1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cgroup.h> 79 #include <linux/cpuset.h> 80 #include <linux/audit.h> 81 #include <linux/poll.h> 82 #include <linux/nsproxy.h> 83 #include <linux/oom.h> 84 #include <linux/elf.h> 85 #include <linux/pid_namespace.h> 86 #include <linux/user_namespace.h> 87 #include <linux/fs_struct.h> 88 #include <linux/slab.h> 89 #include <linux/sched/autogroup.h> 90 #include <linux/sched/mm.h> 91 #include <linux/sched/coredump.h> 92 #include <linux/sched/debug.h> 93 #include <linux/sched/stat.h> 94 #include <linux/flex_array.h> 95 #include <linux/posix-timers.h> 96 #ifdef CONFIG_HARDWALL 97 #include <asm/hardwall.h> 98 #endif 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid; 114 static u8 nlink_tgid; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 147 /* 148 * Count the number of hardlinks for the pid_entry table, excluding the . 149 * and .. links. 150 */ 151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 152 unsigned int n) 153 { 154 unsigned int i; 155 unsigned int count; 156 157 count = 2; 158 for (i = 0; i < n; ++i) { 159 if (S_ISDIR(entries[i].mode)) 160 ++count; 161 } 162 163 return count; 164 } 165 166 static int get_task_root(struct task_struct *task, struct path *root) 167 { 168 int result = -ENOENT; 169 170 task_lock(task); 171 if (task->fs) { 172 get_fs_root(task->fs, root); 173 result = 0; 174 } 175 task_unlock(task); 176 return result; 177 } 178 179 static int proc_cwd_link(struct dentry *dentry, struct path *path) 180 { 181 struct task_struct *task = get_proc_task(d_inode(dentry)); 182 int result = -ENOENT; 183 184 if (task) { 185 task_lock(task); 186 if (task->fs) { 187 get_fs_pwd(task->fs, path); 188 result = 0; 189 } 190 task_unlock(task); 191 put_task_struct(task); 192 } 193 return result; 194 } 195 196 static int proc_root_link(struct dentry *dentry, struct path *path) 197 { 198 struct task_struct *task = get_proc_task(d_inode(dentry)); 199 int result = -ENOENT; 200 201 if (task) { 202 result = get_task_root(task, path); 203 put_task_struct(task); 204 } 205 return result; 206 } 207 208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 209 size_t _count, loff_t *pos) 210 { 211 struct task_struct *tsk; 212 struct mm_struct *mm; 213 char *page; 214 unsigned long count = _count; 215 unsigned long arg_start, arg_end, env_start, env_end; 216 unsigned long len1, len2, len; 217 unsigned long p; 218 char c; 219 ssize_t rv; 220 221 BUG_ON(*pos < 0); 222 223 tsk = get_proc_task(file_inode(file)); 224 if (!tsk) 225 return -ESRCH; 226 mm = get_task_mm(tsk); 227 put_task_struct(tsk); 228 if (!mm) 229 return 0; 230 /* Check if process spawned far enough to have cmdline. */ 231 if (!mm->env_end) { 232 rv = 0; 233 goto out_mmput; 234 } 235 236 page = (char *)__get_free_page(GFP_KERNEL); 237 if (!page) { 238 rv = -ENOMEM; 239 goto out_mmput; 240 } 241 242 down_read(&mm->mmap_sem); 243 arg_start = mm->arg_start; 244 arg_end = mm->arg_end; 245 env_start = mm->env_start; 246 env_end = mm->env_end; 247 up_read(&mm->mmap_sem); 248 249 BUG_ON(arg_start > arg_end); 250 BUG_ON(env_start > env_end); 251 252 len1 = arg_end - arg_start; 253 len2 = env_end - env_start; 254 255 /* Empty ARGV. */ 256 if (len1 == 0) { 257 rv = 0; 258 goto out_free_page; 259 } 260 /* 261 * Inherently racy -- command line shares address space 262 * with code and data. 263 */ 264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0); 265 if (rv <= 0) 266 goto out_free_page; 267 268 rv = 0; 269 270 if (c == '\0') { 271 /* Command line (set of strings) occupies whole ARGV. */ 272 if (len1 <= *pos) 273 goto out_free_page; 274 275 p = arg_start + *pos; 276 len = len1 - *pos; 277 while (count > 0 && len > 0) { 278 unsigned int _count; 279 int nr_read; 280 281 _count = min3(count, len, PAGE_SIZE); 282 nr_read = access_remote_vm(mm, p, page, _count, 0); 283 if (nr_read < 0) 284 rv = nr_read; 285 if (nr_read <= 0) 286 goto out_free_page; 287 288 if (copy_to_user(buf, page, nr_read)) { 289 rv = -EFAULT; 290 goto out_free_page; 291 } 292 293 p += nr_read; 294 len -= nr_read; 295 buf += nr_read; 296 count -= nr_read; 297 rv += nr_read; 298 } 299 } else { 300 /* 301 * Command line (1 string) occupies ARGV and 302 * extends into ENVP. 303 */ 304 struct { 305 unsigned long p; 306 unsigned long len; 307 } cmdline[2] = { 308 { .p = arg_start, .len = len1 }, 309 { .p = env_start, .len = len2 }, 310 }; 311 loff_t pos1 = *pos; 312 unsigned int i; 313 314 i = 0; 315 while (i < 2 && pos1 >= cmdline[i].len) { 316 pos1 -= cmdline[i].len; 317 i++; 318 } 319 while (i < 2) { 320 p = cmdline[i].p + pos1; 321 len = cmdline[i].len - pos1; 322 while (count > 0 && len > 0) { 323 unsigned int _count, l; 324 int nr_read; 325 bool final; 326 327 _count = min3(count, len, PAGE_SIZE); 328 nr_read = access_remote_vm(mm, p, page, _count, 0); 329 if (nr_read < 0) 330 rv = nr_read; 331 if (nr_read <= 0) 332 goto out_free_page; 333 334 /* 335 * Command line can be shorter than whole ARGV 336 * even if last "marker" byte says it is not. 337 */ 338 final = false; 339 l = strnlen(page, nr_read); 340 if (l < nr_read) { 341 nr_read = l; 342 final = true; 343 } 344 345 if (copy_to_user(buf, page, nr_read)) { 346 rv = -EFAULT; 347 goto out_free_page; 348 } 349 350 p += nr_read; 351 len -= nr_read; 352 buf += nr_read; 353 count -= nr_read; 354 rv += nr_read; 355 356 if (final) 357 goto out_free_page; 358 } 359 360 /* Only first chunk can be read partially. */ 361 pos1 = 0; 362 i++; 363 } 364 } 365 366 out_free_page: 367 free_page((unsigned long)page); 368 out_mmput: 369 mmput(mm); 370 if (rv > 0) 371 *pos += rv; 372 return rv; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 wchan = get_wchan(task); 392 393 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS) 394 && !lookup_symbol_name(wchan, symname)) 395 seq_printf(m, "%s", symname); 396 else 397 seq_putc(m, '0'); 398 399 return 0; 400 } 401 #endif /* CONFIG_KALLSYMS */ 402 403 static int lock_trace(struct task_struct *task) 404 { 405 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 406 if (err) 407 return err; 408 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 409 mutex_unlock(&task->signal->cred_guard_mutex); 410 return -EPERM; 411 } 412 return 0; 413 } 414 415 static void unlock_trace(struct task_struct *task) 416 { 417 mutex_unlock(&task->signal->cred_guard_mutex); 418 } 419 420 #ifdef CONFIG_STACKTRACE 421 422 #define MAX_STACK_TRACE_DEPTH 64 423 424 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 425 struct pid *pid, struct task_struct *task) 426 { 427 struct stack_trace trace; 428 unsigned long *entries; 429 int err; 430 int i; 431 432 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 433 if (!entries) 434 return -ENOMEM; 435 436 trace.nr_entries = 0; 437 trace.max_entries = MAX_STACK_TRACE_DEPTH; 438 trace.entries = entries; 439 trace.skip = 0; 440 441 err = lock_trace(task); 442 if (!err) { 443 save_stack_trace_tsk(task, &trace); 444 445 for (i = 0; i < trace.nr_entries; i++) { 446 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 447 } 448 unlock_trace(task); 449 } 450 kfree(entries); 451 452 return err; 453 } 454 #endif 455 456 #ifdef CONFIG_SCHED_INFO 457 /* 458 * Provides /proc/PID/schedstat 459 */ 460 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 461 struct pid *pid, struct task_struct *task) 462 { 463 if (unlikely(!sched_info_on())) 464 seq_printf(m, "0 0 0\n"); 465 else 466 seq_printf(m, "%llu %llu %lu\n", 467 (unsigned long long)task->se.sum_exec_runtime, 468 (unsigned long long)task->sched_info.run_delay, 469 task->sched_info.pcount); 470 471 return 0; 472 } 473 #endif 474 475 #ifdef CONFIG_LATENCYTOP 476 static int lstats_show_proc(struct seq_file *m, void *v) 477 { 478 int i; 479 struct inode *inode = m->private; 480 struct task_struct *task = get_proc_task(inode); 481 482 if (!task) 483 return -ESRCH; 484 seq_puts(m, "Latency Top version : v0.1\n"); 485 for (i = 0; i < 32; i++) { 486 struct latency_record *lr = &task->latency_record[i]; 487 if (lr->backtrace[0]) { 488 int q; 489 seq_printf(m, "%i %li %li", 490 lr->count, lr->time, lr->max); 491 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 492 unsigned long bt = lr->backtrace[q]; 493 if (!bt) 494 break; 495 if (bt == ULONG_MAX) 496 break; 497 seq_printf(m, " %ps", (void *)bt); 498 } 499 seq_putc(m, '\n'); 500 } 501 502 } 503 put_task_struct(task); 504 return 0; 505 } 506 507 static int lstats_open(struct inode *inode, struct file *file) 508 { 509 return single_open(file, lstats_show_proc, inode); 510 } 511 512 static ssize_t lstats_write(struct file *file, const char __user *buf, 513 size_t count, loff_t *offs) 514 { 515 struct task_struct *task = get_proc_task(file_inode(file)); 516 517 if (!task) 518 return -ESRCH; 519 clear_all_latency_tracing(task); 520 put_task_struct(task); 521 522 return count; 523 } 524 525 static const struct file_operations proc_lstats_operations = { 526 .open = lstats_open, 527 .read = seq_read, 528 .write = lstats_write, 529 .llseek = seq_lseek, 530 .release = single_release, 531 }; 532 533 #endif 534 535 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 536 struct pid *pid, struct task_struct *task) 537 { 538 unsigned long totalpages = totalram_pages + total_swap_pages; 539 unsigned long points = 0; 540 541 points = oom_badness(task, NULL, NULL, totalpages) * 542 1000 / totalpages; 543 seq_printf(m, "%lu\n", points); 544 545 return 0; 546 } 547 548 struct limit_names { 549 const char *name; 550 const char *unit; 551 }; 552 553 static const struct limit_names lnames[RLIM_NLIMITS] = { 554 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 555 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 556 [RLIMIT_DATA] = {"Max data size", "bytes"}, 557 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 558 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 559 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 560 [RLIMIT_NPROC] = {"Max processes", "processes"}, 561 [RLIMIT_NOFILE] = {"Max open files", "files"}, 562 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 563 [RLIMIT_AS] = {"Max address space", "bytes"}, 564 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 565 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 566 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 567 [RLIMIT_NICE] = {"Max nice priority", NULL}, 568 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 569 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 570 }; 571 572 /* Display limits for a process */ 573 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 574 struct pid *pid, struct task_struct *task) 575 { 576 unsigned int i; 577 unsigned long flags; 578 579 struct rlimit rlim[RLIM_NLIMITS]; 580 581 if (!lock_task_sighand(task, &flags)) 582 return 0; 583 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 584 unlock_task_sighand(task, &flags); 585 586 /* 587 * print the file header 588 */ 589 seq_printf(m, "%-25s %-20s %-20s %-10s\n", 590 "Limit", "Soft Limit", "Hard Limit", "Units"); 591 592 for (i = 0; i < RLIM_NLIMITS; i++) { 593 if (rlim[i].rlim_cur == RLIM_INFINITY) 594 seq_printf(m, "%-25s %-20s ", 595 lnames[i].name, "unlimited"); 596 else 597 seq_printf(m, "%-25s %-20lu ", 598 lnames[i].name, rlim[i].rlim_cur); 599 600 if (rlim[i].rlim_max == RLIM_INFINITY) 601 seq_printf(m, "%-20s ", "unlimited"); 602 else 603 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 604 605 if (lnames[i].unit) 606 seq_printf(m, "%-10s\n", lnames[i].unit); 607 else 608 seq_putc(m, '\n'); 609 } 610 611 return 0; 612 } 613 614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 615 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 616 struct pid *pid, struct task_struct *task) 617 { 618 long nr; 619 unsigned long args[6], sp, pc; 620 int res; 621 622 res = lock_trace(task); 623 if (res) 624 return res; 625 626 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 627 seq_puts(m, "running\n"); 628 else if (nr < 0) 629 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 630 else 631 seq_printf(m, 632 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 633 nr, 634 args[0], args[1], args[2], args[3], args[4], args[5], 635 sp, pc); 636 unlock_trace(task); 637 638 return 0; 639 } 640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 641 642 /************************************************************************/ 643 /* Here the fs part begins */ 644 /************************************************************************/ 645 646 /* permission checks */ 647 static int proc_fd_access_allowed(struct inode *inode) 648 { 649 struct task_struct *task; 650 int allowed = 0; 651 /* Allow access to a task's file descriptors if it is us or we 652 * may use ptrace attach to the process and find out that 653 * information. 654 */ 655 task = get_proc_task(inode); 656 if (task) { 657 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 658 put_task_struct(task); 659 } 660 return allowed; 661 } 662 663 int proc_setattr(struct dentry *dentry, struct iattr *attr) 664 { 665 int error; 666 struct inode *inode = d_inode(dentry); 667 668 if (attr->ia_valid & ATTR_MODE) 669 return -EPERM; 670 671 error = setattr_prepare(dentry, attr); 672 if (error) 673 return error; 674 675 setattr_copy(inode, attr); 676 mark_inode_dirty(inode); 677 return 0; 678 } 679 680 /* 681 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 682 * or euid/egid (for hide_pid_min=2)? 683 */ 684 static bool has_pid_permissions(struct pid_namespace *pid, 685 struct task_struct *task, 686 int hide_pid_min) 687 { 688 if (pid->hide_pid < hide_pid_min) 689 return true; 690 if (in_group_p(pid->pid_gid)) 691 return true; 692 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 693 } 694 695 696 static int proc_pid_permission(struct inode *inode, int mask) 697 { 698 struct pid_namespace *pid = inode->i_sb->s_fs_info; 699 struct task_struct *task; 700 bool has_perms; 701 702 task = get_proc_task(inode); 703 if (!task) 704 return -ESRCH; 705 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 706 put_task_struct(task); 707 708 if (!has_perms) { 709 if (pid->hide_pid == HIDEPID_INVISIBLE) { 710 /* 711 * Let's make getdents(), stat(), and open() 712 * consistent with each other. If a process 713 * may not stat() a file, it shouldn't be seen 714 * in procfs at all. 715 */ 716 return -ENOENT; 717 } 718 719 return -EPERM; 720 } 721 return generic_permission(inode, mask); 722 } 723 724 725 726 static const struct inode_operations proc_def_inode_operations = { 727 .setattr = proc_setattr, 728 }; 729 730 static int proc_single_show(struct seq_file *m, void *v) 731 { 732 struct inode *inode = m->private; 733 struct pid_namespace *ns; 734 struct pid *pid; 735 struct task_struct *task; 736 int ret; 737 738 ns = inode->i_sb->s_fs_info; 739 pid = proc_pid(inode); 740 task = get_pid_task(pid, PIDTYPE_PID); 741 if (!task) 742 return -ESRCH; 743 744 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 745 746 put_task_struct(task); 747 return ret; 748 } 749 750 static int proc_single_open(struct inode *inode, struct file *filp) 751 { 752 return single_open(filp, proc_single_show, inode); 753 } 754 755 static const struct file_operations proc_single_file_operations = { 756 .open = proc_single_open, 757 .read = seq_read, 758 .llseek = seq_lseek, 759 .release = single_release, 760 }; 761 762 763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 764 { 765 struct task_struct *task = get_proc_task(inode); 766 struct mm_struct *mm = ERR_PTR(-ESRCH); 767 768 if (task) { 769 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 770 put_task_struct(task); 771 772 if (!IS_ERR_OR_NULL(mm)) { 773 /* ensure this mm_struct can't be freed */ 774 mmgrab(mm); 775 /* but do not pin its memory */ 776 mmput(mm); 777 } 778 } 779 780 return mm; 781 } 782 783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 784 { 785 struct mm_struct *mm = proc_mem_open(inode, mode); 786 787 if (IS_ERR(mm)) 788 return PTR_ERR(mm); 789 790 file->private_data = mm; 791 return 0; 792 } 793 794 static int mem_open(struct inode *inode, struct file *file) 795 { 796 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 797 798 /* OK to pass negative loff_t, we can catch out-of-range */ 799 file->f_mode |= FMODE_UNSIGNED_OFFSET; 800 801 return ret; 802 } 803 804 static ssize_t mem_rw(struct file *file, char __user *buf, 805 size_t count, loff_t *ppos, int write) 806 { 807 struct mm_struct *mm = file->private_data; 808 unsigned long addr = *ppos; 809 ssize_t copied; 810 char *page; 811 unsigned int flags; 812 813 if (!mm) 814 return 0; 815 816 page = (char *)__get_free_page(GFP_KERNEL); 817 if (!page) 818 return -ENOMEM; 819 820 copied = 0; 821 if (!mmget_not_zero(mm)) 822 goto free; 823 824 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 825 826 while (count > 0) { 827 int this_len = min_t(int, count, PAGE_SIZE); 828 829 if (write && copy_from_user(page, buf, this_len)) { 830 copied = -EFAULT; 831 break; 832 } 833 834 this_len = access_remote_vm(mm, addr, page, this_len, flags); 835 if (!this_len) { 836 if (!copied) 837 copied = -EIO; 838 break; 839 } 840 841 if (!write && copy_to_user(buf, page, this_len)) { 842 copied = -EFAULT; 843 break; 844 } 845 846 buf += this_len; 847 addr += this_len; 848 copied += this_len; 849 count -= this_len; 850 } 851 *ppos = addr; 852 853 mmput(mm); 854 free: 855 free_page((unsigned long) page); 856 return copied; 857 } 858 859 static ssize_t mem_read(struct file *file, char __user *buf, 860 size_t count, loff_t *ppos) 861 { 862 return mem_rw(file, buf, count, ppos, 0); 863 } 864 865 static ssize_t mem_write(struct file *file, const char __user *buf, 866 size_t count, loff_t *ppos) 867 { 868 return mem_rw(file, (char __user*)buf, count, ppos, 1); 869 } 870 871 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 872 { 873 switch (orig) { 874 case 0: 875 file->f_pos = offset; 876 break; 877 case 1: 878 file->f_pos += offset; 879 break; 880 default: 881 return -EINVAL; 882 } 883 force_successful_syscall_return(); 884 return file->f_pos; 885 } 886 887 static int mem_release(struct inode *inode, struct file *file) 888 { 889 struct mm_struct *mm = file->private_data; 890 if (mm) 891 mmdrop(mm); 892 return 0; 893 } 894 895 static const struct file_operations proc_mem_operations = { 896 .llseek = mem_lseek, 897 .read = mem_read, 898 .write = mem_write, 899 .open = mem_open, 900 .release = mem_release, 901 }; 902 903 static int environ_open(struct inode *inode, struct file *file) 904 { 905 return __mem_open(inode, file, PTRACE_MODE_READ); 906 } 907 908 static ssize_t environ_read(struct file *file, char __user *buf, 909 size_t count, loff_t *ppos) 910 { 911 char *page; 912 unsigned long src = *ppos; 913 int ret = 0; 914 struct mm_struct *mm = file->private_data; 915 unsigned long env_start, env_end; 916 917 /* Ensure the process spawned far enough to have an environment. */ 918 if (!mm || !mm->env_end) 919 return 0; 920 921 page = (char *)__get_free_page(GFP_KERNEL); 922 if (!page) 923 return -ENOMEM; 924 925 ret = 0; 926 if (!mmget_not_zero(mm)) 927 goto free; 928 929 down_read(&mm->mmap_sem); 930 env_start = mm->env_start; 931 env_end = mm->env_end; 932 up_read(&mm->mmap_sem); 933 934 while (count > 0) { 935 size_t this_len, max_len; 936 int retval; 937 938 if (src >= (env_end - env_start)) 939 break; 940 941 this_len = env_end - (env_start + src); 942 943 max_len = min_t(size_t, PAGE_SIZE, count); 944 this_len = min(max_len, this_len); 945 946 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0); 947 948 if (retval <= 0) { 949 ret = retval; 950 break; 951 } 952 953 if (copy_to_user(buf, page, retval)) { 954 ret = -EFAULT; 955 break; 956 } 957 958 ret += retval; 959 src += retval; 960 buf += retval; 961 count -= retval; 962 } 963 *ppos = src; 964 mmput(mm); 965 966 free: 967 free_page((unsigned long) page); 968 return ret; 969 } 970 971 static const struct file_operations proc_environ_operations = { 972 .open = environ_open, 973 .read = environ_read, 974 .llseek = generic_file_llseek, 975 .release = mem_release, 976 }; 977 978 static int auxv_open(struct inode *inode, struct file *file) 979 { 980 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 981 } 982 983 static ssize_t auxv_read(struct file *file, char __user *buf, 984 size_t count, loff_t *ppos) 985 { 986 struct mm_struct *mm = file->private_data; 987 unsigned int nwords = 0; 988 989 if (!mm) 990 return 0; 991 do { 992 nwords += 2; 993 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 994 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 995 nwords * sizeof(mm->saved_auxv[0])); 996 } 997 998 static const struct file_operations proc_auxv_operations = { 999 .open = auxv_open, 1000 .read = auxv_read, 1001 .llseek = generic_file_llseek, 1002 .release = mem_release, 1003 }; 1004 1005 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1006 loff_t *ppos) 1007 { 1008 struct task_struct *task = get_proc_task(file_inode(file)); 1009 char buffer[PROC_NUMBUF]; 1010 int oom_adj = OOM_ADJUST_MIN; 1011 size_t len; 1012 1013 if (!task) 1014 return -ESRCH; 1015 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1016 oom_adj = OOM_ADJUST_MAX; 1017 else 1018 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1019 OOM_SCORE_ADJ_MAX; 1020 put_task_struct(task); 1021 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1022 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1023 } 1024 1025 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1026 { 1027 static DEFINE_MUTEX(oom_adj_mutex); 1028 struct mm_struct *mm = NULL; 1029 struct task_struct *task; 1030 int err = 0; 1031 1032 task = get_proc_task(file_inode(file)); 1033 if (!task) 1034 return -ESRCH; 1035 1036 mutex_lock(&oom_adj_mutex); 1037 if (legacy) { 1038 if (oom_adj < task->signal->oom_score_adj && 1039 !capable(CAP_SYS_RESOURCE)) { 1040 err = -EACCES; 1041 goto err_unlock; 1042 } 1043 /* 1044 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1045 * /proc/pid/oom_score_adj instead. 1046 */ 1047 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1048 current->comm, task_pid_nr(current), task_pid_nr(task), 1049 task_pid_nr(task)); 1050 } else { 1051 if ((short)oom_adj < task->signal->oom_score_adj_min && 1052 !capable(CAP_SYS_RESOURCE)) { 1053 err = -EACCES; 1054 goto err_unlock; 1055 } 1056 } 1057 1058 /* 1059 * Make sure we will check other processes sharing the mm if this is 1060 * not vfrok which wants its own oom_score_adj. 1061 * pin the mm so it doesn't go away and get reused after task_unlock 1062 */ 1063 if (!task->vfork_done) { 1064 struct task_struct *p = find_lock_task_mm(task); 1065 1066 if (p) { 1067 if (atomic_read(&p->mm->mm_users) > 1) { 1068 mm = p->mm; 1069 mmgrab(mm); 1070 } 1071 task_unlock(p); 1072 } 1073 } 1074 1075 task->signal->oom_score_adj = oom_adj; 1076 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1077 task->signal->oom_score_adj_min = (short)oom_adj; 1078 trace_oom_score_adj_update(task); 1079 1080 if (mm) { 1081 struct task_struct *p; 1082 1083 rcu_read_lock(); 1084 for_each_process(p) { 1085 if (same_thread_group(task, p)) 1086 continue; 1087 1088 /* do not touch kernel threads or the global init */ 1089 if (p->flags & PF_KTHREAD || is_global_init(p)) 1090 continue; 1091 1092 task_lock(p); 1093 if (!p->vfork_done && process_shares_mm(p, mm)) { 1094 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1095 task_pid_nr(p), p->comm, 1096 p->signal->oom_score_adj, oom_adj, 1097 task_pid_nr(task), task->comm); 1098 p->signal->oom_score_adj = oom_adj; 1099 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1100 p->signal->oom_score_adj_min = (short)oom_adj; 1101 } 1102 task_unlock(p); 1103 } 1104 rcu_read_unlock(); 1105 mmdrop(mm); 1106 } 1107 err_unlock: 1108 mutex_unlock(&oom_adj_mutex); 1109 put_task_struct(task); 1110 return err; 1111 } 1112 1113 /* 1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1115 * kernels. The effective policy is defined by oom_score_adj, which has a 1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1118 * Processes that become oom disabled via oom_adj will still be oom disabled 1119 * with this implementation. 1120 * 1121 * oom_adj cannot be removed since existing userspace binaries use it. 1122 */ 1123 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1124 size_t count, loff_t *ppos) 1125 { 1126 char buffer[PROC_NUMBUF]; 1127 int oom_adj; 1128 int err; 1129 1130 memset(buffer, 0, sizeof(buffer)); 1131 if (count > sizeof(buffer) - 1) 1132 count = sizeof(buffer) - 1; 1133 if (copy_from_user(buffer, buf, count)) { 1134 err = -EFAULT; 1135 goto out; 1136 } 1137 1138 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1139 if (err) 1140 goto out; 1141 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1142 oom_adj != OOM_DISABLE) { 1143 err = -EINVAL; 1144 goto out; 1145 } 1146 1147 /* 1148 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1149 * value is always attainable. 1150 */ 1151 if (oom_adj == OOM_ADJUST_MAX) 1152 oom_adj = OOM_SCORE_ADJ_MAX; 1153 else 1154 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1155 1156 err = __set_oom_adj(file, oom_adj, true); 1157 out: 1158 return err < 0 ? err : count; 1159 } 1160 1161 static const struct file_operations proc_oom_adj_operations = { 1162 .read = oom_adj_read, 1163 .write = oom_adj_write, 1164 .llseek = generic_file_llseek, 1165 }; 1166 1167 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1168 size_t count, loff_t *ppos) 1169 { 1170 struct task_struct *task = get_proc_task(file_inode(file)); 1171 char buffer[PROC_NUMBUF]; 1172 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1173 size_t len; 1174 1175 if (!task) 1176 return -ESRCH; 1177 oom_score_adj = task->signal->oom_score_adj; 1178 put_task_struct(task); 1179 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1180 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1181 } 1182 1183 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1184 size_t count, loff_t *ppos) 1185 { 1186 char buffer[PROC_NUMBUF]; 1187 int oom_score_adj; 1188 int err; 1189 1190 memset(buffer, 0, sizeof(buffer)); 1191 if (count > sizeof(buffer) - 1) 1192 count = sizeof(buffer) - 1; 1193 if (copy_from_user(buffer, buf, count)) { 1194 err = -EFAULT; 1195 goto out; 1196 } 1197 1198 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1199 if (err) 1200 goto out; 1201 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1202 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1203 err = -EINVAL; 1204 goto out; 1205 } 1206 1207 err = __set_oom_adj(file, oom_score_adj, false); 1208 out: 1209 return err < 0 ? err : count; 1210 } 1211 1212 static const struct file_operations proc_oom_score_adj_operations = { 1213 .read = oom_score_adj_read, 1214 .write = oom_score_adj_write, 1215 .llseek = default_llseek, 1216 }; 1217 1218 #ifdef CONFIG_AUDITSYSCALL 1219 #define TMPBUFLEN 11 1220 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1221 size_t count, loff_t *ppos) 1222 { 1223 struct inode * inode = file_inode(file); 1224 struct task_struct *task = get_proc_task(inode); 1225 ssize_t length; 1226 char tmpbuf[TMPBUFLEN]; 1227 1228 if (!task) 1229 return -ESRCH; 1230 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1231 from_kuid(file->f_cred->user_ns, 1232 audit_get_loginuid(task))); 1233 put_task_struct(task); 1234 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1235 } 1236 1237 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1238 size_t count, loff_t *ppos) 1239 { 1240 struct inode * inode = file_inode(file); 1241 uid_t loginuid; 1242 kuid_t kloginuid; 1243 int rv; 1244 1245 rcu_read_lock(); 1246 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1247 rcu_read_unlock(); 1248 return -EPERM; 1249 } 1250 rcu_read_unlock(); 1251 1252 if (*ppos != 0) { 1253 /* No partial writes. */ 1254 return -EINVAL; 1255 } 1256 1257 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1258 if (rv < 0) 1259 return rv; 1260 1261 /* is userspace tring to explicitly UNSET the loginuid? */ 1262 if (loginuid == AUDIT_UID_UNSET) { 1263 kloginuid = INVALID_UID; 1264 } else { 1265 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1266 if (!uid_valid(kloginuid)) 1267 return -EINVAL; 1268 } 1269 1270 rv = audit_set_loginuid(kloginuid); 1271 if (rv < 0) 1272 return rv; 1273 return count; 1274 } 1275 1276 static const struct file_operations proc_loginuid_operations = { 1277 .read = proc_loginuid_read, 1278 .write = proc_loginuid_write, 1279 .llseek = generic_file_llseek, 1280 }; 1281 1282 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1283 size_t count, loff_t *ppos) 1284 { 1285 struct inode * inode = file_inode(file); 1286 struct task_struct *task = get_proc_task(inode); 1287 ssize_t length; 1288 char tmpbuf[TMPBUFLEN]; 1289 1290 if (!task) 1291 return -ESRCH; 1292 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1293 audit_get_sessionid(task)); 1294 put_task_struct(task); 1295 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1296 } 1297 1298 static const struct file_operations proc_sessionid_operations = { 1299 .read = proc_sessionid_read, 1300 .llseek = generic_file_llseek, 1301 }; 1302 #endif 1303 1304 #ifdef CONFIG_FAULT_INJECTION 1305 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1306 size_t count, loff_t *ppos) 1307 { 1308 struct task_struct *task = get_proc_task(file_inode(file)); 1309 char buffer[PROC_NUMBUF]; 1310 size_t len; 1311 int make_it_fail; 1312 1313 if (!task) 1314 return -ESRCH; 1315 make_it_fail = task->make_it_fail; 1316 put_task_struct(task); 1317 1318 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1319 1320 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1321 } 1322 1323 static ssize_t proc_fault_inject_write(struct file * file, 1324 const char __user * buf, size_t count, loff_t *ppos) 1325 { 1326 struct task_struct *task; 1327 char buffer[PROC_NUMBUF]; 1328 int make_it_fail; 1329 int rv; 1330 1331 if (!capable(CAP_SYS_RESOURCE)) 1332 return -EPERM; 1333 memset(buffer, 0, sizeof(buffer)); 1334 if (count > sizeof(buffer) - 1) 1335 count = sizeof(buffer) - 1; 1336 if (copy_from_user(buffer, buf, count)) 1337 return -EFAULT; 1338 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1339 if (rv < 0) 1340 return rv; 1341 if (make_it_fail < 0 || make_it_fail > 1) 1342 return -EINVAL; 1343 1344 task = get_proc_task(file_inode(file)); 1345 if (!task) 1346 return -ESRCH; 1347 task->make_it_fail = make_it_fail; 1348 put_task_struct(task); 1349 1350 return count; 1351 } 1352 1353 static const struct file_operations proc_fault_inject_operations = { 1354 .read = proc_fault_inject_read, 1355 .write = proc_fault_inject_write, 1356 .llseek = generic_file_llseek, 1357 }; 1358 1359 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1360 size_t count, loff_t *ppos) 1361 { 1362 struct task_struct *task; 1363 int err; 1364 unsigned int n; 1365 1366 err = kstrtouint_from_user(buf, count, 0, &n); 1367 if (err) 1368 return err; 1369 1370 task = get_proc_task(file_inode(file)); 1371 if (!task) 1372 return -ESRCH; 1373 WRITE_ONCE(task->fail_nth, n); 1374 put_task_struct(task); 1375 1376 return count; 1377 } 1378 1379 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1380 size_t count, loff_t *ppos) 1381 { 1382 struct task_struct *task; 1383 char numbuf[PROC_NUMBUF]; 1384 ssize_t len; 1385 1386 task = get_proc_task(file_inode(file)); 1387 if (!task) 1388 return -ESRCH; 1389 len = snprintf(numbuf, sizeof(numbuf), "%u\n", 1390 READ_ONCE(task->fail_nth)); 1391 len = simple_read_from_buffer(buf, count, ppos, numbuf, len); 1392 put_task_struct(task); 1393 1394 return len; 1395 } 1396 1397 static const struct file_operations proc_fail_nth_operations = { 1398 .read = proc_fail_nth_read, 1399 .write = proc_fail_nth_write, 1400 }; 1401 #endif 1402 1403 1404 #ifdef CONFIG_SCHED_DEBUG 1405 /* 1406 * Print out various scheduling related per-task fields: 1407 */ 1408 static int sched_show(struct seq_file *m, void *v) 1409 { 1410 struct inode *inode = m->private; 1411 struct pid_namespace *ns = inode->i_sb->s_fs_info; 1412 struct task_struct *p; 1413 1414 p = get_proc_task(inode); 1415 if (!p) 1416 return -ESRCH; 1417 proc_sched_show_task(p, ns, m); 1418 1419 put_task_struct(p); 1420 1421 return 0; 1422 } 1423 1424 static ssize_t 1425 sched_write(struct file *file, const char __user *buf, 1426 size_t count, loff_t *offset) 1427 { 1428 struct inode *inode = file_inode(file); 1429 struct task_struct *p; 1430 1431 p = get_proc_task(inode); 1432 if (!p) 1433 return -ESRCH; 1434 proc_sched_set_task(p); 1435 1436 put_task_struct(p); 1437 1438 return count; 1439 } 1440 1441 static int sched_open(struct inode *inode, struct file *filp) 1442 { 1443 return single_open(filp, sched_show, inode); 1444 } 1445 1446 static const struct file_operations proc_pid_sched_operations = { 1447 .open = sched_open, 1448 .read = seq_read, 1449 .write = sched_write, 1450 .llseek = seq_lseek, 1451 .release = single_release, 1452 }; 1453 1454 #endif 1455 1456 #ifdef CONFIG_SCHED_AUTOGROUP 1457 /* 1458 * Print out autogroup related information: 1459 */ 1460 static int sched_autogroup_show(struct seq_file *m, void *v) 1461 { 1462 struct inode *inode = m->private; 1463 struct task_struct *p; 1464 1465 p = get_proc_task(inode); 1466 if (!p) 1467 return -ESRCH; 1468 proc_sched_autogroup_show_task(p, m); 1469 1470 put_task_struct(p); 1471 1472 return 0; 1473 } 1474 1475 static ssize_t 1476 sched_autogroup_write(struct file *file, const char __user *buf, 1477 size_t count, loff_t *offset) 1478 { 1479 struct inode *inode = file_inode(file); 1480 struct task_struct *p; 1481 char buffer[PROC_NUMBUF]; 1482 int nice; 1483 int err; 1484 1485 memset(buffer, 0, sizeof(buffer)); 1486 if (count > sizeof(buffer) - 1) 1487 count = sizeof(buffer) - 1; 1488 if (copy_from_user(buffer, buf, count)) 1489 return -EFAULT; 1490 1491 err = kstrtoint(strstrip(buffer), 0, &nice); 1492 if (err < 0) 1493 return err; 1494 1495 p = get_proc_task(inode); 1496 if (!p) 1497 return -ESRCH; 1498 1499 err = proc_sched_autogroup_set_nice(p, nice); 1500 if (err) 1501 count = err; 1502 1503 put_task_struct(p); 1504 1505 return count; 1506 } 1507 1508 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1509 { 1510 int ret; 1511 1512 ret = single_open(filp, sched_autogroup_show, NULL); 1513 if (!ret) { 1514 struct seq_file *m = filp->private_data; 1515 1516 m->private = inode; 1517 } 1518 return ret; 1519 } 1520 1521 static const struct file_operations proc_pid_sched_autogroup_operations = { 1522 .open = sched_autogroup_open, 1523 .read = seq_read, 1524 .write = sched_autogroup_write, 1525 .llseek = seq_lseek, 1526 .release = single_release, 1527 }; 1528 1529 #endif /* CONFIG_SCHED_AUTOGROUP */ 1530 1531 static ssize_t comm_write(struct file *file, const char __user *buf, 1532 size_t count, loff_t *offset) 1533 { 1534 struct inode *inode = file_inode(file); 1535 struct task_struct *p; 1536 char buffer[TASK_COMM_LEN]; 1537 const size_t maxlen = sizeof(buffer) - 1; 1538 1539 memset(buffer, 0, sizeof(buffer)); 1540 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1541 return -EFAULT; 1542 1543 p = get_proc_task(inode); 1544 if (!p) 1545 return -ESRCH; 1546 1547 if (same_thread_group(current, p)) 1548 set_task_comm(p, buffer); 1549 else 1550 count = -EINVAL; 1551 1552 put_task_struct(p); 1553 1554 return count; 1555 } 1556 1557 static int comm_show(struct seq_file *m, void *v) 1558 { 1559 struct inode *inode = m->private; 1560 struct task_struct *p; 1561 1562 p = get_proc_task(inode); 1563 if (!p) 1564 return -ESRCH; 1565 1566 task_lock(p); 1567 seq_printf(m, "%s\n", p->comm); 1568 task_unlock(p); 1569 1570 put_task_struct(p); 1571 1572 return 0; 1573 } 1574 1575 static int comm_open(struct inode *inode, struct file *filp) 1576 { 1577 return single_open(filp, comm_show, inode); 1578 } 1579 1580 static const struct file_operations proc_pid_set_comm_operations = { 1581 .open = comm_open, 1582 .read = seq_read, 1583 .write = comm_write, 1584 .llseek = seq_lseek, 1585 .release = single_release, 1586 }; 1587 1588 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1589 { 1590 struct task_struct *task; 1591 struct file *exe_file; 1592 1593 task = get_proc_task(d_inode(dentry)); 1594 if (!task) 1595 return -ENOENT; 1596 exe_file = get_task_exe_file(task); 1597 put_task_struct(task); 1598 if (exe_file) { 1599 *exe_path = exe_file->f_path; 1600 path_get(&exe_file->f_path); 1601 fput(exe_file); 1602 return 0; 1603 } else 1604 return -ENOENT; 1605 } 1606 1607 static const char *proc_pid_get_link(struct dentry *dentry, 1608 struct inode *inode, 1609 struct delayed_call *done) 1610 { 1611 struct path path; 1612 int error = -EACCES; 1613 1614 if (!dentry) 1615 return ERR_PTR(-ECHILD); 1616 1617 /* Are we allowed to snoop on the tasks file descriptors? */ 1618 if (!proc_fd_access_allowed(inode)) 1619 goto out; 1620 1621 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1622 if (error) 1623 goto out; 1624 1625 nd_jump_link(&path); 1626 return NULL; 1627 out: 1628 return ERR_PTR(error); 1629 } 1630 1631 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1632 { 1633 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1634 char *pathname; 1635 int len; 1636 1637 if (!tmp) 1638 return -ENOMEM; 1639 1640 pathname = d_path(path, tmp, PAGE_SIZE); 1641 len = PTR_ERR(pathname); 1642 if (IS_ERR(pathname)) 1643 goto out; 1644 len = tmp + PAGE_SIZE - 1 - pathname; 1645 1646 if (len > buflen) 1647 len = buflen; 1648 if (copy_to_user(buffer, pathname, len)) 1649 len = -EFAULT; 1650 out: 1651 free_page((unsigned long)tmp); 1652 return len; 1653 } 1654 1655 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1656 { 1657 int error = -EACCES; 1658 struct inode *inode = d_inode(dentry); 1659 struct path path; 1660 1661 /* Are we allowed to snoop on the tasks file descriptors? */ 1662 if (!proc_fd_access_allowed(inode)) 1663 goto out; 1664 1665 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1666 if (error) 1667 goto out; 1668 1669 error = do_proc_readlink(&path, buffer, buflen); 1670 path_put(&path); 1671 out: 1672 return error; 1673 } 1674 1675 const struct inode_operations proc_pid_link_inode_operations = { 1676 .readlink = proc_pid_readlink, 1677 .get_link = proc_pid_get_link, 1678 .setattr = proc_setattr, 1679 }; 1680 1681 1682 /* building an inode */ 1683 1684 void task_dump_owner(struct task_struct *task, umode_t mode, 1685 kuid_t *ruid, kgid_t *rgid) 1686 { 1687 /* Depending on the state of dumpable compute who should own a 1688 * proc file for a task. 1689 */ 1690 const struct cred *cred; 1691 kuid_t uid; 1692 kgid_t gid; 1693 1694 /* Default to the tasks effective ownership */ 1695 rcu_read_lock(); 1696 cred = __task_cred(task); 1697 uid = cred->euid; 1698 gid = cred->egid; 1699 rcu_read_unlock(); 1700 1701 /* 1702 * Before the /proc/pid/status file was created the only way to read 1703 * the effective uid of a /process was to stat /proc/pid. Reading 1704 * /proc/pid/status is slow enough that procps and other packages 1705 * kept stating /proc/pid. To keep the rules in /proc simple I have 1706 * made this apply to all per process world readable and executable 1707 * directories. 1708 */ 1709 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1710 struct mm_struct *mm; 1711 task_lock(task); 1712 mm = task->mm; 1713 /* Make non-dumpable tasks owned by some root */ 1714 if (mm) { 1715 if (get_dumpable(mm) != SUID_DUMP_USER) { 1716 struct user_namespace *user_ns = mm->user_ns; 1717 1718 uid = make_kuid(user_ns, 0); 1719 if (!uid_valid(uid)) 1720 uid = GLOBAL_ROOT_UID; 1721 1722 gid = make_kgid(user_ns, 0); 1723 if (!gid_valid(gid)) 1724 gid = GLOBAL_ROOT_GID; 1725 } 1726 } else { 1727 uid = GLOBAL_ROOT_UID; 1728 gid = GLOBAL_ROOT_GID; 1729 } 1730 task_unlock(task); 1731 } 1732 *ruid = uid; 1733 *rgid = gid; 1734 } 1735 1736 struct inode *proc_pid_make_inode(struct super_block * sb, 1737 struct task_struct *task, umode_t mode) 1738 { 1739 struct inode * inode; 1740 struct proc_inode *ei; 1741 1742 /* We need a new inode */ 1743 1744 inode = new_inode(sb); 1745 if (!inode) 1746 goto out; 1747 1748 /* Common stuff */ 1749 ei = PROC_I(inode); 1750 inode->i_mode = mode; 1751 inode->i_ino = get_next_ino(); 1752 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1753 inode->i_op = &proc_def_inode_operations; 1754 1755 /* 1756 * grab the reference to task. 1757 */ 1758 ei->pid = get_task_pid(task, PIDTYPE_PID); 1759 if (!ei->pid) 1760 goto out_unlock; 1761 1762 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1763 security_task_to_inode(task, inode); 1764 1765 out: 1766 return inode; 1767 1768 out_unlock: 1769 iput(inode); 1770 return NULL; 1771 } 1772 1773 int pid_getattr(const struct path *path, struct kstat *stat, 1774 u32 request_mask, unsigned int query_flags) 1775 { 1776 struct inode *inode = d_inode(path->dentry); 1777 struct task_struct *task; 1778 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info; 1779 1780 generic_fillattr(inode, stat); 1781 1782 rcu_read_lock(); 1783 stat->uid = GLOBAL_ROOT_UID; 1784 stat->gid = GLOBAL_ROOT_GID; 1785 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1786 if (task) { 1787 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1788 rcu_read_unlock(); 1789 /* 1790 * This doesn't prevent learning whether PID exists, 1791 * it only makes getattr() consistent with readdir(). 1792 */ 1793 return -ENOENT; 1794 } 1795 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1796 } 1797 rcu_read_unlock(); 1798 return 0; 1799 } 1800 1801 /* dentry stuff */ 1802 1803 /* 1804 * Exceptional case: normally we are not allowed to unhash a busy 1805 * directory. In this case, however, we can do it - no aliasing problems 1806 * due to the way we treat inodes. 1807 * 1808 * Rewrite the inode's ownerships here because the owning task may have 1809 * performed a setuid(), etc. 1810 * 1811 */ 1812 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1813 { 1814 struct inode *inode; 1815 struct task_struct *task; 1816 1817 if (flags & LOOKUP_RCU) 1818 return -ECHILD; 1819 1820 inode = d_inode(dentry); 1821 task = get_proc_task(inode); 1822 1823 if (task) { 1824 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1825 1826 inode->i_mode &= ~(S_ISUID | S_ISGID); 1827 security_task_to_inode(task, inode); 1828 put_task_struct(task); 1829 return 1; 1830 } 1831 return 0; 1832 } 1833 1834 static inline bool proc_inode_is_dead(struct inode *inode) 1835 { 1836 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1837 } 1838 1839 int pid_delete_dentry(const struct dentry *dentry) 1840 { 1841 /* Is the task we represent dead? 1842 * If so, then don't put the dentry on the lru list, 1843 * kill it immediately. 1844 */ 1845 return proc_inode_is_dead(d_inode(dentry)); 1846 } 1847 1848 const struct dentry_operations pid_dentry_operations = 1849 { 1850 .d_revalidate = pid_revalidate, 1851 .d_delete = pid_delete_dentry, 1852 }; 1853 1854 /* Lookups */ 1855 1856 /* 1857 * Fill a directory entry. 1858 * 1859 * If possible create the dcache entry and derive our inode number and 1860 * file type from dcache entry. 1861 * 1862 * Since all of the proc inode numbers are dynamically generated, the inode 1863 * numbers do not exist until the inode is cache. This means creating the 1864 * the dcache entry in readdir is necessary to keep the inode numbers 1865 * reported by readdir in sync with the inode numbers reported 1866 * by stat. 1867 */ 1868 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1869 const char *name, int len, 1870 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1871 { 1872 struct dentry *child, *dir = file->f_path.dentry; 1873 struct qstr qname = QSTR_INIT(name, len); 1874 struct inode *inode; 1875 unsigned type; 1876 ino_t ino; 1877 1878 child = d_hash_and_lookup(dir, &qname); 1879 if (!child) { 1880 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1881 child = d_alloc_parallel(dir, &qname, &wq); 1882 if (IS_ERR(child)) 1883 goto end_instantiate; 1884 if (d_in_lookup(child)) { 1885 int err = instantiate(d_inode(dir), child, task, ptr); 1886 d_lookup_done(child); 1887 if (err < 0) { 1888 dput(child); 1889 goto end_instantiate; 1890 } 1891 } 1892 } 1893 inode = d_inode(child); 1894 ino = inode->i_ino; 1895 type = inode->i_mode >> 12; 1896 dput(child); 1897 return dir_emit(ctx, name, len, ino, type); 1898 1899 end_instantiate: 1900 return dir_emit(ctx, name, len, 1, DT_UNKNOWN); 1901 } 1902 1903 /* 1904 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1905 * which represent vma start and end addresses. 1906 */ 1907 static int dname_to_vma_addr(struct dentry *dentry, 1908 unsigned long *start, unsigned long *end) 1909 { 1910 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 1911 return -EINVAL; 1912 1913 return 0; 1914 } 1915 1916 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1917 { 1918 unsigned long vm_start, vm_end; 1919 bool exact_vma_exists = false; 1920 struct mm_struct *mm = NULL; 1921 struct task_struct *task; 1922 struct inode *inode; 1923 int status = 0; 1924 1925 if (flags & LOOKUP_RCU) 1926 return -ECHILD; 1927 1928 inode = d_inode(dentry); 1929 task = get_proc_task(inode); 1930 if (!task) 1931 goto out_notask; 1932 1933 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1934 if (IS_ERR_OR_NULL(mm)) 1935 goto out; 1936 1937 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1938 down_read(&mm->mmap_sem); 1939 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1940 up_read(&mm->mmap_sem); 1941 } 1942 1943 mmput(mm); 1944 1945 if (exact_vma_exists) { 1946 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1947 1948 security_task_to_inode(task, inode); 1949 status = 1; 1950 } 1951 1952 out: 1953 put_task_struct(task); 1954 1955 out_notask: 1956 return status; 1957 } 1958 1959 static const struct dentry_operations tid_map_files_dentry_operations = { 1960 .d_revalidate = map_files_d_revalidate, 1961 .d_delete = pid_delete_dentry, 1962 }; 1963 1964 static int map_files_get_link(struct dentry *dentry, struct path *path) 1965 { 1966 unsigned long vm_start, vm_end; 1967 struct vm_area_struct *vma; 1968 struct task_struct *task; 1969 struct mm_struct *mm; 1970 int rc; 1971 1972 rc = -ENOENT; 1973 task = get_proc_task(d_inode(dentry)); 1974 if (!task) 1975 goto out; 1976 1977 mm = get_task_mm(task); 1978 put_task_struct(task); 1979 if (!mm) 1980 goto out; 1981 1982 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 1983 if (rc) 1984 goto out_mmput; 1985 1986 rc = -ENOENT; 1987 down_read(&mm->mmap_sem); 1988 vma = find_exact_vma(mm, vm_start, vm_end); 1989 if (vma && vma->vm_file) { 1990 *path = vma->vm_file->f_path; 1991 path_get(path); 1992 rc = 0; 1993 } 1994 up_read(&mm->mmap_sem); 1995 1996 out_mmput: 1997 mmput(mm); 1998 out: 1999 return rc; 2000 } 2001 2002 struct map_files_info { 2003 fmode_t mode; 2004 unsigned int len; 2005 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 2006 }; 2007 2008 /* 2009 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2010 * symlinks may be used to bypass permissions on ancestor directories in the 2011 * path to the file in question. 2012 */ 2013 static const char * 2014 proc_map_files_get_link(struct dentry *dentry, 2015 struct inode *inode, 2016 struct delayed_call *done) 2017 { 2018 if (!capable(CAP_SYS_ADMIN)) 2019 return ERR_PTR(-EPERM); 2020 2021 return proc_pid_get_link(dentry, inode, done); 2022 } 2023 2024 /* 2025 * Identical to proc_pid_link_inode_operations except for get_link() 2026 */ 2027 static const struct inode_operations proc_map_files_link_inode_operations = { 2028 .readlink = proc_pid_readlink, 2029 .get_link = proc_map_files_get_link, 2030 .setattr = proc_setattr, 2031 }; 2032 2033 static int 2034 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2035 struct task_struct *task, const void *ptr) 2036 { 2037 fmode_t mode = (fmode_t)(unsigned long)ptr; 2038 struct proc_inode *ei; 2039 struct inode *inode; 2040 2041 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK | 2042 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2043 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2044 if (!inode) 2045 return -ENOENT; 2046 2047 ei = PROC_I(inode); 2048 ei->op.proc_get_link = map_files_get_link; 2049 2050 inode->i_op = &proc_map_files_link_inode_operations; 2051 inode->i_size = 64; 2052 2053 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2054 d_add(dentry, inode); 2055 2056 return 0; 2057 } 2058 2059 static struct dentry *proc_map_files_lookup(struct inode *dir, 2060 struct dentry *dentry, unsigned int flags) 2061 { 2062 unsigned long vm_start, vm_end; 2063 struct vm_area_struct *vma; 2064 struct task_struct *task; 2065 int result; 2066 struct mm_struct *mm; 2067 2068 result = -ENOENT; 2069 task = get_proc_task(dir); 2070 if (!task) 2071 goto out; 2072 2073 result = -EACCES; 2074 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2075 goto out_put_task; 2076 2077 result = -ENOENT; 2078 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2079 goto out_put_task; 2080 2081 mm = get_task_mm(task); 2082 if (!mm) 2083 goto out_put_task; 2084 2085 down_read(&mm->mmap_sem); 2086 vma = find_exact_vma(mm, vm_start, vm_end); 2087 if (!vma) 2088 goto out_no_vma; 2089 2090 if (vma->vm_file) 2091 result = proc_map_files_instantiate(dir, dentry, task, 2092 (void *)(unsigned long)vma->vm_file->f_mode); 2093 2094 out_no_vma: 2095 up_read(&mm->mmap_sem); 2096 mmput(mm); 2097 out_put_task: 2098 put_task_struct(task); 2099 out: 2100 return ERR_PTR(result); 2101 } 2102 2103 static const struct inode_operations proc_map_files_inode_operations = { 2104 .lookup = proc_map_files_lookup, 2105 .permission = proc_fd_permission, 2106 .setattr = proc_setattr, 2107 }; 2108 2109 static int 2110 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2111 { 2112 struct vm_area_struct *vma; 2113 struct task_struct *task; 2114 struct mm_struct *mm; 2115 unsigned long nr_files, pos, i; 2116 struct flex_array *fa = NULL; 2117 struct map_files_info info; 2118 struct map_files_info *p; 2119 int ret; 2120 2121 ret = -ENOENT; 2122 task = get_proc_task(file_inode(file)); 2123 if (!task) 2124 goto out; 2125 2126 ret = -EACCES; 2127 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2128 goto out_put_task; 2129 2130 ret = 0; 2131 if (!dir_emit_dots(file, ctx)) 2132 goto out_put_task; 2133 2134 mm = get_task_mm(task); 2135 if (!mm) 2136 goto out_put_task; 2137 down_read(&mm->mmap_sem); 2138 2139 nr_files = 0; 2140 2141 /* 2142 * We need two passes here: 2143 * 2144 * 1) Collect vmas of mapped files with mmap_sem taken 2145 * 2) Release mmap_sem and instantiate entries 2146 * 2147 * otherwise we get lockdep complained, since filldir() 2148 * routine might require mmap_sem taken in might_fault(). 2149 */ 2150 2151 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2152 if (vma->vm_file && ++pos > ctx->pos) 2153 nr_files++; 2154 } 2155 2156 if (nr_files) { 2157 fa = flex_array_alloc(sizeof(info), nr_files, 2158 GFP_KERNEL); 2159 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2160 GFP_KERNEL)) { 2161 ret = -ENOMEM; 2162 if (fa) 2163 flex_array_free(fa); 2164 up_read(&mm->mmap_sem); 2165 mmput(mm); 2166 goto out_put_task; 2167 } 2168 for (i = 0, vma = mm->mmap, pos = 2; vma; 2169 vma = vma->vm_next) { 2170 if (!vma->vm_file) 2171 continue; 2172 if (++pos <= ctx->pos) 2173 continue; 2174 2175 info.mode = vma->vm_file->f_mode; 2176 info.len = snprintf(info.name, 2177 sizeof(info.name), "%lx-%lx", 2178 vma->vm_start, vma->vm_end); 2179 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2180 BUG(); 2181 } 2182 } 2183 up_read(&mm->mmap_sem); 2184 2185 for (i = 0; i < nr_files; i++) { 2186 p = flex_array_get(fa, i); 2187 if (!proc_fill_cache(file, ctx, 2188 p->name, p->len, 2189 proc_map_files_instantiate, 2190 task, 2191 (void *)(unsigned long)p->mode)) 2192 break; 2193 ctx->pos++; 2194 } 2195 if (fa) 2196 flex_array_free(fa); 2197 mmput(mm); 2198 2199 out_put_task: 2200 put_task_struct(task); 2201 out: 2202 return ret; 2203 } 2204 2205 static const struct file_operations proc_map_files_operations = { 2206 .read = generic_read_dir, 2207 .iterate_shared = proc_map_files_readdir, 2208 .llseek = generic_file_llseek, 2209 }; 2210 2211 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2212 struct timers_private { 2213 struct pid *pid; 2214 struct task_struct *task; 2215 struct sighand_struct *sighand; 2216 struct pid_namespace *ns; 2217 unsigned long flags; 2218 }; 2219 2220 static void *timers_start(struct seq_file *m, loff_t *pos) 2221 { 2222 struct timers_private *tp = m->private; 2223 2224 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2225 if (!tp->task) 2226 return ERR_PTR(-ESRCH); 2227 2228 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2229 if (!tp->sighand) 2230 return ERR_PTR(-ESRCH); 2231 2232 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2233 } 2234 2235 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2236 { 2237 struct timers_private *tp = m->private; 2238 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2239 } 2240 2241 static void timers_stop(struct seq_file *m, void *v) 2242 { 2243 struct timers_private *tp = m->private; 2244 2245 if (tp->sighand) { 2246 unlock_task_sighand(tp->task, &tp->flags); 2247 tp->sighand = NULL; 2248 } 2249 2250 if (tp->task) { 2251 put_task_struct(tp->task); 2252 tp->task = NULL; 2253 } 2254 } 2255 2256 static int show_timer(struct seq_file *m, void *v) 2257 { 2258 struct k_itimer *timer; 2259 struct timers_private *tp = m->private; 2260 int notify; 2261 static const char * const nstr[] = { 2262 [SIGEV_SIGNAL] = "signal", 2263 [SIGEV_NONE] = "none", 2264 [SIGEV_THREAD] = "thread", 2265 }; 2266 2267 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2268 notify = timer->it_sigev_notify; 2269 2270 seq_printf(m, "ID: %d\n", timer->it_id); 2271 seq_printf(m, "signal: %d/%px\n", 2272 timer->sigq->info.si_signo, 2273 timer->sigq->info.si_value.sival_ptr); 2274 seq_printf(m, "notify: %s/%s.%d\n", 2275 nstr[notify & ~SIGEV_THREAD_ID], 2276 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2277 pid_nr_ns(timer->it_pid, tp->ns)); 2278 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2279 2280 return 0; 2281 } 2282 2283 static const struct seq_operations proc_timers_seq_ops = { 2284 .start = timers_start, 2285 .next = timers_next, 2286 .stop = timers_stop, 2287 .show = show_timer, 2288 }; 2289 2290 static int proc_timers_open(struct inode *inode, struct file *file) 2291 { 2292 struct timers_private *tp; 2293 2294 tp = __seq_open_private(file, &proc_timers_seq_ops, 2295 sizeof(struct timers_private)); 2296 if (!tp) 2297 return -ENOMEM; 2298 2299 tp->pid = proc_pid(inode); 2300 tp->ns = inode->i_sb->s_fs_info; 2301 return 0; 2302 } 2303 2304 static const struct file_operations proc_timers_operations = { 2305 .open = proc_timers_open, 2306 .read = seq_read, 2307 .llseek = seq_lseek, 2308 .release = seq_release_private, 2309 }; 2310 #endif 2311 2312 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2313 size_t count, loff_t *offset) 2314 { 2315 struct inode *inode = file_inode(file); 2316 struct task_struct *p; 2317 u64 slack_ns; 2318 int err; 2319 2320 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2321 if (err < 0) 2322 return err; 2323 2324 p = get_proc_task(inode); 2325 if (!p) 2326 return -ESRCH; 2327 2328 if (p != current) { 2329 if (!capable(CAP_SYS_NICE)) { 2330 count = -EPERM; 2331 goto out; 2332 } 2333 2334 err = security_task_setscheduler(p); 2335 if (err) { 2336 count = err; 2337 goto out; 2338 } 2339 } 2340 2341 task_lock(p); 2342 if (slack_ns == 0) 2343 p->timer_slack_ns = p->default_timer_slack_ns; 2344 else 2345 p->timer_slack_ns = slack_ns; 2346 task_unlock(p); 2347 2348 out: 2349 put_task_struct(p); 2350 2351 return count; 2352 } 2353 2354 static int timerslack_ns_show(struct seq_file *m, void *v) 2355 { 2356 struct inode *inode = m->private; 2357 struct task_struct *p; 2358 int err = 0; 2359 2360 p = get_proc_task(inode); 2361 if (!p) 2362 return -ESRCH; 2363 2364 if (p != current) { 2365 2366 if (!capable(CAP_SYS_NICE)) { 2367 err = -EPERM; 2368 goto out; 2369 } 2370 err = security_task_getscheduler(p); 2371 if (err) 2372 goto out; 2373 } 2374 2375 task_lock(p); 2376 seq_printf(m, "%llu\n", p->timer_slack_ns); 2377 task_unlock(p); 2378 2379 out: 2380 put_task_struct(p); 2381 2382 return err; 2383 } 2384 2385 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2386 { 2387 return single_open(filp, timerslack_ns_show, inode); 2388 } 2389 2390 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2391 .open = timerslack_ns_open, 2392 .read = seq_read, 2393 .write = timerslack_ns_write, 2394 .llseek = seq_lseek, 2395 .release = single_release, 2396 }; 2397 2398 static int proc_pident_instantiate(struct inode *dir, 2399 struct dentry *dentry, struct task_struct *task, const void *ptr) 2400 { 2401 const struct pid_entry *p = ptr; 2402 struct inode *inode; 2403 struct proc_inode *ei; 2404 2405 inode = proc_pid_make_inode(dir->i_sb, task, p->mode); 2406 if (!inode) 2407 goto out; 2408 2409 ei = PROC_I(inode); 2410 if (S_ISDIR(inode->i_mode)) 2411 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2412 if (p->iop) 2413 inode->i_op = p->iop; 2414 if (p->fop) 2415 inode->i_fop = p->fop; 2416 ei->op = p->op; 2417 d_set_d_op(dentry, &pid_dentry_operations); 2418 d_add(dentry, inode); 2419 /* Close the race of the process dying before we return the dentry */ 2420 if (pid_revalidate(dentry, 0)) 2421 return 0; 2422 out: 2423 return -ENOENT; 2424 } 2425 2426 static struct dentry *proc_pident_lookup(struct inode *dir, 2427 struct dentry *dentry, 2428 const struct pid_entry *ents, 2429 unsigned int nents) 2430 { 2431 int error; 2432 struct task_struct *task = get_proc_task(dir); 2433 const struct pid_entry *p, *last; 2434 2435 error = -ENOENT; 2436 2437 if (!task) 2438 goto out_no_task; 2439 2440 /* 2441 * Yes, it does not scale. And it should not. Don't add 2442 * new entries into /proc/<tgid>/ without very good reasons. 2443 */ 2444 last = &ents[nents]; 2445 for (p = ents; p < last; p++) { 2446 if (p->len != dentry->d_name.len) 2447 continue; 2448 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2449 break; 2450 } 2451 if (p >= last) 2452 goto out; 2453 2454 error = proc_pident_instantiate(dir, dentry, task, p); 2455 out: 2456 put_task_struct(task); 2457 out_no_task: 2458 return ERR_PTR(error); 2459 } 2460 2461 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2462 const struct pid_entry *ents, unsigned int nents) 2463 { 2464 struct task_struct *task = get_proc_task(file_inode(file)); 2465 const struct pid_entry *p; 2466 2467 if (!task) 2468 return -ENOENT; 2469 2470 if (!dir_emit_dots(file, ctx)) 2471 goto out; 2472 2473 if (ctx->pos >= nents + 2) 2474 goto out; 2475 2476 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2477 if (!proc_fill_cache(file, ctx, p->name, p->len, 2478 proc_pident_instantiate, task, p)) 2479 break; 2480 ctx->pos++; 2481 } 2482 out: 2483 put_task_struct(task); 2484 return 0; 2485 } 2486 2487 #ifdef CONFIG_SECURITY 2488 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2489 size_t count, loff_t *ppos) 2490 { 2491 struct inode * inode = file_inode(file); 2492 char *p = NULL; 2493 ssize_t length; 2494 struct task_struct *task = get_proc_task(inode); 2495 2496 if (!task) 2497 return -ESRCH; 2498 2499 length = security_getprocattr(task, 2500 (char*)file->f_path.dentry->d_name.name, 2501 &p); 2502 put_task_struct(task); 2503 if (length > 0) 2504 length = simple_read_from_buffer(buf, count, ppos, p, length); 2505 kfree(p); 2506 return length; 2507 } 2508 2509 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2510 size_t count, loff_t *ppos) 2511 { 2512 struct inode * inode = file_inode(file); 2513 void *page; 2514 ssize_t length; 2515 struct task_struct *task = get_proc_task(inode); 2516 2517 length = -ESRCH; 2518 if (!task) 2519 goto out_no_task; 2520 2521 /* A task may only write its own attributes. */ 2522 length = -EACCES; 2523 if (current != task) 2524 goto out; 2525 2526 if (count > PAGE_SIZE) 2527 count = PAGE_SIZE; 2528 2529 /* No partial writes. */ 2530 length = -EINVAL; 2531 if (*ppos != 0) 2532 goto out; 2533 2534 page = memdup_user(buf, count); 2535 if (IS_ERR(page)) { 2536 length = PTR_ERR(page); 2537 goto out; 2538 } 2539 2540 /* Guard against adverse ptrace interaction */ 2541 length = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2542 if (length < 0) 2543 goto out_free; 2544 2545 length = security_setprocattr(file->f_path.dentry->d_name.name, 2546 page, count); 2547 mutex_unlock(¤t->signal->cred_guard_mutex); 2548 out_free: 2549 kfree(page); 2550 out: 2551 put_task_struct(task); 2552 out_no_task: 2553 return length; 2554 } 2555 2556 static const struct file_operations proc_pid_attr_operations = { 2557 .read = proc_pid_attr_read, 2558 .write = proc_pid_attr_write, 2559 .llseek = generic_file_llseek, 2560 }; 2561 2562 static const struct pid_entry attr_dir_stuff[] = { 2563 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2564 REG("prev", S_IRUGO, proc_pid_attr_operations), 2565 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2566 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2567 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2568 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2569 }; 2570 2571 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2572 { 2573 return proc_pident_readdir(file, ctx, 2574 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2575 } 2576 2577 static const struct file_operations proc_attr_dir_operations = { 2578 .read = generic_read_dir, 2579 .iterate_shared = proc_attr_dir_readdir, 2580 .llseek = generic_file_llseek, 2581 }; 2582 2583 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2584 struct dentry *dentry, unsigned int flags) 2585 { 2586 return proc_pident_lookup(dir, dentry, 2587 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2588 } 2589 2590 static const struct inode_operations proc_attr_dir_inode_operations = { 2591 .lookup = proc_attr_dir_lookup, 2592 .getattr = pid_getattr, 2593 .setattr = proc_setattr, 2594 }; 2595 2596 #endif 2597 2598 #ifdef CONFIG_ELF_CORE 2599 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2600 size_t count, loff_t *ppos) 2601 { 2602 struct task_struct *task = get_proc_task(file_inode(file)); 2603 struct mm_struct *mm; 2604 char buffer[PROC_NUMBUF]; 2605 size_t len; 2606 int ret; 2607 2608 if (!task) 2609 return -ESRCH; 2610 2611 ret = 0; 2612 mm = get_task_mm(task); 2613 if (mm) { 2614 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2615 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2616 MMF_DUMP_FILTER_SHIFT)); 2617 mmput(mm); 2618 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2619 } 2620 2621 put_task_struct(task); 2622 2623 return ret; 2624 } 2625 2626 static ssize_t proc_coredump_filter_write(struct file *file, 2627 const char __user *buf, 2628 size_t count, 2629 loff_t *ppos) 2630 { 2631 struct task_struct *task; 2632 struct mm_struct *mm; 2633 unsigned int val; 2634 int ret; 2635 int i; 2636 unsigned long mask; 2637 2638 ret = kstrtouint_from_user(buf, count, 0, &val); 2639 if (ret < 0) 2640 return ret; 2641 2642 ret = -ESRCH; 2643 task = get_proc_task(file_inode(file)); 2644 if (!task) 2645 goto out_no_task; 2646 2647 mm = get_task_mm(task); 2648 if (!mm) 2649 goto out_no_mm; 2650 ret = 0; 2651 2652 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2653 if (val & mask) 2654 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2655 else 2656 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2657 } 2658 2659 mmput(mm); 2660 out_no_mm: 2661 put_task_struct(task); 2662 out_no_task: 2663 if (ret < 0) 2664 return ret; 2665 return count; 2666 } 2667 2668 static const struct file_operations proc_coredump_filter_operations = { 2669 .read = proc_coredump_filter_read, 2670 .write = proc_coredump_filter_write, 2671 .llseek = generic_file_llseek, 2672 }; 2673 #endif 2674 2675 #ifdef CONFIG_TASK_IO_ACCOUNTING 2676 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2677 { 2678 struct task_io_accounting acct = task->ioac; 2679 unsigned long flags; 2680 int result; 2681 2682 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2683 if (result) 2684 return result; 2685 2686 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2687 result = -EACCES; 2688 goto out_unlock; 2689 } 2690 2691 if (whole && lock_task_sighand(task, &flags)) { 2692 struct task_struct *t = task; 2693 2694 task_io_accounting_add(&acct, &task->signal->ioac); 2695 while_each_thread(task, t) 2696 task_io_accounting_add(&acct, &t->ioac); 2697 2698 unlock_task_sighand(task, &flags); 2699 } 2700 seq_printf(m, 2701 "rchar: %llu\n" 2702 "wchar: %llu\n" 2703 "syscr: %llu\n" 2704 "syscw: %llu\n" 2705 "read_bytes: %llu\n" 2706 "write_bytes: %llu\n" 2707 "cancelled_write_bytes: %llu\n", 2708 (unsigned long long)acct.rchar, 2709 (unsigned long long)acct.wchar, 2710 (unsigned long long)acct.syscr, 2711 (unsigned long long)acct.syscw, 2712 (unsigned long long)acct.read_bytes, 2713 (unsigned long long)acct.write_bytes, 2714 (unsigned long long)acct.cancelled_write_bytes); 2715 result = 0; 2716 2717 out_unlock: 2718 mutex_unlock(&task->signal->cred_guard_mutex); 2719 return result; 2720 } 2721 2722 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2723 struct pid *pid, struct task_struct *task) 2724 { 2725 return do_io_accounting(task, m, 0); 2726 } 2727 2728 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2729 struct pid *pid, struct task_struct *task) 2730 { 2731 return do_io_accounting(task, m, 1); 2732 } 2733 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2734 2735 #ifdef CONFIG_USER_NS 2736 static int proc_id_map_open(struct inode *inode, struct file *file, 2737 const struct seq_operations *seq_ops) 2738 { 2739 struct user_namespace *ns = NULL; 2740 struct task_struct *task; 2741 struct seq_file *seq; 2742 int ret = -EINVAL; 2743 2744 task = get_proc_task(inode); 2745 if (task) { 2746 rcu_read_lock(); 2747 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2748 rcu_read_unlock(); 2749 put_task_struct(task); 2750 } 2751 if (!ns) 2752 goto err; 2753 2754 ret = seq_open(file, seq_ops); 2755 if (ret) 2756 goto err_put_ns; 2757 2758 seq = file->private_data; 2759 seq->private = ns; 2760 2761 return 0; 2762 err_put_ns: 2763 put_user_ns(ns); 2764 err: 2765 return ret; 2766 } 2767 2768 static int proc_id_map_release(struct inode *inode, struct file *file) 2769 { 2770 struct seq_file *seq = file->private_data; 2771 struct user_namespace *ns = seq->private; 2772 put_user_ns(ns); 2773 return seq_release(inode, file); 2774 } 2775 2776 static int proc_uid_map_open(struct inode *inode, struct file *file) 2777 { 2778 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2779 } 2780 2781 static int proc_gid_map_open(struct inode *inode, struct file *file) 2782 { 2783 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2784 } 2785 2786 static int proc_projid_map_open(struct inode *inode, struct file *file) 2787 { 2788 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2789 } 2790 2791 static const struct file_operations proc_uid_map_operations = { 2792 .open = proc_uid_map_open, 2793 .write = proc_uid_map_write, 2794 .read = seq_read, 2795 .llseek = seq_lseek, 2796 .release = proc_id_map_release, 2797 }; 2798 2799 static const struct file_operations proc_gid_map_operations = { 2800 .open = proc_gid_map_open, 2801 .write = proc_gid_map_write, 2802 .read = seq_read, 2803 .llseek = seq_lseek, 2804 .release = proc_id_map_release, 2805 }; 2806 2807 static const struct file_operations proc_projid_map_operations = { 2808 .open = proc_projid_map_open, 2809 .write = proc_projid_map_write, 2810 .read = seq_read, 2811 .llseek = seq_lseek, 2812 .release = proc_id_map_release, 2813 }; 2814 2815 static int proc_setgroups_open(struct inode *inode, struct file *file) 2816 { 2817 struct user_namespace *ns = NULL; 2818 struct task_struct *task; 2819 int ret; 2820 2821 ret = -ESRCH; 2822 task = get_proc_task(inode); 2823 if (task) { 2824 rcu_read_lock(); 2825 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2826 rcu_read_unlock(); 2827 put_task_struct(task); 2828 } 2829 if (!ns) 2830 goto err; 2831 2832 if (file->f_mode & FMODE_WRITE) { 2833 ret = -EACCES; 2834 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2835 goto err_put_ns; 2836 } 2837 2838 ret = single_open(file, &proc_setgroups_show, ns); 2839 if (ret) 2840 goto err_put_ns; 2841 2842 return 0; 2843 err_put_ns: 2844 put_user_ns(ns); 2845 err: 2846 return ret; 2847 } 2848 2849 static int proc_setgroups_release(struct inode *inode, struct file *file) 2850 { 2851 struct seq_file *seq = file->private_data; 2852 struct user_namespace *ns = seq->private; 2853 int ret = single_release(inode, file); 2854 put_user_ns(ns); 2855 return ret; 2856 } 2857 2858 static const struct file_operations proc_setgroups_operations = { 2859 .open = proc_setgroups_open, 2860 .write = proc_setgroups_write, 2861 .read = seq_read, 2862 .llseek = seq_lseek, 2863 .release = proc_setgroups_release, 2864 }; 2865 #endif /* CONFIG_USER_NS */ 2866 2867 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2868 struct pid *pid, struct task_struct *task) 2869 { 2870 int err = lock_trace(task); 2871 if (!err) { 2872 seq_printf(m, "%08x\n", task->personality); 2873 unlock_trace(task); 2874 } 2875 return err; 2876 } 2877 2878 #ifdef CONFIG_LIVEPATCH 2879 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2880 struct pid *pid, struct task_struct *task) 2881 { 2882 seq_printf(m, "%d\n", task->patch_state); 2883 return 0; 2884 } 2885 #endif /* CONFIG_LIVEPATCH */ 2886 2887 /* 2888 * Thread groups 2889 */ 2890 static const struct file_operations proc_task_operations; 2891 static const struct inode_operations proc_task_inode_operations; 2892 2893 static const struct pid_entry tgid_base_stuff[] = { 2894 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2895 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2896 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2897 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2898 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2899 #ifdef CONFIG_NET 2900 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2901 #endif 2902 REG("environ", S_IRUSR, proc_environ_operations), 2903 REG("auxv", S_IRUSR, proc_auxv_operations), 2904 ONE("status", S_IRUGO, proc_pid_status), 2905 ONE("personality", S_IRUSR, proc_pid_personality), 2906 ONE("limits", S_IRUGO, proc_pid_limits), 2907 #ifdef CONFIG_SCHED_DEBUG 2908 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2909 #endif 2910 #ifdef CONFIG_SCHED_AUTOGROUP 2911 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2912 #endif 2913 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2914 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2915 ONE("syscall", S_IRUSR, proc_pid_syscall), 2916 #endif 2917 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2918 ONE("stat", S_IRUGO, proc_tgid_stat), 2919 ONE("statm", S_IRUGO, proc_pid_statm), 2920 REG("maps", S_IRUGO, proc_pid_maps_operations), 2921 #ifdef CONFIG_NUMA 2922 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2923 #endif 2924 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2925 LNK("cwd", proc_cwd_link), 2926 LNK("root", proc_root_link), 2927 LNK("exe", proc_exe_link), 2928 REG("mounts", S_IRUGO, proc_mounts_operations), 2929 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2930 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2931 #ifdef CONFIG_PROC_PAGE_MONITOR 2932 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2933 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2934 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 2935 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2936 #endif 2937 #ifdef CONFIG_SECURITY 2938 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2939 #endif 2940 #ifdef CONFIG_KALLSYMS 2941 ONE("wchan", S_IRUGO, proc_pid_wchan), 2942 #endif 2943 #ifdef CONFIG_STACKTRACE 2944 ONE("stack", S_IRUSR, proc_pid_stack), 2945 #endif 2946 #ifdef CONFIG_SCHED_INFO 2947 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 2948 #endif 2949 #ifdef CONFIG_LATENCYTOP 2950 REG("latency", S_IRUGO, proc_lstats_operations), 2951 #endif 2952 #ifdef CONFIG_PROC_PID_CPUSET 2953 ONE("cpuset", S_IRUGO, proc_cpuset_show), 2954 #endif 2955 #ifdef CONFIG_CGROUPS 2956 ONE("cgroup", S_IRUGO, proc_cgroup_show), 2957 #endif 2958 ONE("oom_score", S_IRUGO, proc_oom_score), 2959 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2960 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2961 #ifdef CONFIG_AUDITSYSCALL 2962 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2963 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2964 #endif 2965 #ifdef CONFIG_FAULT_INJECTION 2966 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2967 REG("fail-nth", 0644, proc_fail_nth_operations), 2968 #endif 2969 #ifdef CONFIG_ELF_CORE 2970 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2971 #endif 2972 #ifdef CONFIG_TASK_IO_ACCOUNTING 2973 ONE("io", S_IRUSR, proc_tgid_io_accounting), 2974 #endif 2975 #ifdef CONFIG_HARDWALL 2976 ONE("hardwall", S_IRUGO, proc_pid_hardwall), 2977 #endif 2978 #ifdef CONFIG_USER_NS 2979 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2980 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2981 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2982 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 2983 #endif 2984 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2985 REG("timers", S_IRUGO, proc_timers_operations), 2986 #endif 2987 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 2988 #ifdef CONFIG_LIVEPATCH 2989 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 2990 #endif 2991 }; 2992 2993 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 2994 { 2995 return proc_pident_readdir(file, ctx, 2996 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2997 } 2998 2999 static const struct file_operations proc_tgid_base_operations = { 3000 .read = generic_read_dir, 3001 .iterate_shared = proc_tgid_base_readdir, 3002 .llseek = generic_file_llseek, 3003 }; 3004 3005 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3006 { 3007 return proc_pident_lookup(dir, dentry, 3008 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3009 } 3010 3011 static const struct inode_operations proc_tgid_base_inode_operations = { 3012 .lookup = proc_tgid_base_lookup, 3013 .getattr = pid_getattr, 3014 .setattr = proc_setattr, 3015 .permission = proc_pid_permission, 3016 }; 3017 3018 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3019 { 3020 struct dentry *dentry, *leader, *dir; 3021 char buf[PROC_NUMBUF]; 3022 struct qstr name; 3023 3024 name.name = buf; 3025 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3026 /* no ->d_hash() rejects on procfs */ 3027 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3028 if (dentry) { 3029 d_invalidate(dentry); 3030 dput(dentry); 3031 } 3032 3033 if (pid == tgid) 3034 return; 3035 3036 name.name = buf; 3037 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 3038 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3039 if (!leader) 3040 goto out; 3041 3042 name.name = "task"; 3043 name.len = strlen(name.name); 3044 dir = d_hash_and_lookup(leader, &name); 3045 if (!dir) 3046 goto out_put_leader; 3047 3048 name.name = buf; 3049 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3050 dentry = d_hash_and_lookup(dir, &name); 3051 if (dentry) { 3052 d_invalidate(dentry); 3053 dput(dentry); 3054 } 3055 3056 dput(dir); 3057 out_put_leader: 3058 dput(leader); 3059 out: 3060 return; 3061 } 3062 3063 /** 3064 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3065 * @task: task that should be flushed. 3066 * 3067 * When flushing dentries from proc, one needs to flush them from global 3068 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3069 * in. This call is supposed to do all of this job. 3070 * 3071 * Looks in the dcache for 3072 * /proc/@pid 3073 * /proc/@tgid/task/@pid 3074 * if either directory is present flushes it and all of it'ts children 3075 * from the dcache. 3076 * 3077 * It is safe and reasonable to cache /proc entries for a task until 3078 * that task exits. After that they just clog up the dcache with 3079 * useless entries, possibly causing useful dcache entries to be 3080 * flushed instead. This routine is proved to flush those useless 3081 * dcache entries at process exit time. 3082 * 3083 * NOTE: This routine is just an optimization so it does not guarantee 3084 * that no dcache entries will exist at process exit time it 3085 * just makes it very unlikely that any will persist. 3086 */ 3087 3088 void proc_flush_task(struct task_struct *task) 3089 { 3090 int i; 3091 struct pid *pid, *tgid; 3092 struct upid *upid; 3093 3094 pid = task_pid(task); 3095 tgid = task_tgid(task); 3096 3097 for (i = 0; i <= pid->level; i++) { 3098 upid = &pid->numbers[i]; 3099 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3100 tgid->numbers[i].nr); 3101 } 3102 } 3103 3104 static int proc_pid_instantiate(struct inode *dir, 3105 struct dentry * dentry, 3106 struct task_struct *task, const void *ptr) 3107 { 3108 struct inode *inode; 3109 3110 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3111 if (!inode) 3112 goto out; 3113 3114 inode->i_op = &proc_tgid_base_inode_operations; 3115 inode->i_fop = &proc_tgid_base_operations; 3116 inode->i_flags|=S_IMMUTABLE; 3117 3118 set_nlink(inode, nlink_tgid); 3119 3120 d_set_d_op(dentry, &pid_dentry_operations); 3121 3122 d_add(dentry, inode); 3123 /* Close the race of the process dying before we return the dentry */ 3124 if (pid_revalidate(dentry, 0)) 3125 return 0; 3126 out: 3127 return -ENOENT; 3128 } 3129 3130 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3131 { 3132 int result = -ENOENT; 3133 struct task_struct *task; 3134 unsigned tgid; 3135 struct pid_namespace *ns; 3136 3137 tgid = name_to_int(&dentry->d_name); 3138 if (tgid == ~0U) 3139 goto out; 3140 3141 ns = dentry->d_sb->s_fs_info; 3142 rcu_read_lock(); 3143 task = find_task_by_pid_ns(tgid, ns); 3144 if (task) 3145 get_task_struct(task); 3146 rcu_read_unlock(); 3147 if (!task) 3148 goto out; 3149 3150 result = proc_pid_instantiate(dir, dentry, task, NULL); 3151 put_task_struct(task); 3152 out: 3153 return ERR_PTR(result); 3154 } 3155 3156 /* 3157 * Find the first task with tgid >= tgid 3158 * 3159 */ 3160 struct tgid_iter { 3161 unsigned int tgid; 3162 struct task_struct *task; 3163 }; 3164 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3165 { 3166 struct pid *pid; 3167 3168 if (iter.task) 3169 put_task_struct(iter.task); 3170 rcu_read_lock(); 3171 retry: 3172 iter.task = NULL; 3173 pid = find_ge_pid(iter.tgid, ns); 3174 if (pid) { 3175 iter.tgid = pid_nr_ns(pid, ns); 3176 iter.task = pid_task(pid, PIDTYPE_PID); 3177 /* What we to know is if the pid we have find is the 3178 * pid of a thread_group_leader. Testing for task 3179 * being a thread_group_leader is the obvious thing 3180 * todo but there is a window when it fails, due to 3181 * the pid transfer logic in de_thread. 3182 * 3183 * So we perform the straight forward test of seeing 3184 * if the pid we have found is the pid of a thread 3185 * group leader, and don't worry if the task we have 3186 * found doesn't happen to be a thread group leader. 3187 * As we don't care in the case of readdir. 3188 */ 3189 if (!iter.task || !has_group_leader_pid(iter.task)) { 3190 iter.tgid += 1; 3191 goto retry; 3192 } 3193 get_task_struct(iter.task); 3194 } 3195 rcu_read_unlock(); 3196 return iter; 3197 } 3198 3199 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3200 3201 /* for the /proc/ directory itself, after non-process stuff has been done */ 3202 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3203 { 3204 struct tgid_iter iter; 3205 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info; 3206 loff_t pos = ctx->pos; 3207 3208 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3209 return 0; 3210 3211 if (pos == TGID_OFFSET - 2) { 3212 struct inode *inode = d_inode(ns->proc_self); 3213 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3214 return 0; 3215 ctx->pos = pos = pos + 1; 3216 } 3217 if (pos == TGID_OFFSET - 1) { 3218 struct inode *inode = d_inode(ns->proc_thread_self); 3219 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3220 return 0; 3221 ctx->pos = pos = pos + 1; 3222 } 3223 iter.tgid = pos - TGID_OFFSET; 3224 iter.task = NULL; 3225 for (iter = next_tgid(ns, iter); 3226 iter.task; 3227 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3228 char name[PROC_NUMBUF]; 3229 int len; 3230 3231 cond_resched(); 3232 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3233 continue; 3234 3235 len = snprintf(name, sizeof(name), "%d", iter.tgid); 3236 ctx->pos = iter.tgid + TGID_OFFSET; 3237 if (!proc_fill_cache(file, ctx, name, len, 3238 proc_pid_instantiate, iter.task, NULL)) { 3239 put_task_struct(iter.task); 3240 return 0; 3241 } 3242 } 3243 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3244 return 0; 3245 } 3246 3247 /* 3248 * proc_tid_comm_permission is a special permission function exclusively 3249 * used for the node /proc/<pid>/task/<tid>/comm. 3250 * It bypasses generic permission checks in the case where a task of the same 3251 * task group attempts to access the node. 3252 * The rationale behind this is that glibc and bionic access this node for 3253 * cross thread naming (pthread_set/getname_np(!self)). However, if 3254 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3255 * which locks out the cross thread naming implementation. 3256 * This function makes sure that the node is always accessible for members of 3257 * same thread group. 3258 */ 3259 static int proc_tid_comm_permission(struct inode *inode, int mask) 3260 { 3261 bool is_same_tgroup; 3262 struct task_struct *task; 3263 3264 task = get_proc_task(inode); 3265 if (!task) 3266 return -ESRCH; 3267 is_same_tgroup = same_thread_group(current, task); 3268 put_task_struct(task); 3269 3270 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3271 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3272 * read or written by the members of the corresponding 3273 * thread group. 3274 */ 3275 return 0; 3276 } 3277 3278 return generic_permission(inode, mask); 3279 } 3280 3281 static const struct inode_operations proc_tid_comm_inode_operations = { 3282 .permission = proc_tid_comm_permission, 3283 }; 3284 3285 /* 3286 * Tasks 3287 */ 3288 static const struct pid_entry tid_base_stuff[] = { 3289 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3290 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3291 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3292 #ifdef CONFIG_NET 3293 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3294 #endif 3295 REG("environ", S_IRUSR, proc_environ_operations), 3296 REG("auxv", S_IRUSR, proc_auxv_operations), 3297 ONE("status", S_IRUGO, proc_pid_status), 3298 ONE("personality", S_IRUSR, proc_pid_personality), 3299 ONE("limits", S_IRUGO, proc_pid_limits), 3300 #ifdef CONFIG_SCHED_DEBUG 3301 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3302 #endif 3303 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3304 &proc_tid_comm_inode_operations, 3305 &proc_pid_set_comm_operations, {}), 3306 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3307 ONE("syscall", S_IRUSR, proc_pid_syscall), 3308 #endif 3309 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3310 ONE("stat", S_IRUGO, proc_tid_stat), 3311 ONE("statm", S_IRUGO, proc_pid_statm), 3312 REG("maps", S_IRUGO, proc_tid_maps_operations), 3313 #ifdef CONFIG_PROC_CHILDREN 3314 REG("children", S_IRUGO, proc_tid_children_operations), 3315 #endif 3316 #ifdef CONFIG_NUMA 3317 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3318 #endif 3319 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3320 LNK("cwd", proc_cwd_link), 3321 LNK("root", proc_root_link), 3322 LNK("exe", proc_exe_link), 3323 REG("mounts", S_IRUGO, proc_mounts_operations), 3324 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3325 #ifdef CONFIG_PROC_PAGE_MONITOR 3326 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3327 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3328 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3329 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3330 #endif 3331 #ifdef CONFIG_SECURITY 3332 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3333 #endif 3334 #ifdef CONFIG_KALLSYMS 3335 ONE("wchan", S_IRUGO, proc_pid_wchan), 3336 #endif 3337 #ifdef CONFIG_STACKTRACE 3338 ONE("stack", S_IRUSR, proc_pid_stack), 3339 #endif 3340 #ifdef CONFIG_SCHED_INFO 3341 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3342 #endif 3343 #ifdef CONFIG_LATENCYTOP 3344 REG("latency", S_IRUGO, proc_lstats_operations), 3345 #endif 3346 #ifdef CONFIG_PROC_PID_CPUSET 3347 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3348 #endif 3349 #ifdef CONFIG_CGROUPS 3350 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3351 #endif 3352 ONE("oom_score", S_IRUGO, proc_oom_score), 3353 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3354 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3355 #ifdef CONFIG_AUDITSYSCALL 3356 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3357 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3358 #endif 3359 #ifdef CONFIG_FAULT_INJECTION 3360 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3361 REG("fail-nth", 0644, proc_fail_nth_operations), 3362 #endif 3363 #ifdef CONFIG_TASK_IO_ACCOUNTING 3364 ONE("io", S_IRUSR, proc_tid_io_accounting), 3365 #endif 3366 #ifdef CONFIG_HARDWALL 3367 ONE("hardwall", S_IRUGO, proc_pid_hardwall), 3368 #endif 3369 #ifdef CONFIG_USER_NS 3370 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3371 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3372 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3373 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3374 #endif 3375 #ifdef CONFIG_LIVEPATCH 3376 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3377 #endif 3378 }; 3379 3380 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3381 { 3382 return proc_pident_readdir(file, ctx, 3383 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3384 } 3385 3386 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3387 { 3388 return proc_pident_lookup(dir, dentry, 3389 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3390 } 3391 3392 static const struct file_operations proc_tid_base_operations = { 3393 .read = generic_read_dir, 3394 .iterate_shared = proc_tid_base_readdir, 3395 .llseek = generic_file_llseek, 3396 }; 3397 3398 static const struct inode_operations proc_tid_base_inode_operations = { 3399 .lookup = proc_tid_base_lookup, 3400 .getattr = pid_getattr, 3401 .setattr = proc_setattr, 3402 }; 3403 3404 static int proc_task_instantiate(struct inode *dir, 3405 struct dentry *dentry, struct task_struct *task, const void *ptr) 3406 { 3407 struct inode *inode; 3408 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3409 3410 if (!inode) 3411 goto out; 3412 inode->i_op = &proc_tid_base_inode_operations; 3413 inode->i_fop = &proc_tid_base_operations; 3414 inode->i_flags|=S_IMMUTABLE; 3415 3416 set_nlink(inode, nlink_tid); 3417 3418 d_set_d_op(dentry, &pid_dentry_operations); 3419 3420 d_add(dentry, inode); 3421 /* Close the race of the process dying before we return the dentry */ 3422 if (pid_revalidate(dentry, 0)) 3423 return 0; 3424 out: 3425 return -ENOENT; 3426 } 3427 3428 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3429 { 3430 int result = -ENOENT; 3431 struct task_struct *task; 3432 struct task_struct *leader = get_proc_task(dir); 3433 unsigned tid; 3434 struct pid_namespace *ns; 3435 3436 if (!leader) 3437 goto out_no_task; 3438 3439 tid = name_to_int(&dentry->d_name); 3440 if (tid == ~0U) 3441 goto out; 3442 3443 ns = dentry->d_sb->s_fs_info; 3444 rcu_read_lock(); 3445 task = find_task_by_pid_ns(tid, ns); 3446 if (task) 3447 get_task_struct(task); 3448 rcu_read_unlock(); 3449 if (!task) 3450 goto out; 3451 if (!same_thread_group(leader, task)) 3452 goto out_drop_task; 3453 3454 result = proc_task_instantiate(dir, dentry, task, NULL); 3455 out_drop_task: 3456 put_task_struct(task); 3457 out: 3458 put_task_struct(leader); 3459 out_no_task: 3460 return ERR_PTR(result); 3461 } 3462 3463 /* 3464 * Find the first tid of a thread group to return to user space. 3465 * 3466 * Usually this is just the thread group leader, but if the users 3467 * buffer was too small or there was a seek into the middle of the 3468 * directory we have more work todo. 3469 * 3470 * In the case of a short read we start with find_task_by_pid. 3471 * 3472 * In the case of a seek we start with the leader and walk nr 3473 * threads past it. 3474 */ 3475 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3476 struct pid_namespace *ns) 3477 { 3478 struct task_struct *pos, *task; 3479 unsigned long nr = f_pos; 3480 3481 if (nr != f_pos) /* 32bit overflow? */ 3482 return NULL; 3483 3484 rcu_read_lock(); 3485 task = pid_task(pid, PIDTYPE_PID); 3486 if (!task) 3487 goto fail; 3488 3489 /* Attempt to start with the tid of a thread */ 3490 if (tid && nr) { 3491 pos = find_task_by_pid_ns(tid, ns); 3492 if (pos && same_thread_group(pos, task)) 3493 goto found; 3494 } 3495 3496 /* If nr exceeds the number of threads there is nothing todo */ 3497 if (nr >= get_nr_threads(task)) 3498 goto fail; 3499 3500 /* If we haven't found our starting place yet start 3501 * with the leader and walk nr threads forward. 3502 */ 3503 pos = task = task->group_leader; 3504 do { 3505 if (!nr--) 3506 goto found; 3507 } while_each_thread(task, pos); 3508 fail: 3509 pos = NULL; 3510 goto out; 3511 found: 3512 get_task_struct(pos); 3513 out: 3514 rcu_read_unlock(); 3515 return pos; 3516 } 3517 3518 /* 3519 * Find the next thread in the thread list. 3520 * Return NULL if there is an error or no next thread. 3521 * 3522 * The reference to the input task_struct is released. 3523 */ 3524 static struct task_struct *next_tid(struct task_struct *start) 3525 { 3526 struct task_struct *pos = NULL; 3527 rcu_read_lock(); 3528 if (pid_alive(start)) { 3529 pos = next_thread(start); 3530 if (thread_group_leader(pos)) 3531 pos = NULL; 3532 else 3533 get_task_struct(pos); 3534 } 3535 rcu_read_unlock(); 3536 put_task_struct(start); 3537 return pos; 3538 } 3539 3540 /* for the /proc/TGID/task/ directories */ 3541 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3542 { 3543 struct inode *inode = file_inode(file); 3544 struct task_struct *task; 3545 struct pid_namespace *ns; 3546 int tid; 3547 3548 if (proc_inode_is_dead(inode)) 3549 return -ENOENT; 3550 3551 if (!dir_emit_dots(file, ctx)) 3552 return 0; 3553 3554 /* f_version caches the tgid value that the last readdir call couldn't 3555 * return. lseek aka telldir automagically resets f_version to 0. 3556 */ 3557 ns = inode->i_sb->s_fs_info; 3558 tid = (int)file->f_version; 3559 file->f_version = 0; 3560 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3561 task; 3562 task = next_tid(task), ctx->pos++) { 3563 char name[PROC_NUMBUF]; 3564 int len; 3565 tid = task_pid_nr_ns(task, ns); 3566 len = snprintf(name, sizeof(name), "%d", tid); 3567 if (!proc_fill_cache(file, ctx, name, len, 3568 proc_task_instantiate, task, NULL)) { 3569 /* returning this tgid failed, save it as the first 3570 * pid for the next readir call */ 3571 file->f_version = (u64)tid; 3572 put_task_struct(task); 3573 break; 3574 } 3575 } 3576 3577 return 0; 3578 } 3579 3580 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3581 u32 request_mask, unsigned int query_flags) 3582 { 3583 struct inode *inode = d_inode(path->dentry); 3584 struct task_struct *p = get_proc_task(inode); 3585 generic_fillattr(inode, stat); 3586 3587 if (p) { 3588 stat->nlink += get_nr_threads(p); 3589 put_task_struct(p); 3590 } 3591 3592 return 0; 3593 } 3594 3595 static const struct inode_operations proc_task_inode_operations = { 3596 .lookup = proc_task_lookup, 3597 .getattr = proc_task_getattr, 3598 .setattr = proc_setattr, 3599 .permission = proc_pid_permission, 3600 }; 3601 3602 static const struct file_operations proc_task_operations = { 3603 .read = generic_read_dir, 3604 .iterate_shared = proc_task_readdir, 3605 .llseek = generic_file_llseek, 3606 }; 3607 3608 void __init set_proc_pid_nlink(void) 3609 { 3610 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3611 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3612 } 3613