xref: /openbmc/linux/fs/proc/base.c (revision 6774def6)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(dentry->d_inode);
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(dentry->d_inode);
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static int proc_pid_cmdline(struct seq_file *m, struct pid_namespace *ns,
200 			    struct pid *pid, struct task_struct *task)
201 {
202 	/*
203 	 * Rely on struct seq_operations::show() being called once
204 	 * per internal buffer allocation. See single_open(), traverse().
205 	 */
206 	BUG_ON(m->size < PAGE_SIZE);
207 	m->count += get_cmdline(task, m->buf, PAGE_SIZE);
208 	return 0;
209 }
210 
211 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
212 			 struct pid *pid, struct task_struct *task)
213 {
214 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
215 	if (mm && !IS_ERR(mm)) {
216 		unsigned int nwords = 0;
217 		do {
218 			nwords += 2;
219 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
220 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
221 		mmput(mm);
222 		return 0;
223 	} else
224 		return PTR_ERR(mm);
225 }
226 
227 
228 #ifdef CONFIG_KALLSYMS
229 /*
230  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
231  * Returns the resolved symbol.  If that fails, simply return the address.
232  */
233 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
234 			  struct pid *pid, struct task_struct *task)
235 {
236 	unsigned long wchan;
237 	char symname[KSYM_NAME_LEN];
238 
239 	wchan = get_wchan(task);
240 
241 	if (lookup_symbol_name(wchan, symname) < 0)
242 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
243 			return 0;
244 		else
245 			return seq_printf(m, "%lu", wchan);
246 	else
247 		return seq_printf(m, "%s", symname);
248 }
249 #endif /* CONFIG_KALLSYMS */
250 
251 static int lock_trace(struct task_struct *task)
252 {
253 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
254 	if (err)
255 		return err;
256 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
257 		mutex_unlock(&task->signal->cred_guard_mutex);
258 		return -EPERM;
259 	}
260 	return 0;
261 }
262 
263 static void unlock_trace(struct task_struct *task)
264 {
265 	mutex_unlock(&task->signal->cred_guard_mutex);
266 }
267 
268 #ifdef CONFIG_STACKTRACE
269 
270 #define MAX_STACK_TRACE_DEPTH	64
271 
272 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
273 			  struct pid *pid, struct task_struct *task)
274 {
275 	struct stack_trace trace;
276 	unsigned long *entries;
277 	int err;
278 	int i;
279 
280 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
281 	if (!entries)
282 		return -ENOMEM;
283 
284 	trace.nr_entries	= 0;
285 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
286 	trace.entries		= entries;
287 	trace.skip		= 0;
288 
289 	err = lock_trace(task);
290 	if (!err) {
291 		save_stack_trace_tsk(task, &trace);
292 
293 		for (i = 0; i < trace.nr_entries; i++) {
294 			seq_printf(m, "[<%pK>] %pS\n",
295 				   (void *)entries[i], (void *)entries[i]);
296 		}
297 		unlock_trace(task);
298 	}
299 	kfree(entries);
300 
301 	return err;
302 }
303 #endif
304 
305 #ifdef CONFIG_SCHEDSTATS
306 /*
307  * Provides /proc/PID/schedstat
308  */
309 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
310 			      struct pid *pid, struct task_struct *task)
311 {
312 	return seq_printf(m, "%llu %llu %lu\n",
313 			(unsigned long long)task->se.sum_exec_runtime,
314 			(unsigned long long)task->sched_info.run_delay,
315 			task->sched_info.pcount);
316 }
317 #endif
318 
319 #ifdef CONFIG_LATENCYTOP
320 static int lstats_show_proc(struct seq_file *m, void *v)
321 {
322 	int i;
323 	struct inode *inode = m->private;
324 	struct task_struct *task = get_proc_task(inode);
325 
326 	if (!task)
327 		return -ESRCH;
328 	seq_puts(m, "Latency Top version : v0.1\n");
329 	for (i = 0; i < 32; i++) {
330 		struct latency_record *lr = &task->latency_record[i];
331 		if (lr->backtrace[0]) {
332 			int q;
333 			seq_printf(m, "%i %li %li",
334 				   lr->count, lr->time, lr->max);
335 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
336 				unsigned long bt = lr->backtrace[q];
337 				if (!bt)
338 					break;
339 				if (bt == ULONG_MAX)
340 					break;
341 				seq_printf(m, " %ps", (void *)bt);
342 			}
343 			seq_putc(m, '\n');
344 		}
345 
346 	}
347 	put_task_struct(task);
348 	return 0;
349 }
350 
351 static int lstats_open(struct inode *inode, struct file *file)
352 {
353 	return single_open(file, lstats_show_proc, inode);
354 }
355 
356 static ssize_t lstats_write(struct file *file, const char __user *buf,
357 			    size_t count, loff_t *offs)
358 {
359 	struct task_struct *task = get_proc_task(file_inode(file));
360 
361 	if (!task)
362 		return -ESRCH;
363 	clear_all_latency_tracing(task);
364 	put_task_struct(task);
365 
366 	return count;
367 }
368 
369 static const struct file_operations proc_lstats_operations = {
370 	.open		= lstats_open,
371 	.read		= seq_read,
372 	.write		= lstats_write,
373 	.llseek		= seq_lseek,
374 	.release	= single_release,
375 };
376 
377 #endif
378 
379 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
380 			  struct pid *pid, struct task_struct *task)
381 {
382 	unsigned long totalpages = totalram_pages + total_swap_pages;
383 	unsigned long points = 0;
384 
385 	read_lock(&tasklist_lock);
386 	if (pid_alive(task))
387 		points = oom_badness(task, NULL, NULL, totalpages) *
388 						1000 / totalpages;
389 	read_unlock(&tasklist_lock);
390 	return seq_printf(m, "%lu\n", points);
391 }
392 
393 struct limit_names {
394 	const char *name;
395 	const char *unit;
396 };
397 
398 static const struct limit_names lnames[RLIM_NLIMITS] = {
399 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
400 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
401 	[RLIMIT_DATA] = {"Max data size", "bytes"},
402 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
403 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
404 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
405 	[RLIMIT_NPROC] = {"Max processes", "processes"},
406 	[RLIMIT_NOFILE] = {"Max open files", "files"},
407 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
408 	[RLIMIT_AS] = {"Max address space", "bytes"},
409 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
410 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
411 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
412 	[RLIMIT_NICE] = {"Max nice priority", NULL},
413 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
414 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
415 };
416 
417 /* Display limits for a process */
418 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
419 			   struct pid *pid, struct task_struct *task)
420 {
421 	unsigned int i;
422 	unsigned long flags;
423 
424 	struct rlimit rlim[RLIM_NLIMITS];
425 
426 	if (!lock_task_sighand(task, &flags))
427 		return 0;
428 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
429 	unlock_task_sighand(task, &flags);
430 
431 	/*
432 	 * print the file header
433 	 */
434        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
435 			"Limit", "Soft Limit", "Hard Limit", "Units");
436 
437 	for (i = 0; i < RLIM_NLIMITS; i++) {
438 		if (rlim[i].rlim_cur == RLIM_INFINITY)
439 			seq_printf(m, "%-25s %-20s ",
440 					 lnames[i].name, "unlimited");
441 		else
442 			seq_printf(m, "%-25s %-20lu ",
443 					 lnames[i].name, rlim[i].rlim_cur);
444 
445 		if (rlim[i].rlim_max == RLIM_INFINITY)
446 			seq_printf(m, "%-20s ", "unlimited");
447 		else
448 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
449 
450 		if (lnames[i].unit)
451 			seq_printf(m, "%-10s\n", lnames[i].unit);
452 		else
453 			seq_putc(m, '\n');
454 	}
455 
456 	return 0;
457 }
458 
459 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
460 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
461 			    struct pid *pid, struct task_struct *task)
462 {
463 	long nr;
464 	unsigned long args[6], sp, pc;
465 	int res = lock_trace(task);
466 	if (res)
467 		return res;
468 
469 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
470 		seq_puts(m, "running\n");
471 	else if (nr < 0)
472 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
473 	else
474 		seq_printf(m,
475 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
476 		       nr,
477 		       args[0], args[1], args[2], args[3], args[4], args[5],
478 		       sp, pc);
479 	unlock_trace(task);
480 	return res;
481 }
482 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
483 
484 /************************************************************************/
485 /*                       Here the fs part begins                        */
486 /************************************************************************/
487 
488 /* permission checks */
489 static int proc_fd_access_allowed(struct inode *inode)
490 {
491 	struct task_struct *task;
492 	int allowed = 0;
493 	/* Allow access to a task's file descriptors if it is us or we
494 	 * may use ptrace attach to the process and find out that
495 	 * information.
496 	 */
497 	task = get_proc_task(inode);
498 	if (task) {
499 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
500 		put_task_struct(task);
501 	}
502 	return allowed;
503 }
504 
505 int proc_setattr(struct dentry *dentry, struct iattr *attr)
506 {
507 	int error;
508 	struct inode *inode = dentry->d_inode;
509 
510 	if (attr->ia_valid & ATTR_MODE)
511 		return -EPERM;
512 
513 	error = inode_change_ok(inode, attr);
514 	if (error)
515 		return error;
516 
517 	setattr_copy(inode, attr);
518 	mark_inode_dirty(inode);
519 	return 0;
520 }
521 
522 /*
523  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
524  * or euid/egid (for hide_pid_min=2)?
525  */
526 static bool has_pid_permissions(struct pid_namespace *pid,
527 				 struct task_struct *task,
528 				 int hide_pid_min)
529 {
530 	if (pid->hide_pid < hide_pid_min)
531 		return true;
532 	if (in_group_p(pid->pid_gid))
533 		return true;
534 	return ptrace_may_access(task, PTRACE_MODE_READ);
535 }
536 
537 
538 static int proc_pid_permission(struct inode *inode, int mask)
539 {
540 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
541 	struct task_struct *task;
542 	bool has_perms;
543 
544 	task = get_proc_task(inode);
545 	if (!task)
546 		return -ESRCH;
547 	has_perms = has_pid_permissions(pid, task, 1);
548 	put_task_struct(task);
549 
550 	if (!has_perms) {
551 		if (pid->hide_pid == 2) {
552 			/*
553 			 * Let's make getdents(), stat(), and open()
554 			 * consistent with each other.  If a process
555 			 * may not stat() a file, it shouldn't be seen
556 			 * in procfs at all.
557 			 */
558 			return -ENOENT;
559 		}
560 
561 		return -EPERM;
562 	}
563 	return generic_permission(inode, mask);
564 }
565 
566 
567 
568 static const struct inode_operations proc_def_inode_operations = {
569 	.setattr	= proc_setattr,
570 };
571 
572 static int proc_single_show(struct seq_file *m, void *v)
573 {
574 	struct inode *inode = m->private;
575 	struct pid_namespace *ns;
576 	struct pid *pid;
577 	struct task_struct *task;
578 	int ret;
579 
580 	ns = inode->i_sb->s_fs_info;
581 	pid = proc_pid(inode);
582 	task = get_pid_task(pid, PIDTYPE_PID);
583 	if (!task)
584 		return -ESRCH;
585 
586 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
587 
588 	put_task_struct(task);
589 	return ret;
590 }
591 
592 static int proc_single_open(struct inode *inode, struct file *filp)
593 {
594 	return single_open(filp, proc_single_show, inode);
595 }
596 
597 static const struct file_operations proc_single_file_operations = {
598 	.open		= proc_single_open,
599 	.read		= seq_read,
600 	.llseek		= seq_lseek,
601 	.release	= single_release,
602 };
603 
604 
605 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
606 {
607 	struct task_struct *task = get_proc_task(inode);
608 	struct mm_struct *mm = ERR_PTR(-ESRCH);
609 
610 	if (task) {
611 		mm = mm_access(task, mode);
612 		put_task_struct(task);
613 
614 		if (!IS_ERR_OR_NULL(mm)) {
615 			/* ensure this mm_struct can't be freed */
616 			atomic_inc(&mm->mm_count);
617 			/* but do not pin its memory */
618 			mmput(mm);
619 		}
620 	}
621 
622 	return mm;
623 }
624 
625 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
626 {
627 	struct mm_struct *mm = proc_mem_open(inode, mode);
628 
629 	if (IS_ERR(mm))
630 		return PTR_ERR(mm);
631 
632 	file->private_data = mm;
633 	return 0;
634 }
635 
636 static int mem_open(struct inode *inode, struct file *file)
637 {
638 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
639 
640 	/* OK to pass negative loff_t, we can catch out-of-range */
641 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
642 
643 	return ret;
644 }
645 
646 static ssize_t mem_rw(struct file *file, char __user *buf,
647 			size_t count, loff_t *ppos, int write)
648 {
649 	struct mm_struct *mm = file->private_data;
650 	unsigned long addr = *ppos;
651 	ssize_t copied;
652 	char *page;
653 
654 	if (!mm)
655 		return 0;
656 
657 	page = (char *)__get_free_page(GFP_TEMPORARY);
658 	if (!page)
659 		return -ENOMEM;
660 
661 	copied = 0;
662 	if (!atomic_inc_not_zero(&mm->mm_users))
663 		goto free;
664 
665 	while (count > 0) {
666 		int this_len = min_t(int, count, PAGE_SIZE);
667 
668 		if (write && copy_from_user(page, buf, this_len)) {
669 			copied = -EFAULT;
670 			break;
671 		}
672 
673 		this_len = access_remote_vm(mm, addr, page, this_len, write);
674 		if (!this_len) {
675 			if (!copied)
676 				copied = -EIO;
677 			break;
678 		}
679 
680 		if (!write && copy_to_user(buf, page, this_len)) {
681 			copied = -EFAULT;
682 			break;
683 		}
684 
685 		buf += this_len;
686 		addr += this_len;
687 		copied += this_len;
688 		count -= this_len;
689 	}
690 	*ppos = addr;
691 
692 	mmput(mm);
693 free:
694 	free_page((unsigned long) page);
695 	return copied;
696 }
697 
698 static ssize_t mem_read(struct file *file, char __user *buf,
699 			size_t count, loff_t *ppos)
700 {
701 	return mem_rw(file, buf, count, ppos, 0);
702 }
703 
704 static ssize_t mem_write(struct file *file, const char __user *buf,
705 			 size_t count, loff_t *ppos)
706 {
707 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
708 }
709 
710 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
711 {
712 	switch (orig) {
713 	case 0:
714 		file->f_pos = offset;
715 		break;
716 	case 1:
717 		file->f_pos += offset;
718 		break;
719 	default:
720 		return -EINVAL;
721 	}
722 	force_successful_syscall_return();
723 	return file->f_pos;
724 }
725 
726 static int mem_release(struct inode *inode, struct file *file)
727 {
728 	struct mm_struct *mm = file->private_data;
729 	if (mm)
730 		mmdrop(mm);
731 	return 0;
732 }
733 
734 static const struct file_operations proc_mem_operations = {
735 	.llseek		= mem_lseek,
736 	.read		= mem_read,
737 	.write		= mem_write,
738 	.open		= mem_open,
739 	.release	= mem_release,
740 };
741 
742 static int environ_open(struct inode *inode, struct file *file)
743 {
744 	return __mem_open(inode, file, PTRACE_MODE_READ);
745 }
746 
747 static ssize_t environ_read(struct file *file, char __user *buf,
748 			size_t count, loff_t *ppos)
749 {
750 	char *page;
751 	unsigned long src = *ppos;
752 	int ret = 0;
753 	struct mm_struct *mm = file->private_data;
754 
755 	if (!mm)
756 		return 0;
757 
758 	page = (char *)__get_free_page(GFP_TEMPORARY);
759 	if (!page)
760 		return -ENOMEM;
761 
762 	ret = 0;
763 	if (!atomic_inc_not_zero(&mm->mm_users))
764 		goto free;
765 	while (count > 0) {
766 		size_t this_len, max_len;
767 		int retval;
768 
769 		if (src >= (mm->env_end - mm->env_start))
770 			break;
771 
772 		this_len = mm->env_end - (mm->env_start + src);
773 
774 		max_len = min_t(size_t, PAGE_SIZE, count);
775 		this_len = min(max_len, this_len);
776 
777 		retval = access_remote_vm(mm, (mm->env_start + src),
778 			page, this_len, 0);
779 
780 		if (retval <= 0) {
781 			ret = retval;
782 			break;
783 		}
784 
785 		if (copy_to_user(buf, page, retval)) {
786 			ret = -EFAULT;
787 			break;
788 		}
789 
790 		ret += retval;
791 		src += retval;
792 		buf += retval;
793 		count -= retval;
794 	}
795 	*ppos = src;
796 	mmput(mm);
797 
798 free:
799 	free_page((unsigned long) page);
800 	return ret;
801 }
802 
803 static const struct file_operations proc_environ_operations = {
804 	.open		= environ_open,
805 	.read		= environ_read,
806 	.llseek		= generic_file_llseek,
807 	.release	= mem_release,
808 };
809 
810 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
811 			    loff_t *ppos)
812 {
813 	struct task_struct *task = get_proc_task(file_inode(file));
814 	char buffer[PROC_NUMBUF];
815 	int oom_adj = OOM_ADJUST_MIN;
816 	size_t len;
817 	unsigned long flags;
818 
819 	if (!task)
820 		return -ESRCH;
821 	if (lock_task_sighand(task, &flags)) {
822 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
823 			oom_adj = OOM_ADJUST_MAX;
824 		else
825 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
826 				  OOM_SCORE_ADJ_MAX;
827 		unlock_task_sighand(task, &flags);
828 	}
829 	put_task_struct(task);
830 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
831 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
832 }
833 
834 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
835 			     size_t count, loff_t *ppos)
836 {
837 	struct task_struct *task;
838 	char buffer[PROC_NUMBUF];
839 	int oom_adj;
840 	unsigned long flags;
841 	int err;
842 
843 	memset(buffer, 0, sizeof(buffer));
844 	if (count > sizeof(buffer) - 1)
845 		count = sizeof(buffer) - 1;
846 	if (copy_from_user(buffer, buf, count)) {
847 		err = -EFAULT;
848 		goto out;
849 	}
850 
851 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
852 	if (err)
853 		goto out;
854 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
855 	     oom_adj != OOM_DISABLE) {
856 		err = -EINVAL;
857 		goto out;
858 	}
859 
860 	task = get_proc_task(file_inode(file));
861 	if (!task) {
862 		err = -ESRCH;
863 		goto out;
864 	}
865 
866 	task_lock(task);
867 	if (!task->mm) {
868 		err = -EINVAL;
869 		goto err_task_lock;
870 	}
871 
872 	if (!lock_task_sighand(task, &flags)) {
873 		err = -ESRCH;
874 		goto err_task_lock;
875 	}
876 
877 	/*
878 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
879 	 * value is always attainable.
880 	 */
881 	if (oom_adj == OOM_ADJUST_MAX)
882 		oom_adj = OOM_SCORE_ADJ_MAX;
883 	else
884 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
885 
886 	if (oom_adj < task->signal->oom_score_adj &&
887 	    !capable(CAP_SYS_RESOURCE)) {
888 		err = -EACCES;
889 		goto err_sighand;
890 	}
891 
892 	/*
893 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
894 	 * /proc/pid/oom_score_adj instead.
895 	 */
896 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
897 		  current->comm, task_pid_nr(current), task_pid_nr(task),
898 		  task_pid_nr(task));
899 
900 	task->signal->oom_score_adj = oom_adj;
901 	trace_oom_score_adj_update(task);
902 err_sighand:
903 	unlock_task_sighand(task, &flags);
904 err_task_lock:
905 	task_unlock(task);
906 	put_task_struct(task);
907 out:
908 	return err < 0 ? err : count;
909 }
910 
911 static const struct file_operations proc_oom_adj_operations = {
912 	.read		= oom_adj_read,
913 	.write		= oom_adj_write,
914 	.llseek		= generic_file_llseek,
915 };
916 
917 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
918 					size_t count, loff_t *ppos)
919 {
920 	struct task_struct *task = get_proc_task(file_inode(file));
921 	char buffer[PROC_NUMBUF];
922 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
923 	unsigned long flags;
924 	size_t len;
925 
926 	if (!task)
927 		return -ESRCH;
928 	if (lock_task_sighand(task, &flags)) {
929 		oom_score_adj = task->signal->oom_score_adj;
930 		unlock_task_sighand(task, &flags);
931 	}
932 	put_task_struct(task);
933 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
934 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
935 }
936 
937 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
938 					size_t count, loff_t *ppos)
939 {
940 	struct task_struct *task;
941 	char buffer[PROC_NUMBUF];
942 	unsigned long flags;
943 	int oom_score_adj;
944 	int err;
945 
946 	memset(buffer, 0, sizeof(buffer));
947 	if (count > sizeof(buffer) - 1)
948 		count = sizeof(buffer) - 1;
949 	if (copy_from_user(buffer, buf, count)) {
950 		err = -EFAULT;
951 		goto out;
952 	}
953 
954 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
955 	if (err)
956 		goto out;
957 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
958 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
959 		err = -EINVAL;
960 		goto out;
961 	}
962 
963 	task = get_proc_task(file_inode(file));
964 	if (!task) {
965 		err = -ESRCH;
966 		goto out;
967 	}
968 
969 	task_lock(task);
970 	if (!task->mm) {
971 		err = -EINVAL;
972 		goto err_task_lock;
973 	}
974 
975 	if (!lock_task_sighand(task, &flags)) {
976 		err = -ESRCH;
977 		goto err_task_lock;
978 	}
979 
980 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
981 			!capable(CAP_SYS_RESOURCE)) {
982 		err = -EACCES;
983 		goto err_sighand;
984 	}
985 
986 	task->signal->oom_score_adj = (short)oom_score_adj;
987 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
988 		task->signal->oom_score_adj_min = (short)oom_score_adj;
989 	trace_oom_score_adj_update(task);
990 
991 err_sighand:
992 	unlock_task_sighand(task, &flags);
993 err_task_lock:
994 	task_unlock(task);
995 	put_task_struct(task);
996 out:
997 	return err < 0 ? err : count;
998 }
999 
1000 static const struct file_operations proc_oom_score_adj_operations = {
1001 	.read		= oom_score_adj_read,
1002 	.write		= oom_score_adj_write,
1003 	.llseek		= default_llseek,
1004 };
1005 
1006 #ifdef CONFIG_AUDITSYSCALL
1007 #define TMPBUFLEN 21
1008 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1009 				  size_t count, loff_t *ppos)
1010 {
1011 	struct inode * inode = file_inode(file);
1012 	struct task_struct *task = get_proc_task(inode);
1013 	ssize_t length;
1014 	char tmpbuf[TMPBUFLEN];
1015 
1016 	if (!task)
1017 		return -ESRCH;
1018 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1019 			   from_kuid(file->f_cred->user_ns,
1020 				     audit_get_loginuid(task)));
1021 	put_task_struct(task);
1022 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1023 }
1024 
1025 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1026 				   size_t count, loff_t *ppos)
1027 {
1028 	struct inode * inode = file_inode(file);
1029 	char *page, *tmp;
1030 	ssize_t length;
1031 	uid_t loginuid;
1032 	kuid_t kloginuid;
1033 
1034 	rcu_read_lock();
1035 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1036 		rcu_read_unlock();
1037 		return -EPERM;
1038 	}
1039 	rcu_read_unlock();
1040 
1041 	if (count >= PAGE_SIZE)
1042 		count = PAGE_SIZE - 1;
1043 
1044 	if (*ppos != 0) {
1045 		/* No partial writes. */
1046 		return -EINVAL;
1047 	}
1048 	page = (char*)__get_free_page(GFP_TEMPORARY);
1049 	if (!page)
1050 		return -ENOMEM;
1051 	length = -EFAULT;
1052 	if (copy_from_user(page, buf, count))
1053 		goto out_free_page;
1054 
1055 	page[count] = '\0';
1056 	loginuid = simple_strtoul(page, &tmp, 10);
1057 	if (tmp == page) {
1058 		length = -EINVAL;
1059 		goto out_free_page;
1060 
1061 	}
1062 
1063 	/* is userspace tring to explicitly UNSET the loginuid? */
1064 	if (loginuid == AUDIT_UID_UNSET) {
1065 		kloginuid = INVALID_UID;
1066 	} else {
1067 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1068 		if (!uid_valid(kloginuid)) {
1069 			length = -EINVAL;
1070 			goto out_free_page;
1071 		}
1072 	}
1073 
1074 	length = audit_set_loginuid(kloginuid);
1075 	if (likely(length == 0))
1076 		length = count;
1077 
1078 out_free_page:
1079 	free_page((unsigned long) page);
1080 	return length;
1081 }
1082 
1083 static const struct file_operations proc_loginuid_operations = {
1084 	.read		= proc_loginuid_read,
1085 	.write		= proc_loginuid_write,
1086 	.llseek		= generic_file_llseek,
1087 };
1088 
1089 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1090 				  size_t count, loff_t *ppos)
1091 {
1092 	struct inode * inode = file_inode(file);
1093 	struct task_struct *task = get_proc_task(inode);
1094 	ssize_t length;
1095 	char tmpbuf[TMPBUFLEN];
1096 
1097 	if (!task)
1098 		return -ESRCH;
1099 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1100 				audit_get_sessionid(task));
1101 	put_task_struct(task);
1102 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1103 }
1104 
1105 static const struct file_operations proc_sessionid_operations = {
1106 	.read		= proc_sessionid_read,
1107 	.llseek		= generic_file_llseek,
1108 };
1109 #endif
1110 
1111 #ifdef CONFIG_FAULT_INJECTION
1112 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1113 				      size_t count, loff_t *ppos)
1114 {
1115 	struct task_struct *task = get_proc_task(file_inode(file));
1116 	char buffer[PROC_NUMBUF];
1117 	size_t len;
1118 	int make_it_fail;
1119 
1120 	if (!task)
1121 		return -ESRCH;
1122 	make_it_fail = task->make_it_fail;
1123 	put_task_struct(task);
1124 
1125 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1126 
1127 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1128 }
1129 
1130 static ssize_t proc_fault_inject_write(struct file * file,
1131 			const char __user * buf, size_t count, loff_t *ppos)
1132 {
1133 	struct task_struct *task;
1134 	char buffer[PROC_NUMBUF], *end;
1135 	int make_it_fail;
1136 
1137 	if (!capable(CAP_SYS_RESOURCE))
1138 		return -EPERM;
1139 	memset(buffer, 0, sizeof(buffer));
1140 	if (count > sizeof(buffer) - 1)
1141 		count = sizeof(buffer) - 1;
1142 	if (copy_from_user(buffer, buf, count))
1143 		return -EFAULT;
1144 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1145 	if (*end)
1146 		return -EINVAL;
1147 	if (make_it_fail < 0 || make_it_fail > 1)
1148 		return -EINVAL;
1149 
1150 	task = get_proc_task(file_inode(file));
1151 	if (!task)
1152 		return -ESRCH;
1153 	task->make_it_fail = make_it_fail;
1154 	put_task_struct(task);
1155 
1156 	return count;
1157 }
1158 
1159 static const struct file_operations proc_fault_inject_operations = {
1160 	.read		= proc_fault_inject_read,
1161 	.write		= proc_fault_inject_write,
1162 	.llseek		= generic_file_llseek,
1163 };
1164 #endif
1165 
1166 
1167 #ifdef CONFIG_SCHED_DEBUG
1168 /*
1169  * Print out various scheduling related per-task fields:
1170  */
1171 static int sched_show(struct seq_file *m, void *v)
1172 {
1173 	struct inode *inode = m->private;
1174 	struct task_struct *p;
1175 
1176 	p = get_proc_task(inode);
1177 	if (!p)
1178 		return -ESRCH;
1179 	proc_sched_show_task(p, m);
1180 
1181 	put_task_struct(p);
1182 
1183 	return 0;
1184 }
1185 
1186 static ssize_t
1187 sched_write(struct file *file, const char __user *buf,
1188 	    size_t count, loff_t *offset)
1189 {
1190 	struct inode *inode = file_inode(file);
1191 	struct task_struct *p;
1192 
1193 	p = get_proc_task(inode);
1194 	if (!p)
1195 		return -ESRCH;
1196 	proc_sched_set_task(p);
1197 
1198 	put_task_struct(p);
1199 
1200 	return count;
1201 }
1202 
1203 static int sched_open(struct inode *inode, struct file *filp)
1204 {
1205 	return single_open(filp, sched_show, inode);
1206 }
1207 
1208 static const struct file_operations proc_pid_sched_operations = {
1209 	.open		= sched_open,
1210 	.read		= seq_read,
1211 	.write		= sched_write,
1212 	.llseek		= seq_lseek,
1213 	.release	= single_release,
1214 };
1215 
1216 #endif
1217 
1218 #ifdef CONFIG_SCHED_AUTOGROUP
1219 /*
1220  * Print out autogroup related information:
1221  */
1222 static int sched_autogroup_show(struct seq_file *m, void *v)
1223 {
1224 	struct inode *inode = m->private;
1225 	struct task_struct *p;
1226 
1227 	p = get_proc_task(inode);
1228 	if (!p)
1229 		return -ESRCH;
1230 	proc_sched_autogroup_show_task(p, m);
1231 
1232 	put_task_struct(p);
1233 
1234 	return 0;
1235 }
1236 
1237 static ssize_t
1238 sched_autogroup_write(struct file *file, const char __user *buf,
1239 	    size_t count, loff_t *offset)
1240 {
1241 	struct inode *inode = file_inode(file);
1242 	struct task_struct *p;
1243 	char buffer[PROC_NUMBUF];
1244 	int nice;
1245 	int err;
1246 
1247 	memset(buffer, 0, sizeof(buffer));
1248 	if (count > sizeof(buffer) - 1)
1249 		count = sizeof(buffer) - 1;
1250 	if (copy_from_user(buffer, buf, count))
1251 		return -EFAULT;
1252 
1253 	err = kstrtoint(strstrip(buffer), 0, &nice);
1254 	if (err < 0)
1255 		return err;
1256 
1257 	p = get_proc_task(inode);
1258 	if (!p)
1259 		return -ESRCH;
1260 
1261 	err = proc_sched_autogroup_set_nice(p, nice);
1262 	if (err)
1263 		count = err;
1264 
1265 	put_task_struct(p);
1266 
1267 	return count;
1268 }
1269 
1270 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1271 {
1272 	int ret;
1273 
1274 	ret = single_open(filp, sched_autogroup_show, NULL);
1275 	if (!ret) {
1276 		struct seq_file *m = filp->private_data;
1277 
1278 		m->private = inode;
1279 	}
1280 	return ret;
1281 }
1282 
1283 static const struct file_operations proc_pid_sched_autogroup_operations = {
1284 	.open		= sched_autogroup_open,
1285 	.read		= seq_read,
1286 	.write		= sched_autogroup_write,
1287 	.llseek		= seq_lseek,
1288 	.release	= single_release,
1289 };
1290 
1291 #endif /* CONFIG_SCHED_AUTOGROUP */
1292 
1293 static ssize_t comm_write(struct file *file, const char __user *buf,
1294 				size_t count, loff_t *offset)
1295 {
1296 	struct inode *inode = file_inode(file);
1297 	struct task_struct *p;
1298 	char buffer[TASK_COMM_LEN];
1299 	const size_t maxlen = sizeof(buffer) - 1;
1300 
1301 	memset(buffer, 0, sizeof(buffer));
1302 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1303 		return -EFAULT;
1304 
1305 	p = get_proc_task(inode);
1306 	if (!p)
1307 		return -ESRCH;
1308 
1309 	if (same_thread_group(current, p))
1310 		set_task_comm(p, buffer);
1311 	else
1312 		count = -EINVAL;
1313 
1314 	put_task_struct(p);
1315 
1316 	return count;
1317 }
1318 
1319 static int comm_show(struct seq_file *m, void *v)
1320 {
1321 	struct inode *inode = m->private;
1322 	struct task_struct *p;
1323 
1324 	p = get_proc_task(inode);
1325 	if (!p)
1326 		return -ESRCH;
1327 
1328 	task_lock(p);
1329 	seq_printf(m, "%s\n", p->comm);
1330 	task_unlock(p);
1331 
1332 	put_task_struct(p);
1333 
1334 	return 0;
1335 }
1336 
1337 static int comm_open(struct inode *inode, struct file *filp)
1338 {
1339 	return single_open(filp, comm_show, inode);
1340 }
1341 
1342 static const struct file_operations proc_pid_set_comm_operations = {
1343 	.open		= comm_open,
1344 	.read		= seq_read,
1345 	.write		= comm_write,
1346 	.llseek		= seq_lseek,
1347 	.release	= single_release,
1348 };
1349 
1350 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1351 {
1352 	struct task_struct *task;
1353 	struct mm_struct *mm;
1354 	struct file *exe_file;
1355 
1356 	task = get_proc_task(dentry->d_inode);
1357 	if (!task)
1358 		return -ENOENT;
1359 	mm = get_task_mm(task);
1360 	put_task_struct(task);
1361 	if (!mm)
1362 		return -ENOENT;
1363 	exe_file = get_mm_exe_file(mm);
1364 	mmput(mm);
1365 	if (exe_file) {
1366 		*exe_path = exe_file->f_path;
1367 		path_get(&exe_file->f_path);
1368 		fput(exe_file);
1369 		return 0;
1370 	} else
1371 		return -ENOENT;
1372 }
1373 
1374 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1375 {
1376 	struct inode *inode = dentry->d_inode;
1377 	struct path path;
1378 	int error = -EACCES;
1379 
1380 	/* Are we allowed to snoop on the tasks file descriptors? */
1381 	if (!proc_fd_access_allowed(inode))
1382 		goto out;
1383 
1384 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1385 	if (error)
1386 		goto out;
1387 
1388 	nd_jump_link(nd, &path);
1389 	return NULL;
1390 out:
1391 	return ERR_PTR(error);
1392 }
1393 
1394 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1395 {
1396 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1397 	char *pathname;
1398 	int len;
1399 
1400 	if (!tmp)
1401 		return -ENOMEM;
1402 
1403 	pathname = d_path(path, tmp, PAGE_SIZE);
1404 	len = PTR_ERR(pathname);
1405 	if (IS_ERR(pathname))
1406 		goto out;
1407 	len = tmp + PAGE_SIZE - 1 - pathname;
1408 
1409 	if (len > buflen)
1410 		len = buflen;
1411 	if (copy_to_user(buffer, pathname, len))
1412 		len = -EFAULT;
1413  out:
1414 	free_page((unsigned long)tmp);
1415 	return len;
1416 }
1417 
1418 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1419 {
1420 	int error = -EACCES;
1421 	struct inode *inode = dentry->d_inode;
1422 	struct path path;
1423 
1424 	/* Are we allowed to snoop on the tasks file descriptors? */
1425 	if (!proc_fd_access_allowed(inode))
1426 		goto out;
1427 
1428 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1429 	if (error)
1430 		goto out;
1431 
1432 	error = do_proc_readlink(&path, buffer, buflen);
1433 	path_put(&path);
1434 out:
1435 	return error;
1436 }
1437 
1438 const struct inode_operations proc_pid_link_inode_operations = {
1439 	.readlink	= proc_pid_readlink,
1440 	.follow_link	= proc_pid_follow_link,
1441 	.setattr	= proc_setattr,
1442 };
1443 
1444 
1445 /* building an inode */
1446 
1447 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1448 {
1449 	struct inode * inode;
1450 	struct proc_inode *ei;
1451 	const struct cred *cred;
1452 
1453 	/* We need a new inode */
1454 
1455 	inode = new_inode(sb);
1456 	if (!inode)
1457 		goto out;
1458 
1459 	/* Common stuff */
1460 	ei = PROC_I(inode);
1461 	inode->i_ino = get_next_ino();
1462 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1463 	inode->i_op = &proc_def_inode_operations;
1464 
1465 	/*
1466 	 * grab the reference to task.
1467 	 */
1468 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1469 	if (!ei->pid)
1470 		goto out_unlock;
1471 
1472 	if (task_dumpable(task)) {
1473 		rcu_read_lock();
1474 		cred = __task_cred(task);
1475 		inode->i_uid = cred->euid;
1476 		inode->i_gid = cred->egid;
1477 		rcu_read_unlock();
1478 	}
1479 	security_task_to_inode(task, inode);
1480 
1481 out:
1482 	return inode;
1483 
1484 out_unlock:
1485 	iput(inode);
1486 	return NULL;
1487 }
1488 
1489 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1490 {
1491 	struct inode *inode = dentry->d_inode;
1492 	struct task_struct *task;
1493 	const struct cred *cred;
1494 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1495 
1496 	generic_fillattr(inode, stat);
1497 
1498 	rcu_read_lock();
1499 	stat->uid = GLOBAL_ROOT_UID;
1500 	stat->gid = GLOBAL_ROOT_GID;
1501 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1502 	if (task) {
1503 		if (!has_pid_permissions(pid, task, 2)) {
1504 			rcu_read_unlock();
1505 			/*
1506 			 * This doesn't prevent learning whether PID exists,
1507 			 * it only makes getattr() consistent with readdir().
1508 			 */
1509 			return -ENOENT;
1510 		}
1511 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1512 		    task_dumpable(task)) {
1513 			cred = __task_cred(task);
1514 			stat->uid = cred->euid;
1515 			stat->gid = cred->egid;
1516 		}
1517 	}
1518 	rcu_read_unlock();
1519 	return 0;
1520 }
1521 
1522 /* dentry stuff */
1523 
1524 /*
1525  *	Exceptional case: normally we are not allowed to unhash a busy
1526  * directory. In this case, however, we can do it - no aliasing problems
1527  * due to the way we treat inodes.
1528  *
1529  * Rewrite the inode's ownerships here because the owning task may have
1530  * performed a setuid(), etc.
1531  *
1532  * Before the /proc/pid/status file was created the only way to read
1533  * the effective uid of a /process was to stat /proc/pid.  Reading
1534  * /proc/pid/status is slow enough that procps and other packages
1535  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1536  * made this apply to all per process world readable and executable
1537  * directories.
1538  */
1539 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1540 {
1541 	struct inode *inode;
1542 	struct task_struct *task;
1543 	const struct cred *cred;
1544 
1545 	if (flags & LOOKUP_RCU)
1546 		return -ECHILD;
1547 
1548 	inode = dentry->d_inode;
1549 	task = get_proc_task(inode);
1550 
1551 	if (task) {
1552 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1553 		    task_dumpable(task)) {
1554 			rcu_read_lock();
1555 			cred = __task_cred(task);
1556 			inode->i_uid = cred->euid;
1557 			inode->i_gid = cred->egid;
1558 			rcu_read_unlock();
1559 		} else {
1560 			inode->i_uid = GLOBAL_ROOT_UID;
1561 			inode->i_gid = GLOBAL_ROOT_GID;
1562 		}
1563 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1564 		security_task_to_inode(task, inode);
1565 		put_task_struct(task);
1566 		return 1;
1567 	}
1568 	return 0;
1569 }
1570 
1571 static inline bool proc_inode_is_dead(struct inode *inode)
1572 {
1573 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1574 }
1575 
1576 int pid_delete_dentry(const struct dentry *dentry)
1577 {
1578 	/* Is the task we represent dead?
1579 	 * If so, then don't put the dentry on the lru list,
1580 	 * kill it immediately.
1581 	 */
1582 	return proc_inode_is_dead(dentry->d_inode);
1583 }
1584 
1585 const struct dentry_operations pid_dentry_operations =
1586 {
1587 	.d_revalidate	= pid_revalidate,
1588 	.d_delete	= pid_delete_dentry,
1589 };
1590 
1591 /* Lookups */
1592 
1593 /*
1594  * Fill a directory entry.
1595  *
1596  * If possible create the dcache entry and derive our inode number and
1597  * file type from dcache entry.
1598  *
1599  * Since all of the proc inode numbers are dynamically generated, the inode
1600  * numbers do not exist until the inode is cache.  This means creating the
1601  * the dcache entry in readdir is necessary to keep the inode numbers
1602  * reported by readdir in sync with the inode numbers reported
1603  * by stat.
1604  */
1605 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1606 	const char *name, int len,
1607 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1608 {
1609 	struct dentry *child, *dir = file->f_path.dentry;
1610 	struct qstr qname = QSTR_INIT(name, len);
1611 	struct inode *inode;
1612 	unsigned type;
1613 	ino_t ino;
1614 
1615 	child = d_hash_and_lookup(dir, &qname);
1616 	if (!child) {
1617 		child = d_alloc(dir, &qname);
1618 		if (!child)
1619 			goto end_instantiate;
1620 		if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1621 			dput(child);
1622 			goto end_instantiate;
1623 		}
1624 	}
1625 	inode = child->d_inode;
1626 	ino = inode->i_ino;
1627 	type = inode->i_mode >> 12;
1628 	dput(child);
1629 	return dir_emit(ctx, name, len, ino, type);
1630 
1631 end_instantiate:
1632 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1633 }
1634 
1635 #ifdef CONFIG_CHECKPOINT_RESTORE
1636 
1637 /*
1638  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1639  * which represent vma start and end addresses.
1640  */
1641 static int dname_to_vma_addr(struct dentry *dentry,
1642 			     unsigned long *start, unsigned long *end)
1643 {
1644 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1645 		return -EINVAL;
1646 
1647 	return 0;
1648 }
1649 
1650 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1651 {
1652 	unsigned long vm_start, vm_end;
1653 	bool exact_vma_exists = false;
1654 	struct mm_struct *mm = NULL;
1655 	struct task_struct *task;
1656 	const struct cred *cred;
1657 	struct inode *inode;
1658 	int status = 0;
1659 
1660 	if (flags & LOOKUP_RCU)
1661 		return -ECHILD;
1662 
1663 	if (!capable(CAP_SYS_ADMIN)) {
1664 		status = -EPERM;
1665 		goto out_notask;
1666 	}
1667 
1668 	inode = dentry->d_inode;
1669 	task = get_proc_task(inode);
1670 	if (!task)
1671 		goto out_notask;
1672 
1673 	mm = mm_access(task, PTRACE_MODE_READ);
1674 	if (IS_ERR_OR_NULL(mm))
1675 		goto out;
1676 
1677 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1678 		down_read(&mm->mmap_sem);
1679 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1680 		up_read(&mm->mmap_sem);
1681 	}
1682 
1683 	mmput(mm);
1684 
1685 	if (exact_vma_exists) {
1686 		if (task_dumpable(task)) {
1687 			rcu_read_lock();
1688 			cred = __task_cred(task);
1689 			inode->i_uid = cred->euid;
1690 			inode->i_gid = cred->egid;
1691 			rcu_read_unlock();
1692 		} else {
1693 			inode->i_uid = GLOBAL_ROOT_UID;
1694 			inode->i_gid = GLOBAL_ROOT_GID;
1695 		}
1696 		security_task_to_inode(task, inode);
1697 		status = 1;
1698 	}
1699 
1700 out:
1701 	put_task_struct(task);
1702 
1703 out_notask:
1704 	return status;
1705 }
1706 
1707 static const struct dentry_operations tid_map_files_dentry_operations = {
1708 	.d_revalidate	= map_files_d_revalidate,
1709 	.d_delete	= pid_delete_dentry,
1710 };
1711 
1712 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1713 {
1714 	unsigned long vm_start, vm_end;
1715 	struct vm_area_struct *vma;
1716 	struct task_struct *task;
1717 	struct mm_struct *mm;
1718 	int rc;
1719 
1720 	rc = -ENOENT;
1721 	task = get_proc_task(dentry->d_inode);
1722 	if (!task)
1723 		goto out;
1724 
1725 	mm = get_task_mm(task);
1726 	put_task_struct(task);
1727 	if (!mm)
1728 		goto out;
1729 
1730 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1731 	if (rc)
1732 		goto out_mmput;
1733 
1734 	rc = -ENOENT;
1735 	down_read(&mm->mmap_sem);
1736 	vma = find_exact_vma(mm, vm_start, vm_end);
1737 	if (vma && vma->vm_file) {
1738 		*path = vma->vm_file->f_path;
1739 		path_get(path);
1740 		rc = 0;
1741 	}
1742 	up_read(&mm->mmap_sem);
1743 
1744 out_mmput:
1745 	mmput(mm);
1746 out:
1747 	return rc;
1748 }
1749 
1750 struct map_files_info {
1751 	fmode_t		mode;
1752 	unsigned long	len;
1753 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1754 };
1755 
1756 static int
1757 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1758 			   struct task_struct *task, const void *ptr)
1759 {
1760 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1761 	struct proc_inode *ei;
1762 	struct inode *inode;
1763 
1764 	inode = proc_pid_make_inode(dir->i_sb, task);
1765 	if (!inode)
1766 		return -ENOENT;
1767 
1768 	ei = PROC_I(inode);
1769 	ei->op.proc_get_link = proc_map_files_get_link;
1770 
1771 	inode->i_op = &proc_pid_link_inode_operations;
1772 	inode->i_size = 64;
1773 	inode->i_mode = S_IFLNK;
1774 
1775 	if (mode & FMODE_READ)
1776 		inode->i_mode |= S_IRUSR;
1777 	if (mode & FMODE_WRITE)
1778 		inode->i_mode |= S_IWUSR;
1779 
1780 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1781 	d_add(dentry, inode);
1782 
1783 	return 0;
1784 }
1785 
1786 static struct dentry *proc_map_files_lookup(struct inode *dir,
1787 		struct dentry *dentry, unsigned int flags)
1788 {
1789 	unsigned long vm_start, vm_end;
1790 	struct vm_area_struct *vma;
1791 	struct task_struct *task;
1792 	int result;
1793 	struct mm_struct *mm;
1794 
1795 	result = -EPERM;
1796 	if (!capable(CAP_SYS_ADMIN))
1797 		goto out;
1798 
1799 	result = -ENOENT;
1800 	task = get_proc_task(dir);
1801 	if (!task)
1802 		goto out;
1803 
1804 	result = -EACCES;
1805 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1806 		goto out_put_task;
1807 
1808 	result = -ENOENT;
1809 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1810 		goto out_put_task;
1811 
1812 	mm = get_task_mm(task);
1813 	if (!mm)
1814 		goto out_put_task;
1815 
1816 	down_read(&mm->mmap_sem);
1817 	vma = find_exact_vma(mm, vm_start, vm_end);
1818 	if (!vma)
1819 		goto out_no_vma;
1820 
1821 	if (vma->vm_file)
1822 		result = proc_map_files_instantiate(dir, dentry, task,
1823 				(void *)(unsigned long)vma->vm_file->f_mode);
1824 
1825 out_no_vma:
1826 	up_read(&mm->mmap_sem);
1827 	mmput(mm);
1828 out_put_task:
1829 	put_task_struct(task);
1830 out:
1831 	return ERR_PTR(result);
1832 }
1833 
1834 static const struct inode_operations proc_map_files_inode_operations = {
1835 	.lookup		= proc_map_files_lookup,
1836 	.permission	= proc_fd_permission,
1837 	.setattr	= proc_setattr,
1838 };
1839 
1840 static int
1841 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1842 {
1843 	struct vm_area_struct *vma;
1844 	struct task_struct *task;
1845 	struct mm_struct *mm;
1846 	unsigned long nr_files, pos, i;
1847 	struct flex_array *fa = NULL;
1848 	struct map_files_info info;
1849 	struct map_files_info *p;
1850 	int ret;
1851 
1852 	ret = -EPERM;
1853 	if (!capable(CAP_SYS_ADMIN))
1854 		goto out;
1855 
1856 	ret = -ENOENT;
1857 	task = get_proc_task(file_inode(file));
1858 	if (!task)
1859 		goto out;
1860 
1861 	ret = -EACCES;
1862 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1863 		goto out_put_task;
1864 
1865 	ret = 0;
1866 	if (!dir_emit_dots(file, ctx))
1867 		goto out_put_task;
1868 
1869 	mm = get_task_mm(task);
1870 	if (!mm)
1871 		goto out_put_task;
1872 	down_read(&mm->mmap_sem);
1873 
1874 	nr_files = 0;
1875 
1876 	/*
1877 	 * We need two passes here:
1878 	 *
1879 	 *  1) Collect vmas of mapped files with mmap_sem taken
1880 	 *  2) Release mmap_sem and instantiate entries
1881 	 *
1882 	 * otherwise we get lockdep complained, since filldir()
1883 	 * routine might require mmap_sem taken in might_fault().
1884 	 */
1885 
1886 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1887 		if (vma->vm_file && ++pos > ctx->pos)
1888 			nr_files++;
1889 	}
1890 
1891 	if (nr_files) {
1892 		fa = flex_array_alloc(sizeof(info), nr_files,
1893 					GFP_KERNEL);
1894 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1895 						GFP_KERNEL)) {
1896 			ret = -ENOMEM;
1897 			if (fa)
1898 				flex_array_free(fa);
1899 			up_read(&mm->mmap_sem);
1900 			mmput(mm);
1901 			goto out_put_task;
1902 		}
1903 		for (i = 0, vma = mm->mmap, pos = 2; vma;
1904 				vma = vma->vm_next) {
1905 			if (!vma->vm_file)
1906 				continue;
1907 			if (++pos <= ctx->pos)
1908 				continue;
1909 
1910 			info.mode = vma->vm_file->f_mode;
1911 			info.len = snprintf(info.name,
1912 					sizeof(info.name), "%lx-%lx",
1913 					vma->vm_start, vma->vm_end);
1914 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1915 				BUG();
1916 		}
1917 	}
1918 	up_read(&mm->mmap_sem);
1919 
1920 	for (i = 0; i < nr_files; i++) {
1921 		p = flex_array_get(fa, i);
1922 		if (!proc_fill_cache(file, ctx,
1923 				      p->name, p->len,
1924 				      proc_map_files_instantiate,
1925 				      task,
1926 				      (void *)(unsigned long)p->mode))
1927 			break;
1928 		ctx->pos++;
1929 	}
1930 	if (fa)
1931 		flex_array_free(fa);
1932 	mmput(mm);
1933 
1934 out_put_task:
1935 	put_task_struct(task);
1936 out:
1937 	return ret;
1938 }
1939 
1940 static const struct file_operations proc_map_files_operations = {
1941 	.read		= generic_read_dir,
1942 	.iterate	= proc_map_files_readdir,
1943 	.llseek		= default_llseek,
1944 };
1945 
1946 struct timers_private {
1947 	struct pid *pid;
1948 	struct task_struct *task;
1949 	struct sighand_struct *sighand;
1950 	struct pid_namespace *ns;
1951 	unsigned long flags;
1952 };
1953 
1954 static void *timers_start(struct seq_file *m, loff_t *pos)
1955 {
1956 	struct timers_private *tp = m->private;
1957 
1958 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
1959 	if (!tp->task)
1960 		return ERR_PTR(-ESRCH);
1961 
1962 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
1963 	if (!tp->sighand)
1964 		return ERR_PTR(-ESRCH);
1965 
1966 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
1967 }
1968 
1969 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
1970 {
1971 	struct timers_private *tp = m->private;
1972 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
1973 }
1974 
1975 static void timers_stop(struct seq_file *m, void *v)
1976 {
1977 	struct timers_private *tp = m->private;
1978 
1979 	if (tp->sighand) {
1980 		unlock_task_sighand(tp->task, &tp->flags);
1981 		tp->sighand = NULL;
1982 	}
1983 
1984 	if (tp->task) {
1985 		put_task_struct(tp->task);
1986 		tp->task = NULL;
1987 	}
1988 }
1989 
1990 static int show_timer(struct seq_file *m, void *v)
1991 {
1992 	struct k_itimer *timer;
1993 	struct timers_private *tp = m->private;
1994 	int notify;
1995 	static const char * const nstr[] = {
1996 		[SIGEV_SIGNAL] = "signal",
1997 		[SIGEV_NONE] = "none",
1998 		[SIGEV_THREAD] = "thread",
1999 	};
2000 
2001 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2002 	notify = timer->it_sigev_notify;
2003 
2004 	seq_printf(m, "ID: %d\n", timer->it_id);
2005 	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2006 			timer->sigq->info.si_value.sival_ptr);
2007 	seq_printf(m, "notify: %s/%s.%d\n",
2008 		nstr[notify & ~SIGEV_THREAD_ID],
2009 		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2010 		pid_nr_ns(timer->it_pid, tp->ns));
2011 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2012 
2013 	return 0;
2014 }
2015 
2016 static const struct seq_operations proc_timers_seq_ops = {
2017 	.start	= timers_start,
2018 	.next	= timers_next,
2019 	.stop	= timers_stop,
2020 	.show	= show_timer,
2021 };
2022 
2023 static int proc_timers_open(struct inode *inode, struct file *file)
2024 {
2025 	struct timers_private *tp;
2026 
2027 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2028 			sizeof(struct timers_private));
2029 	if (!tp)
2030 		return -ENOMEM;
2031 
2032 	tp->pid = proc_pid(inode);
2033 	tp->ns = inode->i_sb->s_fs_info;
2034 	return 0;
2035 }
2036 
2037 static const struct file_operations proc_timers_operations = {
2038 	.open		= proc_timers_open,
2039 	.read		= seq_read,
2040 	.llseek		= seq_lseek,
2041 	.release	= seq_release_private,
2042 };
2043 #endif /* CONFIG_CHECKPOINT_RESTORE */
2044 
2045 static int proc_pident_instantiate(struct inode *dir,
2046 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2047 {
2048 	const struct pid_entry *p = ptr;
2049 	struct inode *inode;
2050 	struct proc_inode *ei;
2051 
2052 	inode = proc_pid_make_inode(dir->i_sb, task);
2053 	if (!inode)
2054 		goto out;
2055 
2056 	ei = PROC_I(inode);
2057 	inode->i_mode = p->mode;
2058 	if (S_ISDIR(inode->i_mode))
2059 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2060 	if (p->iop)
2061 		inode->i_op = p->iop;
2062 	if (p->fop)
2063 		inode->i_fop = p->fop;
2064 	ei->op = p->op;
2065 	d_set_d_op(dentry, &pid_dentry_operations);
2066 	d_add(dentry, inode);
2067 	/* Close the race of the process dying before we return the dentry */
2068 	if (pid_revalidate(dentry, 0))
2069 		return 0;
2070 out:
2071 	return -ENOENT;
2072 }
2073 
2074 static struct dentry *proc_pident_lookup(struct inode *dir,
2075 					 struct dentry *dentry,
2076 					 const struct pid_entry *ents,
2077 					 unsigned int nents)
2078 {
2079 	int error;
2080 	struct task_struct *task = get_proc_task(dir);
2081 	const struct pid_entry *p, *last;
2082 
2083 	error = -ENOENT;
2084 
2085 	if (!task)
2086 		goto out_no_task;
2087 
2088 	/*
2089 	 * Yes, it does not scale. And it should not. Don't add
2090 	 * new entries into /proc/<tgid>/ without very good reasons.
2091 	 */
2092 	last = &ents[nents - 1];
2093 	for (p = ents; p <= last; p++) {
2094 		if (p->len != dentry->d_name.len)
2095 			continue;
2096 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2097 			break;
2098 	}
2099 	if (p > last)
2100 		goto out;
2101 
2102 	error = proc_pident_instantiate(dir, dentry, task, p);
2103 out:
2104 	put_task_struct(task);
2105 out_no_task:
2106 	return ERR_PTR(error);
2107 }
2108 
2109 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2110 		const struct pid_entry *ents, unsigned int nents)
2111 {
2112 	struct task_struct *task = get_proc_task(file_inode(file));
2113 	const struct pid_entry *p;
2114 
2115 	if (!task)
2116 		return -ENOENT;
2117 
2118 	if (!dir_emit_dots(file, ctx))
2119 		goto out;
2120 
2121 	if (ctx->pos >= nents + 2)
2122 		goto out;
2123 
2124 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2125 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2126 				proc_pident_instantiate, task, p))
2127 			break;
2128 		ctx->pos++;
2129 	}
2130 out:
2131 	put_task_struct(task);
2132 	return 0;
2133 }
2134 
2135 #ifdef CONFIG_SECURITY
2136 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2137 				  size_t count, loff_t *ppos)
2138 {
2139 	struct inode * inode = file_inode(file);
2140 	char *p = NULL;
2141 	ssize_t length;
2142 	struct task_struct *task = get_proc_task(inode);
2143 
2144 	if (!task)
2145 		return -ESRCH;
2146 
2147 	length = security_getprocattr(task,
2148 				      (char*)file->f_path.dentry->d_name.name,
2149 				      &p);
2150 	put_task_struct(task);
2151 	if (length > 0)
2152 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2153 	kfree(p);
2154 	return length;
2155 }
2156 
2157 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2158 				   size_t count, loff_t *ppos)
2159 {
2160 	struct inode * inode = file_inode(file);
2161 	char *page;
2162 	ssize_t length;
2163 	struct task_struct *task = get_proc_task(inode);
2164 
2165 	length = -ESRCH;
2166 	if (!task)
2167 		goto out_no_task;
2168 	if (count > PAGE_SIZE)
2169 		count = PAGE_SIZE;
2170 
2171 	/* No partial writes. */
2172 	length = -EINVAL;
2173 	if (*ppos != 0)
2174 		goto out;
2175 
2176 	length = -ENOMEM;
2177 	page = (char*)__get_free_page(GFP_TEMPORARY);
2178 	if (!page)
2179 		goto out;
2180 
2181 	length = -EFAULT;
2182 	if (copy_from_user(page, buf, count))
2183 		goto out_free;
2184 
2185 	/* Guard against adverse ptrace interaction */
2186 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2187 	if (length < 0)
2188 		goto out_free;
2189 
2190 	length = security_setprocattr(task,
2191 				      (char*)file->f_path.dentry->d_name.name,
2192 				      (void*)page, count);
2193 	mutex_unlock(&task->signal->cred_guard_mutex);
2194 out_free:
2195 	free_page((unsigned long) page);
2196 out:
2197 	put_task_struct(task);
2198 out_no_task:
2199 	return length;
2200 }
2201 
2202 static const struct file_operations proc_pid_attr_operations = {
2203 	.read		= proc_pid_attr_read,
2204 	.write		= proc_pid_attr_write,
2205 	.llseek		= generic_file_llseek,
2206 };
2207 
2208 static const struct pid_entry attr_dir_stuff[] = {
2209 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2210 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2211 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2212 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2213 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2214 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2215 };
2216 
2217 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2218 {
2219 	return proc_pident_readdir(file, ctx,
2220 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2221 }
2222 
2223 static const struct file_operations proc_attr_dir_operations = {
2224 	.read		= generic_read_dir,
2225 	.iterate	= proc_attr_dir_readdir,
2226 	.llseek		= default_llseek,
2227 };
2228 
2229 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2230 				struct dentry *dentry, unsigned int flags)
2231 {
2232 	return proc_pident_lookup(dir, dentry,
2233 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2234 }
2235 
2236 static const struct inode_operations proc_attr_dir_inode_operations = {
2237 	.lookup		= proc_attr_dir_lookup,
2238 	.getattr	= pid_getattr,
2239 	.setattr	= proc_setattr,
2240 };
2241 
2242 #endif
2243 
2244 #ifdef CONFIG_ELF_CORE
2245 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2246 					 size_t count, loff_t *ppos)
2247 {
2248 	struct task_struct *task = get_proc_task(file_inode(file));
2249 	struct mm_struct *mm;
2250 	char buffer[PROC_NUMBUF];
2251 	size_t len;
2252 	int ret;
2253 
2254 	if (!task)
2255 		return -ESRCH;
2256 
2257 	ret = 0;
2258 	mm = get_task_mm(task);
2259 	if (mm) {
2260 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2261 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2262 				MMF_DUMP_FILTER_SHIFT));
2263 		mmput(mm);
2264 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2265 	}
2266 
2267 	put_task_struct(task);
2268 
2269 	return ret;
2270 }
2271 
2272 static ssize_t proc_coredump_filter_write(struct file *file,
2273 					  const char __user *buf,
2274 					  size_t count,
2275 					  loff_t *ppos)
2276 {
2277 	struct task_struct *task;
2278 	struct mm_struct *mm;
2279 	char buffer[PROC_NUMBUF], *end;
2280 	unsigned int val;
2281 	int ret;
2282 	int i;
2283 	unsigned long mask;
2284 
2285 	ret = -EFAULT;
2286 	memset(buffer, 0, sizeof(buffer));
2287 	if (count > sizeof(buffer) - 1)
2288 		count = sizeof(buffer) - 1;
2289 	if (copy_from_user(buffer, buf, count))
2290 		goto out_no_task;
2291 
2292 	ret = -EINVAL;
2293 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2294 	if (*end == '\n')
2295 		end++;
2296 	if (end - buffer == 0)
2297 		goto out_no_task;
2298 
2299 	ret = -ESRCH;
2300 	task = get_proc_task(file_inode(file));
2301 	if (!task)
2302 		goto out_no_task;
2303 
2304 	ret = end - buffer;
2305 	mm = get_task_mm(task);
2306 	if (!mm)
2307 		goto out_no_mm;
2308 
2309 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2310 		if (val & mask)
2311 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2312 		else
2313 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2314 	}
2315 
2316 	mmput(mm);
2317  out_no_mm:
2318 	put_task_struct(task);
2319  out_no_task:
2320 	return ret;
2321 }
2322 
2323 static const struct file_operations proc_coredump_filter_operations = {
2324 	.read		= proc_coredump_filter_read,
2325 	.write		= proc_coredump_filter_write,
2326 	.llseek		= generic_file_llseek,
2327 };
2328 #endif
2329 
2330 #ifdef CONFIG_TASK_IO_ACCOUNTING
2331 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2332 {
2333 	struct task_io_accounting acct = task->ioac;
2334 	unsigned long flags;
2335 	int result;
2336 
2337 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2338 	if (result)
2339 		return result;
2340 
2341 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2342 		result = -EACCES;
2343 		goto out_unlock;
2344 	}
2345 
2346 	if (whole && lock_task_sighand(task, &flags)) {
2347 		struct task_struct *t = task;
2348 
2349 		task_io_accounting_add(&acct, &task->signal->ioac);
2350 		while_each_thread(task, t)
2351 			task_io_accounting_add(&acct, &t->ioac);
2352 
2353 		unlock_task_sighand(task, &flags);
2354 	}
2355 	result = seq_printf(m,
2356 			"rchar: %llu\n"
2357 			"wchar: %llu\n"
2358 			"syscr: %llu\n"
2359 			"syscw: %llu\n"
2360 			"read_bytes: %llu\n"
2361 			"write_bytes: %llu\n"
2362 			"cancelled_write_bytes: %llu\n",
2363 			(unsigned long long)acct.rchar,
2364 			(unsigned long long)acct.wchar,
2365 			(unsigned long long)acct.syscr,
2366 			(unsigned long long)acct.syscw,
2367 			(unsigned long long)acct.read_bytes,
2368 			(unsigned long long)acct.write_bytes,
2369 			(unsigned long long)acct.cancelled_write_bytes);
2370 out_unlock:
2371 	mutex_unlock(&task->signal->cred_guard_mutex);
2372 	return result;
2373 }
2374 
2375 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2376 				  struct pid *pid, struct task_struct *task)
2377 {
2378 	return do_io_accounting(task, m, 0);
2379 }
2380 
2381 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2382 				   struct pid *pid, struct task_struct *task)
2383 {
2384 	return do_io_accounting(task, m, 1);
2385 }
2386 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2387 
2388 #ifdef CONFIG_USER_NS
2389 static int proc_id_map_open(struct inode *inode, struct file *file,
2390 	const struct seq_operations *seq_ops)
2391 {
2392 	struct user_namespace *ns = NULL;
2393 	struct task_struct *task;
2394 	struct seq_file *seq;
2395 	int ret = -EINVAL;
2396 
2397 	task = get_proc_task(inode);
2398 	if (task) {
2399 		rcu_read_lock();
2400 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2401 		rcu_read_unlock();
2402 		put_task_struct(task);
2403 	}
2404 	if (!ns)
2405 		goto err;
2406 
2407 	ret = seq_open(file, seq_ops);
2408 	if (ret)
2409 		goto err_put_ns;
2410 
2411 	seq = file->private_data;
2412 	seq->private = ns;
2413 
2414 	return 0;
2415 err_put_ns:
2416 	put_user_ns(ns);
2417 err:
2418 	return ret;
2419 }
2420 
2421 static int proc_id_map_release(struct inode *inode, struct file *file)
2422 {
2423 	struct seq_file *seq = file->private_data;
2424 	struct user_namespace *ns = seq->private;
2425 	put_user_ns(ns);
2426 	return seq_release(inode, file);
2427 }
2428 
2429 static int proc_uid_map_open(struct inode *inode, struct file *file)
2430 {
2431 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2432 }
2433 
2434 static int proc_gid_map_open(struct inode *inode, struct file *file)
2435 {
2436 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2437 }
2438 
2439 static int proc_projid_map_open(struct inode *inode, struct file *file)
2440 {
2441 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2442 }
2443 
2444 static const struct file_operations proc_uid_map_operations = {
2445 	.open		= proc_uid_map_open,
2446 	.write		= proc_uid_map_write,
2447 	.read		= seq_read,
2448 	.llseek		= seq_lseek,
2449 	.release	= proc_id_map_release,
2450 };
2451 
2452 static const struct file_operations proc_gid_map_operations = {
2453 	.open		= proc_gid_map_open,
2454 	.write		= proc_gid_map_write,
2455 	.read		= seq_read,
2456 	.llseek		= seq_lseek,
2457 	.release	= proc_id_map_release,
2458 };
2459 
2460 static const struct file_operations proc_projid_map_operations = {
2461 	.open		= proc_projid_map_open,
2462 	.write		= proc_projid_map_write,
2463 	.read		= seq_read,
2464 	.llseek		= seq_lseek,
2465 	.release	= proc_id_map_release,
2466 };
2467 #endif /* CONFIG_USER_NS */
2468 
2469 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2470 				struct pid *pid, struct task_struct *task)
2471 {
2472 	int err = lock_trace(task);
2473 	if (!err) {
2474 		seq_printf(m, "%08x\n", task->personality);
2475 		unlock_trace(task);
2476 	}
2477 	return err;
2478 }
2479 
2480 /*
2481  * Thread groups
2482  */
2483 static const struct file_operations proc_task_operations;
2484 static const struct inode_operations proc_task_inode_operations;
2485 
2486 static const struct pid_entry tgid_base_stuff[] = {
2487 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2488 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2489 #ifdef CONFIG_CHECKPOINT_RESTORE
2490 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2491 #endif
2492 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2493 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2494 #ifdef CONFIG_NET
2495 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2496 #endif
2497 	REG("environ",    S_IRUSR, proc_environ_operations),
2498 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2499 	ONE("status",     S_IRUGO, proc_pid_status),
2500 	ONE("personality", S_IRUSR, proc_pid_personality),
2501 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2502 #ifdef CONFIG_SCHED_DEBUG
2503 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2504 #endif
2505 #ifdef CONFIG_SCHED_AUTOGROUP
2506 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2507 #endif
2508 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2509 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2510 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2511 #endif
2512 	ONE("cmdline",    S_IRUGO, proc_pid_cmdline),
2513 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2514 	ONE("statm",      S_IRUGO, proc_pid_statm),
2515 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2516 #ifdef CONFIG_NUMA
2517 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2518 #endif
2519 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2520 	LNK("cwd",        proc_cwd_link),
2521 	LNK("root",       proc_root_link),
2522 	LNK("exe",        proc_exe_link),
2523 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2524 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2525 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2526 #ifdef CONFIG_PROC_PAGE_MONITOR
2527 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2528 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2529 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2530 #endif
2531 #ifdef CONFIG_SECURITY
2532 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2533 #endif
2534 #ifdef CONFIG_KALLSYMS
2535 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2536 #endif
2537 #ifdef CONFIG_STACKTRACE
2538 	ONE("stack",      S_IRUSR, proc_pid_stack),
2539 #endif
2540 #ifdef CONFIG_SCHEDSTATS
2541 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2542 #endif
2543 #ifdef CONFIG_LATENCYTOP
2544 	REG("latency",  S_IRUGO, proc_lstats_operations),
2545 #endif
2546 #ifdef CONFIG_PROC_PID_CPUSET
2547 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2548 #endif
2549 #ifdef CONFIG_CGROUPS
2550 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2551 #endif
2552 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2553 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2554 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2555 #ifdef CONFIG_AUDITSYSCALL
2556 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2557 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2558 #endif
2559 #ifdef CONFIG_FAULT_INJECTION
2560 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2561 #endif
2562 #ifdef CONFIG_ELF_CORE
2563 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2564 #endif
2565 #ifdef CONFIG_TASK_IO_ACCOUNTING
2566 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2567 #endif
2568 #ifdef CONFIG_HARDWALL
2569 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2570 #endif
2571 #ifdef CONFIG_USER_NS
2572 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2573 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2574 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2575 #endif
2576 #ifdef CONFIG_CHECKPOINT_RESTORE
2577 	REG("timers",	  S_IRUGO, proc_timers_operations),
2578 #endif
2579 };
2580 
2581 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2582 {
2583 	return proc_pident_readdir(file, ctx,
2584 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2585 }
2586 
2587 static const struct file_operations proc_tgid_base_operations = {
2588 	.read		= generic_read_dir,
2589 	.iterate	= proc_tgid_base_readdir,
2590 	.llseek		= default_llseek,
2591 };
2592 
2593 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2594 {
2595 	return proc_pident_lookup(dir, dentry,
2596 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2597 }
2598 
2599 static const struct inode_operations proc_tgid_base_inode_operations = {
2600 	.lookup		= proc_tgid_base_lookup,
2601 	.getattr	= pid_getattr,
2602 	.setattr	= proc_setattr,
2603 	.permission	= proc_pid_permission,
2604 };
2605 
2606 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2607 {
2608 	struct dentry *dentry, *leader, *dir;
2609 	char buf[PROC_NUMBUF];
2610 	struct qstr name;
2611 
2612 	name.name = buf;
2613 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2614 	/* no ->d_hash() rejects on procfs */
2615 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2616 	if (dentry) {
2617 		d_invalidate(dentry);
2618 		dput(dentry);
2619 	}
2620 
2621 	name.name = buf;
2622 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2623 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2624 	if (!leader)
2625 		goto out;
2626 
2627 	name.name = "task";
2628 	name.len = strlen(name.name);
2629 	dir = d_hash_and_lookup(leader, &name);
2630 	if (!dir)
2631 		goto out_put_leader;
2632 
2633 	name.name = buf;
2634 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2635 	dentry = d_hash_and_lookup(dir, &name);
2636 	if (dentry) {
2637 		d_invalidate(dentry);
2638 		dput(dentry);
2639 	}
2640 
2641 	dput(dir);
2642 out_put_leader:
2643 	dput(leader);
2644 out:
2645 	return;
2646 }
2647 
2648 /**
2649  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2650  * @task: task that should be flushed.
2651  *
2652  * When flushing dentries from proc, one needs to flush them from global
2653  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2654  * in. This call is supposed to do all of this job.
2655  *
2656  * Looks in the dcache for
2657  * /proc/@pid
2658  * /proc/@tgid/task/@pid
2659  * if either directory is present flushes it and all of it'ts children
2660  * from the dcache.
2661  *
2662  * It is safe and reasonable to cache /proc entries for a task until
2663  * that task exits.  After that they just clog up the dcache with
2664  * useless entries, possibly causing useful dcache entries to be
2665  * flushed instead.  This routine is proved to flush those useless
2666  * dcache entries at process exit time.
2667  *
2668  * NOTE: This routine is just an optimization so it does not guarantee
2669  *       that no dcache entries will exist at process exit time it
2670  *       just makes it very unlikely that any will persist.
2671  */
2672 
2673 void proc_flush_task(struct task_struct *task)
2674 {
2675 	int i;
2676 	struct pid *pid, *tgid;
2677 	struct upid *upid;
2678 
2679 	pid = task_pid(task);
2680 	tgid = task_tgid(task);
2681 
2682 	for (i = 0; i <= pid->level; i++) {
2683 		upid = &pid->numbers[i];
2684 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2685 					tgid->numbers[i].nr);
2686 	}
2687 }
2688 
2689 static int proc_pid_instantiate(struct inode *dir,
2690 				   struct dentry * dentry,
2691 				   struct task_struct *task, const void *ptr)
2692 {
2693 	struct inode *inode;
2694 
2695 	inode = proc_pid_make_inode(dir->i_sb, task);
2696 	if (!inode)
2697 		goto out;
2698 
2699 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2700 	inode->i_op = &proc_tgid_base_inode_operations;
2701 	inode->i_fop = &proc_tgid_base_operations;
2702 	inode->i_flags|=S_IMMUTABLE;
2703 
2704 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2705 						  ARRAY_SIZE(tgid_base_stuff)));
2706 
2707 	d_set_d_op(dentry, &pid_dentry_operations);
2708 
2709 	d_add(dentry, inode);
2710 	/* Close the race of the process dying before we return the dentry */
2711 	if (pid_revalidate(dentry, 0))
2712 		return 0;
2713 out:
2714 	return -ENOENT;
2715 }
2716 
2717 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2718 {
2719 	int result = -ENOENT;
2720 	struct task_struct *task;
2721 	unsigned tgid;
2722 	struct pid_namespace *ns;
2723 
2724 	tgid = name_to_int(&dentry->d_name);
2725 	if (tgid == ~0U)
2726 		goto out;
2727 
2728 	ns = dentry->d_sb->s_fs_info;
2729 	rcu_read_lock();
2730 	task = find_task_by_pid_ns(tgid, ns);
2731 	if (task)
2732 		get_task_struct(task);
2733 	rcu_read_unlock();
2734 	if (!task)
2735 		goto out;
2736 
2737 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2738 	put_task_struct(task);
2739 out:
2740 	return ERR_PTR(result);
2741 }
2742 
2743 /*
2744  * Find the first task with tgid >= tgid
2745  *
2746  */
2747 struct tgid_iter {
2748 	unsigned int tgid;
2749 	struct task_struct *task;
2750 };
2751 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2752 {
2753 	struct pid *pid;
2754 
2755 	if (iter.task)
2756 		put_task_struct(iter.task);
2757 	rcu_read_lock();
2758 retry:
2759 	iter.task = NULL;
2760 	pid = find_ge_pid(iter.tgid, ns);
2761 	if (pid) {
2762 		iter.tgid = pid_nr_ns(pid, ns);
2763 		iter.task = pid_task(pid, PIDTYPE_PID);
2764 		/* What we to know is if the pid we have find is the
2765 		 * pid of a thread_group_leader.  Testing for task
2766 		 * being a thread_group_leader is the obvious thing
2767 		 * todo but there is a window when it fails, due to
2768 		 * the pid transfer logic in de_thread.
2769 		 *
2770 		 * So we perform the straight forward test of seeing
2771 		 * if the pid we have found is the pid of a thread
2772 		 * group leader, and don't worry if the task we have
2773 		 * found doesn't happen to be a thread group leader.
2774 		 * As we don't care in the case of readdir.
2775 		 */
2776 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2777 			iter.tgid += 1;
2778 			goto retry;
2779 		}
2780 		get_task_struct(iter.task);
2781 	}
2782 	rcu_read_unlock();
2783 	return iter;
2784 }
2785 
2786 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
2787 
2788 /* for the /proc/ directory itself, after non-process stuff has been done */
2789 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2790 {
2791 	struct tgid_iter iter;
2792 	struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2793 	loff_t pos = ctx->pos;
2794 
2795 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2796 		return 0;
2797 
2798 	if (pos == TGID_OFFSET - 2) {
2799 		struct inode *inode = ns->proc_self->d_inode;
2800 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2801 			return 0;
2802 		ctx->pos = pos = pos + 1;
2803 	}
2804 	if (pos == TGID_OFFSET - 1) {
2805 		struct inode *inode = ns->proc_thread_self->d_inode;
2806 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
2807 			return 0;
2808 		ctx->pos = pos = pos + 1;
2809 	}
2810 	iter.tgid = pos - TGID_OFFSET;
2811 	iter.task = NULL;
2812 	for (iter = next_tgid(ns, iter);
2813 	     iter.task;
2814 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2815 		char name[PROC_NUMBUF];
2816 		int len;
2817 		if (!has_pid_permissions(ns, iter.task, 2))
2818 			continue;
2819 
2820 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2821 		ctx->pos = iter.tgid + TGID_OFFSET;
2822 		if (!proc_fill_cache(file, ctx, name, len,
2823 				     proc_pid_instantiate, iter.task, NULL)) {
2824 			put_task_struct(iter.task);
2825 			return 0;
2826 		}
2827 	}
2828 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2829 	return 0;
2830 }
2831 
2832 /*
2833  * Tasks
2834  */
2835 static const struct pid_entry tid_base_stuff[] = {
2836 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2837 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2838 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2839 #ifdef CONFIG_NET
2840 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2841 #endif
2842 	REG("environ",   S_IRUSR, proc_environ_operations),
2843 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
2844 	ONE("status",    S_IRUGO, proc_pid_status),
2845 	ONE("personality", S_IRUSR, proc_pid_personality),
2846 	ONE("limits",	 S_IRUGO, proc_pid_limits),
2847 #ifdef CONFIG_SCHED_DEBUG
2848 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2849 #endif
2850 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2851 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2852 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
2853 #endif
2854 	ONE("cmdline",   S_IRUGO, proc_pid_cmdline),
2855 	ONE("stat",      S_IRUGO, proc_tid_stat),
2856 	ONE("statm",     S_IRUGO, proc_pid_statm),
2857 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2858 #ifdef CONFIG_CHECKPOINT_RESTORE
2859 	REG("children",  S_IRUGO, proc_tid_children_operations),
2860 #endif
2861 #ifdef CONFIG_NUMA
2862 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2863 #endif
2864 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2865 	LNK("cwd",       proc_cwd_link),
2866 	LNK("root",      proc_root_link),
2867 	LNK("exe",       proc_exe_link),
2868 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2869 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2870 #ifdef CONFIG_PROC_PAGE_MONITOR
2871 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2872 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2873 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2874 #endif
2875 #ifdef CONFIG_SECURITY
2876 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2877 #endif
2878 #ifdef CONFIG_KALLSYMS
2879 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
2880 #endif
2881 #ifdef CONFIG_STACKTRACE
2882 	ONE("stack",      S_IRUSR, proc_pid_stack),
2883 #endif
2884 #ifdef CONFIG_SCHEDSTATS
2885 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2886 #endif
2887 #ifdef CONFIG_LATENCYTOP
2888 	REG("latency",  S_IRUGO, proc_lstats_operations),
2889 #endif
2890 #ifdef CONFIG_PROC_PID_CPUSET
2891 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
2892 #endif
2893 #ifdef CONFIG_CGROUPS
2894 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2895 #endif
2896 	ONE("oom_score", S_IRUGO, proc_oom_score),
2897 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2898 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2899 #ifdef CONFIG_AUDITSYSCALL
2900 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2901 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2902 #endif
2903 #ifdef CONFIG_FAULT_INJECTION
2904 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2905 #endif
2906 #ifdef CONFIG_TASK_IO_ACCOUNTING
2907 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
2908 #endif
2909 #ifdef CONFIG_HARDWALL
2910 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2911 #endif
2912 #ifdef CONFIG_USER_NS
2913 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2914 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2915 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2916 #endif
2917 };
2918 
2919 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2920 {
2921 	return proc_pident_readdir(file, ctx,
2922 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2923 }
2924 
2925 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2926 {
2927 	return proc_pident_lookup(dir, dentry,
2928 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2929 }
2930 
2931 static const struct file_operations proc_tid_base_operations = {
2932 	.read		= generic_read_dir,
2933 	.iterate	= proc_tid_base_readdir,
2934 	.llseek		= default_llseek,
2935 };
2936 
2937 static const struct inode_operations proc_tid_base_inode_operations = {
2938 	.lookup		= proc_tid_base_lookup,
2939 	.getattr	= pid_getattr,
2940 	.setattr	= proc_setattr,
2941 };
2942 
2943 static int proc_task_instantiate(struct inode *dir,
2944 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2945 {
2946 	struct inode *inode;
2947 	inode = proc_pid_make_inode(dir->i_sb, task);
2948 
2949 	if (!inode)
2950 		goto out;
2951 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2952 	inode->i_op = &proc_tid_base_inode_operations;
2953 	inode->i_fop = &proc_tid_base_operations;
2954 	inode->i_flags|=S_IMMUTABLE;
2955 
2956 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2957 						  ARRAY_SIZE(tid_base_stuff)));
2958 
2959 	d_set_d_op(dentry, &pid_dentry_operations);
2960 
2961 	d_add(dentry, inode);
2962 	/* Close the race of the process dying before we return the dentry */
2963 	if (pid_revalidate(dentry, 0))
2964 		return 0;
2965 out:
2966 	return -ENOENT;
2967 }
2968 
2969 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2970 {
2971 	int result = -ENOENT;
2972 	struct task_struct *task;
2973 	struct task_struct *leader = get_proc_task(dir);
2974 	unsigned tid;
2975 	struct pid_namespace *ns;
2976 
2977 	if (!leader)
2978 		goto out_no_task;
2979 
2980 	tid = name_to_int(&dentry->d_name);
2981 	if (tid == ~0U)
2982 		goto out;
2983 
2984 	ns = dentry->d_sb->s_fs_info;
2985 	rcu_read_lock();
2986 	task = find_task_by_pid_ns(tid, ns);
2987 	if (task)
2988 		get_task_struct(task);
2989 	rcu_read_unlock();
2990 	if (!task)
2991 		goto out;
2992 	if (!same_thread_group(leader, task))
2993 		goto out_drop_task;
2994 
2995 	result = proc_task_instantiate(dir, dentry, task, NULL);
2996 out_drop_task:
2997 	put_task_struct(task);
2998 out:
2999 	put_task_struct(leader);
3000 out_no_task:
3001 	return ERR_PTR(result);
3002 }
3003 
3004 /*
3005  * Find the first tid of a thread group to return to user space.
3006  *
3007  * Usually this is just the thread group leader, but if the users
3008  * buffer was too small or there was a seek into the middle of the
3009  * directory we have more work todo.
3010  *
3011  * In the case of a short read we start with find_task_by_pid.
3012  *
3013  * In the case of a seek we start with the leader and walk nr
3014  * threads past it.
3015  */
3016 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3017 					struct pid_namespace *ns)
3018 {
3019 	struct task_struct *pos, *task;
3020 	unsigned long nr = f_pos;
3021 
3022 	if (nr != f_pos)	/* 32bit overflow? */
3023 		return NULL;
3024 
3025 	rcu_read_lock();
3026 	task = pid_task(pid, PIDTYPE_PID);
3027 	if (!task)
3028 		goto fail;
3029 
3030 	/* Attempt to start with the tid of a thread */
3031 	if (tid && nr) {
3032 		pos = find_task_by_pid_ns(tid, ns);
3033 		if (pos && same_thread_group(pos, task))
3034 			goto found;
3035 	}
3036 
3037 	/* If nr exceeds the number of threads there is nothing todo */
3038 	if (nr >= get_nr_threads(task))
3039 		goto fail;
3040 
3041 	/* If we haven't found our starting place yet start
3042 	 * with the leader and walk nr threads forward.
3043 	 */
3044 	pos = task = task->group_leader;
3045 	do {
3046 		if (!nr--)
3047 			goto found;
3048 	} while_each_thread(task, pos);
3049 fail:
3050 	pos = NULL;
3051 	goto out;
3052 found:
3053 	get_task_struct(pos);
3054 out:
3055 	rcu_read_unlock();
3056 	return pos;
3057 }
3058 
3059 /*
3060  * Find the next thread in the thread list.
3061  * Return NULL if there is an error or no next thread.
3062  *
3063  * The reference to the input task_struct is released.
3064  */
3065 static struct task_struct *next_tid(struct task_struct *start)
3066 {
3067 	struct task_struct *pos = NULL;
3068 	rcu_read_lock();
3069 	if (pid_alive(start)) {
3070 		pos = next_thread(start);
3071 		if (thread_group_leader(pos))
3072 			pos = NULL;
3073 		else
3074 			get_task_struct(pos);
3075 	}
3076 	rcu_read_unlock();
3077 	put_task_struct(start);
3078 	return pos;
3079 }
3080 
3081 /* for the /proc/TGID/task/ directories */
3082 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3083 {
3084 	struct inode *inode = file_inode(file);
3085 	struct task_struct *task;
3086 	struct pid_namespace *ns;
3087 	int tid;
3088 
3089 	if (proc_inode_is_dead(inode))
3090 		return -ENOENT;
3091 
3092 	if (!dir_emit_dots(file, ctx))
3093 		return 0;
3094 
3095 	/* f_version caches the tgid value that the last readdir call couldn't
3096 	 * return. lseek aka telldir automagically resets f_version to 0.
3097 	 */
3098 	ns = file->f_dentry->d_sb->s_fs_info;
3099 	tid = (int)file->f_version;
3100 	file->f_version = 0;
3101 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3102 	     task;
3103 	     task = next_tid(task), ctx->pos++) {
3104 		char name[PROC_NUMBUF];
3105 		int len;
3106 		tid = task_pid_nr_ns(task, ns);
3107 		len = snprintf(name, sizeof(name), "%d", tid);
3108 		if (!proc_fill_cache(file, ctx, name, len,
3109 				proc_task_instantiate, task, NULL)) {
3110 			/* returning this tgid failed, save it as the first
3111 			 * pid for the next readir call */
3112 			file->f_version = (u64)tid;
3113 			put_task_struct(task);
3114 			break;
3115 		}
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3122 {
3123 	struct inode *inode = dentry->d_inode;
3124 	struct task_struct *p = get_proc_task(inode);
3125 	generic_fillattr(inode, stat);
3126 
3127 	if (p) {
3128 		stat->nlink += get_nr_threads(p);
3129 		put_task_struct(p);
3130 	}
3131 
3132 	return 0;
3133 }
3134 
3135 static const struct inode_operations proc_task_inode_operations = {
3136 	.lookup		= proc_task_lookup,
3137 	.getattr	= proc_task_getattr,
3138 	.setattr	= proc_setattr,
3139 	.permission	= proc_pid_permission,
3140 };
3141 
3142 static const struct file_operations proc_task_operations = {
3143 	.read		= generic_read_dir,
3144 	.iterate	= proc_task_readdir,
3145 	.llseek		= default_llseek,
3146 };
3147