1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/fs_struct.h> 85 #include <linux/slab.h> 86 #include <linux/flex_array.h> 87 #ifdef CONFIG_HARDWALL 88 #include <asm/hardwall.h> 89 #endif 90 #include <trace/events/oom.h> 91 #include "internal.h" 92 93 /* NOTE: 94 * Implementing inode permission operations in /proc is almost 95 * certainly an error. Permission checks need to happen during 96 * each system call not at open time. The reason is that most of 97 * what we wish to check for permissions in /proc varies at runtime. 98 * 99 * The classic example of a problem is opening file descriptors 100 * in /proc for a task before it execs a suid executable. 101 */ 102 103 struct pid_entry { 104 char *name; 105 int len; 106 umode_t mode; 107 const struct inode_operations *iop; 108 const struct file_operations *fop; 109 union proc_op op; 110 }; 111 112 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 113 .name = (NAME), \ 114 .len = sizeof(NAME) - 1, \ 115 .mode = MODE, \ 116 .iop = IOP, \ 117 .fop = FOP, \ 118 .op = OP, \ 119 } 120 121 #define DIR(NAME, MODE, iops, fops) \ 122 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 123 #define LNK(NAME, get_link) \ 124 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 125 &proc_pid_link_inode_operations, NULL, \ 126 { .proc_get_link = get_link } ) 127 #define REG(NAME, MODE, fops) \ 128 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 129 #define INF(NAME, MODE, read) \ 130 NOD(NAME, (S_IFREG|(MODE)), \ 131 NULL, &proc_info_file_operations, \ 132 { .proc_read = read } ) 133 #define ONE(NAME, MODE, show) \ 134 NOD(NAME, (S_IFREG|(MODE)), \ 135 NULL, &proc_single_file_operations, \ 136 { .proc_show = show } ) 137 138 static int proc_fd_permission(struct inode *inode, int mask); 139 140 /* 141 * Count the number of hardlinks for the pid_entry table, excluding the . 142 * and .. links. 143 */ 144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 145 unsigned int n) 146 { 147 unsigned int i; 148 unsigned int count; 149 150 count = 0; 151 for (i = 0; i < n; ++i) { 152 if (S_ISDIR(entries[i].mode)) 153 ++count; 154 } 155 156 return count; 157 } 158 159 static int get_task_root(struct task_struct *task, struct path *root) 160 { 161 int result = -ENOENT; 162 163 task_lock(task); 164 if (task->fs) { 165 get_fs_root(task->fs, root); 166 result = 0; 167 } 168 task_unlock(task); 169 return result; 170 } 171 172 static int proc_cwd_link(struct dentry *dentry, struct path *path) 173 { 174 struct task_struct *task = get_proc_task(dentry->d_inode); 175 int result = -ENOENT; 176 177 if (task) { 178 task_lock(task); 179 if (task->fs) { 180 get_fs_pwd(task->fs, path); 181 result = 0; 182 } 183 task_unlock(task); 184 put_task_struct(task); 185 } 186 return result; 187 } 188 189 static int proc_root_link(struct dentry *dentry, struct path *path) 190 { 191 struct task_struct *task = get_proc_task(dentry->d_inode); 192 int result = -ENOENT; 193 194 if (task) { 195 result = get_task_root(task, path); 196 put_task_struct(task); 197 } 198 return result; 199 } 200 201 struct mm_struct *mm_for_maps(struct task_struct *task) 202 { 203 return mm_access(task, PTRACE_MODE_READ); 204 } 205 206 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 207 { 208 int res = 0; 209 unsigned int len; 210 struct mm_struct *mm = get_task_mm(task); 211 if (!mm) 212 goto out; 213 if (!mm->arg_end) 214 goto out_mm; /* Shh! No looking before we're done */ 215 216 len = mm->arg_end - mm->arg_start; 217 218 if (len > PAGE_SIZE) 219 len = PAGE_SIZE; 220 221 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 222 223 // If the nul at the end of args has been overwritten, then 224 // assume application is using setproctitle(3). 225 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 226 len = strnlen(buffer, res); 227 if (len < res) { 228 res = len; 229 } else { 230 len = mm->env_end - mm->env_start; 231 if (len > PAGE_SIZE - res) 232 len = PAGE_SIZE - res; 233 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 234 res = strnlen(buffer, res); 235 } 236 } 237 out_mm: 238 mmput(mm); 239 out: 240 return res; 241 } 242 243 static int proc_pid_auxv(struct task_struct *task, char *buffer) 244 { 245 struct mm_struct *mm = mm_for_maps(task); 246 int res = PTR_ERR(mm); 247 if (mm && !IS_ERR(mm)) { 248 unsigned int nwords = 0; 249 do { 250 nwords += 2; 251 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 252 res = nwords * sizeof(mm->saved_auxv[0]); 253 if (res > PAGE_SIZE) 254 res = PAGE_SIZE; 255 memcpy(buffer, mm->saved_auxv, res); 256 mmput(mm); 257 } 258 return res; 259 } 260 261 262 #ifdef CONFIG_KALLSYMS 263 /* 264 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 265 * Returns the resolved symbol. If that fails, simply return the address. 266 */ 267 static int proc_pid_wchan(struct task_struct *task, char *buffer) 268 { 269 unsigned long wchan; 270 char symname[KSYM_NAME_LEN]; 271 272 wchan = get_wchan(task); 273 274 if (lookup_symbol_name(wchan, symname) < 0) 275 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 276 return 0; 277 else 278 return sprintf(buffer, "%lu", wchan); 279 else 280 return sprintf(buffer, "%s", symname); 281 } 282 #endif /* CONFIG_KALLSYMS */ 283 284 static int lock_trace(struct task_struct *task) 285 { 286 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 287 if (err) 288 return err; 289 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 290 mutex_unlock(&task->signal->cred_guard_mutex); 291 return -EPERM; 292 } 293 return 0; 294 } 295 296 static void unlock_trace(struct task_struct *task) 297 { 298 mutex_unlock(&task->signal->cred_guard_mutex); 299 } 300 301 #ifdef CONFIG_STACKTRACE 302 303 #define MAX_STACK_TRACE_DEPTH 64 304 305 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 306 struct pid *pid, struct task_struct *task) 307 { 308 struct stack_trace trace; 309 unsigned long *entries; 310 int err; 311 int i; 312 313 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 314 if (!entries) 315 return -ENOMEM; 316 317 trace.nr_entries = 0; 318 trace.max_entries = MAX_STACK_TRACE_DEPTH; 319 trace.entries = entries; 320 trace.skip = 0; 321 322 err = lock_trace(task); 323 if (!err) { 324 save_stack_trace_tsk(task, &trace); 325 326 for (i = 0; i < trace.nr_entries; i++) { 327 seq_printf(m, "[<%pK>] %pS\n", 328 (void *)entries[i], (void *)entries[i]); 329 } 330 unlock_trace(task); 331 } 332 kfree(entries); 333 334 return err; 335 } 336 #endif 337 338 #ifdef CONFIG_SCHEDSTATS 339 /* 340 * Provides /proc/PID/schedstat 341 */ 342 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 343 { 344 return sprintf(buffer, "%llu %llu %lu\n", 345 (unsigned long long)task->se.sum_exec_runtime, 346 (unsigned long long)task->sched_info.run_delay, 347 task->sched_info.pcount); 348 } 349 #endif 350 351 #ifdef CONFIG_LATENCYTOP 352 static int lstats_show_proc(struct seq_file *m, void *v) 353 { 354 int i; 355 struct inode *inode = m->private; 356 struct task_struct *task = get_proc_task(inode); 357 358 if (!task) 359 return -ESRCH; 360 seq_puts(m, "Latency Top version : v0.1\n"); 361 for (i = 0; i < 32; i++) { 362 struct latency_record *lr = &task->latency_record[i]; 363 if (lr->backtrace[0]) { 364 int q; 365 seq_printf(m, "%i %li %li", 366 lr->count, lr->time, lr->max); 367 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 368 unsigned long bt = lr->backtrace[q]; 369 if (!bt) 370 break; 371 if (bt == ULONG_MAX) 372 break; 373 seq_printf(m, " %ps", (void *)bt); 374 } 375 seq_putc(m, '\n'); 376 } 377 378 } 379 put_task_struct(task); 380 return 0; 381 } 382 383 static int lstats_open(struct inode *inode, struct file *file) 384 { 385 return single_open(file, lstats_show_proc, inode); 386 } 387 388 static ssize_t lstats_write(struct file *file, const char __user *buf, 389 size_t count, loff_t *offs) 390 { 391 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 392 393 if (!task) 394 return -ESRCH; 395 clear_all_latency_tracing(task); 396 put_task_struct(task); 397 398 return count; 399 } 400 401 static const struct file_operations proc_lstats_operations = { 402 .open = lstats_open, 403 .read = seq_read, 404 .write = lstats_write, 405 .llseek = seq_lseek, 406 .release = single_release, 407 }; 408 409 #endif 410 411 static int proc_oom_score(struct task_struct *task, char *buffer) 412 { 413 unsigned long points = 0; 414 415 read_lock(&tasklist_lock); 416 if (pid_alive(task)) 417 points = oom_badness(task, NULL, NULL, 418 totalram_pages + total_swap_pages); 419 read_unlock(&tasklist_lock); 420 return sprintf(buffer, "%lu\n", points); 421 } 422 423 struct limit_names { 424 char *name; 425 char *unit; 426 }; 427 428 static const struct limit_names lnames[RLIM_NLIMITS] = { 429 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 430 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 431 [RLIMIT_DATA] = {"Max data size", "bytes"}, 432 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 433 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 434 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 435 [RLIMIT_NPROC] = {"Max processes", "processes"}, 436 [RLIMIT_NOFILE] = {"Max open files", "files"}, 437 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 438 [RLIMIT_AS] = {"Max address space", "bytes"}, 439 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 440 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 441 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 442 [RLIMIT_NICE] = {"Max nice priority", NULL}, 443 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 444 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 445 }; 446 447 /* Display limits for a process */ 448 static int proc_pid_limits(struct task_struct *task, char *buffer) 449 { 450 unsigned int i; 451 int count = 0; 452 unsigned long flags; 453 char *bufptr = buffer; 454 455 struct rlimit rlim[RLIM_NLIMITS]; 456 457 if (!lock_task_sighand(task, &flags)) 458 return 0; 459 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 460 unlock_task_sighand(task, &flags); 461 462 /* 463 * print the file header 464 */ 465 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 466 "Limit", "Soft Limit", "Hard Limit", "Units"); 467 468 for (i = 0; i < RLIM_NLIMITS; i++) { 469 if (rlim[i].rlim_cur == RLIM_INFINITY) 470 count += sprintf(&bufptr[count], "%-25s %-20s ", 471 lnames[i].name, "unlimited"); 472 else 473 count += sprintf(&bufptr[count], "%-25s %-20lu ", 474 lnames[i].name, rlim[i].rlim_cur); 475 476 if (rlim[i].rlim_max == RLIM_INFINITY) 477 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 478 else 479 count += sprintf(&bufptr[count], "%-20lu ", 480 rlim[i].rlim_max); 481 482 if (lnames[i].unit) 483 count += sprintf(&bufptr[count], "%-10s\n", 484 lnames[i].unit); 485 else 486 count += sprintf(&bufptr[count], "\n"); 487 } 488 489 return count; 490 } 491 492 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 493 static int proc_pid_syscall(struct task_struct *task, char *buffer) 494 { 495 long nr; 496 unsigned long args[6], sp, pc; 497 int res = lock_trace(task); 498 if (res) 499 return res; 500 501 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 502 res = sprintf(buffer, "running\n"); 503 else if (nr < 0) 504 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 505 else 506 res = sprintf(buffer, 507 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 508 nr, 509 args[0], args[1], args[2], args[3], args[4], args[5], 510 sp, pc); 511 unlock_trace(task); 512 return res; 513 } 514 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 515 516 /************************************************************************/ 517 /* Here the fs part begins */ 518 /************************************************************************/ 519 520 /* permission checks */ 521 static int proc_fd_access_allowed(struct inode *inode) 522 { 523 struct task_struct *task; 524 int allowed = 0; 525 /* Allow access to a task's file descriptors if it is us or we 526 * may use ptrace attach to the process and find out that 527 * information. 528 */ 529 task = get_proc_task(inode); 530 if (task) { 531 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 532 put_task_struct(task); 533 } 534 return allowed; 535 } 536 537 int proc_setattr(struct dentry *dentry, struct iattr *attr) 538 { 539 int error; 540 struct inode *inode = dentry->d_inode; 541 542 if (attr->ia_valid & ATTR_MODE) 543 return -EPERM; 544 545 error = inode_change_ok(inode, attr); 546 if (error) 547 return error; 548 549 if ((attr->ia_valid & ATTR_SIZE) && 550 attr->ia_size != i_size_read(inode)) { 551 error = vmtruncate(inode, attr->ia_size); 552 if (error) 553 return error; 554 } 555 556 setattr_copy(inode, attr); 557 mark_inode_dirty(inode); 558 return 0; 559 } 560 561 /* 562 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 563 * or euid/egid (for hide_pid_min=2)? 564 */ 565 static bool has_pid_permissions(struct pid_namespace *pid, 566 struct task_struct *task, 567 int hide_pid_min) 568 { 569 if (pid->hide_pid < hide_pid_min) 570 return true; 571 if (in_group_p(pid->pid_gid)) 572 return true; 573 return ptrace_may_access(task, PTRACE_MODE_READ); 574 } 575 576 577 static int proc_pid_permission(struct inode *inode, int mask) 578 { 579 struct pid_namespace *pid = inode->i_sb->s_fs_info; 580 struct task_struct *task; 581 bool has_perms; 582 583 task = get_proc_task(inode); 584 if (!task) 585 return -ESRCH; 586 has_perms = has_pid_permissions(pid, task, 1); 587 put_task_struct(task); 588 589 if (!has_perms) { 590 if (pid->hide_pid == 2) { 591 /* 592 * Let's make getdents(), stat(), and open() 593 * consistent with each other. If a process 594 * may not stat() a file, it shouldn't be seen 595 * in procfs at all. 596 */ 597 return -ENOENT; 598 } 599 600 return -EPERM; 601 } 602 return generic_permission(inode, mask); 603 } 604 605 606 607 static const struct inode_operations proc_def_inode_operations = { 608 .setattr = proc_setattr, 609 }; 610 611 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 612 613 static ssize_t proc_info_read(struct file * file, char __user * buf, 614 size_t count, loff_t *ppos) 615 { 616 struct inode * inode = file->f_path.dentry->d_inode; 617 unsigned long page; 618 ssize_t length; 619 struct task_struct *task = get_proc_task(inode); 620 621 length = -ESRCH; 622 if (!task) 623 goto out_no_task; 624 625 if (count > PROC_BLOCK_SIZE) 626 count = PROC_BLOCK_SIZE; 627 628 length = -ENOMEM; 629 if (!(page = __get_free_page(GFP_TEMPORARY))) 630 goto out; 631 632 length = PROC_I(inode)->op.proc_read(task, (char*)page); 633 634 if (length >= 0) 635 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 636 free_page(page); 637 out: 638 put_task_struct(task); 639 out_no_task: 640 return length; 641 } 642 643 static const struct file_operations proc_info_file_operations = { 644 .read = proc_info_read, 645 .llseek = generic_file_llseek, 646 }; 647 648 static int proc_single_show(struct seq_file *m, void *v) 649 { 650 struct inode *inode = m->private; 651 struct pid_namespace *ns; 652 struct pid *pid; 653 struct task_struct *task; 654 int ret; 655 656 ns = inode->i_sb->s_fs_info; 657 pid = proc_pid(inode); 658 task = get_pid_task(pid, PIDTYPE_PID); 659 if (!task) 660 return -ESRCH; 661 662 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 663 664 put_task_struct(task); 665 return ret; 666 } 667 668 static int proc_single_open(struct inode *inode, struct file *filp) 669 { 670 return single_open(filp, proc_single_show, inode); 671 } 672 673 static const struct file_operations proc_single_file_operations = { 674 .open = proc_single_open, 675 .read = seq_read, 676 .llseek = seq_lseek, 677 .release = single_release, 678 }; 679 680 static int mem_open(struct inode* inode, struct file* file) 681 { 682 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 683 struct mm_struct *mm; 684 685 if (!task) 686 return -ESRCH; 687 688 mm = mm_access(task, PTRACE_MODE_ATTACH); 689 put_task_struct(task); 690 691 if (IS_ERR(mm)) 692 return PTR_ERR(mm); 693 694 if (mm) { 695 /* ensure this mm_struct can't be freed */ 696 atomic_inc(&mm->mm_count); 697 /* but do not pin its memory */ 698 mmput(mm); 699 } 700 701 /* OK to pass negative loff_t, we can catch out-of-range */ 702 file->f_mode |= FMODE_UNSIGNED_OFFSET; 703 file->private_data = mm; 704 705 return 0; 706 } 707 708 static ssize_t mem_rw(struct file *file, char __user *buf, 709 size_t count, loff_t *ppos, int write) 710 { 711 struct mm_struct *mm = file->private_data; 712 unsigned long addr = *ppos; 713 ssize_t copied; 714 char *page; 715 716 if (!mm) 717 return 0; 718 719 page = (char *)__get_free_page(GFP_TEMPORARY); 720 if (!page) 721 return -ENOMEM; 722 723 copied = 0; 724 if (!atomic_inc_not_zero(&mm->mm_users)) 725 goto free; 726 727 while (count > 0) { 728 int this_len = min_t(int, count, PAGE_SIZE); 729 730 if (write && copy_from_user(page, buf, this_len)) { 731 copied = -EFAULT; 732 break; 733 } 734 735 this_len = access_remote_vm(mm, addr, page, this_len, write); 736 if (!this_len) { 737 if (!copied) 738 copied = -EIO; 739 break; 740 } 741 742 if (!write && copy_to_user(buf, page, this_len)) { 743 copied = -EFAULT; 744 break; 745 } 746 747 buf += this_len; 748 addr += this_len; 749 copied += this_len; 750 count -= this_len; 751 } 752 *ppos = addr; 753 754 mmput(mm); 755 free: 756 free_page((unsigned long) page); 757 return copied; 758 } 759 760 static ssize_t mem_read(struct file *file, char __user *buf, 761 size_t count, loff_t *ppos) 762 { 763 return mem_rw(file, buf, count, ppos, 0); 764 } 765 766 static ssize_t mem_write(struct file *file, const char __user *buf, 767 size_t count, loff_t *ppos) 768 { 769 return mem_rw(file, (char __user*)buf, count, ppos, 1); 770 } 771 772 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 773 { 774 switch (orig) { 775 case 0: 776 file->f_pos = offset; 777 break; 778 case 1: 779 file->f_pos += offset; 780 break; 781 default: 782 return -EINVAL; 783 } 784 force_successful_syscall_return(); 785 return file->f_pos; 786 } 787 788 static int mem_release(struct inode *inode, struct file *file) 789 { 790 struct mm_struct *mm = file->private_data; 791 if (mm) 792 mmdrop(mm); 793 return 0; 794 } 795 796 static const struct file_operations proc_mem_operations = { 797 .llseek = mem_lseek, 798 .read = mem_read, 799 .write = mem_write, 800 .open = mem_open, 801 .release = mem_release, 802 }; 803 804 static ssize_t environ_read(struct file *file, char __user *buf, 805 size_t count, loff_t *ppos) 806 { 807 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 808 char *page; 809 unsigned long src = *ppos; 810 int ret = -ESRCH; 811 struct mm_struct *mm; 812 813 if (!task) 814 goto out_no_task; 815 816 ret = -ENOMEM; 817 page = (char *)__get_free_page(GFP_TEMPORARY); 818 if (!page) 819 goto out; 820 821 822 mm = mm_for_maps(task); 823 ret = PTR_ERR(mm); 824 if (!mm || IS_ERR(mm)) 825 goto out_free; 826 827 ret = 0; 828 while (count > 0) { 829 int this_len, retval, max_len; 830 831 this_len = mm->env_end - (mm->env_start + src); 832 833 if (this_len <= 0) 834 break; 835 836 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 837 this_len = (this_len > max_len) ? max_len : this_len; 838 839 retval = access_process_vm(task, (mm->env_start + src), 840 page, this_len, 0); 841 842 if (retval <= 0) { 843 ret = retval; 844 break; 845 } 846 847 if (copy_to_user(buf, page, retval)) { 848 ret = -EFAULT; 849 break; 850 } 851 852 ret += retval; 853 src += retval; 854 buf += retval; 855 count -= retval; 856 } 857 *ppos = src; 858 859 mmput(mm); 860 out_free: 861 free_page((unsigned long) page); 862 out: 863 put_task_struct(task); 864 out_no_task: 865 return ret; 866 } 867 868 static const struct file_operations proc_environ_operations = { 869 .read = environ_read, 870 .llseek = generic_file_llseek, 871 }; 872 873 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 874 size_t count, loff_t *ppos) 875 { 876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 877 char buffer[PROC_NUMBUF]; 878 size_t len; 879 int oom_adjust = OOM_DISABLE; 880 unsigned long flags; 881 882 if (!task) 883 return -ESRCH; 884 885 if (lock_task_sighand(task, &flags)) { 886 oom_adjust = task->signal->oom_adj; 887 unlock_task_sighand(task, &flags); 888 } 889 890 put_task_struct(task); 891 892 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 893 894 return simple_read_from_buffer(buf, count, ppos, buffer, len); 895 } 896 897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 898 size_t count, loff_t *ppos) 899 { 900 struct task_struct *task; 901 char buffer[PROC_NUMBUF]; 902 int oom_adjust; 903 unsigned long flags; 904 int err; 905 906 memset(buffer, 0, sizeof(buffer)); 907 if (count > sizeof(buffer) - 1) 908 count = sizeof(buffer) - 1; 909 if (copy_from_user(buffer, buf, count)) { 910 err = -EFAULT; 911 goto out; 912 } 913 914 err = kstrtoint(strstrip(buffer), 0, &oom_adjust); 915 if (err) 916 goto out; 917 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 918 oom_adjust != OOM_DISABLE) { 919 err = -EINVAL; 920 goto out; 921 } 922 923 task = get_proc_task(file->f_path.dentry->d_inode); 924 if (!task) { 925 err = -ESRCH; 926 goto out; 927 } 928 929 task_lock(task); 930 if (!task->mm) { 931 err = -EINVAL; 932 goto err_task_lock; 933 } 934 935 if (!lock_task_sighand(task, &flags)) { 936 err = -ESRCH; 937 goto err_task_lock; 938 } 939 940 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 941 err = -EACCES; 942 goto err_sighand; 943 } 944 945 /* 946 * Warn that /proc/pid/oom_adj is deprecated, see 947 * Documentation/feature-removal-schedule.txt. 948 */ 949 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 950 current->comm, task_pid_nr(current), task_pid_nr(task), 951 task_pid_nr(task)); 952 task->signal->oom_adj = oom_adjust; 953 /* 954 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 955 * value is always attainable. 956 */ 957 if (task->signal->oom_adj == OOM_ADJUST_MAX) 958 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX; 959 else 960 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) / 961 -OOM_DISABLE; 962 trace_oom_score_adj_update(task); 963 err_sighand: 964 unlock_task_sighand(task, &flags); 965 err_task_lock: 966 task_unlock(task); 967 put_task_struct(task); 968 out: 969 return err < 0 ? err : count; 970 } 971 972 static const struct file_operations proc_oom_adjust_operations = { 973 .read = oom_adjust_read, 974 .write = oom_adjust_write, 975 .llseek = generic_file_llseek, 976 }; 977 978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 979 size_t count, loff_t *ppos) 980 { 981 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 982 char buffer[PROC_NUMBUF]; 983 int oom_score_adj = OOM_SCORE_ADJ_MIN; 984 unsigned long flags; 985 size_t len; 986 987 if (!task) 988 return -ESRCH; 989 if (lock_task_sighand(task, &flags)) { 990 oom_score_adj = task->signal->oom_score_adj; 991 unlock_task_sighand(task, &flags); 992 } 993 put_task_struct(task); 994 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj); 995 return simple_read_from_buffer(buf, count, ppos, buffer, len); 996 } 997 998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 999 size_t count, loff_t *ppos) 1000 { 1001 struct task_struct *task; 1002 char buffer[PROC_NUMBUF]; 1003 unsigned long flags; 1004 int oom_score_adj; 1005 int err; 1006 1007 memset(buffer, 0, sizeof(buffer)); 1008 if (count > sizeof(buffer) - 1) 1009 count = sizeof(buffer) - 1; 1010 if (copy_from_user(buffer, buf, count)) { 1011 err = -EFAULT; 1012 goto out; 1013 } 1014 1015 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1016 if (err) 1017 goto out; 1018 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1019 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1020 err = -EINVAL; 1021 goto out; 1022 } 1023 1024 task = get_proc_task(file->f_path.dentry->d_inode); 1025 if (!task) { 1026 err = -ESRCH; 1027 goto out; 1028 } 1029 1030 task_lock(task); 1031 if (!task->mm) { 1032 err = -EINVAL; 1033 goto err_task_lock; 1034 } 1035 1036 if (!lock_task_sighand(task, &flags)) { 1037 err = -ESRCH; 1038 goto err_task_lock; 1039 } 1040 1041 if (oom_score_adj < task->signal->oom_score_adj_min && 1042 !capable(CAP_SYS_RESOURCE)) { 1043 err = -EACCES; 1044 goto err_sighand; 1045 } 1046 1047 task->signal->oom_score_adj = oom_score_adj; 1048 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1049 task->signal->oom_score_adj_min = oom_score_adj; 1050 trace_oom_score_adj_update(task); 1051 /* 1052 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is 1053 * always attainable. 1054 */ 1055 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1056 task->signal->oom_adj = OOM_DISABLE; 1057 else 1058 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) / 1059 OOM_SCORE_ADJ_MAX; 1060 err_sighand: 1061 unlock_task_sighand(task, &flags); 1062 err_task_lock: 1063 task_unlock(task); 1064 put_task_struct(task); 1065 out: 1066 return err < 0 ? err : count; 1067 } 1068 1069 static const struct file_operations proc_oom_score_adj_operations = { 1070 .read = oom_score_adj_read, 1071 .write = oom_score_adj_write, 1072 .llseek = default_llseek, 1073 }; 1074 1075 #ifdef CONFIG_AUDITSYSCALL 1076 #define TMPBUFLEN 21 1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1078 size_t count, loff_t *ppos) 1079 { 1080 struct inode * inode = file->f_path.dentry->d_inode; 1081 struct task_struct *task = get_proc_task(inode); 1082 ssize_t length; 1083 char tmpbuf[TMPBUFLEN]; 1084 1085 if (!task) 1086 return -ESRCH; 1087 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1088 audit_get_loginuid(task)); 1089 put_task_struct(task); 1090 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1091 } 1092 1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1094 size_t count, loff_t *ppos) 1095 { 1096 struct inode * inode = file->f_path.dentry->d_inode; 1097 char *page, *tmp; 1098 ssize_t length; 1099 uid_t loginuid; 1100 1101 rcu_read_lock(); 1102 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1103 rcu_read_unlock(); 1104 return -EPERM; 1105 } 1106 rcu_read_unlock(); 1107 1108 if (count >= PAGE_SIZE) 1109 count = PAGE_SIZE - 1; 1110 1111 if (*ppos != 0) { 1112 /* No partial writes. */ 1113 return -EINVAL; 1114 } 1115 page = (char*)__get_free_page(GFP_TEMPORARY); 1116 if (!page) 1117 return -ENOMEM; 1118 length = -EFAULT; 1119 if (copy_from_user(page, buf, count)) 1120 goto out_free_page; 1121 1122 page[count] = '\0'; 1123 loginuid = simple_strtoul(page, &tmp, 10); 1124 if (tmp == page) { 1125 length = -EINVAL; 1126 goto out_free_page; 1127 1128 } 1129 length = audit_set_loginuid(loginuid); 1130 if (likely(length == 0)) 1131 length = count; 1132 1133 out_free_page: 1134 free_page((unsigned long) page); 1135 return length; 1136 } 1137 1138 static const struct file_operations proc_loginuid_operations = { 1139 .read = proc_loginuid_read, 1140 .write = proc_loginuid_write, 1141 .llseek = generic_file_llseek, 1142 }; 1143 1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1145 size_t count, loff_t *ppos) 1146 { 1147 struct inode * inode = file->f_path.dentry->d_inode; 1148 struct task_struct *task = get_proc_task(inode); 1149 ssize_t length; 1150 char tmpbuf[TMPBUFLEN]; 1151 1152 if (!task) 1153 return -ESRCH; 1154 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1155 audit_get_sessionid(task)); 1156 put_task_struct(task); 1157 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1158 } 1159 1160 static const struct file_operations proc_sessionid_operations = { 1161 .read = proc_sessionid_read, 1162 .llseek = generic_file_llseek, 1163 }; 1164 #endif 1165 1166 #ifdef CONFIG_FAULT_INJECTION 1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1168 size_t count, loff_t *ppos) 1169 { 1170 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1171 char buffer[PROC_NUMBUF]; 1172 size_t len; 1173 int make_it_fail; 1174 1175 if (!task) 1176 return -ESRCH; 1177 make_it_fail = task->make_it_fail; 1178 put_task_struct(task); 1179 1180 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1181 1182 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1183 } 1184 1185 static ssize_t proc_fault_inject_write(struct file * file, 1186 const char __user * buf, size_t count, loff_t *ppos) 1187 { 1188 struct task_struct *task; 1189 char buffer[PROC_NUMBUF], *end; 1190 int make_it_fail; 1191 1192 if (!capable(CAP_SYS_RESOURCE)) 1193 return -EPERM; 1194 memset(buffer, 0, sizeof(buffer)); 1195 if (count > sizeof(buffer) - 1) 1196 count = sizeof(buffer) - 1; 1197 if (copy_from_user(buffer, buf, count)) 1198 return -EFAULT; 1199 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1200 if (*end) 1201 return -EINVAL; 1202 task = get_proc_task(file->f_dentry->d_inode); 1203 if (!task) 1204 return -ESRCH; 1205 task->make_it_fail = make_it_fail; 1206 put_task_struct(task); 1207 1208 return count; 1209 } 1210 1211 static const struct file_operations proc_fault_inject_operations = { 1212 .read = proc_fault_inject_read, 1213 .write = proc_fault_inject_write, 1214 .llseek = generic_file_llseek, 1215 }; 1216 #endif 1217 1218 1219 #ifdef CONFIG_SCHED_DEBUG 1220 /* 1221 * Print out various scheduling related per-task fields: 1222 */ 1223 static int sched_show(struct seq_file *m, void *v) 1224 { 1225 struct inode *inode = m->private; 1226 struct task_struct *p; 1227 1228 p = get_proc_task(inode); 1229 if (!p) 1230 return -ESRCH; 1231 proc_sched_show_task(p, m); 1232 1233 put_task_struct(p); 1234 1235 return 0; 1236 } 1237 1238 static ssize_t 1239 sched_write(struct file *file, const char __user *buf, 1240 size_t count, loff_t *offset) 1241 { 1242 struct inode *inode = file->f_path.dentry->d_inode; 1243 struct task_struct *p; 1244 1245 p = get_proc_task(inode); 1246 if (!p) 1247 return -ESRCH; 1248 proc_sched_set_task(p); 1249 1250 put_task_struct(p); 1251 1252 return count; 1253 } 1254 1255 static int sched_open(struct inode *inode, struct file *filp) 1256 { 1257 return single_open(filp, sched_show, inode); 1258 } 1259 1260 static const struct file_operations proc_pid_sched_operations = { 1261 .open = sched_open, 1262 .read = seq_read, 1263 .write = sched_write, 1264 .llseek = seq_lseek, 1265 .release = single_release, 1266 }; 1267 1268 #endif 1269 1270 #ifdef CONFIG_SCHED_AUTOGROUP 1271 /* 1272 * Print out autogroup related information: 1273 */ 1274 static int sched_autogroup_show(struct seq_file *m, void *v) 1275 { 1276 struct inode *inode = m->private; 1277 struct task_struct *p; 1278 1279 p = get_proc_task(inode); 1280 if (!p) 1281 return -ESRCH; 1282 proc_sched_autogroup_show_task(p, m); 1283 1284 put_task_struct(p); 1285 1286 return 0; 1287 } 1288 1289 static ssize_t 1290 sched_autogroup_write(struct file *file, const char __user *buf, 1291 size_t count, loff_t *offset) 1292 { 1293 struct inode *inode = file->f_path.dentry->d_inode; 1294 struct task_struct *p; 1295 char buffer[PROC_NUMBUF]; 1296 int nice; 1297 int err; 1298 1299 memset(buffer, 0, sizeof(buffer)); 1300 if (count > sizeof(buffer) - 1) 1301 count = sizeof(buffer) - 1; 1302 if (copy_from_user(buffer, buf, count)) 1303 return -EFAULT; 1304 1305 err = kstrtoint(strstrip(buffer), 0, &nice); 1306 if (err < 0) 1307 return err; 1308 1309 p = get_proc_task(inode); 1310 if (!p) 1311 return -ESRCH; 1312 1313 err = proc_sched_autogroup_set_nice(p, nice); 1314 if (err) 1315 count = err; 1316 1317 put_task_struct(p); 1318 1319 return count; 1320 } 1321 1322 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1323 { 1324 int ret; 1325 1326 ret = single_open(filp, sched_autogroup_show, NULL); 1327 if (!ret) { 1328 struct seq_file *m = filp->private_data; 1329 1330 m->private = inode; 1331 } 1332 return ret; 1333 } 1334 1335 static const struct file_operations proc_pid_sched_autogroup_operations = { 1336 .open = sched_autogroup_open, 1337 .read = seq_read, 1338 .write = sched_autogroup_write, 1339 .llseek = seq_lseek, 1340 .release = single_release, 1341 }; 1342 1343 #endif /* CONFIG_SCHED_AUTOGROUP */ 1344 1345 static ssize_t comm_write(struct file *file, const char __user *buf, 1346 size_t count, loff_t *offset) 1347 { 1348 struct inode *inode = file->f_path.dentry->d_inode; 1349 struct task_struct *p; 1350 char buffer[TASK_COMM_LEN]; 1351 1352 memset(buffer, 0, sizeof(buffer)); 1353 if (count > sizeof(buffer) - 1) 1354 count = sizeof(buffer) - 1; 1355 if (copy_from_user(buffer, buf, count)) 1356 return -EFAULT; 1357 1358 p = get_proc_task(inode); 1359 if (!p) 1360 return -ESRCH; 1361 1362 if (same_thread_group(current, p)) 1363 set_task_comm(p, buffer); 1364 else 1365 count = -EINVAL; 1366 1367 put_task_struct(p); 1368 1369 return count; 1370 } 1371 1372 static int comm_show(struct seq_file *m, void *v) 1373 { 1374 struct inode *inode = m->private; 1375 struct task_struct *p; 1376 1377 p = get_proc_task(inode); 1378 if (!p) 1379 return -ESRCH; 1380 1381 task_lock(p); 1382 seq_printf(m, "%s\n", p->comm); 1383 task_unlock(p); 1384 1385 put_task_struct(p); 1386 1387 return 0; 1388 } 1389 1390 static int comm_open(struct inode *inode, struct file *filp) 1391 { 1392 return single_open(filp, comm_show, inode); 1393 } 1394 1395 static const struct file_operations proc_pid_set_comm_operations = { 1396 .open = comm_open, 1397 .read = seq_read, 1398 .write = comm_write, 1399 .llseek = seq_lseek, 1400 .release = single_release, 1401 }; 1402 1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1404 { 1405 struct task_struct *task; 1406 struct mm_struct *mm; 1407 struct file *exe_file; 1408 1409 task = get_proc_task(dentry->d_inode); 1410 if (!task) 1411 return -ENOENT; 1412 mm = get_task_mm(task); 1413 put_task_struct(task); 1414 if (!mm) 1415 return -ENOENT; 1416 exe_file = get_mm_exe_file(mm); 1417 mmput(mm); 1418 if (exe_file) { 1419 *exe_path = exe_file->f_path; 1420 path_get(&exe_file->f_path); 1421 fput(exe_file); 1422 return 0; 1423 } else 1424 return -ENOENT; 1425 } 1426 1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1428 { 1429 struct inode *inode = dentry->d_inode; 1430 int error = -EACCES; 1431 1432 /* We don't need a base pointer in the /proc filesystem */ 1433 path_put(&nd->path); 1434 1435 /* Are we allowed to snoop on the tasks file descriptors? */ 1436 if (!proc_fd_access_allowed(inode)) 1437 goto out; 1438 1439 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path); 1440 out: 1441 return ERR_PTR(error); 1442 } 1443 1444 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1445 { 1446 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1447 char *pathname; 1448 int len; 1449 1450 if (!tmp) 1451 return -ENOMEM; 1452 1453 pathname = d_path(path, tmp, PAGE_SIZE); 1454 len = PTR_ERR(pathname); 1455 if (IS_ERR(pathname)) 1456 goto out; 1457 len = tmp + PAGE_SIZE - 1 - pathname; 1458 1459 if (len > buflen) 1460 len = buflen; 1461 if (copy_to_user(buffer, pathname, len)) 1462 len = -EFAULT; 1463 out: 1464 free_page((unsigned long)tmp); 1465 return len; 1466 } 1467 1468 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1469 { 1470 int error = -EACCES; 1471 struct inode *inode = dentry->d_inode; 1472 struct path path; 1473 1474 /* Are we allowed to snoop on the tasks file descriptors? */ 1475 if (!proc_fd_access_allowed(inode)) 1476 goto out; 1477 1478 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1479 if (error) 1480 goto out; 1481 1482 error = do_proc_readlink(&path, buffer, buflen); 1483 path_put(&path); 1484 out: 1485 return error; 1486 } 1487 1488 static const struct inode_operations proc_pid_link_inode_operations = { 1489 .readlink = proc_pid_readlink, 1490 .follow_link = proc_pid_follow_link, 1491 .setattr = proc_setattr, 1492 }; 1493 1494 1495 /* building an inode */ 1496 1497 static int task_dumpable(struct task_struct *task) 1498 { 1499 int dumpable = 0; 1500 struct mm_struct *mm; 1501 1502 task_lock(task); 1503 mm = task->mm; 1504 if (mm) 1505 dumpable = get_dumpable(mm); 1506 task_unlock(task); 1507 if(dumpable == 1) 1508 return 1; 1509 return 0; 1510 } 1511 1512 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1513 { 1514 struct inode * inode; 1515 struct proc_inode *ei; 1516 const struct cred *cred; 1517 1518 /* We need a new inode */ 1519 1520 inode = new_inode(sb); 1521 if (!inode) 1522 goto out; 1523 1524 /* Common stuff */ 1525 ei = PROC_I(inode); 1526 inode->i_ino = get_next_ino(); 1527 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1528 inode->i_op = &proc_def_inode_operations; 1529 1530 /* 1531 * grab the reference to task. 1532 */ 1533 ei->pid = get_task_pid(task, PIDTYPE_PID); 1534 if (!ei->pid) 1535 goto out_unlock; 1536 1537 if (task_dumpable(task)) { 1538 rcu_read_lock(); 1539 cred = __task_cred(task); 1540 inode->i_uid = cred->euid; 1541 inode->i_gid = cred->egid; 1542 rcu_read_unlock(); 1543 } 1544 security_task_to_inode(task, inode); 1545 1546 out: 1547 return inode; 1548 1549 out_unlock: 1550 iput(inode); 1551 return NULL; 1552 } 1553 1554 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1555 { 1556 struct inode *inode = dentry->d_inode; 1557 struct task_struct *task; 1558 const struct cred *cred; 1559 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1560 1561 generic_fillattr(inode, stat); 1562 1563 rcu_read_lock(); 1564 stat->uid = 0; 1565 stat->gid = 0; 1566 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1567 if (task) { 1568 if (!has_pid_permissions(pid, task, 2)) { 1569 rcu_read_unlock(); 1570 /* 1571 * This doesn't prevent learning whether PID exists, 1572 * it only makes getattr() consistent with readdir(). 1573 */ 1574 return -ENOENT; 1575 } 1576 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1577 task_dumpable(task)) { 1578 cred = __task_cred(task); 1579 stat->uid = cred->euid; 1580 stat->gid = cred->egid; 1581 } 1582 } 1583 rcu_read_unlock(); 1584 return 0; 1585 } 1586 1587 /* dentry stuff */ 1588 1589 /* 1590 * Exceptional case: normally we are not allowed to unhash a busy 1591 * directory. In this case, however, we can do it - no aliasing problems 1592 * due to the way we treat inodes. 1593 * 1594 * Rewrite the inode's ownerships here because the owning task may have 1595 * performed a setuid(), etc. 1596 * 1597 * Before the /proc/pid/status file was created the only way to read 1598 * the effective uid of a /process was to stat /proc/pid. Reading 1599 * /proc/pid/status is slow enough that procps and other packages 1600 * kept stating /proc/pid. To keep the rules in /proc simple I have 1601 * made this apply to all per process world readable and executable 1602 * directories. 1603 */ 1604 int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1605 { 1606 struct inode *inode; 1607 struct task_struct *task; 1608 const struct cred *cred; 1609 1610 if (nd && nd->flags & LOOKUP_RCU) 1611 return -ECHILD; 1612 1613 inode = dentry->d_inode; 1614 task = get_proc_task(inode); 1615 1616 if (task) { 1617 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1618 task_dumpable(task)) { 1619 rcu_read_lock(); 1620 cred = __task_cred(task); 1621 inode->i_uid = cred->euid; 1622 inode->i_gid = cred->egid; 1623 rcu_read_unlock(); 1624 } else { 1625 inode->i_uid = 0; 1626 inode->i_gid = 0; 1627 } 1628 inode->i_mode &= ~(S_ISUID | S_ISGID); 1629 security_task_to_inode(task, inode); 1630 put_task_struct(task); 1631 return 1; 1632 } 1633 d_drop(dentry); 1634 return 0; 1635 } 1636 1637 static int pid_delete_dentry(const struct dentry * dentry) 1638 { 1639 /* Is the task we represent dead? 1640 * If so, then don't put the dentry on the lru list, 1641 * kill it immediately. 1642 */ 1643 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1644 } 1645 1646 const struct dentry_operations pid_dentry_operations = 1647 { 1648 .d_revalidate = pid_revalidate, 1649 .d_delete = pid_delete_dentry, 1650 }; 1651 1652 /* Lookups */ 1653 1654 /* 1655 * Fill a directory entry. 1656 * 1657 * If possible create the dcache entry and derive our inode number and 1658 * file type from dcache entry. 1659 * 1660 * Since all of the proc inode numbers are dynamically generated, the inode 1661 * numbers do not exist until the inode is cache. This means creating the 1662 * the dcache entry in readdir is necessary to keep the inode numbers 1663 * reported by readdir in sync with the inode numbers reported 1664 * by stat. 1665 */ 1666 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1667 const char *name, int len, 1668 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1669 { 1670 struct dentry *child, *dir = filp->f_path.dentry; 1671 struct inode *inode; 1672 struct qstr qname; 1673 ino_t ino = 0; 1674 unsigned type = DT_UNKNOWN; 1675 1676 qname.name = name; 1677 qname.len = len; 1678 qname.hash = full_name_hash(name, len); 1679 1680 child = d_lookup(dir, &qname); 1681 if (!child) { 1682 struct dentry *new; 1683 new = d_alloc(dir, &qname); 1684 if (new) { 1685 child = instantiate(dir->d_inode, new, task, ptr); 1686 if (child) 1687 dput(new); 1688 else 1689 child = new; 1690 } 1691 } 1692 if (!child || IS_ERR(child) || !child->d_inode) 1693 goto end_instantiate; 1694 inode = child->d_inode; 1695 if (inode) { 1696 ino = inode->i_ino; 1697 type = inode->i_mode >> 12; 1698 } 1699 dput(child); 1700 end_instantiate: 1701 if (!ino) 1702 ino = find_inode_number(dir, &qname); 1703 if (!ino) 1704 ino = 1; 1705 return filldir(dirent, name, len, filp->f_pos, ino, type); 1706 } 1707 1708 static unsigned name_to_int(struct dentry *dentry) 1709 { 1710 const char *name = dentry->d_name.name; 1711 int len = dentry->d_name.len; 1712 unsigned n = 0; 1713 1714 if (len > 1 && *name == '0') 1715 goto out; 1716 while (len-- > 0) { 1717 unsigned c = *name++ - '0'; 1718 if (c > 9) 1719 goto out; 1720 if (n >= (~0U-9)/10) 1721 goto out; 1722 n *= 10; 1723 n += c; 1724 } 1725 return n; 1726 out: 1727 return ~0U; 1728 } 1729 1730 #define PROC_FDINFO_MAX 64 1731 1732 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1733 { 1734 struct task_struct *task = get_proc_task(inode); 1735 struct files_struct *files = NULL; 1736 struct file *file; 1737 int fd = proc_fd(inode); 1738 1739 if (task) { 1740 files = get_files_struct(task); 1741 put_task_struct(task); 1742 } 1743 if (files) { 1744 /* 1745 * We are not taking a ref to the file structure, so we must 1746 * hold ->file_lock. 1747 */ 1748 spin_lock(&files->file_lock); 1749 file = fcheck_files(files, fd); 1750 if (file) { 1751 unsigned int f_flags; 1752 struct fdtable *fdt; 1753 1754 fdt = files_fdtable(files); 1755 f_flags = file->f_flags & ~O_CLOEXEC; 1756 if (close_on_exec(fd, fdt)) 1757 f_flags |= O_CLOEXEC; 1758 1759 if (path) { 1760 *path = file->f_path; 1761 path_get(&file->f_path); 1762 } 1763 if (info) 1764 snprintf(info, PROC_FDINFO_MAX, 1765 "pos:\t%lli\n" 1766 "flags:\t0%o\n", 1767 (long long) file->f_pos, 1768 f_flags); 1769 spin_unlock(&files->file_lock); 1770 put_files_struct(files); 1771 return 0; 1772 } 1773 spin_unlock(&files->file_lock); 1774 put_files_struct(files); 1775 } 1776 return -ENOENT; 1777 } 1778 1779 static int proc_fd_link(struct dentry *dentry, struct path *path) 1780 { 1781 return proc_fd_info(dentry->d_inode, path, NULL); 1782 } 1783 1784 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1785 { 1786 struct inode *inode; 1787 struct task_struct *task; 1788 int fd; 1789 struct files_struct *files; 1790 const struct cred *cred; 1791 1792 if (nd && nd->flags & LOOKUP_RCU) 1793 return -ECHILD; 1794 1795 inode = dentry->d_inode; 1796 task = get_proc_task(inode); 1797 fd = proc_fd(inode); 1798 1799 if (task) { 1800 files = get_files_struct(task); 1801 if (files) { 1802 rcu_read_lock(); 1803 if (fcheck_files(files, fd)) { 1804 rcu_read_unlock(); 1805 put_files_struct(files); 1806 if (task_dumpable(task)) { 1807 rcu_read_lock(); 1808 cred = __task_cred(task); 1809 inode->i_uid = cred->euid; 1810 inode->i_gid = cred->egid; 1811 rcu_read_unlock(); 1812 } else { 1813 inode->i_uid = 0; 1814 inode->i_gid = 0; 1815 } 1816 inode->i_mode &= ~(S_ISUID | S_ISGID); 1817 security_task_to_inode(task, inode); 1818 put_task_struct(task); 1819 return 1; 1820 } 1821 rcu_read_unlock(); 1822 put_files_struct(files); 1823 } 1824 put_task_struct(task); 1825 } 1826 d_drop(dentry); 1827 return 0; 1828 } 1829 1830 static const struct dentry_operations tid_fd_dentry_operations = 1831 { 1832 .d_revalidate = tid_fd_revalidate, 1833 .d_delete = pid_delete_dentry, 1834 }; 1835 1836 static struct dentry *proc_fd_instantiate(struct inode *dir, 1837 struct dentry *dentry, struct task_struct *task, const void *ptr) 1838 { 1839 unsigned fd = *(const unsigned *)ptr; 1840 struct file *file; 1841 struct files_struct *files; 1842 struct inode *inode; 1843 struct proc_inode *ei; 1844 struct dentry *error = ERR_PTR(-ENOENT); 1845 1846 inode = proc_pid_make_inode(dir->i_sb, task); 1847 if (!inode) 1848 goto out; 1849 ei = PROC_I(inode); 1850 ei->fd = fd; 1851 files = get_files_struct(task); 1852 if (!files) 1853 goto out_iput; 1854 inode->i_mode = S_IFLNK; 1855 1856 /* 1857 * We are not taking a ref to the file structure, so we must 1858 * hold ->file_lock. 1859 */ 1860 spin_lock(&files->file_lock); 1861 file = fcheck_files(files, fd); 1862 if (!file) 1863 goto out_unlock; 1864 if (file->f_mode & FMODE_READ) 1865 inode->i_mode |= S_IRUSR | S_IXUSR; 1866 if (file->f_mode & FMODE_WRITE) 1867 inode->i_mode |= S_IWUSR | S_IXUSR; 1868 spin_unlock(&files->file_lock); 1869 put_files_struct(files); 1870 1871 inode->i_op = &proc_pid_link_inode_operations; 1872 inode->i_size = 64; 1873 ei->op.proc_get_link = proc_fd_link; 1874 d_set_d_op(dentry, &tid_fd_dentry_operations); 1875 d_add(dentry, inode); 1876 /* Close the race of the process dying before we return the dentry */ 1877 if (tid_fd_revalidate(dentry, NULL)) 1878 error = NULL; 1879 1880 out: 1881 return error; 1882 out_unlock: 1883 spin_unlock(&files->file_lock); 1884 put_files_struct(files); 1885 out_iput: 1886 iput(inode); 1887 goto out; 1888 } 1889 1890 static struct dentry *proc_lookupfd_common(struct inode *dir, 1891 struct dentry *dentry, 1892 instantiate_t instantiate) 1893 { 1894 struct task_struct *task = get_proc_task(dir); 1895 unsigned fd = name_to_int(dentry); 1896 struct dentry *result = ERR_PTR(-ENOENT); 1897 1898 if (!task) 1899 goto out_no_task; 1900 if (fd == ~0U) 1901 goto out; 1902 1903 result = instantiate(dir, dentry, task, &fd); 1904 out: 1905 put_task_struct(task); 1906 out_no_task: 1907 return result; 1908 } 1909 1910 static int proc_readfd_common(struct file * filp, void * dirent, 1911 filldir_t filldir, instantiate_t instantiate) 1912 { 1913 struct dentry *dentry = filp->f_path.dentry; 1914 struct inode *inode = dentry->d_inode; 1915 struct task_struct *p = get_proc_task(inode); 1916 unsigned int fd, ino; 1917 int retval; 1918 struct files_struct * files; 1919 1920 retval = -ENOENT; 1921 if (!p) 1922 goto out_no_task; 1923 retval = 0; 1924 1925 fd = filp->f_pos; 1926 switch (fd) { 1927 case 0: 1928 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1929 goto out; 1930 filp->f_pos++; 1931 case 1: 1932 ino = parent_ino(dentry); 1933 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1934 goto out; 1935 filp->f_pos++; 1936 default: 1937 files = get_files_struct(p); 1938 if (!files) 1939 goto out; 1940 rcu_read_lock(); 1941 for (fd = filp->f_pos-2; 1942 fd < files_fdtable(files)->max_fds; 1943 fd++, filp->f_pos++) { 1944 char name[PROC_NUMBUF]; 1945 int len; 1946 1947 if (!fcheck_files(files, fd)) 1948 continue; 1949 rcu_read_unlock(); 1950 1951 len = snprintf(name, sizeof(name), "%d", fd); 1952 if (proc_fill_cache(filp, dirent, filldir, 1953 name, len, instantiate, 1954 p, &fd) < 0) { 1955 rcu_read_lock(); 1956 break; 1957 } 1958 rcu_read_lock(); 1959 } 1960 rcu_read_unlock(); 1961 put_files_struct(files); 1962 } 1963 out: 1964 put_task_struct(p); 1965 out_no_task: 1966 return retval; 1967 } 1968 1969 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1970 struct nameidata *nd) 1971 { 1972 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1973 } 1974 1975 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1976 { 1977 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1978 } 1979 1980 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1981 size_t len, loff_t *ppos) 1982 { 1983 char tmp[PROC_FDINFO_MAX]; 1984 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1985 if (!err) 1986 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1987 return err; 1988 } 1989 1990 static const struct file_operations proc_fdinfo_file_operations = { 1991 .open = nonseekable_open, 1992 .read = proc_fdinfo_read, 1993 .llseek = no_llseek, 1994 }; 1995 1996 static const struct file_operations proc_fd_operations = { 1997 .read = generic_read_dir, 1998 .readdir = proc_readfd, 1999 .llseek = default_llseek, 2000 }; 2001 2002 #ifdef CONFIG_CHECKPOINT_RESTORE 2003 2004 /* 2005 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2006 * which represent vma start and end addresses. 2007 */ 2008 static int dname_to_vma_addr(struct dentry *dentry, 2009 unsigned long *start, unsigned long *end) 2010 { 2011 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 2012 return -EINVAL; 2013 2014 return 0; 2015 } 2016 2017 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd) 2018 { 2019 unsigned long vm_start, vm_end; 2020 bool exact_vma_exists = false; 2021 struct mm_struct *mm = NULL; 2022 struct task_struct *task; 2023 const struct cred *cred; 2024 struct inode *inode; 2025 int status = 0; 2026 2027 if (nd && nd->flags & LOOKUP_RCU) 2028 return -ECHILD; 2029 2030 if (!capable(CAP_SYS_ADMIN)) { 2031 status = -EACCES; 2032 goto out_notask; 2033 } 2034 2035 inode = dentry->d_inode; 2036 task = get_proc_task(inode); 2037 if (!task) 2038 goto out_notask; 2039 2040 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2041 goto out; 2042 2043 mm = get_task_mm(task); 2044 if (!mm) 2045 goto out; 2046 2047 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2048 down_read(&mm->mmap_sem); 2049 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 2050 up_read(&mm->mmap_sem); 2051 } 2052 2053 mmput(mm); 2054 2055 if (exact_vma_exists) { 2056 if (task_dumpable(task)) { 2057 rcu_read_lock(); 2058 cred = __task_cred(task); 2059 inode->i_uid = cred->euid; 2060 inode->i_gid = cred->egid; 2061 rcu_read_unlock(); 2062 } else { 2063 inode->i_uid = 0; 2064 inode->i_gid = 0; 2065 } 2066 security_task_to_inode(task, inode); 2067 status = 1; 2068 } 2069 2070 out: 2071 put_task_struct(task); 2072 2073 out_notask: 2074 if (status <= 0) 2075 d_drop(dentry); 2076 2077 return status; 2078 } 2079 2080 static const struct dentry_operations tid_map_files_dentry_operations = { 2081 .d_revalidate = map_files_d_revalidate, 2082 .d_delete = pid_delete_dentry, 2083 }; 2084 2085 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 2086 { 2087 unsigned long vm_start, vm_end; 2088 struct vm_area_struct *vma; 2089 struct task_struct *task; 2090 struct mm_struct *mm; 2091 int rc; 2092 2093 rc = -ENOENT; 2094 task = get_proc_task(dentry->d_inode); 2095 if (!task) 2096 goto out; 2097 2098 mm = get_task_mm(task); 2099 put_task_struct(task); 2100 if (!mm) 2101 goto out; 2102 2103 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2104 if (rc) 2105 goto out_mmput; 2106 2107 down_read(&mm->mmap_sem); 2108 vma = find_exact_vma(mm, vm_start, vm_end); 2109 if (vma && vma->vm_file) { 2110 *path = vma->vm_file->f_path; 2111 path_get(path); 2112 rc = 0; 2113 } 2114 up_read(&mm->mmap_sem); 2115 2116 out_mmput: 2117 mmput(mm); 2118 out: 2119 return rc; 2120 } 2121 2122 struct map_files_info { 2123 struct file *file; 2124 unsigned long len; 2125 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 2126 }; 2127 2128 static struct dentry * 2129 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2130 struct task_struct *task, const void *ptr) 2131 { 2132 const struct file *file = ptr; 2133 struct proc_inode *ei; 2134 struct inode *inode; 2135 2136 if (!file) 2137 return ERR_PTR(-ENOENT); 2138 2139 inode = proc_pid_make_inode(dir->i_sb, task); 2140 if (!inode) 2141 return ERR_PTR(-ENOENT); 2142 2143 ei = PROC_I(inode); 2144 ei->op.proc_get_link = proc_map_files_get_link; 2145 2146 inode->i_op = &proc_pid_link_inode_operations; 2147 inode->i_size = 64; 2148 inode->i_mode = S_IFLNK; 2149 2150 if (file->f_mode & FMODE_READ) 2151 inode->i_mode |= S_IRUSR; 2152 if (file->f_mode & FMODE_WRITE) 2153 inode->i_mode |= S_IWUSR; 2154 2155 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2156 d_add(dentry, inode); 2157 2158 return NULL; 2159 } 2160 2161 static struct dentry *proc_map_files_lookup(struct inode *dir, 2162 struct dentry *dentry, struct nameidata *nd) 2163 { 2164 unsigned long vm_start, vm_end; 2165 struct vm_area_struct *vma; 2166 struct task_struct *task; 2167 struct dentry *result; 2168 struct mm_struct *mm; 2169 2170 result = ERR_PTR(-EACCES); 2171 if (!capable(CAP_SYS_ADMIN)) 2172 goto out; 2173 2174 result = ERR_PTR(-ENOENT); 2175 task = get_proc_task(dir); 2176 if (!task) 2177 goto out; 2178 2179 result = ERR_PTR(-EACCES); 2180 if (lock_trace(task)) 2181 goto out_put_task; 2182 2183 result = ERR_PTR(-ENOENT); 2184 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2185 goto out_unlock; 2186 2187 mm = get_task_mm(task); 2188 if (!mm) 2189 goto out_unlock; 2190 2191 down_read(&mm->mmap_sem); 2192 vma = find_exact_vma(mm, vm_start, vm_end); 2193 if (!vma) 2194 goto out_no_vma; 2195 2196 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file); 2197 2198 out_no_vma: 2199 up_read(&mm->mmap_sem); 2200 mmput(mm); 2201 out_unlock: 2202 unlock_trace(task); 2203 out_put_task: 2204 put_task_struct(task); 2205 out: 2206 return result; 2207 } 2208 2209 static const struct inode_operations proc_map_files_inode_operations = { 2210 .lookup = proc_map_files_lookup, 2211 .permission = proc_fd_permission, 2212 .setattr = proc_setattr, 2213 }; 2214 2215 static int 2216 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 2217 { 2218 struct dentry *dentry = filp->f_path.dentry; 2219 struct inode *inode = dentry->d_inode; 2220 struct vm_area_struct *vma; 2221 struct task_struct *task; 2222 struct mm_struct *mm; 2223 ino_t ino; 2224 int ret; 2225 2226 ret = -EACCES; 2227 if (!capable(CAP_SYS_ADMIN)) 2228 goto out; 2229 2230 ret = -ENOENT; 2231 task = get_proc_task(inode); 2232 if (!task) 2233 goto out; 2234 2235 ret = -EACCES; 2236 if (lock_trace(task)) 2237 goto out_put_task; 2238 2239 ret = 0; 2240 switch (filp->f_pos) { 2241 case 0: 2242 ino = inode->i_ino; 2243 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 2244 goto out_unlock; 2245 filp->f_pos++; 2246 case 1: 2247 ino = parent_ino(dentry); 2248 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 2249 goto out_unlock; 2250 filp->f_pos++; 2251 default: 2252 { 2253 unsigned long nr_files, pos, i; 2254 struct flex_array *fa = NULL; 2255 struct map_files_info info; 2256 struct map_files_info *p; 2257 2258 mm = get_task_mm(task); 2259 if (!mm) 2260 goto out_unlock; 2261 down_read(&mm->mmap_sem); 2262 2263 nr_files = 0; 2264 2265 /* 2266 * We need two passes here: 2267 * 2268 * 1) Collect vmas of mapped files with mmap_sem taken 2269 * 2) Release mmap_sem and instantiate entries 2270 * 2271 * otherwise we get lockdep complained, since filldir() 2272 * routine might require mmap_sem taken in might_fault(). 2273 */ 2274 2275 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2276 if (vma->vm_file && ++pos > filp->f_pos) 2277 nr_files++; 2278 } 2279 2280 if (nr_files) { 2281 fa = flex_array_alloc(sizeof(info), nr_files, 2282 GFP_KERNEL); 2283 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2284 GFP_KERNEL)) { 2285 ret = -ENOMEM; 2286 if (fa) 2287 flex_array_free(fa); 2288 up_read(&mm->mmap_sem); 2289 mmput(mm); 2290 goto out_unlock; 2291 } 2292 for (i = 0, vma = mm->mmap, pos = 2; vma; 2293 vma = vma->vm_next) { 2294 if (!vma->vm_file) 2295 continue; 2296 if (++pos <= filp->f_pos) 2297 continue; 2298 2299 get_file(vma->vm_file); 2300 info.file = vma->vm_file; 2301 info.len = snprintf(info.name, 2302 sizeof(info.name), "%lx-%lx", 2303 vma->vm_start, vma->vm_end); 2304 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2305 BUG(); 2306 } 2307 } 2308 up_read(&mm->mmap_sem); 2309 2310 for (i = 0; i < nr_files; i++) { 2311 p = flex_array_get(fa, i); 2312 ret = proc_fill_cache(filp, dirent, filldir, 2313 p->name, p->len, 2314 proc_map_files_instantiate, 2315 task, p->file); 2316 if (ret) 2317 break; 2318 filp->f_pos++; 2319 fput(p->file); 2320 } 2321 for (; i < nr_files; i++) { 2322 /* 2323 * In case of error don't forget 2324 * to put rest of file refs. 2325 */ 2326 p = flex_array_get(fa, i); 2327 fput(p->file); 2328 } 2329 if (fa) 2330 flex_array_free(fa); 2331 mmput(mm); 2332 } 2333 } 2334 2335 out_unlock: 2336 unlock_trace(task); 2337 out_put_task: 2338 put_task_struct(task); 2339 out: 2340 return ret; 2341 } 2342 2343 static const struct file_operations proc_map_files_operations = { 2344 .read = generic_read_dir, 2345 .readdir = proc_map_files_readdir, 2346 .llseek = default_llseek, 2347 }; 2348 2349 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2350 2351 /* 2352 * /proc/pid/fd needs a special permission handler so that a process can still 2353 * access /proc/self/fd after it has executed a setuid(). 2354 */ 2355 static int proc_fd_permission(struct inode *inode, int mask) 2356 { 2357 int rv = generic_permission(inode, mask); 2358 if (rv == 0) 2359 return 0; 2360 if (task_pid(current) == proc_pid(inode)) 2361 rv = 0; 2362 return rv; 2363 } 2364 2365 /* 2366 * proc directories can do almost nothing.. 2367 */ 2368 static const struct inode_operations proc_fd_inode_operations = { 2369 .lookup = proc_lookupfd, 2370 .permission = proc_fd_permission, 2371 .setattr = proc_setattr, 2372 }; 2373 2374 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 2375 struct dentry *dentry, struct task_struct *task, const void *ptr) 2376 { 2377 unsigned fd = *(unsigned *)ptr; 2378 struct inode *inode; 2379 struct proc_inode *ei; 2380 struct dentry *error = ERR_PTR(-ENOENT); 2381 2382 inode = proc_pid_make_inode(dir->i_sb, task); 2383 if (!inode) 2384 goto out; 2385 ei = PROC_I(inode); 2386 ei->fd = fd; 2387 inode->i_mode = S_IFREG | S_IRUSR; 2388 inode->i_fop = &proc_fdinfo_file_operations; 2389 d_set_d_op(dentry, &tid_fd_dentry_operations); 2390 d_add(dentry, inode); 2391 /* Close the race of the process dying before we return the dentry */ 2392 if (tid_fd_revalidate(dentry, NULL)) 2393 error = NULL; 2394 2395 out: 2396 return error; 2397 } 2398 2399 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2400 struct dentry *dentry, 2401 struct nameidata *nd) 2402 { 2403 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2404 } 2405 2406 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2407 { 2408 return proc_readfd_common(filp, dirent, filldir, 2409 proc_fdinfo_instantiate); 2410 } 2411 2412 static const struct file_operations proc_fdinfo_operations = { 2413 .read = generic_read_dir, 2414 .readdir = proc_readfdinfo, 2415 .llseek = default_llseek, 2416 }; 2417 2418 /* 2419 * proc directories can do almost nothing.. 2420 */ 2421 static const struct inode_operations proc_fdinfo_inode_operations = { 2422 .lookup = proc_lookupfdinfo, 2423 .setattr = proc_setattr, 2424 }; 2425 2426 2427 static struct dentry *proc_pident_instantiate(struct inode *dir, 2428 struct dentry *dentry, struct task_struct *task, const void *ptr) 2429 { 2430 const struct pid_entry *p = ptr; 2431 struct inode *inode; 2432 struct proc_inode *ei; 2433 struct dentry *error = ERR_PTR(-ENOENT); 2434 2435 inode = proc_pid_make_inode(dir->i_sb, task); 2436 if (!inode) 2437 goto out; 2438 2439 ei = PROC_I(inode); 2440 inode->i_mode = p->mode; 2441 if (S_ISDIR(inode->i_mode)) 2442 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2443 if (p->iop) 2444 inode->i_op = p->iop; 2445 if (p->fop) 2446 inode->i_fop = p->fop; 2447 ei->op = p->op; 2448 d_set_d_op(dentry, &pid_dentry_operations); 2449 d_add(dentry, inode); 2450 /* Close the race of the process dying before we return the dentry */ 2451 if (pid_revalidate(dentry, NULL)) 2452 error = NULL; 2453 out: 2454 return error; 2455 } 2456 2457 static struct dentry *proc_pident_lookup(struct inode *dir, 2458 struct dentry *dentry, 2459 const struct pid_entry *ents, 2460 unsigned int nents) 2461 { 2462 struct dentry *error; 2463 struct task_struct *task = get_proc_task(dir); 2464 const struct pid_entry *p, *last; 2465 2466 error = ERR_PTR(-ENOENT); 2467 2468 if (!task) 2469 goto out_no_task; 2470 2471 /* 2472 * Yes, it does not scale. And it should not. Don't add 2473 * new entries into /proc/<tgid>/ without very good reasons. 2474 */ 2475 last = &ents[nents - 1]; 2476 for (p = ents; p <= last; p++) { 2477 if (p->len != dentry->d_name.len) 2478 continue; 2479 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2480 break; 2481 } 2482 if (p > last) 2483 goto out; 2484 2485 error = proc_pident_instantiate(dir, dentry, task, p); 2486 out: 2487 put_task_struct(task); 2488 out_no_task: 2489 return error; 2490 } 2491 2492 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2493 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2494 { 2495 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2496 proc_pident_instantiate, task, p); 2497 } 2498 2499 static int proc_pident_readdir(struct file *filp, 2500 void *dirent, filldir_t filldir, 2501 const struct pid_entry *ents, unsigned int nents) 2502 { 2503 int i; 2504 struct dentry *dentry = filp->f_path.dentry; 2505 struct inode *inode = dentry->d_inode; 2506 struct task_struct *task = get_proc_task(inode); 2507 const struct pid_entry *p, *last; 2508 ino_t ino; 2509 int ret; 2510 2511 ret = -ENOENT; 2512 if (!task) 2513 goto out_no_task; 2514 2515 ret = 0; 2516 i = filp->f_pos; 2517 switch (i) { 2518 case 0: 2519 ino = inode->i_ino; 2520 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2521 goto out; 2522 i++; 2523 filp->f_pos++; 2524 /* fall through */ 2525 case 1: 2526 ino = parent_ino(dentry); 2527 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2528 goto out; 2529 i++; 2530 filp->f_pos++; 2531 /* fall through */ 2532 default: 2533 i -= 2; 2534 if (i >= nents) { 2535 ret = 1; 2536 goto out; 2537 } 2538 p = ents + i; 2539 last = &ents[nents - 1]; 2540 while (p <= last) { 2541 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2542 goto out; 2543 filp->f_pos++; 2544 p++; 2545 } 2546 } 2547 2548 ret = 1; 2549 out: 2550 put_task_struct(task); 2551 out_no_task: 2552 return ret; 2553 } 2554 2555 #ifdef CONFIG_SECURITY 2556 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2557 size_t count, loff_t *ppos) 2558 { 2559 struct inode * inode = file->f_path.dentry->d_inode; 2560 char *p = NULL; 2561 ssize_t length; 2562 struct task_struct *task = get_proc_task(inode); 2563 2564 if (!task) 2565 return -ESRCH; 2566 2567 length = security_getprocattr(task, 2568 (char*)file->f_path.dentry->d_name.name, 2569 &p); 2570 put_task_struct(task); 2571 if (length > 0) 2572 length = simple_read_from_buffer(buf, count, ppos, p, length); 2573 kfree(p); 2574 return length; 2575 } 2576 2577 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2578 size_t count, loff_t *ppos) 2579 { 2580 struct inode * inode = file->f_path.dentry->d_inode; 2581 char *page; 2582 ssize_t length; 2583 struct task_struct *task = get_proc_task(inode); 2584 2585 length = -ESRCH; 2586 if (!task) 2587 goto out_no_task; 2588 if (count > PAGE_SIZE) 2589 count = PAGE_SIZE; 2590 2591 /* No partial writes. */ 2592 length = -EINVAL; 2593 if (*ppos != 0) 2594 goto out; 2595 2596 length = -ENOMEM; 2597 page = (char*)__get_free_page(GFP_TEMPORARY); 2598 if (!page) 2599 goto out; 2600 2601 length = -EFAULT; 2602 if (copy_from_user(page, buf, count)) 2603 goto out_free; 2604 2605 /* Guard against adverse ptrace interaction */ 2606 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2607 if (length < 0) 2608 goto out_free; 2609 2610 length = security_setprocattr(task, 2611 (char*)file->f_path.dentry->d_name.name, 2612 (void*)page, count); 2613 mutex_unlock(&task->signal->cred_guard_mutex); 2614 out_free: 2615 free_page((unsigned long) page); 2616 out: 2617 put_task_struct(task); 2618 out_no_task: 2619 return length; 2620 } 2621 2622 static const struct file_operations proc_pid_attr_operations = { 2623 .read = proc_pid_attr_read, 2624 .write = proc_pid_attr_write, 2625 .llseek = generic_file_llseek, 2626 }; 2627 2628 static const struct pid_entry attr_dir_stuff[] = { 2629 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2630 REG("prev", S_IRUGO, proc_pid_attr_operations), 2631 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2632 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2633 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2634 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2635 }; 2636 2637 static int proc_attr_dir_readdir(struct file * filp, 2638 void * dirent, filldir_t filldir) 2639 { 2640 return proc_pident_readdir(filp,dirent,filldir, 2641 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2642 } 2643 2644 static const struct file_operations proc_attr_dir_operations = { 2645 .read = generic_read_dir, 2646 .readdir = proc_attr_dir_readdir, 2647 .llseek = default_llseek, 2648 }; 2649 2650 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2651 struct dentry *dentry, struct nameidata *nd) 2652 { 2653 return proc_pident_lookup(dir, dentry, 2654 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2655 } 2656 2657 static const struct inode_operations proc_attr_dir_inode_operations = { 2658 .lookup = proc_attr_dir_lookup, 2659 .getattr = pid_getattr, 2660 .setattr = proc_setattr, 2661 }; 2662 2663 #endif 2664 2665 #ifdef CONFIG_ELF_CORE 2666 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2667 size_t count, loff_t *ppos) 2668 { 2669 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2670 struct mm_struct *mm; 2671 char buffer[PROC_NUMBUF]; 2672 size_t len; 2673 int ret; 2674 2675 if (!task) 2676 return -ESRCH; 2677 2678 ret = 0; 2679 mm = get_task_mm(task); 2680 if (mm) { 2681 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2682 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2683 MMF_DUMP_FILTER_SHIFT)); 2684 mmput(mm); 2685 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2686 } 2687 2688 put_task_struct(task); 2689 2690 return ret; 2691 } 2692 2693 static ssize_t proc_coredump_filter_write(struct file *file, 2694 const char __user *buf, 2695 size_t count, 2696 loff_t *ppos) 2697 { 2698 struct task_struct *task; 2699 struct mm_struct *mm; 2700 char buffer[PROC_NUMBUF], *end; 2701 unsigned int val; 2702 int ret; 2703 int i; 2704 unsigned long mask; 2705 2706 ret = -EFAULT; 2707 memset(buffer, 0, sizeof(buffer)); 2708 if (count > sizeof(buffer) - 1) 2709 count = sizeof(buffer) - 1; 2710 if (copy_from_user(buffer, buf, count)) 2711 goto out_no_task; 2712 2713 ret = -EINVAL; 2714 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2715 if (*end == '\n') 2716 end++; 2717 if (end - buffer == 0) 2718 goto out_no_task; 2719 2720 ret = -ESRCH; 2721 task = get_proc_task(file->f_dentry->d_inode); 2722 if (!task) 2723 goto out_no_task; 2724 2725 ret = end - buffer; 2726 mm = get_task_mm(task); 2727 if (!mm) 2728 goto out_no_mm; 2729 2730 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2731 if (val & mask) 2732 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2733 else 2734 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2735 } 2736 2737 mmput(mm); 2738 out_no_mm: 2739 put_task_struct(task); 2740 out_no_task: 2741 return ret; 2742 } 2743 2744 static const struct file_operations proc_coredump_filter_operations = { 2745 .read = proc_coredump_filter_read, 2746 .write = proc_coredump_filter_write, 2747 .llseek = generic_file_llseek, 2748 }; 2749 #endif 2750 2751 /* 2752 * /proc/self: 2753 */ 2754 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2755 int buflen) 2756 { 2757 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2758 pid_t tgid = task_tgid_nr_ns(current, ns); 2759 char tmp[PROC_NUMBUF]; 2760 if (!tgid) 2761 return -ENOENT; 2762 sprintf(tmp, "%d", tgid); 2763 return vfs_readlink(dentry,buffer,buflen,tmp); 2764 } 2765 2766 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2767 { 2768 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2769 pid_t tgid = task_tgid_nr_ns(current, ns); 2770 char *name = ERR_PTR(-ENOENT); 2771 if (tgid) { 2772 name = __getname(); 2773 if (!name) 2774 name = ERR_PTR(-ENOMEM); 2775 else 2776 sprintf(name, "%d", tgid); 2777 } 2778 nd_set_link(nd, name); 2779 return NULL; 2780 } 2781 2782 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2783 void *cookie) 2784 { 2785 char *s = nd_get_link(nd); 2786 if (!IS_ERR(s)) 2787 __putname(s); 2788 } 2789 2790 static const struct inode_operations proc_self_inode_operations = { 2791 .readlink = proc_self_readlink, 2792 .follow_link = proc_self_follow_link, 2793 .put_link = proc_self_put_link, 2794 }; 2795 2796 /* 2797 * proc base 2798 * 2799 * These are the directory entries in the root directory of /proc 2800 * that properly belong to the /proc filesystem, as they describe 2801 * describe something that is process related. 2802 */ 2803 static const struct pid_entry proc_base_stuff[] = { 2804 NOD("self", S_IFLNK|S_IRWXUGO, 2805 &proc_self_inode_operations, NULL, {}), 2806 }; 2807 2808 static struct dentry *proc_base_instantiate(struct inode *dir, 2809 struct dentry *dentry, struct task_struct *task, const void *ptr) 2810 { 2811 const struct pid_entry *p = ptr; 2812 struct inode *inode; 2813 struct proc_inode *ei; 2814 struct dentry *error; 2815 2816 /* Allocate the inode */ 2817 error = ERR_PTR(-ENOMEM); 2818 inode = new_inode(dir->i_sb); 2819 if (!inode) 2820 goto out; 2821 2822 /* Initialize the inode */ 2823 ei = PROC_I(inode); 2824 inode->i_ino = get_next_ino(); 2825 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2826 2827 /* 2828 * grab the reference to the task. 2829 */ 2830 ei->pid = get_task_pid(task, PIDTYPE_PID); 2831 if (!ei->pid) 2832 goto out_iput; 2833 2834 inode->i_mode = p->mode; 2835 if (S_ISDIR(inode->i_mode)) 2836 set_nlink(inode, 2); 2837 if (S_ISLNK(inode->i_mode)) 2838 inode->i_size = 64; 2839 if (p->iop) 2840 inode->i_op = p->iop; 2841 if (p->fop) 2842 inode->i_fop = p->fop; 2843 ei->op = p->op; 2844 d_add(dentry, inode); 2845 error = NULL; 2846 out: 2847 return error; 2848 out_iput: 2849 iput(inode); 2850 goto out; 2851 } 2852 2853 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2854 { 2855 struct dentry *error; 2856 struct task_struct *task = get_proc_task(dir); 2857 const struct pid_entry *p, *last; 2858 2859 error = ERR_PTR(-ENOENT); 2860 2861 if (!task) 2862 goto out_no_task; 2863 2864 /* Lookup the directory entry */ 2865 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2866 for (p = proc_base_stuff; p <= last; p++) { 2867 if (p->len != dentry->d_name.len) 2868 continue; 2869 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2870 break; 2871 } 2872 if (p > last) 2873 goto out; 2874 2875 error = proc_base_instantiate(dir, dentry, task, p); 2876 2877 out: 2878 put_task_struct(task); 2879 out_no_task: 2880 return error; 2881 } 2882 2883 static int proc_base_fill_cache(struct file *filp, void *dirent, 2884 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2885 { 2886 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2887 proc_base_instantiate, task, p); 2888 } 2889 2890 #ifdef CONFIG_TASK_IO_ACCOUNTING 2891 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2892 { 2893 struct task_io_accounting acct = task->ioac; 2894 unsigned long flags; 2895 int result; 2896 2897 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2898 if (result) 2899 return result; 2900 2901 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2902 result = -EACCES; 2903 goto out_unlock; 2904 } 2905 2906 if (whole && lock_task_sighand(task, &flags)) { 2907 struct task_struct *t = task; 2908 2909 task_io_accounting_add(&acct, &task->signal->ioac); 2910 while_each_thread(task, t) 2911 task_io_accounting_add(&acct, &t->ioac); 2912 2913 unlock_task_sighand(task, &flags); 2914 } 2915 result = sprintf(buffer, 2916 "rchar: %llu\n" 2917 "wchar: %llu\n" 2918 "syscr: %llu\n" 2919 "syscw: %llu\n" 2920 "read_bytes: %llu\n" 2921 "write_bytes: %llu\n" 2922 "cancelled_write_bytes: %llu\n", 2923 (unsigned long long)acct.rchar, 2924 (unsigned long long)acct.wchar, 2925 (unsigned long long)acct.syscr, 2926 (unsigned long long)acct.syscw, 2927 (unsigned long long)acct.read_bytes, 2928 (unsigned long long)acct.write_bytes, 2929 (unsigned long long)acct.cancelled_write_bytes); 2930 out_unlock: 2931 mutex_unlock(&task->signal->cred_guard_mutex); 2932 return result; 2933 } 2934 2935 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2936 { 2937 return do_io_accounting(task, buffer, 0); 2938 } 2939 2940 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2941 { 2942 return do_io_accounting(task, buffer, 1); 2943 } 2944 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2945 2946 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2947 struct pid *pid, struct task_struct *task) 2948 { 2949 int err = lock_trace(task); 2950 if (!err) { 2951 seq_printf(m, "%08x\n", task->personality); 2952 unlock_trace(task); 2953 } 2954 return err; 2955 } 2956 2957 /* 2958 * Thread groups 2959 */ 2960 static const struct file_operations proc_task_operations; 2961 static const struct inode_operations proc_task_inode_operations; 2962 2963 static const struct pid_entry tgid_base_stuff[] = { 2964 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2965 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2966 #ifdef CONFIG_CHECKPOINT_RESTORE 2967 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2968 #endif 2969 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2970 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2971 #ifdef CONFIG_NET 2972 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2973 #endif 2974 REG("environ", S_IRUSR, proc_environ_operations), 2975 INF("auxv", S_IRUSR, proc_pid_auxv), 2976 ONE("status", S_IRUGO, proc_pid_status), 2977 ONE("personality", S_IRUGO, proc_pid_personality), 2978 INF("limits", S_IRUGO, proc_pid_limits), 2979 #ifdef CONFIG_SCHED_DEBUG 2980 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2981 #endif 2982 #ifdef CONFIG_SCHED_AUTOGROUP 2983 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2984 #endif 2985 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2986 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2987 INF("syscall", S_IRUGO, proc_pid_syscall), 2988 #endif 2989 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2990 ONE("stat", S_IRUGO, proc_tgid_stat), 2991 ONE("statm", S_IRUGO, proc_pid_statm), 2992 REG("maps", S_IRUGO, proc_pid_maps_operations), 2993 #ifdef CONFIG_NUMA 2994 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2995 #endif 2996 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2997 LNK("cwd", proc_cwd_link), 2998 LNK("root", proc_root_link), 2999 LNK("exe", proc_exe_link), 3000 REG("mounts", S_IRUGO, proc_mounts_operations), 3001 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3002 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3003 #ifdef CONFIG_PROC_PAGE_MONITOR 3004 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3005 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3006 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3007 #endif 3008 #ifdef CONFIG_SECURITY 3009 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3010 #endif 3011 #ifdef CONFIG_KALLSYMS 3012 INF("wchan", S_IRUGO, proc_pid_wchan), 3013 #endif 3014 #ifdef CONFIG_STACKTRACE 3015 ONE("stack", S_IRUGO, proc_pid_stack), 3016 #endif 3017 #ifdef CONFIG_SCHEDSTATS 3018 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3019 #endif 3020 #ifdef CONFIG_LATENCYTOP 3021 REG("latency", S_IRUGO, proc_lstats_operations), 3022 #endif 3023 #ifdef CONFIG_PROC_PID_CPUSET 3024 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3025 #endif 3026 #ifdef CONFIG_CGROUPS 3027 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3028 #endif 3029 INF("oom_score", S_IRUGO, proc_oom_score), 3030 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3031 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3032 #ifdef CONFIG_AUDITSYSCALL 3033 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3034 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3035 #endif 3036 #ifdef CONFIG_FAULT_INJECTION 3037 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3038 #endif 3039 #ifdef CONFIG_ELF_CORE 3040 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3041 #endif 3042 #ifdef CONFIG_TASK_IO_ACCOUNTING 3043 INF("io", S_IRUSR, proc_tgid_io_accounting), 3044 #endif 3045 #ifdef CONFIG_HARDWALL 3046 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3047 #endif 3048 }; 3049 3050 static int proc_tgid_base_readdir(struct file * filp, 3051 void * dirent, filldir_t filldir) 3052 { 3053 return proc_pident_readdir(filp,dirent,filldir, 3054 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 3055 } 3056 3057 static const struct file_operations proc_tgid_base_operations = { 3058 .read = generic_read_dir, 3059 .readdir = proc_tgid_base_readdir, 3060 .llseek = default_llseek, 3061 }; 3062 3063 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3064 return proc_pident_lookup(dir, dentry, 3065 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3066 } 3067 3068 static const struct inode_operations proc_tgid_base_inode_operations = { 3069 .lookup = proc_tgid_base_lookup, 3070 .getattr = pid_getattr, 3071 .setattr = proc_setattr, 3072 .permission = proc_pid_permission, 3073 }; 3074 3075 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3076 { 3077 struct dentry *dentry, *leader, *dir; 3078 char buf[PROC_NUMBUF]; 3079 struct qstr name; 3080 3081 name.name = buf; 3082 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3083 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3084 if (dentry) { 3085 shrink_dcache_parent(dentry); 3086 d_drop(dentry); 3087 dput(dentry); 3088 } 3089 3090 name.name = buf; 3091 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 3092 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3093 if (!leader) 3094 goto out; 3095 3096 name.name = "task"; 3097 name.len = strlen(name.name); 3098 dir = d_hash_and_lookup(leader, &name); 3099 if (!dir) 3100 goto out_put_leader; 3101 3102 name.name = buf; 3103 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3104 dentry = d_hash_and_lookup(dir, &name); 3105 if (dentry) { 3106 shrink_dcache_parent(dentry); 3107 d_drop(dentry); 3108 dput(dentry); 3109 } 3110 3111 dput(dir); 3112 out_put_leader: 3113 dput(leader); 3114 out: 3115 return; 3116 } 3117 3118 /** 3119 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3120 * @task: task that should be flushed. 3121 * 3122 * When flushing dentries from proc, one needs to flush them from global 3123 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3124 * in. This call is supposed to do all of this job. 3125 * 3126 * Looks in the dcache for 3127 * /proc/@pid 3128 * /proc/@tgid/task/@pid 3129 * if either directory is present flushes it and all of it'ts children 3130 * from the dcache. 3131 * 3132 * It is safe and reasonable to cache /proc entries for a task until 3133 * that task exits. After that they just clog up the dcache with 3134 * useless entries, possibly causing useful dcache entries to be 3135 * flushed instead. This routine is proved to flush those useless 3136 * dcache entries at process exit time. 3137 * 3138 * NOTE: This routine is just an optimization so it does not guarantee 3139 * that no dcache entries will exist at process exit time it 3140 * just makes it very unlikely that any will persist. 3141 */ 3142 3143 void proc_flush_task(struct task_struct *task) 3144 { 3145 int i; 3146 struct pid *pid, *tgid; 3147 struct upid *upid; 3148 3149 pid = task_pid(task); 3150 tgid = task_tgid(task); 3151 3152 for (i = 0; i <= pid->level; i++) { 3153 upid = &pid->numbers[i]; 3154 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3155 tgid->numbers[i].nr); 3156 } 3157 3158 upid = &pid->numbers[pid->level]; 3159 if (upid->nr == 1) 3160 pid_ns_release_proc(upid->ns); 3161 } 3162 3163 static struct dentry *proc_pid_instantiate(struct inode *dir, 3164 struct dentry * dentry, 3165 struct task_struct *task, const void *ptr) 3166 { 3167 struct dentry *error = ERR_PTR(-ENOENT); 3168 struct inode *inode; 3169 3170 inode = proc_pid_make_inode(dir->i_sb, task); 3171 if (!inode) 3172 goto out; 3173 3174 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3175 inode->i_op = &proc_tgid_base_inode_operations; 3176 inode->i_fop = &proc_tgid_base_operations; 3177 inode->i_flags|=S_IMMUTABLE; 3178 3179 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 3180 ARRAY_SIZE(tgid_base_stuff))); 3181 3182 d_set_d_op(dentry, &pid_dentry_operations); 3183 3184 d_add(dentry, inode); 3185 /* Close the race of the process dying before we return the dentry */ 3186 if (pid_revalidate(dentry, NULL)) 3187 error = NULL; 3188 out: 3189 return error; 3190 } 3191 3192 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3193 { 3194 struct dentry *result; 3195 struct task_struct *task; 3196 unsigned tgid; 3197 struct pid_namespace *ns; 3198 3199 result = proc_base_lookup(dir, dentry); 3200 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 3201 goto out; 3202 3203 tgid = name_to_int(dentry); 3204 if (tgid == ~0U) 3205 goto out; 3206 3207 ns = dentry->d_sb->s_fs_info; 3208 rcu_read_lock(); 3209 task = find_task_by_pid_ns(tgid, ns); 3210 if (task) 3211 get_task_struct(task); 3212 rcu_read_unlock(); 3213 if (!task) 3214 goto out; 3215 3216 result = proc_pid_instantiate(dir, dentry, task, NULL); 3217 put_task_struct(task); 3218 out: 3219 return result; 3220 } 3221 3222 /* 3223 * Find the first task with tgid >= tgid 3224 * 3225 */ 3226 struct tgid_iter { 3227 unsigned int tgid; 3228 struct task_struct *task; 3229 }; 3230 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3231 { 3232 struct pid *pid; 3233 3234 if (iter.task) 3235 put_task_struct(iter.task); 3236 rcu_read_lock(); 3237 retry: 3238 iter.task = NULL; 3239 pid = find_ge_pid(iter.tgid, ns); 3240 if (pid) { 3241 iter.tgid = pid_nr_ns(pid, ns); 3242 iter.task = pid_task(pid, PIDTYPE_PID); 3243 /* What we to know is if the pid we have find is the 3244 * pid of a thread_group_leader. Testing for task 3245 * being a thread_group_leader is the obvious thing 3246 * todo but there is a window when it fails, due to 3247 * the pid transfer logic in de_thread. 3248 * 3249 * So we perform the straight forward test of seeing 3250 * if the pid we have found is the pid of a thread 3251 * group leader, and don't worry if the task we have 3252 * found doesn't happen to be a thread group leader. 3253 * As we don't care in the case of readdir. 3254 */ 3255 if (!iter.task || !has_group_leader_pid(iter.task)) { 3256 iter.tgid += 1; 3257 goto retry; 3258 } 3259 get_task_struct(iter.task); 3260 } 3261 rcu_read_unlock(); 3262 return iter; 3263 } 3264 3265 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 3266 3267 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3268 struct tgid_iter iter) 3269 { 3270 char name[PROC_NUMBUF]; 3271 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 3272 return proc_fill_cache(filp, dirent, filldir, name, len, 3273 proc_pid_instantiate, iter.task, NULL); 3274 } 3275 3276 static int fake_filldir(void *buf, const char *name, int namelen, 3277 loff_t offset, u64 ino, unsigned d_type) 3278 { 3279 return 0; 3280 } 3281 3282 /* for the /proc/ directory itself, after non-process stuff has been done */ 3283 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 3284 { 3285 unsigned int nr; 3286 struct task_struct *reaper; 3287 struct tgid_iter iter; 3288 struct pid_namespace *ns; 3289 filldir_t __filldir; 3290 3291 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 3292 goto out_no_task; 3293 nr = filp->f_pos - FIRST_PROCESS_ENTRY; 3294 3295 reaper = get_proc_task(filp->f_path.dentry->d_inode); 3296 if (!reaper) 3297 goto out_no_task; 3298 3299 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 3300 const struct pid_entry *p = &proc_base_stuff[nr]; 3301 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 3302 goto out; 3303 } 3304 3305 ns = filp->f_dentry->d_sb->s_fs_info; 3306 iter.task = NULL; 3307 iter.tgid = filp->f_pos - TGID_OFFSET; 3308 for (iter = next_tgid(ns, iter); 3309 iter.task; 3310 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3311 if (has_pid_permissions(ns, iter.task, 2)) 3312 __filldir = filldir; 3313 else 3314 __filldir = fake_filldir; 3315 3316 filp->f_pos = iter.tgid + TGID_OFFSET; 3317 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 3318 put_task_struct(iter.task); 3319 goto out; 3320 } 3321 } 3322 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 3323 out: 3324 put_task_struct(reaper); 3325 out_no_task: 3326 return 0; 3327 } 3328 3329 /* 3330 * Tasks 3331 */ 3332 static const struct pid_entry tid_base_stuff[] = { 3333 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3334 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3335 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3336 REG("environ", S_IRUSR, proc_environ_operations), 3337 INF("auxv", S_IRUSR, proc_pid_auxv), 3338 ONE("status", S_IRUGO, proc_pid_status), 3339 ONE("personality", S_IRUGO, proc_pid_personality), 3340 INF("limits", S_IRUGO, proc_pid_limits), 3341 #ifdef CONFIG_SCHED_DEBUG 3342 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3343 #endif 3344 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3345 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3346 INF("syscall", S_IRUGO, proc_pid_syscall), 3347 #endif 3348 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3349 ONE("stat", S_IRUGO, proc_tid_stat), 3350 ONE("statm", S_IRUGO, proc_pid_statm), 3351 REG("maps", S_IRUGO, proc_tid_maps_operations), 3352 #ifdef CONFIG_NUMA 3353 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3354 #endif 3355 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3356 LNK("cwd", proc_cwd_link), 3357 LNK("root", proc_root_link), 3358 LNK("exe", proc_exe_link), 3359 REG("mounts", S_IRUGO, proc_mounts_operations), 3360 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3361 #ifdef CONFIG_PROC_PAGE_MONITOR 3362 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3363 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3364 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3365 #endif 3366 #ifdef CONFIG_SECURITY 3367 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3368 #endif 3369 #ifdef CONFIG_KALLSYMS 3370 INF("wchan", S_IRUGO, proc_pid_wchan), 3371 #endif 3372 #ifdef CONFIG_STACKTRACE 3373 ONE("stack", S_IRUGO, proc_pid_stack), 3374 #endif 3375 #ifdef CONFIG_SCHEDSTATS 3376 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3377 #endif 3378 #ifdef CONFIG_LATENCYTOP 3379 REG("latency", S_IRUGO, proc_lstats_operations), 3380 #endif 3381 #ifdef CONFIG_PROC_PID_CPUSET 3382 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3383 #endif 3384 #ifdef CONFIG_CGROUPS 3385 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3386 #endif 3387 INF("oom_score", S_IRUGO, proc_oom_score), 3388 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3389 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3390 #ifdef CONFIG_AUDITSYSCALL 3391 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3392 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3393 #endif 3394 #ifdef CONFIG_FAULT_INJECTION 3395 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3396 #endif 3397 #ifdef CONFIG_TASK_IO_ACCOUNTING 3398 INF("io", S_IRUSR, proc_tid_io_accounting), 3399 #endif 3400 #ifdef CONFIG_HARDWALL 3401 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3402 #endif 3403 }; 3404 3405 static int proc_tid_base_readdir(struct file * filp, 3406 void * dirent, filldir_t filldir) 3407 { 3408 return proc_pident_readdir(filp,dirent,filldir, 3409 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 3410 } 3411 3412 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3413 return proc_pident_lookup(dir, dentry, 3414 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3415 } 3416 3417 static const struct file_operations proc_tid_base_operations = { 3418 .read = generic_read_dir, 3419 .readdir = proc_tid_base_readdir, 3420 .llseek = default_llseek, 3421 }; 3422 3423 static const struct inode_operations proc_tid_base_inode_operations = { 3424 .lookup = proc_tid_base_lookup, 3425 .getattr = pid_getattr, 3426 .setattr = proc_setattr, 3427 }; 3428 3429 static struct dentry *proc_task_instantiate(struct inode *dir, 3430 struct dentry *dentry, struct task_struct *task, const void *ptr) 3431 { 3432 struct dentry *error = ERR_PTR(-ENOENT); 3433 struct inode *inode; 3434 inode = proc_pid_make_inode(dir->i_sb, task); 3435 3436 if (!inode) 3437 goto out; 3438 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3439 inode->i_op = &proc_tid_base_inode_operations; 3440 inode->i_fop = &proc_tid_base_operations; 3441 inode->i_flags|=S_IMMUTABLE; 3442 3443 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3444 ARRAY_SIZE(tid_base_stuff))); 3445 3446 d_set_d_op(dentry, &pid_dentry_operations); 3447 3448 d_add(dentry, inode); 3449 /* Close the race of the process dying before we return the dentry */ 3450 if (pid_revalidate(dentry, NULL)) 3451 error = NULL; 3452 out: 3453 return error; 3454 } 3455 3456 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3457 { 3458 struct dentry *result = ERR_PTR(-ENOENT); 3459 struct task_struct *task; 3460 struct task_struct *leader = get_proc_task(dir); 3461 unsigned tid; 3462 struct pid_namespace *ns; 3463 3464 if (!leader) 3465 goto out_no_task; 3466 3467 tid = name_to_int(dentry); 3468 if (tid == ~0U) 3469 goto out; 3470 3471 ns = dentry->d_sb->s_fs_info; 3472 rcu_read_lock(); 3473 task = find_task_by_pid_ns(tid, ns); 3474 if (task) 3475 get_task_struct(task); 3476 rcu_read_unlock(); 3477 if (!task) 3478 goto out; 3479 if (!same_thread_group(leader, task)) 3480 goto out_drop_task; 3481 3482 result = proc_task_instantiate(dir, dentry, task, NULL); 3483 out_drop_task: 3484 put_task_struct(task); 3485 out: 3486 put_task_struct(leader); 3487 out_no_task: 3488 return result; 3489 } 3490 3491 /* 3492 * Find the first tid of a thread group to return to user space. 3493 * 3494 * Usually this is just the thread group leader, but if the users 3495 * buffer was too small or there was a seek into the middle of the 3496 * directory we have more work todo. 3497 * 3498 * In the case of a short read we start with find_task_by_pid. 3499 * 3500 * In the case of a seek we start with the leader and walk nr 3501 * threads past it. 3502 */ 3503 static struct task_struct *first_tid(struct task_struct *leader, 3504 int tid, int nr, struct pid_namespace *ns) 3505 { 3506 struct task_struct *pos; 3507 3508 rcu_read_lock(); 3509 /* Attempt to start with the pid of a thread */ 3510 if (tid && (nr > 0)) { 3511 pos = find_task_by_pid_ns(tid, ns); 3512 if (pos && (pos->group_leader == leader)) 3513 goto found; 3514 } 3515 3516 /* If nr exceeds the number of threads there is nothing todo */ 3517 pos = NULL; 3518 if (nr && nr >= get_nr_threads(leader)) 3519 goto out; 3520 3521 /* If we haven't found our starting place yet start 3522 * with the leader and walk nr threads forward. 3523 */ 3524 for (pos = leader; nr > 0; --nr) { 3525 pos = next_thread(pos); 3526 if (pos == leader) { 3527 pos = NULL; 3528 goto out; 3529 } 3530 } 3531 found: 3532 get_task_struct(pos); 3533 out: 3534 rcu_read_unlock(); 3535 return pos; 3536 } 3537 3538 /* 3539 * Find the next thread in the thread list. 3540 * Return NULL if there is an error or no next thread. 3541 * 3542 * The reference to the input task_struct is released. 3543 */ 3544 static struct task_struct *next_tid(struct task_struct *start) 3545 { 3546 struct task_struct *pos = NULL; 3547 rcu_read_lock(); 3548 if (pid_alive(start)) { 3549 pos = next_thread(start); 3550 if (thread_group_leader(pos)) 3551 pos = NULL; 3552 else 3553 get_task_struct(pos); 3554 } 3555 rcu_read_unlock(); 3556 put_task_struct(start); 3557 return pos; 3558 } 3559 3560 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3561 struct task_struct *task, int tid) 3562 { 3563 char name[PROC_NUMBUF]; 3564 int len = snprintf(name, sizeof(name), "%d", tid); 3565 return proc_fill_cache(filp, dirent, filldir, name, len, 3566 proc_task_instantiate, task, NULL); 3567 } 3568 3569 /* for the /proc/TGID/task/ directories */ 3570 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3571 { 3572 struct dentry *dentry = filp->f_path.dentry; 3573 struct inode *inode = dentry->d_inode; 3574 struct task_struct *leader = NULL; 3575 struct task_struct *task; 3576 int retval = -ENOENT; 3577 ino_t ino; 3578 int tid; 3579 struct pid_namespace *ns; 3580 3581 task = get_proc_task(inode); 3582 if (!task) 3583 goto out_no_task; 3584 rcu_read_lock(); 3585 if (pid_alive(task)) { 3586 leader = task->group_leader; 3587 get_task_struct(leader); 3588 } 3589 rcu_read_unlock(); 3590 put_task_struct(task); 3591 if (!leader) 3592 goto out_no_task; 3593 retval = 0; 3594 3595 switch ((unsigned long)filp->f_pos) { 3596 case 0: 3597 ino = inode->i_ino; 3598 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3599 goto out; 3600 filp->f_pos++; 3601 /* fall through */ 3602 case 1: 3603 ino = parent_ino(dentry); 3604 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3605 goto out; 3606 filp->f_pos++; 3607 /* fall through */ 3608 } 3609 3610 /* f_version caches the tgid value that the last readdir call couldn't 3611 * return. lseek aka telldir automagically resets f_version to 0. 3612 */ 3613 ns = filp->f_dentry->d_sb->s_fs_info; 3614 tid = (int)filp->f_version; 3615 filp->f_version = 0; 3616 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3617 task; 3618 task = next_tid(task), filp->f_pos++) { 3619 tid = task_pid_nr_ns(task, ns); 3620 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3621 /* returning this tgid failed, save it as the first 3622 * pid for the next readir call */ 3623 filp->f_version = (u64)tid; 3624 put_task_struct(task); 3625 break; 3626 } 3627 } 3628 out: 3629 put_task_struct(leader); 3630 out_no_task: 3631 return retval; 3632 } 3633 3634 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3635 { 3636 struct inode *inode = dentry->d_inode; 3637 struct task_struct *p = get_proc_task(inode); 3638 generic_fillattr(inode, stat); 3639 3640 if (p) { 3641 stat->nlink += get_nr_threads(p); 3642 put_task_struct(p); 3643 } 3644 3645 return 0; 3646 } 3647 3648 static const struct inode_operations proc_task_inode_operations = { 3649 .lookup = proc_task_lookup, 3650 .getattr = proc_task_getattr, 3651 .setattr = proc_setattr, 3652 .permission = proc_pid_permission, 3653 }; 3654 3655 static const struct file_operations proc_task_operations = { 3656 .read = generic_read_dir, 3657 .readdir = proc_task_readdir, 3658 .llseek = default_llseek, 3659 }; 3660