_read_dir,
2926 	.iterate_shared	= proc_tgid_base_readdir,
2927 	.llseek		= generic_file_llseek,
2928 };
2929 
2930 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2931 {
2932 	return proc_pident_lookup(dir, dentry,
2933 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2934 }
2935 
2936 static const struct inode_operations proc_tgid_base_inode_operations = {
2937 	.lookup		= proc_tgid_base_lookup,
2938 	.getattr	= pid_getattr,
2939 	.setattr	= proc_setattr,
2940 	.permission	= proc_pid_permission,
2941 };
2942 
2943 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2944 {
2945 	struct dentry *dentry, *leader, *dir;
2946 	char buf[PROC_NUMBUF];
2947 	struct qstr name;
2948 
2949 	name.name = buf;
2950 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2951 	/* no ->d_hash() rejects on procfs */
2952 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2953 	if (dentry) {
2954 		d_invalidate(dentry);
2955 		dput(dentry);
2956 	}
2957 
2958 	if (pid == tgid)
2959 		return;
2960 
2961 	name.name = buf;
2962 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2963 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2964 	if (!leader)
2965 		goto out;
2966 
2967 	name.name = "task";
2968 	name.len = strlen(name.name);
2969 	dir = d_hash_and_lookup(leader, &name);
2970 	if (!dir)
2971 		goto out_put_leader;
2972 
2973 	name.name = buf;
2974 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2975 	dentry = d_hash_and_lookup(dir, &name);
2976 	if (dentry) {
2977 		d_invalidate(dentry);
2978 		dput(dentry);
2979 	}
2980 
2981 	dput(dir);
2982 out_put_leader:
2983 	dput(leader);
2984 out:
2985 	return;
2986 }
2987 
2988 /**
2989  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2990  * @task: task that should be flushed.
2991  *
2992  * When flushing dentries from proc, one needs to flush them from global
2993  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2994  * in. This call is supposed to do all of this job.
2995  *
2996  * Looks in the dcache for
2997  * /proc/@pid
2998  * /proc/@tgid/task/@pid
2999  * if either directory is present flushes it and all of it'ts children
3000  * from the dcache.
3001  *
3002  * It is safe and reasonable to cache /proc entries for a task until
3003  * that task exits.  After that they just clog up the dcache with
3004  * useless entries, possibly causing useful dcache entries to be
3005  * flushed instead.  This routine is proved to flush those useless
3006  * dcache entries at process exit time.
3007  *
3008  * NOTE: This routine is just an optimization so it does not guarantee
3009  *       that no dcache entries will exist at process exit time it
3010  *       just makes it very unlikely that any will persist.
3011  */
3012 
3013 void proc_flush_task(struct task_struct *task)
3014 {
3015 	int i;
3016 	struct pid *pid, *tgid;
3017 	struct upid *upid;
3018 
3019 	pid = task_pid(task);
3020 	tgid = task_tgid(task);
3021 
3022 	for (i = 0; i <= pid->level; i++) {
3023 		upid = &pid->numbers[i];
3024 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3025 					tgid->numbers[i].nr);
3026 	}
3027 }
3028 
3029 static int proc_pid_instantiate(struct inode *dir,
3030 				   struct dentry * dentry,
3031 				   struct task_struct *task, const void *ptr)
3032 {
3033 	struct inode *inode;
3034 
3035 	inode = proc_pid_make_inode(dir->i_sb, task);
3036 	if (!inode)
3037 		goto out;
3038 
3039 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3040 	inode->i_op = &proc_tgid_base_inode_operations;
3041 	inode->i_fop = &proc_tgid_base_operations;
3042 	inode->i_flags|=S_IMMUTABLE;
3043 
3044 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3045 						  ARRAY_SIZE(tgid_base_stuff)));
3046 
3047 	d_set_d_op(dentry, &pid_dentry_operations);
3048 
3049 	d_add(dentry, inode);
3050 	/* Close the race of the process dying before we return the dentry */
3051 	if (pid_revalidate(dentry, 0))
3052 		return 0;
3053 out:
3054 	return -ENOENT;
3055 }
3056 
3057 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3058 {
3059 	int result = -ENOENT;
3060 	struct task_struct *task;
3061 	unsigned tgid;
3062 	struct pid_namespace *ns;
3063 
3064 	tgid = name_to_int(&dentry->d_name);
3065 	if (tgid == ~0U)
3066 		goto out;
3067 
3068 	ns = dentry->d_sb->s_fs_info;
3069 	rcu_read_lock();
3070 	task = find_task_by_pid_ns(tgid, ns);
3071 	if (task)
3072 		get_task_struct(task);
3073 	rcu_read_unlock();
3074 	if (!task)
3075 		goto out;
3076 
3077 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3078 	put_task_struct(task);
3079 out:
3080 	return ERR_PTR(result);
3081 }
3082 
3083 /*
3084  * Find the first task with tgid >= tgid
3085  *
3086  */
3087 struct tgid_iter {
3088 	unsigned int tgid;
3089 	struct task_struct *task;
3090 };
3091 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3092 {
3093 	struct pid *pid;
3094 
3095 	if (iter.task)
3096 		put_task_struct(iter.task);
3097 	rcu_read_lock();
3098 retry:
3099 	iter.task = NULL;
3100 	pid = find_ge_pid(iter.tgid, ns);
3101 	if (pid) {
3102 		iter.tgid = pid_nr_ns(pid, ns);
3103 		iter.task = pid_task(pid, PIDTYPE_PID);
3104 		/* What we to know is if the pid we have find is the
3105 		 * pid of a thread_group_leader.  Testing for task
3106 		 * being a thread_group_leader is the obvious thing
3107 		 * todo but there is a window when it fails, due to
3108 		 * the pid transfer logic in de_thread.
3109 		 *
3110 		 * So we perform the straight forward test of seeing
3111 		 * if the pid we have found is the pid of a thread
3112 		 * group leader, and don't worry if the task we have
3113 		 * found doesn't happen to be a thread group leader.
3114 		 * As we don't care in the case of readdir.
3115 		 */
3116 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3117 			iter.tgid += 1;
3118 			goto retry;
3119 		}
3120 		get_task_struct(iter.task);
3121 	}
3122 	rcu_read_unlock();
3123 	return iter;
3124 }
3125 
3126 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3127 
3128 /* for the /proc/ directory itself, after non-process stuff has been done */
3129 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3130 {
3131 	struct tgid_iter iter;
3132 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3133 	loff_t pos = ctx->pos;
3134 
3135 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3136 		return 0;
3137 
3138 	if (pos == TGID_OFFSET - 2) {
3139 		struct inode *inode = d_inode(ns->proc_self);
3140 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3141 			return 0;
3142 		ctx->pos = pos = pos + 1;
3143 	}
3144 	if (pos == TGID_OFFSET - 1) {
3145 		struct inode *inode = d_inode(ns->proc_thread_self);
3146 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3147 			return 0;
3148 		ctx->pos = pos = pos + 1;
3149 	}
3150 	iter.tgid = pos - TGID_OFFSET;
3151 	iter.task = NULL;
3152 	for (iter = next_tgid(ns, iter);
3153 	     iter.task;
3154 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3155 		char name[PROC_NUMBUF];
3156 		int len;
3157 		if (!has_pid_permissions(ns, iter.task, 2))
3158 			continue;
3159 
3160 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3161 		ctx->pos = iter.tgid + TGID_OFFSET;
3162 		if (!proc_fill_cache(file, ctx, name, len,
3163 				     proc_pid_instantiate, iter.task, NULL)) {
3164 			put_task_struct(iter.task);
3165 			return 0;
3166 		}
3167 	}
3168 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3169 	return 0;
3170 }
3171 
3172 /*
3173  * proc_tid_comm_permission is a special permission function exclusively
3174  * used for the node /proc/<pid>/task/<tid>/comm.
3175  * It bypasses generic permission checks in the case where a task of the same
3176  * task group attempts to access the node.
3177  * The rationale behind this is that glibc and bionic access this node for
3178  * cross thread naming (pthread_set/getname_np(!self)). However, if
3179  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3180  * which locks out the cross thread naming implementation.
3181  * This function makes sure that the node is always accessible for members of
3182  * same thread group.
3183  */
3184 static int proc_tid_comm_permission(struct inode *inode, int mask)
3185 {
3186 	bool is_same_tgroup;
3187 	struct task_struct *task;
3188 
3189 	task = get_proc_task(inode);
3190 	if (!task)
3191 		return -ESRCH;
3192 	is_same_tgroup = same_thread_group(current, task);
3193 	put_task_struct(task);
3194 
3195 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3196 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3197 		 * read or written by the members of the corresponding
3198 		 * thread group.
3199 		 */
3200 		return 0;
3201 	}
3202 
3203 	return generic_permission(inode, mask);
3204 }
3205 
3206 static const struct inode_operations proc_tid_comm_inode_operations = {
3207 		.permission = proc_tid_comm_permission,
3208 };
3209 
3210 /*
3211  * Tasks
3212  */
3213 static const struct pid_entry tid_base_stuff[] = {
3214 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3215 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3216 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3217 #ifdef CONFIG_NET
3218 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3219 #endif
3220 	REG("environ",   S_IRUSR, proc_environ_operations),
3221 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3222 	ONE("status",    S_IRUGO, proc_pid_status),
3223 	ONE("personality", S_IRUSR, proc_pid_personality),
3224 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3225 #ifdef CONFIG_SCHED_DEBUG
3226 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3227 #endif
3228 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3229 			 &proc_tid_comm_inode_operations,
3230 			 &proc_pid_set_comm_operations, {}),
3231 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3232 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3233 #endif
3234 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3235 	ONE("stat",      S_IRUGO, proc_tid_stat),
3236 	ONE("statm",     S_IRUGO, proc_pid_statm),
3237 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3238 #ifdef CONFIG_PROC_CHILDREN
3239 	REG("children",  S_IRUGO, proc_tid_children_operations),
3240 #endif
3241 #ifdef CONFIG_NUMA
3242 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3243 #endif
3244 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3245 	LNK("cwd",       proc_cwd_link),
3246 	LNK("root",      proc_root_link),
3247 	LNK("exe",       proc_exe_link),
3248 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3249 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3250 #ifdef CONFIG_PROC_PAGE_MONITOR
3251 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3252 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3253 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3254 #endif
3255 #ifdef CONFIG_SECURITY
3256 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3257 #endif
3258 #ifdef CONFIG_KALLSYMS
3259 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3260 #endif
3261 #ifdef CONFIG_STACKTRACE
3262 	ONE("stack",      S_IRUSR, proc_pid_stack),
3263 #endif
3264 #ifdef CONFIG_SCHED_INFO
3265 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3266 #endif
3267 #ifdef CONFIG_LATENCYTOP
3268 	REG("latency",  S_IRUGO, proc_lstats_operations),
3269 #endif
3270 #ifdef CONFIG_PROC_PID_CPUSET
3271 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3272 #endif
3273 #ifdef CONFIG_CGROUPS
3274 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3275 #endif
3276 	ONE("oom_score", S_IRUGO, proc_oom_score),
3277 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3278 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3279 #ifdef CONFIG_AUDITSYSCALL
3280 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3281 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3282 #endif
3283 #ifdef CONFIG_FAULT_INJECTION
3284 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3285 #endif
3286 #ifdef CONFIG_TASK_IO_ACCOUNTING
3287 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3288 #endif
3289 #ifdef CONFIG_HARDWALL
3290 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3291 #endif
3292 #ifdef CONFIG_USER_NS
3293 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3294 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3295 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3296 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3297 #endif
3298 };
3299 
3300 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3301 {
3302 	return proc_pident_readdir(file, ctx,
3303 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3304 }
3305 
3306 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3307 {
3308 	return proc_pident_lookup(dir, dentry,
3309 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3310 }
3311 
3312 static const struct file_operations proc_tid_base_operations = {
3313 	.read		= generic_read_dir,
3314 	.iterate_shared	= proc_tid_base_readdir,
3315 	.llseek		= generic_file_llseek,
3316 };
3317 
3318 static const struct inode_operations proc_tid_base_inode_operations = {
3319 	.lookup		= proc_tid_base_lookup,
3320 	.getattr	= pid_getattr,
3321 	.setattr	= proc_setattr,
3322 };
3323 
3324 static int proc_task_instantiate(struct inode *dir,
3325 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3326 {
3327 	struct inode *inode;
3328 	inode = proc_pid_make_inode(dir->i_sb, task);
3329 
3330 	if (!inode)
3331 		goto out;
3332 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3333 	inode->i_op = &proc_tid_base_inode_operations;
3334 	inode->i_fop = &proc_tid_base_operations;
3335 	inode->i_flags|=S_IMMUTABLE;
3336 
3337 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3338 						  ARRAY_SIZE(tid_base_stuff)));
3339 
3340 	d_set_d_op(dentry, &pid_dentry_operations);
3341 
3342 	d_add(dentry, inode);
3343 	/* Close the race of the process dying before we return the dentry */
3344 	if (pid_revalidate(dentry, 0))
3345 		return 0;
3346 out:
3347 	return -ENOENT;
3348 }
3349 
3350 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3351 {
3352 	int result = -ENOENT;
3353 	struct task_struct *task;
3354 	struct task_struct *leader = get_proc_task(dir);
3355 	unsigned tid;
3356 	struct pid_namespace *ns;
3357 
3358 	if (!leader)
3359 		goto out_no_task;
3360 
3361 	tid = name_to_int(&dentry->d_name);
3362 	if (tid == ~0U)
3363 		goto out;
3364 
3365 	ns = dentry->d_sb->s_fs_info;
3366 	rcu_read_lock();
3367 	task = find_task_by_pid_ns(tid, ns);
3368 	if (task)
3369 		get_task_struct(task);
3370 	rcu_read_unlock();
3371 	if (!task)
3372 		goto out;
3373 	if (!same_thread_group(leader, task))
3374 		goto out_drop_task;
3375 
3376 	result = proc_task_instantiate(dir, dentry, task, NULL);
3377 out_drop_task:
3378 	put_task_struct(task);
3379 out:
3380 	put_task_struct(leader);
3381 out_no_task:
3382 	return ERR_PTR(result);
3383 }
3384 
3385 /*
3386  * Find the first tid of a thread group to return to user space.
3387  *
3388  * Usually this is just the thread group leader, but if the users
3389  * buffer was too small or there was a seek into the middle of the
3390  * directory we have more work todo.
3391  *
3392  * In the case of a short read we start with find_task_by_pid.
3393  *
3394  * In the case of a seek we start with the leader and walk nr
3395  * threads past it.
3396  */
3397 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3398 					struct pid_namespace *ns)
3399 {
3400 	struct task_struct *pos, *task;
3401 	unsigned long nr = f_pos;
3402 
3403 	if (nr != f_pos)	/* 32bit overflow? */
3404 		return NULL;
3405 
3406 	rcu_read_lock();
3407 	task = pid_task(pid, PIDTYPE_PID);
3408 	if (!task)
3409 		goto fail;
3410 
3411 	/* Attempt to start with the tid of a thread */
3412 	if (tid && nr) {
3413 		pos = find_task_by_pid_ns(tid, ns);
3414 		if (pos && same_thread_group(pos, task))
3415 			goto found;
3416 	}
3417 
3418 	/* If nr exceeds the number of threads there is nothing todo */
3419 	if (nr >= get_nr_threads(task))
3420 		goto fail;
3421 
3422 	/* If we haven't found our starting place yet start
3423 	 * with the leader and walk nr threads forward.
3424 	 */
3425 	pos = task = task->group_leader;
3426 	do {
3427 		if (!nr--)
3428 			goto found;
3429 	} while_each_thread(task, pos);
3430 fail:
3431 	pos = NULL;
3432 	goto out;
3433 found:
3434 	get_task_struct(pos);
3435 out:
3436 	rcu_read_unlock();
3437 	return pos;
3438 }
3439 
3440 /*
3441  * Find the next thread in the thread list.
3442  * Return NULL if there is an error or no next thread.
3443  *
3444  * The reference to the input task_struct is released.
3445  */
3446 static struct task_struct *next_tid(struct task_struct *start)
3447 {
3448 	struct task_struct *pos = NULL;
3449 	rcu_read_lock();
3450 	if (pid_alive(start)) {
3451 		pos = next_thread(start);
3452 		if (thread_group_leader(pos))
3453 			pos = NULL;
3454 		else
3455 			get_task_struct(pos);
3456 	}
3457 	rcu_read_unlock();
3458 	put_task_struct(start);
3459 	return pos;
3460 }
3461 
3462 /* for the /proc/TGID/task/ directories */
3463 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3464 {
3465 	struct inode *inode = file_inode(file);
3466 	struct task_struct *task;
3467 	struct pid_namespace *ns;
3468 	int tid;
3469 
3470 	if (proc_inode_is_dead(inode))
3471 		return -ENOENT;
3472 
3473 	if (!dir_emit_dots(file, ctx))
3474 		return 0;
3475 
3476 	/* f_version caches the tgid value that the last readdir call couldn't
3477 	 * return. lseek aka telldir automagically resets f_version to 0.
3478 	 */
3479 	ns = inode->i_sb->s_fs_info;
3480 	tid = (int)file->f_version;
3481 	file->f_version = 0;
3482 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3483 	     task;
3484 	     task = next_tid(task), ctx->pos++) {
3485 		char name[PROC_NUMBUF];
3486 		int len;
3487 		tid = task_pid_nr_ns(task, ns);
3488 		len = snprintf(name, sizeof(name), "%d", tid);
3489 		if (!proc_fill_cache(file, ctx, name, len,
3490 				proc_task_instantiate, task, NULL)) {
3491 			/* returning this tgid failed, save it as the first
3492 			 * pid for the next readir call */
3493 			file->f_version = (u64)tid;
3494 			put_task_struct(task);
3495 			break;
3496 		}
3497 	}
3498 
3499 	return 0;
3500 }
3501 
3502 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3503 {
3504 	struct inode *inode = d_inode(dentry);
3505 	struct task_struct *p = get_proc_task(inode);
3506 	generic_fillattr(inode, stat);
3507 
3508 	if (p) {
3509 		stat->nlink += get_nr_threads(p);
3510 		put_task_struct(p);
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 static const struct inode_operations proc_task_inode_operations = {
3517 	.lookup		= proc_task_lookup,
3518 	.getattr	= proc_task_getattr,
3519 	.setattr	= proc_setattr,
3520 	.permission	= proc_pid_permission,
3521 };
3522 
3523 static const struct file_operations proc_task_operations = {
3524 	.read		= generic_read_dir,
3525 	.iterate_shared	= proc_task_readdir,
3526 	.llseek		= generic_file_llseek,
3527 };
3528