xref: /openbmc/linux/fs/proc/base.c (revision 384740dc)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/resource.h>
69 #include <linux/module.h>
70 #include <linux/mount.h>
71 #include <linux/security.h>
72 #include <linux/ptrace.h>
73 #include <linux/tracehook.h>
74 #include <linux/cgroup.h>
75 #include <linux/cpuset.h>
76 #include <linux/audit.h>
77 #include <linux/poll.h>
78 #include <linux/nsproxy.h>
79 #include <linux/oom.h>
80 #include <linux/elf.h>
81 #include <linux/pid_namespace.h>
82 #include "internal.h"
83 
84 /* NOTE:
85  *	Implementing inode permission operations in /proc is almost
86  *	certainly an error.  Permission checks need to happen during
87  *	each system call not at open time.  The reason is that most of
88  *	what we wish to check for permissions in /proc varies at runtime.
89  *
90  *	The classic example of a problem is opening file descriptors
91  *	in /proc for a task before it execs a suid executable.
92  */
93 
94 struct pid_entry {
95 	char *name;
96 	int len;
97 	mode_t mode;
98 	const struct inode_operations *iop;
99 	const struct file_operations *fop;
100 	union proc_op op;
101 };
102 
103 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
104 	.name = (NAME),					\
105 	.len  = sizeof(NAME) - 1,			\
106 	.mode = MODE,					\
107 	.iop  = IOP,					\
108 	.fop  = FOP,					\
109 	.op   = OP,					\
110 }
111 
112 #define DIR(NAME, MODE, OTYPE)							\
113 	NOD(NAME, (S_IFDIR|(MODE)),						\
114 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
115 		{} )
116 #define LNK(NAME, OTYPE)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = &proc_##OTYPE##_link } )
120 #define REG(NAME, MODE, OTYPE)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
122 		&proc_##OTYPE##_operations, {})
123 #define INF(NAME, MODE, OTYPE)				\
124 	NOD(NAME, (S_IFREG|(MODE)), 			\
125 		NULL, &proc_info_file_operations,	\
126 		{ .proc_read = &proc_##OTYPE } )
127 #define ONE(NAME, MODE, OTYPE)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_single_file_operations,	\
130 		{ .proc_show = &proc_##OTYPE } )
131 
132 /*
133  * Count the number of hardlinks for the pid_entry table, excluding the .
134  * and .. links.
135  */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137 	unsigned int n)
138 {
139 	unsigned int i;
140 	unsigned int count;
141 
142 	count = 0;
143 	for (i = 0; i < n; ++i) {
144 		if (S_ISDIR(entries[i].mode))
145 			++count;
146 	}
147 
148 	return count;
149 }
150 
151 int maps_protect;
152 EXPORT_SYMBOL(maps_protect);
153 
154 static struct fs_struct *get_fs_struct(struct task_struct *task)
155 {
156 	struct fs_struct *fs;
157 	task_lock(task);
158 	fs = task->fs;
159 	if(fs)
160 		atomic_inc(&fs->count);
161 	task_unlock(task);
162 	return fs;
163 }
164 
165 static int get_nr_threads(struct task_struct *tsk)
166 {
167 	/* Must be called with the rcu_read_lock held */
168 	unsigned long flags;
169 	int count = 0;
170 
171 	if (lock_task_sighand(tsk, &flags)) {
172 		count = atomic_read(&tsk->signal->count);
173 		unlock_task_sighand(tsk, &flags);
174 	}
175 	return count;
176 }
177 
178 static int proc_cwd_link(struct inode *inode, struct path *path)
179 {
180 	struct task_struct *task = get_proc_task(inode);
181 	struct fs_struct *fs = NULL;
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		fs = get_fs_struct(task);
186 		put_task_struct(task);
187 	}
188 	if (fs) {
189 		read_lock(&fs->lock);
190 		*path = fs->pwd;
191 		path_get(&fs->pwd);
192 		read_unlock(&fs->lock);
193 		result = 0;
194 		put_fs_struct(fs);
195 	}
196 	return result;
197 }
198 
199 static int proc_root_link(struct inode *inode, struct path *path)
200 {
201 	struct task_struct *task = get_proc_task(inode);
202 	struct fs_struct *fs = NULL;
203 	int result = -ENOENT;
204 
205 	if (task) {
206 		fs = get_fs_struct(task);
207 		put_task_struct(task);
208 	}
209 	if (fs) {
210 		read_lock(&fs->lock);
211 		*path = fs->root;
212 		path_get(&fs->root);
213 		read_unlock(&fs->lock);
214 		result = 0;
215 		put_fs_struct(fs);
216 	}
217 	return result;
218 }
219 
220 /*
221  * Return zero if current may access user memory in @task, -error if not.
222  */
223 static int check_mem_permission(struct task_struct *task)
224 {
225 	/*
226 	 * A task can always look at itself, in case it chooses
227 	 * to use system calls instead of load instructions.
228 	 */
229 	if (task == current)
230 		return 0;
231 
232 	/*
233 	 * If current is actively ptrace'ing, and would also be
234 	 * permitted to freshly attach with ptrace now, permit it.
235 	 */
236 	if (task_is_stopped_or_traced(task)) {
237 		int match;
238 		rcu_read_lock();
239 		match = (tracehook_tracer_task(task) == current);
240 		rcu_read_unlock();
241 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
242 			return 0;
243 	}
244 
245 	/*
246 	 * Noone else is allowed.
247 	 */
248 	return -EPERM;
249 }
250 
251 struct mm_struct *mm_for_maps(struct task_struct *task)
252 {
253 	struct mm_struct *mm = get_task_mm(task);
254 	if (!mm)
255 		return NULL;
256 	down_read(&mm->mmap_sem);
257 	task_lock(task);
258 	if (task->mm != mm)
259 		goto out;
260 	if (task->mm != current->mm &&
261 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
262 		goto out;
263 	task_unlock(task);
264 	return mm;
265 out:
266 	task_unlock(task);
267 	up_read(&mm->mmap_sem);
268 	mmput(mm);
269 	return NULL;
270 }
271 
272 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
273 {
274 	int res = 0;
275 	unsigned int len;
276 	struct mm_struct *mm = get_task_mm(task);
277 	if (!mm)
278 		goto out;
279 	if (!mm->arg_end)
280 		goto out_mm;	/* Shh! No looking before we're done */
281 
282  	len = mm->arg_end - mm->arg_start;
283 
284 	if (len > PAGE_SIZE)
285 		len = PAGE_SIZE;
286 
287 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
288 
289 	// If the nul at the end of args has been overwritten, then
290 	// assume application is using setproctitle(3).
291 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
292 		len = strnlen(buffer, res);
293 		if (len < res) {
294 		    res = len;
295 		} else {
296 			len = mm->env_end - mm->env_start;
297 			if (len > PAGE_SIZE - res)
298 				len = PAGE_SIZE - res;
299 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
300 			res = strnlen(buffer, res);
301 		}
302 	}
303 out_mm:
304 	mmput(mm);
305 out:
306 	return res;
307 }
308 
309 static int proc_pid_auxv(struct task_struct *task, char *buffer)
310 {
311 	int res = 0;
312 	struct mm_struct *mm = get_task_mm(task);
313 	if (mm) {
314 		unsigned int nwords = 0;
315 		do
316 			nwords += 2;
317 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
318 		res = nwords * sizeof(mm->saved_auxv[0]);
319 		if (res > PAGE_SIZE)
320 			res = PAGE_SIZE;
321 		memcpy(buffer, mm->saved_auxv, res);
322 		mmput(mm);
323 	}
324 	return res;
325 }
326 
327 
328 #ifdef CONFIG_KALLSYMS
329 /*
330  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
331  * Returns the resolved symbol.  If that fails, simply return the address.
332  */
333 static int proc_pid_wchan(struct task_struct *task, char *buffer)
334 {
335 	unsigned long wchan;
336 	char symname[KSYM_NAME_LEN];
337 
338 	wchan = get_wchan(task);
339 
340 	if (lookup_symbol_name(wchan, symname) < 0)
341 		return sprintf(buffer, "%lu", wchan);
342 	else
343 		return sprintf(buffer, "%s", symname);
344 }
345 #endif /* CONFIG_KALLSYMS */
346 
347 #ifdef CONFIG_SCHEDSTATS
348 /*
349  * Provides /proc/PID/schedstat
350  */
351 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
352 {
353 	return sprintf(buffer, "%llu %llu %lu\n",
354 			task->sched_info.cpu_time,
355 			task->sched_info.run_delay,
356 			task->sched_info.pcount);
357 }
358 #endif
359 
360 #ifdef CONFIG_LATENCYTOP
361 static int lstats_show_proc(struct seq_file *m, void *v)
362 {
363 	int i;
364 	struct inode *inode = m->private;
365 	struct task_struct *task = get_proc_task(inode);
366 
367 	if (!task)
368 		return -ESRCH;
369 	seq_puts(m, "Latency Top version : v0.1\n");
370 	for (i = 0; i < 32; i++) {
371 		if (task->latency_record[i].backtrace[0]) {
372 			int q;
373 			seq_printf(m, "%i %li %li ",
374 				task->latency_record[i].count,
375 				task->latency_record[i].time,
376 				task->latency_record[i].max);
377 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
378 				char sym[KSYM_NAME_LEN];
379 				char *c;
380 				if (!task->latency_record[i].backtrace[q])
381 					break;
382 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
383 					break;
384 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
385 				c = strchr(sym, '+');
386 				if (c)
387 					*c = 0;
388 				seq_printf(m, "%s ", sym);
389 			}
390 			seq_printf(m, "\n");
391 		}
392 
393 	}
394 	put_task_struct(task);
395 	return 0;
396 }
397 
398 static int lstats_open(struct inode *inode, struct file *file)
399 {
400 	return single_open(file, lstats_show_proc, inode);
401 }
402 
403 static ssize_t lstats_write(struct file *file, const char __user *buf,
404 			    size_t count, loff_t *offs)
405 {
406 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
407 
408 	if (!task)
409 		return -ESRCH;
410 	clear_all_latency_tracing(task);
411 	put_task_struct(task);
412 
413 	return count;
414 }
415 
416 static const struct file_operations proc_lstats_operations = {
417 	.open		= lstats_open,
418 	.read		= seq_read,
419 	.write		= lstats_write,
420 	.llseek		= seq_lseek,
421 	.release	= single_release,
422 };
423 
424 #endif
425 
426 /* The badness from the OOM killer */
427 unsigned long badness(struct task_struct *p, unsigned long uptime);
428 static int proc_oom_score(struct task_struct *task, char *buffer)
429 {
430 	unsigned long points;
431 	struct timespec uptime;
432 
433 	do_posix_clock_monotonic_gettime(&uptime);
434 	read_lock(&tasklist_lock);
435 	points = badness(task, uptime.tv_sec);
436 	read_unlock(&tasklist_lock);
437 	return sprintf(buffer, "%lu\n", points);
438 }
439 
440 struct limit_names {
441 	char *name;
442 	char *unit;
443 };
444 
445 static const struct limit_names lnames[RLIM_NLIMITS] = {
446 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
447 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
448 	[RLIMIT_DATA] = {"Max data size", "bytes"},
449 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
450 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
451 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
452 	[RLIMIT_NPROC] = {"Max processes", "processes"},
453 	[RLIMIT_NOFILE] = {"Max open files", "files"},
454 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
455 	[RLIMIT_AS] = {"Max address space", "bytes"},
456 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
457 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
458 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
459 	[RLIMIT_NICE] = {"Max nice priority", NULL},
460 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
461 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
462 };
463 
464 /* Display limits for a process */
465 static int proc_pid_limits(struct task_struct *task, char *buffer)
466 {
467 	unsigned int i;
468 	int count = 0;
469 	unsigned long flags;
470 	char *bufptr = buffer;
471 
472 	struct rlimit rlim[RLIM_NLIMITS];
473 
474 	rcu_read_lock();
475 	if (!lock_task_sighand(task,&flags)) {
476 		rcu_read_unlock();
477 		return 0;
478 	}
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 	rcu_read_unlock();
482 
483 	/*
484 	 * print the file header
485 	 */
486 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
487 			"Limit", "Soft Limit", "Hard Limit", "Units");
488 
489 	for (i = 0; i < RLIM_NLIMITS; i++) {
490 		if (rlim[i].rlim_cur == RLIM_INFINITY)
491 			count += sprintf(&bufptr[count], "%-25s %-20s ",
492 					 lnames[i].name, "unlimited");
493 		else
494 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
495 					 lnames[i].name, rlim[i].rlim_cur);
496 
497 		if (rlim[i].rlim_max == RLIM_INFINITY)
498 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
499 		else
500 			count += sprintf(&bufptr[count], "%-20lu ",
501 					 rlim[i].rlim_max);
502 
503 		if (lnames[i].unit)
504 			count += sprintf(&bufptr[count], "%-10s\n",
505 					 lnames[i].unit);
506 		else
507 			count += sprintf(&bufptr[count], "\n");
508 	}
509 
510 	return count;
511 }
512 
513 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
514 static int proc_pid_syscall(struct task_struct *task, char *buffer)
515 {
516 	long nr;
517 	unsigned long args[6], sp, pc;
518 
519 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
520 		return sprintf(buffer, "running\n");
521 
522 	if (nr < 0)
523 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
524 
525 	return sprintf(buffer,
526 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
527 		       nr,
528 		       args[0], args[1], args[2], args[3], args[4], args[5],
529 		       sp, pc);
530 }
531 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
532 
533 /************************************************************************/
534 /*                       Here the fs part begins                        */
535 /************************************************************************/
536 
537 /* permission checks */
538 static int proc_fd_access_allowed(struct inode *inode)
539 {
540 	struct task_struct *task;
541 	int allowed = 0;
542 	/* Allow access to a task's file descriptors if it is us or we
543 	 * may use ptrace attach to the process and find out that
544 	 * information.
545 	 */
546 	task = get_proc_task(inode);
547 	if (task) {
548 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
549 		put_task_struct(task);
550 	}
551 	return allowed;
552 }
553 
554 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
555 {
556 	int error;
557 	struct inode *inode = dentry->d_inode;
558 
559 	if (attr->ia_valid & ATTR_MODE)
560 		return -EPERM;
561 
562 	error = inode_change_ok(inode, attr);
563 	if (!error)
564 		error = inode_setattr(inode, attr);
565 	return error;
566 }
567 
568 static const struct inode_operations proc_def_inode_operations = {
569 	.setattr	= proc_setattr,
570 };
571 
572 static int mounts_open_common(struct inode *inode, struct file *file,
573 			      const struct seq_operations *op)
574 {
575 	struct task_struct *task = get_proc_task(inode);
576 	struct nsproxy *nsp;
577 	struct mnt_namespace *ns = NULL;
578 	struct fs_struct *fs = NULL;
579 	struct path root;
580 	struct proc_mounts *p;
581 	int ret = -EINVAL;
582 
583 	if (task) {
584 		rcu_read_lock();
585 		nsp = task_nsproxy(task);
586 		if (nsp) {
587 			ns = nsp->mnt_ns;
588 			if (ns)
589 				get_mnt_ns(ns);
590 		}
591 		rcu_read_unlock();
592 		if (ns)
593 			fs = get_fs_struct(task);
594 		put_task_struct(task);
595 	}
596 
597 	if (!ns)
598 		goto err;
599 	if (!fs)
600 		goto err_put_ns;
601 
602 	read_lock(&fs->lock);
603 	root = fs->root;
604 	path_get(&root);
605 	read_unlock(&fs->lock);
606 	put_fs_struct(fs);
607 
608 	ret = -ENOMEM;
609 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
610 	if (!p)
611 		goto err_put_path;
612 
613 	file->private_data = &p->m;
614 	ret = seq_open(file, op);
615 	if (ret)
616 		goto err_free;
617 
618 	p->m.private = p;
619 	p->ns = ns;
620 	p->root = root;
621 	p->event = ns->event;
622 
623 	return 0;
624 
625  err_free:
626 	kfree(p);
627  err_put_path:
628 	path_put(&root);
629  err_put_ns:
630 	put_mnt_ns(ns);
631  err:
632 	return ret;
633 }
634 
635 static int mounts_release(struct inode *inode, struct file *file)
636 {
637 	struct proc_mounts *p = file->private_data;
638 	path_put(&p->root);
639 	put_mnt_ns(p->ns);
640 	return seq_release(inode, file);
641 }
642 
643 static unsigned mounts_poll(struct file *file, poll_table *wait)
644 {
645 	struct proc_mounts *p = file->private_data;
646 	struct mnt_namespace *ns = p->ns;
647 	unsigned res = 0;
648 
649 	poll_wait(file, &ns->poll, wait);
650 
651 	spin_lock(&vfsmount_lock);
652 	if (p->event != ns->event) {
653 		p->event = ns->event;
654 		res = POLLERR;
655 	}
656 	spin_unlock(&vfsmount_lock);
657 
658 	return res;
659 }
660 
661 static int mounts_open(struct inode *inode, struct file *file)
662 {
663 	return mounts_open_common(inode, file, &mounts_op);
664 }
665 
666 static const struct file_operations proc_mounts_operations = {
667 	.open		= mounts_open,
668 	.read		= seq_read,
669 	.llseek		= seq_lseek,
670 	.release	= mounts_release,
671 	.poll		= mounts_poll,
672 };
673 
674 static int mountinfo_open(struct inode *inode, struct file *file)
675 {
676 	return mounts_open_common(inode, file, &mountinfo_op);
677 }
678 
679 static const struct file_operations proc_mountinfo_operations = {
680 	.open		= mountinfo_open,
681 	.read		= seq_read,
682 	.llseek		= seq_lseek,
683 	.release	= mounts_release,
684 	.poll		= mounts_poll,
685 };
686 
687 static int mountstats_open(struct inode *inode, struct file *file)
688 {
689 	return mounts_open_common(inode, file, &mountstats_op);
690 }
691 
692 static const struct file_operations proc_mountstats_operations = {
693 	.open		= mountstats_open,
694 	.read		= seq_read,
695 	.llseek		= seq_lseek,
696 	.release	= mounts_release,
697 };
698 
699 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
700 
701 static ssize_t proc_info_read(struct file * file, char __user * buf,
702 			  size_t count, loff_t *ppos)
703 {
704 	struct inode * inode = file->f_path.dentry->d_inode;
705 	unsigned long page;
706 	ssize_t length;
707 	struct task_struct *task = get_proc_task(inode);
708 
709 	length = -ESRCH;
710 	if (!task)
711 		goto out_no_task;
712 
713 	if (count > PROC_BLOCK_SIZE)
714 		count = PROC_BLOCK_SIZE;
715 
716 	length = -ENOMEM;
717 	if (!(page = __get_free_page(GFP_TEMPORARY)))
718 		goto out;
719 
720 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
721 
722 	if (length >= 0)
723 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
724 	free_page(page);
725 out:
726 	put_task_struct(task);
727 out_no_task:
728 	return length;
729 }
730 
731 static const struct file_operations proc_info_file_operations = {
732 	.read		= proc_info_read,
733 };
734 
735 static int proc_single_show(struct seq_file *m, void *v)
736 {
737 	struct inode *inode = m->private;
738 	struct pid_namespace *ns;
739 	struct pid *pid;
740 	struct task_struct *task;
741 	int ret;
742 
743 	ns = inode->i_sb->s_fs_info;
744 	pid = proc_pid(inode);
745 	task = get_pid_task(pid, PIDTYPE_PID);
746 	if (!task)
747 		return -ESRCH;
748 
749 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
750 
751 	put_task_struct(task);
752 	return ret;
753 }
754 
755 static int proc_single_open(struct inode *inode, struct file *filp)
756 {
757 	int ret;
758 	ret = single_open(filp, proc_single_show, NULL);
759 	if (!ret) {
760 		struct seq_file *m = filp->private_data;
761 
762 		m->private = inode;
763 	}
764 	return ret;
765 }
766 
767 static const struct file_operations proc_single_file_operations = {
768 	.open		= proc_single_open,
769 	.read		= seq_read,
770 	.llseek		= seq_lseek,
771 	.release	= single_release,
772 };
773 
774 static int mem_open(struct inode* inode, struct file* file)
775 {
776 	file->private_data = (void*)((long)current->self_exec_id);
777 	return 0;
778 }
779 
780 static ssize_t mem_read(struct file * file, char __user * buf,
781 			size_t count, loff_t *ppos)
782 {
783 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
784 	char *page;
785 	unsigned long src = *ppos;
786 	int ret = -ESRCH;
787 	struct mm_struct *mm;
788 
789 	if (!task)
790 		goto out_no_task;
791 
792 	if (check_mem_permission(task))
793 		goto out;
794 
795 	ret = -ENOMEM;
796 	page = (char *)__get_free_page(GFP_TEMPORARY);
797 	if (!page)
798 		goto out;
799 
800 	ret = 0;
801 
802 	mm = get_task_mm(task);
803 	if (!mm)
804 		goto out_free;
805 
806 	ret = -EIO;
807 
808 	if (file->private_data != (void*)((long)current->self_exec_id))
809 		goto out_put;
810 
811 	ret = 0;
812 
813 	while (count > 0) {
814 		int this_len, retval;
815 
816 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
817 		retval = access_process_vm(task, src, page, this_len, 0);
818 		if (!retval || check_mem_permission(task)) {
819 			if (!ret)
820 				ret = -EIO;
821 			break;
822 		}
823 
824 		if (copy_to_user(buf, page, retval)) {
825 			ret = -EFAULT;
826 			break;
827 		}
828 
829 		ret += retval;
830 		src += retval;
831 		buf += retval;
832 		count -= retval;
833 	}
834 	*ppos = src;
835 
836 out_put:
837 	mmput(mm);
838 out_free:
839 	free_page((unsigned long) page);
840 out:
841 	put_task_struct(task);
842 out_no_task:
843 	return ret;
844 }
845 
846 #define mem_write NULL
847 
848 #ifndef mem_write
849 /* This is a security hazard */
850 static ssize_t mem_write(struct file * file, const char __user *buf,
851 			 size_t count, loff_t *ppos)
852 {
853 	int copied;
854 	char *page;
855 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
856 	unsigned long dst = *ppos;
857 
858 	copied = -ESRCH;
859 	if (!task)
860 		goto out_no_task;
861 
862 	if (check_mem_permission(task))
863 		goto out;
864 
865 	copied = -ENOMEM;
866 	page = (char *)__get_free_page(GFP_TEMPORARY);
867 	if (!page)
868 		goto out;
869 
870 	copied = 0;
871 	while (count > 0) {
872 		int this_len, retval;
873 
874 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
875 		if (copy_from_user(page, buf, this_len)) {
876 			copied = -EFAULT;
877 			break;
878 		}
879 		retval = access_process_vm(task, dst, page, this_len, 1);
880 		if (!retval) {
881 			if (!copied)
882 				copied = -EIO;
883 			break;
884 		}
885 		copied += retval;
886 		buf += retval;
887 		dst += retval;
888 		count -= retval;
889 	}
890 	*ppos = dst;
891 	free_page((unsigned long) page);
892 out:
893 	put_task_struct(task);
894 out_no_task:
895 	return copied;
896 }
897 #endif
898 
899 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
900 {
901 	switch (orig) {
902 	case 0:
903 		file->f_pos = offset;
904 		break;
905 	case 1:
906 		file->f_pos += offset;
907 		break;
908 	default:
909 		return -EINVAL;
910 	}
911 	force_successful_syscall_return();
912 	return file->f_pos;
913 }
914 
915 static const struct file_operations proc_mem_operations = {
916 	.llseek		= mem_lseek,
917 	.read		= mem_read,
918 	.write		= mem_write,
919 	.open		= mem_open,
920 };
921 
922 static ssize_t environ_read(struct file *file, char __user *buf,
923 			size_t count, loff_t *ppos)
924 {
925 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
926 	char *page;
927 	unsigned long src = *ppos;
928 	int ret = -ESRCH;
929 	struct mm_struct *mm;
930 
931 	if (!task)
932 		goto out_no_task;
933 
934 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
935 		goto out;
936 
937 	ret = -ENOMEM;
938 	page = (char *)__get_free_page(GFP_TEMPORARY);
939 	if (!page)
940 		goto out;
941 
942 	ret = 0;
943 
944 	mm = get_task_mm(task);
945 	if (!mm)
946 		goto out_free;
947 
948 	while (count > 0) {
949 		int this_len, retval, max_len;
950 
951 		this_len = mm->env_end - (mm->env_start + src);
952 
953 		if (this_len <= 0)
954 			break;
955 
956 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
957 		this_len = (this_len > max_len) ? max_len : this_len;
958 
959 		retval = access_process_vm(task, (mm->env_start + src),
960 			page, this_len, 0);
961 
962 		if (retval <= 0) {
963 			ret = retval;
964 			break;
965 		}
966 
967 		if (copy_to_user(buf, page, retval)) {
968 			ret = -EFAULT;
969 			break;
970 		}
971 
972 		ret += retval;
973 		src += retval;
974 		buf += retval;
975 		count -= retval;
976 	}
977 	*ppos = src;
978 
979 	mmput(mm);
980 out_free:
981 	free_page((unsigned long) page);
982 out:
983 	put_task_struct(task);
984 out_no_task:
985 	return ret;
986 }
987 
988 static const struct file_operations proc_environ_operations = {
989 	.read		= environ_read,
990 };
991 
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993 				size_t count, loff_t *ppos)
994 {
995 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996 	char buffer[PROC_NUMBUF];
997 	size_t len;
998 	int oom_adjust;
999 
1000 	if (!task)
1001 		return -ESRCH;
1002 	oom_adjust = task->oomkilladj;
1003 	put_task_struct(task);
1004 
1005 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1006 
1007 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1008 }
1009 
1010 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1011 				size_t count, loff_t *ppos)
1012 {
1013 	struct task_struct *task;
1014 	char buffer[PROC_NUMBUF], *end;
1015 	int oom_adjust;
1016 
1017 	memset(buffer, 0, sizeof(buffer));
1018 	if (count > sizeof(buffer) - 1)
1019 		count = sizeof(buffer) - 1;
1020 	if (copy_from_user(buffer, buf, count))
1021 		return -EFAULT;
1022 	oom_adjust = simple_strtol(buffer, &end, 0);
1023 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1024 	     oom_adjust != OOM_DISABLE)
1025 		return -EINVAL;
1026 	if (*end == '\n')
1027 		end++;
1028 	task = get_proc_task(file->f_path.dentry->d_inode);
1029 	if (!task)
1030 		return -ESRCH;
1031 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1032 		put_task_struct(task);
1033 		return -EACCES;
1034 	}
1035 	task->oomkilladj = oom_adjust;
1036 	put_task_struct(task);
1037 	if (end - buffer == 0)
1038 		return -EIO;
1039 	return end - buffer;
1040 }
1041 
1042 static const struct file_operations proc_oom_adjust_operations = {
1043 	.read		= oom_adjust_read,
1044 	.write		= oom_adjust_write,
1045 };
1046 
1047 #ifdef CONFIG_AUDITSYSCALL
1048 #define TMPBUFLEN 21
1049 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1050 				  size_t count, loff_t *ppos)
1051 {
1052 	struct inode * inode = file->f_path.dentry->d_inode;
1053 	struct task_struct *task = get_proc_task(inode);
1054 	ssize_t length;
1055 	char tmpbuf[TMPBUFLEN];
1056 
1057 	if (!task)
1058 		return -ESRCH;
1059 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1060 				audit_get_loginuid(task));
1061 	put_task_struct(task);
1062 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1063 }
1064 
1065 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1066 				   size_t count, loff_t *ppos)
1067 {
1068 	struct inode * inode = file->f_path.dentry->d_inode;
1069 	char *page, *tmp;
1070 	ssize_t length;
1071 	uid_t loginuid;
1072 
1073 	if (!capable(CAP_AUDIT_CONTROL))
1074 		return -EPERM;
1075 
1076 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1077 		return -EPERM;
1078 
1079 	if (count >= PAGE_SIZE)
1080 		count = PAGE_SIZE - 1;
1081 
1082 	if (*ppos != 0) {
1083 		/* No partial writes. */
1084 		return -EINVAL;
1085 	}
1086 	page = (char*)__get_free_page(GFP_TEMPORARY);
1087 	if (!page)
1088 		return -ENOMEM;
1089 	length = -EFAULT;
1090 	if (copy_from_user(page, buf, count))
1091 		goto out_free_page;
1092 
1093 	page[count] = '\0';
1094 	loginuid = simple_strtoul(page, &tmp, 10);
1095 	if (tmp == page) {
1096 		length = -EINVAL;
1097 		goto out_free_page;
1098 
1099 	}
1100 	length = audit_set_loginuid(current, loginuid);
1101 	if (likely(length == 0))
1102 		length = count;
1103 
1104 out_free_page:
1105 	free_page((unsigned long) page);
1106 	return length;
1107 }
1108 
1109 static const struct file_operations proc_loginuid_operations = {
1110 	.read		= proc_loginuid_read,
1111 	.write		= proc_loginuid_write,
1112 };
1113 
1114 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1115 				  size_t count, loff_t *ppos)
1116 {
1117 	struct inode * inode = file->f_path.dentry->d_inode;
1118 	struct task_struct *task = get_proc_task(inode);
1119 	ssize_t length;
1120 	char tmpbuf[TMPBUFLEN];
1121 
1122 	if (!task)
1123 		return -ESRCH;
1124 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1125 				audit_get_sessionid(task));
1126 	put_task_struct(task);
1127 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1128 }
1129 
1130 static const struct file_operations proc_sessionid_operations = {
1131 	.read		= proc_sessionid_read,
1132 };
1133 #endif
1134 
1135 #ifdef CONFIG_FAULT_INJECTION
1136 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1137 				      size_t count, loff_t *ppos)
1138 {
1139 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1140 	char buffer[PROC_NUMBUF];
1141 	size_t len;
1142 	int make_it_fail;
1143 
1144 	if (!task)
1145 		return -ESRCH;
1146 	make_it_fail = task->make_it_fail;
1147 	put_task_struct(task);
1148 
1149 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1150 
1151 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1152 }
1153 
1154 static ssize_t proc_fault_inject_write(struct file * file,
1155 			const char __user * buf, size_t count, loff_t *ppos)
1156 {
1157 	struct task_struct *task;
1158 	char buffer[PROC_NUMBUF], *end;
1159 	int make_it_fail;
1160 
1161 	if (!capable(CAP_SYS_RESOURCE))
1162 		return -EPERM;
1163 	memset(buffer, 0, sizeof(buffer));
1164 	if (count > sizeof(buffer) - 1)
1165 		count = sizeof(buffer) - 1;
1166 	if (copy_from_user(buffer, buf, count))
1167 		return -EFAULT;
1168 	make_it_fail = simple_strtol(buffer, &end, 0);
1169 	if (*end == '\n')
1170 		end++;
1171 	task = get_proc_task(file->f_dentry->d_inode);
1172 	if (!task)
1173 		return -ESRCH;
1174 	task->make_it_fail = make_it_fail;
1175 	put_task_struct(task);
1176 	if (end - buffer == 0)
1177 		return -EIO;
1178 	return end - buffer;
1179 }
1180 
1181 static const struct file_operations proc_fault_inject_operations = {
1182 	.read		= proc_fault_inject_read,
1183 	.write		= proc_fault_inject_write,
1184 };
1185 #endif
1186 
1187 
1188 #ifdef CONFIG_SCHED_DEBUG
1189 /*
1190  * Print out various scheduling related per-task fields:
1191  */
1192 static int sched_show(struct seq_file *m, void *v)
1193 {
1194 	struct inode *inode = m->private;
1195 	struct task_struct *p;
1196 
1197 	WARN_ON(!inode);
1198 
1199 	p = get_proc_task(inode);
1200 	if (!p)
1201 		return -ESRCH;
1202 	proc_sched_show_task(p, m);
1203 
1204 	put_task_struct(p);
1205 
1206 	return 0;
1207 }
1208 
1209 static ssize_t
1210 sched_write(struct file *file, const char __user *buf,
1211 	    size_t count, loff_t *offset)
1212 {
1213 	struct inode *inode = file->f_path.dentry->d_inode;
1214 	struct task_struct *p;
1215 
1216 	WARN_ON(!inode);
1217 
1218 	p = get_proc_task(inode);
1219 	if (!p)
1220 		return -ESRCH;
1221 	proc_sched_set_task(p);
1222 
1223 	put_task_struct(p);
1224 
1225 	return count;
1226 }
1227 
1228 static int sched_open(struct inode *inode, struct file *filp)
1229 {
1230 	int ret;
1231 
1232 	ret = single_open(filp, sched_show, NULL);
1233 	if (!ret) {
1234 		struct seq_file *m = filp->private_data;
1235 
1236 		m->private = inode;
1237 	}
1238 	return ret;
1239 }
1240 
1241 static const struct file_operations proc_pid_sched_operations = {
1242 	.open		= sched_open,
1243 	.read		= seq_read,
1244 	.write		= sched_write,
1245 	.llseek		= seq_lseek,
1246 	.release	= single_release,
1247 };
1248 
1249 #endif
1250 
1251 /*
1252  * We added or removed a vma mapping the executable. The vmas are only mapped
1253  * during exec and are not mapped with the mmap system call.
1254  * Callers must hold down_write() on the mm's mmap_sem for these
1255  */
1256 void added_exe_file_vma(struct mm_struct *mm)
1257 {
1258 	mm->num_exe_file_vmas++;
1259 }
1260 
1261 void removed_exe_file_vma(struct mm_struct *mm)
1262 {
1263 	mm->num_exe_file_vmas--;
1264 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1265 		fput(mm->exe_file);
1266 		mm->exe_file = NULL;
1267 	}
1268 
1269 }
1270 
1271 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1272 {
1273 	if (new_exe_file)
1274 		get_file(new_exe_file);
1275 	if (mm->exe_file)
1276 		fput(mm->exe_file);
1277 	mm->exe_file = new_exe_file;
1278 	mm->num_exe_file_vmas = 0;
1279 }
1280 
1281 struct file *get_mm_exe_file(struct mm_struct *mm)
1282 {
1283 	struct file *exe_file;
1284 
1285 	/* We need mmap_sem to protect against races with removal of
1286 	 * VM_EXECUTABLE vmas */
1287 	down_read(&mm->mmap_sem);
1288 	exe_file = mm->exe_file;
1289 	if (exe_file)
1290 		get_file(exe_file);
1291 	up_read(&mm->mmap_sem);
1292 	return exe_file;
1293 }
1294 
1295 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1296 {
1297 	/* It's safe to write the exe_file pointer without exe_file_lock because
1298 	 * this is called during fork when the task is not yet in /proc */
1299 	newmm->exe_file = get_mm_exe_file(oldmm);
1300 }
1301 
1302 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1303 {
1304 	struct task_struct *task;
1305 	struct mm_struct *mm;
1306 	struct file *exe_file;
1307 
1308 	task = get_proc_task(inode);
1309 	if (!task)
1310 		return -ENOENT;
1311 	mm = get_task_mm(task);
1312 	put_task_struct(task);
1313 	if (!mm)
1314 		return -ENOENT;
1315 	exe_file = get_mm_exe_file(mm);
1316 	mmput(mm);
1317 	if (exe_file) {
1318 		*exe_path = exe_file->f_path;
1319 		path_get(&exe_file->f_path);
1320 		fput(exe_file);
1321 		return 0;
1322 	} else
1323 		return -ENOENT;
1324 }
1325 
1326 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1327 {
1328 	struct inode *inode = dentry->d_inode;
1329 	int error = -EACCES;
1330 
1331 	/* We don't need a base pointer in the /proc filesystem */
1332 	path_put(&nd->path);
1333 
1334 	/* Are we allowed to snoop on the tasks file descriptors? */
1335 	if (!proc_fd_access_allowed(inode))
1336 		goto out;
1337 
1338 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1339 	nd->last_type = LAST_BIND;
1340 out:
1341 	return ERR_PTR(error);
1342 }
1343 
1344 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1345 {
1346 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1347 	char *pathname;
1348 	int len;
1349 
1350 	if (!tmp)
1351 		return -ENOMEM;
1352 
1353 	pathname = d_path(path, tmp, PAGE_SIZE);
1354 	len = PTR_ERR(pathname);
1355 	if (IS_ERR(pathname))
1356 		goto out;
1357 	len = tmp + PAGE_SIZE - 1 - pathname;
1358 
1359 	if (len > buflen)
1360 		len = buflen;
1361 	if (copy_to_user(buffer, pathname, len))
1362 		len = -EFAULT;
1363  out:
1364 	free_page((unsigned long)tmp);
1365 	return len;
1366 }
1367 
1368 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1369 {
1370 	int error = -EACCES;
1371 	struct inode *inode = dentry->d_inode;
1372 	struct path path;
1373 
1374 	/* Are we allowed to snoop on the tasks file descriptors? */
1375 	if (!proc_fd_access_allowed(inode))
1376 		goto out;
1377 
1378 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1379 	if (error)
1380 		goto out;
1381 
1382 	error = do_proc_readlink(&path, buffer, buflen);
1383 	path_put(&path);
1384 out:
1385 	return error;
1386 }
1387 
1388 static const struct inode_operations proc_pid_link_inode_operations = {
1389 	.readlink	= proc_pid_readlink,
1390 	.follow_link	= proc_pid_follow_link,
1391 	.setattr	= proc_setattr,
1392 };
1393 
1394 
1395 /* building an inode */
1396 
1397 static int task_dumpable(struct task_struct *task)
1398 {
1399 	int dumpable = 0;
1400 	struct mm_struct *mm;
1401 
1402 	task_lock(task);
1403 	mm = task->mm;
1404 	if (mm)
1405 		dumpable = get_dumpable(mm);
1406 	task_unlock(task);
1407 	if(dumpable == 1)
1408 		return 1;
1409 	return 0;
1410 }
1411 
1412 
1413 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1414 {
1415 	struct inode * inode;
1416 	struct proc_inode *ei;
1417 
1418 	/* We need a new inode */
1419 
1420 	inode = new_inode(sb);
1421 	if (!inode)
1422 		goto out;
1423 
1424 	/* Common stuff */
1425 	ei = PROC_I(inode);
1426 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1427 	inode->i_op = &proc_def_inode_operations;
1428 
1429 	/*
1430 	 * grab the reference to task.
1431 	 */
1432 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1433 	if (!ei->pid)
1434 		goto out_unlock;
1435 
1436 	inode->i_uid = 0;
1437 	inode->i_gid = 0;
1438 	if (task_dumpable(task)) {
1439 		inode->i_uid = task->euid;
1440 		inode->i_gid = task->egid;
1441 	}
1442 	security_task_to_inode(task, inode);
1443 
1444 out:
1445 	return inode;
1446 
1447 out_unlock:
1448 	iput(inode);
1449 	return NULL;
1450 }
1451 
1452 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1453 {
1454 	struct inode *inode = dentry->d_inode;
1455 	struct task_struct *task;
1456 	generic_fillattr(inode, stat);
1457 
1458 	rcu_read_lock();
1459 	stat->uid = 0;
1460 	stat->gid = 0;
1461 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1462 	if (task) {
1463 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1464 		    task_dumpable(task)) {
1465 			stat->uid = task->euid;
1466 			stat->gid = task->egid;
1467 		}
1468 	}
1469 	rcu_read_unlock();
1470 	return 0;
1471 }
1472 
1473 /* dentry stuff */
1474 
1475 /*
1476  *	Exceptional case: normally we are not allowed to unhash a busy
1477  * directory. In this case, however, we can do it - no aliasing problems
1478  * due to the way we treat inodes.
1479  *
1480  * Rewrite the inode's ownerships here because the owning task may have
1481  * performed a setuid(), etc.
1482  *
1483  * Before the /proc/pid/status file was created the only way to read
1484  * the effective uid of a /process was to stat /proc/pid.  Reading
1485  * /proc/pid/status is slow enough that procps and other packages
1486  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1487  * made this apply to all per process world readable and executable
1488  * directories.
1489  */
1490 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1491 {
1492 	struct inode *inode = dentry->d_inode;
1493 	struct task_struct *task = get_proc_task(inode);
1494 	if (task) {
1495 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1496 		    task_dumpable(task)) {
1497 			inode->i_uid = task->euid;
1498 			inode->i_gid = task->egid;
1499 		} else {
1500 			inode->i_uid = 0;
1501 			inode->i_gid = 0;
1502 		}
1503 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1504 		security_task_to_inode(task, inode);
1505 		put_task_struct(task);
1506 		return 1;
1507 	}
1508 	d_drop(dentry);
1509 	return 0;
1510 }
1511 
1512 static int pid_delete_dentry(struct dentry * dentry)
1513 {
1514 	/* Is the task we represent dead?
1515 	 * If so, then don't put the dentry on the lru list,
1516 	 * kill it immediately.
1517 	 */
1518 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1519 }
1520 
1521 static struct dentry_operations pid_dentry_operations =
1522 {
1523 	.d_revalidate	= pid_revalidate,
1524 	.d_delete	= pid_delete_dentry,
1525 };
1526 
1527 /* Lookups */
1528 
1529 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1530 				struct task_struct *, const void *);
1531 
1532 /*
1533  * Fill a directory entry.
1534  *
1535  * If possible create the dcache entry and derive our inode number and
1536  * file type from dcache entry.
1537  *
1538  * Since all of the proc inode numbers are dynamically generated, the inode
1539  * numbers do not exist until the inode is cache.  This means creating the
1540  * the dcache entry in readdir is necessary to keep the inode numbers
1541  * reported by readdir in sync with the inode numbers reported
1542  * by stat.
1543  */
1544 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1545 	char *name, int len,
1546 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1547 {
1548 	struct dentry *child, *dir = filp->f_path.dentry;
1549 	struct inode *inode;
1550 	struct qstr qname;
1551 	ino_t ino = 0;
1552 	unsigned type = DT_UNKNOWN;
1553 
1554 	qname.name = name;
1555 	qname.len  = len;
1556 	qname.hash = full_name_hash(name, len);
1557 
1558 	child = d_lookup(dir, &qname);
1559 	if (!child) {
1560 		struct dentry *new;
1561 		new = d_alloc(dir, &qname);
1562 		if (new) {
1563 			child = instantiate(dir->d_inode, new, task, ptr);
1564 			if (child)
1565 				dput(new);
1566 			else
1567 				child = new;
1568 		}
1569 	}
1570 	if (!child || IS_ERR(child) || !child->d_inode)
1571 		goto end_instantiate;
1572 	inode = child->d_inode;
1573 	if (inode) {
1574 		ino = inode->i_ino;
1575 		type = inode->i_mode >> 12;
1576 	}
1577 	dput(child);
1578 end_instantiate:
1579 	if (!ino)
1580 		ino = find_inode_number(dir, &qname);
1581 	if (!ino)
1582 		ino = 1;
1583 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1584 }
1585 
1586 static unsigned name_to_int(struct dentry *dentry)
1587 {
1588 	const char *name = dentry->d_name.name;
1589 	int len = dentry->d_name.len;
1590 	unsigned n = 0;
1591 
1592 	if (len > 1 && *name == '0')
1593 		goto out;
1594 	while (len-- > 0) {
1595 		unsigned c = *name++ - '0';
1596 		if (c > 9)
1597 			goto out;
1598 		if (n >= (~0U-9)/10)
1599 			goto out;
1600 		n *= 10;
1601 		n += c;
1602 	}
1603 	return n;
1604 out:
1605 	return ~0U;
1606 }
1607 
1608 #define PROC_FDINFO_MAX 64
1609 
1610 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1611 {
1612 	struct task_struct *task = get_proc_task(inode);
1613 	struct files_struct *files = NULL;
1614 	struct file *file;
1615 	int fd = proc_fd(inode);
1616 
1617 	if (task) {
1618 		files = get_files_struct(task);
1619 		put_task_struct(task);
1620 	}
1621 	if (files) {
1622 		/*
1623 		 * We are not taking a ref to the file structure, so we must
1624 		 * hold ->file_lock.
1625 		 */
1626 		spin_lock(&files->file_lock);
1627 		file = fcheck_files(files, fd);
1628 		if (file) {
1629 			if (path) {
1630 				*path = file->f_path;
1631 				path_get(&file->f_path);
1632 			}
1633 			if (info)
1634 				snprintf(info, PROC_FDINFO_MAX,
1635 					 "pos:\t%lli\n"
1636 					 "flags:\t0%o\n",
1637 					 (long long) file->f_pos,
1638 					 file->f_flags);
1639 			spin_unlock(&files->file_lock);
1640 			put_files_struct(files);
1641 			return 0;
1642 		}
1643 		spin_unlock(&files->file_lock);
1644 		put_files_struct(files);
1645 	}
1646 	return -ENOENT;
1647 }
1648 
1649 static int proc_fd_link(struct inode *inode, struct path *path)
1650 {
1651 	return proc_fd_info(inode, path, NULL);
1652 }
1653 
1654 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1655 {
1656 	struct inode *inode = dentry->d_inode;
1657 	struct task_struct *task = get_proc_task(inode);
1658 	int fd = proc_fd(inode);
1659 	struct files_struct *files;
1660 
1661 	if (task) {
1662 		files = get_files_struct(task);
1663 		if (files) {
1664 			rcu_read_lock();
1665 			if (fcheck_files(files, fd)) {
1666 				rcu_read_unlock();
1667 				put_files_struct(files);
1668 				if (task_dumpable(task)) {
1669 					inode->i_uid = task->euid;
1670 					inode->i_gid = task->egid;
1671 				} else {
1672 					inode->i_uid = 0;
1673 					inode->i_gid = 0;
1674 				}
1675 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1676 				security_task_to_inode(task, inode);
1677 				put_task_struct(task);
1678 				return 1;
1679 			}
1680 			rcu_read_unlock();
1681 			put_files_struct(files);
1682 		}
1683 		put_task_struct(task);
1684 	}
1685 	d_drop(dentry);
1686 	return 0;
1687 }
1688 
1689 static struct dentry_operations tid_fd_dentry_operations =
1690 {
1691 	.d_revalidate	= tid_fd_revalidate,
1692 	.d_delete	= pid_delete_dentry,
1693 };
1694 
1695 static struct dentry *proc_fd_instantiate(struct inode *dir,
1696 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1697 {
1698 	unsigned fd = *(const unsigned *)ptr;
1699 	struct file *file;
1700 	struct files_struct *files;
1701  	struct inode *inode;
1702  	struct proc_inode *ei;
1703 	struct dentry *error = ERR_PTR(-ENOENT);
1704 
1705 	inode = proc_pid_make_inode(dir->i_sb, task);
1706 	if (!inode)
1707 		goto out;
1708 	ei = PROC_I(inode);
1709 	ei->fd = fd;
1710 	files = get_files_struct(task);
1711 	if (!files)
1712 		goto out_iput;
1713 	inode->i_mode = S_IFLNK;
1714 
1715 	/*
1716 	 * We are not taking a ref to the file structure, so we must
1717 	 * hold ->file_lock.
1718 	 */
1719 	spin_lock(&files->file_lock);
1720 	file = fcheck_files(files, fd);
1721 	if (!file)
1722 		goto out_unlock;
1723 	if (file->f_mode & 1)
1724 		inode->i_mode |= S_IRUSR | S_IXUSR;
1725 	if (file->f_mode & 2)
1726 		inode->i_mode |= S_IWUSR | S_IXUSR;
1727 	spin_unlock(&files->file_lock);
1728 	put_files_struct(files);
1729 
1730 	inode->i_op = &proc_pid_link_inode_operations;
1731 	inode->i_size = 64;
1732 	ei->op.proc_get_link = proc_fd_link;
1733 	dentry->d_op = &tid_fd_dentry_operations;
1734 	d_add(dentry, inode);
1735 	/* Close the race of the process dying before we return the dentry */
1736 	if (tid_fd_revalidate(dentry, NULL))
1737 		error = NULL;
1738 
1739  out:
1740 	return error;
1741 out_unlock:
1742 	spin_unlock(&files->file_lock);
1743 	put_files_struct(files);
1744 out_iput:
1745 	iput(inode);
1746 	goto out;
1747 }
1748 
1749 static struct dentry *proc_lookupfd_common(struct inode *dir,
1750 					   struct dentry *dentry,
1751 					   instantiate_t instantiate)
1752 {
1753 	struct task_struct *task = get_proc_task(dir);
1754 	unsigned fd = name_to_int(dentry);
1755 	struct dentry *result = ERR_PTR(-ENOENT);
1756 
1757 	if (!task)
1758 		goto out_no_task;
1759 	if (fd == ~0U)
1760 		goto out;
1761 
1762 	result = instantiate(dir, dentry, task, &fd);
1763 out:
1764 	put_task_struct(task);
1765 out_no_task:
1766 	return result;
1767 }
1768 
1769 static int proc_readfd_common(struct file * filp, void * dirent,
1770 			      filldir_t filldir, instantiate_t instantiate)
1771 {
1772 	struct dentry *dentry = filp->f_path.dentry;
1773 	struct inode *inode = dentry->d_inode;
1774 	struct task_struct *p = get_proc_task(inode);
1775 	unsigned int fd, ino;
1776 	int retval;
1777 	struct files_struct * files;
1778 
1779 	retval = -ENOENT;
1780 	if (!p)
1781 		goto out_no_task;
1782 	retval = 0;
1783 
1784 	fd = filp->f_pos;
1785 	switch (fd) {
1786 		case 0:
1787 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1788 				goto out;
1789 			filp->f_pos++;
1790 		case 1:
1791 			ino = parent_ino(dentry);
1792 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1793 				goto out;
1794 			filp->f_pos++;
1795 		default:
1796 			files = get_files_struct(p);
1797 			if (!files)
1798 				goto out;
1799 			rcu_read_lock();
1800 			for (fd = filp->f_pos-2;
1801 			     fd < files_fdtable(files)->max_fds;
1802 			     fd++, filp->f_pos++) {
1803 				char name[PROC_NUMBUF];
1804 				int len;
1805 
1806 				if (!fcheck_files(files, fd))
1807 					continue;
1808 				rcu_read_unlock();
1809 
1810 				len = snprintf(name, sizeof(name), "%d", fd);
1811 				if (proc_fill_cache(filp, dirent, filldir,
1812 						    name, len, instantiate,
1813 						    p, &fd) < 0) {
1814 					rcu_read_lock();
1815 					break;
1816 				}
1817 				rcu_read_lock();
1818 			}
1819 			rcu_read_unlock();
1820 			put_files_struct(files);
1821 	}
1822 out:
1823 	put_task_struct(p);
1824 out_no_task:
1825 	return retval;
1826 }
1827 
1828 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1829 				    struct nameidata *nd)
1830 {
1831 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1832 }
1833 
1834 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1835 {
1836 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1837 }
1838 
1839 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1840 				      size_t len, loff_t *ppos)
1841 {
1842 	char tmp[PROC_FDINFO_MAX];
1843 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1844 	if (!err)
1845 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1846 	return err;
1847 }
1848 
1849 static const struct file_operations proc_fdinfo_file_operations = {
1850 	.open		= nonseekable_open,
1851 	.read		= proc_fdinfo_read,
1852 };
1853 
1854 static const struct file_operations proc_fd_operations = {
1855 	.read		= generic_read_dir,
1856 	.readdir	= proc_readfd,
1857 };
1858 
1859 /*
1860  * /proc/pid/fd needs a special permission handler so that a process can still
1861  * access /proc/self/fd after it has executed a setuid().
1862  */
1863 static int proc_fd_permission(struct inode *inode, int mask)
1864 {
1865 	int rv;
1866 
1867 	rv = generic_permission(inode, mask, NULL);
1868 	if (rv == 0)
1869 		return 0;
1870 	if (task_pid(current) == proc_pid(inode))
1871 		rv = 0;
1872 	return rv;
1873 }
1874 
1875 /*
1876  * proc directories can do almost nothing..
1877  */
1878 static const struct inode_operations proc_fd_inode_operations = {
1879 	.lookup		= proc_lookupfd,
1880 	.permission	= proc_fd_permission,
1881 	.setattr	= proc_setattr,
1882 };
1883 
1884 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1885 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1886 {
1887 	unsigned fd = *(unsigned *)ptr;
1888  	struct inode *inode;
1889  	struct proc_inode *ei;
1890 	struct dentry *error = ERR_PTR(-ENOENT);
1891 
1892 	inode = proc_pid_make_inode(dir->i_sb, task);
1893 	if (!inode)
1894 		goto out;
1895 	ei = PROC_I(inode);
1896 	ei->fd = fd;
1897 	inode->i_mode = S_IFREG | S_IRUSR;
1898 	inode->i_fop = &proc_fdinfo_file_operations;
1899 	dentry->d_op = &tid_fd_dentry_operations;
1900 	d_add(dentry, inode);
1901 	/* Close the race of the process dying before we return the dentry */
1902 	if (tid_fd_revalidate(dentry, NULL))
1903 		error = NULL;
1904 
1905  out:
1906 	return error;
1907 }
1908 
1909 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1910 					struct dentry *dentry,
1911 					struct nameidata *nd)
1912 {
1913 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1914 }
1915 
1916 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1917 {
1918 	return proc_readfd_common(filp, dirent, filldir,
1919 				  proc_fdinfo_instantiate);
1920 }
1921 
1922 static const struct file_operations proc_fdinfo_operations = {
1923 	.read		= generic_read_dir,
1924 	.readdir	= proc_readfdinfo,
1925 };
1926 
1927 /*
1928  * proc directories can do almost nothing..
1929  */
1930 static const struct inode_operations proc_fdinfo_inode_operations = {
1931 	.lookup		= proc_lookupfdinfo,
1932 	.setattr	= proc_setattr,
1933 };
1934 
1935 
1936 static struct dentry *proc_pident_instantiate(struct inode *dir,
1937 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1938 {
1939 	const struct pid_entry *p = ptr;
1940 	struct inode *inode;
1941 	struct proc_inode *ei;
1942 	struct dentry *error = ERR_PTR(-EINVAL);
1943 
1944 	inode = proc_pid_make_inode(dir->i_sb, task);
1945 	if (!inode)
1946 		goto out;
1947 
1948 	ei = PROC_I(inode);
1949 	inode->i_mode = p->mode;
1950 	if (S_ISDIR(inode->i_mode))
1951 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1952 	if (p->iop)
1953 		inode->i_op = p->iop;
1954 	if (p->fop)
1955 		inode->i_fop = p->fop;
1956 	ei->op = p->op;
1957 	dentry->d_op = &pid_dentry_operations;
1958 	d_add(dentry, inode);
1959 	/* Close the race of the process dying before we return the dentry */
1960 	if (pid_revalidate(dentry, NULL))
1961 		error = NULL;
1962 out:
1963 	return error;
1964 }
1965 
1966 static struct dentry *proc_pident_lookup(struct inode *dir,
1967 					 struct dentry *dentry,
1968 					 const struct pid_entry *ents,
1969 					 unsigned int nents)
1970 {
1971 	struct inode *inode;
1972 	struct dentry *error;
1973 	struct task_struct *task = get_proc_task(dir);
1974 	const struct pid_entry *p, *last;
1975 
1976 	error = ERR_PTR(-ENOENT);
1977 	inode = NULL;
1978 
1979 	if (!task)
1980 		goto out_no_task;
1981 
1982 	/*
1983 	 * Yes, it does not scale. And it should not. Don't add
1984 	 * new entries into /proc/<tgid>/ without very good reasons.
1985 	 */
1986 	last = &ents[nents - 1];
1987 	for (p = ents; p <= last; p++) {
1988 		if (p->len != dentry->d_name.len)
1989 			continue;
1990 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1991 			break;
1992 	}
1993 	if (p > last)
1994 		goto out;
1995 
1996 	error = proc_pident_instantiate(dir, dentry, task, p);
1997 out:
1998 	put_task_struct(task);
1999 out_no_task:
2000 	return error;
2001 }
2002 
2003 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2004 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2005 {
2006 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2007 				proc_pident_instantiate, task, p);
2008 }
2009 
2010 static int proc_pident_readdir(struct file *filp,
2011 		void *dirent, filldir_t filldir,
2012 		const struct pid_entry *ents, unsigned int nents)
2013 {
2014 	int i;
2015 	struct dentry *dentry = filp->f_path.dentry;
2016 	struct inode *inode = dentry->d_inode;
2017 	struct task_struct *task = get_proc_task(inode);
2018 	const struct pid_entry *p, *last;
2019 	ino_t ino;
2020 	int ret;
2021 
2022 	ret = -ENOENT;
2023 	if (!task)
2024 		goto out_no_task;
2025 
2026 	ret = 0;
2027 	i = filp->f_pos;
2028 	switch (i) {
2029 	case 0:
2030 		ino = inode->i_ino;
2031 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2032 			goto out;
2033 		i++;
2034 		filp->f_pos++;
2035 		/* fall through */
2036 	case 1:
2037 		ino = parent_ino(dentry);
2038 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2039 			goto out;
2040 		i++;
2041 		filp->f_pos++;
2042 		/* fall through */
2043 	default:
2044 		i -= 2;
2045 		if (i >= nents) {
2046 			ret = 1;
2047 			goto out;
2048 		}
2049 		p = ents + i;
2050 		last = &ents[nents - 1];
2051 		while (p <= last) {
2052 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2053 				goto out;
2054 			filp->f_pos++;
2055 			p++;
2056 		}
2057 	}
2058 
2059 	ret = 1;
2060 out:
2061 	put_task_struct(task);
2062 out_no_task:
2063 	return ret;
2064 }
2065 
2066 #ifdef CONFIG_SECURITY
2067 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2068 				  size_t count, loff_t *ppos)
2069 {
2070 	struct inode * inode = file->f_path.dentry->d_inode;
2071 	char *p = NULL;
2072 	ssize_t length;
2073 	struct task_struct *task = get_proc_task(inode);
2074 
2075 	if (!task)
2076 		return -ESRCH;
2077 
2078 	length = security_getprocattr(task,
2079 				      (char*)file->f_path.dentry->d_name.name,
2080 				      &p);
2081 	put_task_struct(task);
2082 	if (length > 0)
2083 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2084 	kfree(p);
2085 	return length;
2086 }
2087 
2088 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2089 				   size_t count, loff_t *ppos)
2090 {
2091 	struct inode * inode = file->f_path.dentry->d_inode;
2092 	char *page;
2093 	ssize_t length;
2094 	struct task_struct *task = get_proc_task(inode);
2095 
2096 	length = -ESRCH;
2097 	if (!task)
2098 		goto out_no_task;
2099 	if (count > PAGE_SIZE)
2100 		count = PAGE_SIZE;
2101 
2102 	/* No partial writes. */
2103 	length = -EINVAL;
2104 	if (*ppos != 0)
2105 		goto out;
2106 
2107 	length = -ENOMEM;
2108 	page = (char*)__get_free_page(GFP_TEMPORARY);
2109 	if (!page)
2110 		goto out;
2111 
2112 	length = -EFAULT;
2113 	if (copy_from_user(page, buf, count))
2114 		goto out_free;
2115 
2116 	length = security_setprocattr(task,
2117 				      (char*)file->f_path.dentry->d_name.name,
2118 				      (void*)page, count);
2119 out_free:
2120 	free_page((unsigned long) page);
2121 out:
2122 	put_task_struct(task);
2123 out_no_task:
2124 	return length;
2125 }
2126 
2127 static const struct file_operations proc_pid_attr_operations = {
2128 	.read		= proc_pid_attr_read,
2129 	.write		= proc_pid_attr_write,
2130 };
2131 
2132 static const struct pid_entry attr_dir_stuff[] = {
2133 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
2134 	REG("prev",       S_IRUGO,	   pid_attr),
2135 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
2136 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
2137 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
2138 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2139 };
2140 
2141 static int proc_attr_dir_readdir(struct file * filp,
2142 			     void * dirent, filldir_t filldir)
2143 {
2144 	return proc_pident_readdir(filp,dirent,filldir,
2145 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2146 }
2147 
2148 static const struct file_operations proc_attr_dir_operations = {
2149 	.read		= generic_read_dir,
2150 	.readdir	= proc_attr_dir_readdir,
2151 };
2152 
2153 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2154 				struct dentry *dentry, struct nameidata *nd)
2155 {
2156 	return proc_pident_lookup(dir, dentry,
2157 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2158 }
2159 
2160 static const struct inode_operations proc_attr_dir_inode_operations = {
2161 	.lookup		= proc_attr_dir_lookup,
2162 	.getattr	= pid_getattr,
2163 	.setattr	= proc_setattr,
2164 };
2165 
2166 #endif
2167 
2168 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2169 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2170 					 size_t count, loff_t *ppos)
2171 {
2172 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2173 	struct mm_struct *mm;
2174 	char buffer[PROC_NUMBUF];
2175 	size_t len;
2176 	int ret;
2177 
2178 	if (!task)
2179 		return -ESRCH;
2180 
2181 	ret = 0;
2182 	mm = get_task_mm(task);
2183 	if (mm) {
2184 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2185 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2186 				MMF_DUMP_FILTER_SHIFT));
2187 		mmput(mm);
2188 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2189 	}
2190 
2191 	put_task_struct(task);
2192 
2193 	return ret;
2194 }
2195 
2196 static ssize_t proc_coredump_filter_write(struct file *file,
2197 					  const char __user *buf,
2198 					  size_t count,
2199 					  loff_t *ppos)
2200 {
2201 	struct task_struct *task;
2202 	struct mm_struct *mm;
2203 	char buffer[PROC_NUMBUF], *end;
2204 	unsigned int val;
2205 	int ret;
2206 	int i;
2207 	unsigned long mask;
2208 
2209 	ret = -EFAULT;
2210 	memset(buffer, 0, sizeof(buffer));
2211 	if (count > sizeof(buffer) - 1)
2212 		count = sizeof(buffer) - 1;
2213 	if (copy_from_user(buffer, buf, count))
2214 		goto out_no_task;
2215 
2216 	ret = -EINVAL;
2217 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2218 	if (*end == '\n')
2219 		end++;
2220 	if (end - buffer == 0)
2221 		goto out_no_task;
2222 
2223 	ret = -ESRCH;
2224 	task = get_proc_task(file->f_dentry->d_inode);
2225 	if (!task)
2226 		goto out_no_task;
2227 
2228 	ret = end - buffer;
2229 	mm = get_task_mm(task);
2230 	if (!mm)
2231 		goto out_no_mm;
2232 
2233 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2234 		if (val & mask)
2235 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2236 		else
2237 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2238 	}
2239 
2240 	mmput(mm);
2241  out_no_mm:
2242 	put_task_struct(task);
2243  out_no_task:
2244 	return ret;
2245 }
2246 
2247 static const struct file_operations proc_coredump_filter_operations = {
2248 	.read		= proc_coredump_filter_read,
2249 	.write		= proc_coredump_filter_write,
2250 };
2251 #endif
2252 
2253 /*
2254  * /proc/self:
2255  */
2256 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2257 			      int buflen)
2258 {
2259 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2260 	pid_t tgid = task_tgid_nr_ns(current, ns);
2261 	char tmp[PROC_NUMBUF];
2262 	if (!tgid)
2263 		return -ENOENT;
2264 	sprintf(tmp, "%d", tgid);
2265 	return vfs_readlink(dentry,buffer,buflen,tmp);
2266 }
2267 
2268 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2269 {
2270 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2271 	pid_t tgid = task_tgid_nr_ns(current, ns);
2272 	char tmp[PROC_NUMBUF];
2273 	if (!tgid)
2274 		return ERR_PTR(-ENOENT);
2275 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2276 	return ERR_PTR(vfs_follow_link(nd,tmp));
2277 }
2278 
2279 static const struct inode_operations proc_self_inode_operations = {
2280 	.readlink	= proc_self_readlink,
2281 	.follow_link	= proc_self_follow_link,
2282 };
2283 
2284 /*
2285  * proc base
2286  *
2287  * These are the directory entries in the root directory of /proc
2288  * that properly belong to the /proc filesystem, as they describe
2289  * describe something that is process related.
2290  */
2291 static const struct pid_entry proc_base_stuff[] = {
2292 	NOD("self", S_IFLNK|S_IRWXUGO,
2293 		&proc_self_inode_operations, NULL, {}),
2294 };
2295 
2296 /*
2297  *	Exceptional case: normally we are not allowed to unhash a busy
2298  * directory. In this case, however, we can do it - no aliasing problems
2299  * due to the way we treat inodes.
2300  */
2301 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2302 {
2303 	struct inode *inode = dentry->d_inode;
2304 	struct task_struct *task = get_proc_task(inode);
2305 	if (task) {
2306 		put_task_struct(task);
2307 		return 1;
2308 	}
2309 	d_drop(dentry);
2310 	return 0;
2311 }
2312 
2313 static struct dentry_operations proc_base_dentry_operations =
2314 {
2315 	.d_revalidate	= proc_base_revalidate,
2316 	.d_delete	= pid_delete_dentry,
2317 };
2318 
2319 static struct dentry *proc_base_instantiate(struct inode *dir,
2320 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2321 {
2322 	const struct pid_entry *p = ptr;
2323 	struct inode *inode;
2324 	struct proc_inode *ei;
2325 	struct dentry *error = ERR_PTR(-EINVAL);
2326 
2327 	/* Allocate the inode */
2328 	error = ERR_PTR(-ENOMEM);
2329 	inode = new_inode(dir->i_sb);
2330 	if (!inode)
2331 		goto out;
2332 
2333 	/* Initialize the inode */
2334 	ei = PROC_I(inode);
2335 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2336 
2337 	/*
2338 	 * grab the reference to the task.
2339 	 */
2340 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2341 	if (!ei->pid)
2342 		goto out_iput;
2343 
2344 	inode->i_uid = 0;
2345 	inode->i_gid = 0;
2346 	inode->i_mode = p->mode;
2347 	if (S_ISDIR(inode->i_mode))
2348 		inode->i_nlink = 2;
2349 	if (S_ISLNK(inode->i_mode))
2350 		inode->i_size = 64;
2351 	if (p->iop)
2352 		inode->i_op = p->iop;
2353 	if (p->fop)
2354 		inode->i_fop = p->fop;
2355 	ei->op = p->op;
2356 	dentry->d_op = &proc_base_dentry_operations;
2357 	d_add(dentry, inode);
2358 	error = NULL;
2359 out:
2360 	return error;
2361 out_iput:
2362 	iput(inode);
2363 	goto out;
2364 }
2365 
2366 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2367 {
2368 	struct dentry *error;
2369 	struct task_struct *task = get_proc_task(dir);
2370 	const struct pid_entry *p, *last;
2371 
2372 	error = ERR_PTR(-ENOENT);
2373 
2374 	if (!task)
2375 		goto out_no_task;
2376 
2377 	/* Lookup the directory entry */
2378 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2379 	for (p = proc_base_stuff; p <= last; p++) {
2380 		if (p->len != dentry->d_name.len)
2381 			continue;
2382 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2383 			break;
2384 	}
2385 	if (p > last)
2386 		goto out;
2387 
2388 	error = proc_base_instantiate(dir, dentry, task, p);
2389 
2390 out:
2391 	put_task_struct(task);
2392 out_no_task:
2393 	return error;
2394 }
2395 
2396 static int proc_base_fill_cache(struct file *filp, void *dirent,
2397 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2398 {
2399 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2400 				proc_base_instantiate, task, p);
2401 }
2402 
2403 #ifdef CONFIG_TASK_IO_ACCOUNTING
2404 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2405 {
2406 	struct task_io_accounting acct = task->ioac;
2407 	unsigned long flags;
2408 
2409 	if (whole && lock_task_sighand(task, &flags)) {
2410 		struct task_struct *t = task;
2411 
2412 		task_io_accounting_add(&acct, &task->signal->ioac);
2413 		while_each_thread(task, t)
2414 			task_io_accounting_add(&acct, &t->ioac);
2415 
2416 		unlock_task_sighand(task, &flags);
2417 	}
2418 	return sprintf(buffer,
2419 			"rchar: %llu\n"
2420 			"wchar: %llu\n"
2421 			"syscr: %llu\n"
2422 			"syscw: %llu\n"
2423 			"read_bytes: %llu\n"
2424 			"write_bytes: %llu\n"
2425 			"cancelled_write_bytes: %llu\n",
2426 			(unsigned long long)acct.rchar,
2427 			(unsigned long long)acct.wchar,
2428 			(unsigned long long)acct.syscr,
2429 			(unsigned long long)acct.syscw,
2430 			(unsigned long long)acct.read_bytes,
2431 			(unsigned long long)acct.write_bytes,
2432 			(unsigned long long)acct.cancelled_write_bytes);
2433 }
2434 
2435 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2436 {
2437 	return do_io_accounting(task, buffer, 0);
2438 }
2439 
2440 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2441 {
2442 	return do_io_accounting(task, buffer, 1);
2443 }
2444 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2445 
2446 /*
2447  * Thread groups
2448  */
2449 static const struct file_operations proc_task_operations;
2450 static const struct inode_operations proc_task_inode_operations;
2451 
2452 static const struct pid_entry tgid_base_stuff[] = {
2453 	DIR("task",       S_IRUGO|S_IXUGO, task),
2454 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2455 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2456 #ifdef CONFIG_NET
2457 	DIR("net",        S_IRUGO|S_IXUGO, net),
2458 #endif
2459 	REG("environ",    S_IRUSR, environ),
2460 	INF("auxv",       S_IRUSR, pid_auxv),
2461 	ONE("status",     S_IRUGO, pid_status),
2462 	INF("limits",	  S_IRUSR, pid_limits),
2463 #ifdef CONFIG_SCHED_DEBUG
2464 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2465 #endif
2466 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2467 	INF("syscall",    S_IRUSR, pid_syscall),
2468 #endif
2469 	INF("cmdline",    S_IRUGO, pid_cmdline),
2470 	ONE("stat",       S_IRUGO, tgid_stat),
2471 	ONE("statm",      S_IRUGO, pid_statm),
2472 	REG("maps",       S_IRUGO, maps),
2473 #ifdef CONFIG_NUMA
2474 	REG("numa_maps",  S_IRUGO, numa_maps),
2475 #endif
2476 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2477 	LNK("cwd",        cwd),
2478 	LNK("root",       root),
2479 	LNK("exe",        exe),
2480 	REG("mounts",     S_IRUGO, mounts),
2481 	REG("mountinfo",  S_IRUGO, mountinfo),
2482 	REG("mountstats", S_IRUSR, mountstats),
2483 #ifdef CONFIG_PROC_PAGE_MONITOR
2484 	REG("clear_refs", S_IWUSR, clear_refs),
2485 	REG("smaps",      S_IRUGO, smaps),
2486 	REG("pagemap",    S_IRUSR, pagemap),
2487 #endif
2488 #ifdef CONFIG_SECURITY
2489 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2490 #endif
2491 #ifdef CONFIG_KALLSYMS
2492 	INF("wchan",      S_IRUGO, pid_wchan),
2493 #endif
2494 #ifdef CONFIG_SCHEDSTATS
2495 	INF("schedstat",  S_IRUGO, pid_schedstat),
2496 #endif
2497 #ifdef CONFIG_LATENCYTOP
2498 	REG("latency",  S_IRUGO, lstats),
2499 #endif
2500 #ifdef CONFIG_PROC_PID_CPUSET
2501 	REG("cpuset",     S_IRUGO, cpuset),
2502 #endif
2503 #ifdef CONFIG_CGROUPS
2504 	REG("cgroup",  S_IRUGO, cgroup),
2505 #endif
2506 	INF("oom_score",  S_IRUGO, oom_score),
2507 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2508 #ifdef CONFIG_AUDITSYSCALL
2509 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2510 	REG("sessionid",  S_IRUGO, sessionid),
2511 #endif
2512 #ifdef CONFIG_FAULT_INJECTION
2513 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2514 #endif
2515 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2516 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2517 #endif
2518 #ifdef CONFIG_TASK_IO_ACCOUNTING
2519 	INF("io",	S_IRUGO, tgid_io_accounting),
2520 #endif
2521 };
2522 
2523 static int proc_tgid_base_readdir(struct file * filp,
2524 			     void * dirent, filldir_t filldir)
2525 {
2526 	return proc_pident_readdir(filp,dirent,filldir,
2527 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2528 }
2529 
2530 static const struct file_operations proc_tgid_base_operations = {
2531 	.read		= generic_read_dir,
2532 	.readdir	= proc_tgid_base_readdir,
2533 };
2534 
2535 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2536 	return proc_pident_lookup(dir, dentry,
2537 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2538 }
2539 
2540 static const struct inode_operations proc_tgid_base_inode_operations = {
2541 	.lookup		= proc_tgid_base_lookup,
2542 	.getattr	= pid_getattr,
2543 	.setattr	= proc_setattr,
2544 };
2545 
2546 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2547 {
2548 	struct dentry *dentry, *leader, *dir;
2549 	char buf[PROC_NUMBUF];
2550 	struct qstr name;
2551 
2552 	name.name = buf;
2553 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2554 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2555 	if (dentry) {
2556 		if (!(current->flags & PF_EXITING))
2557 			shrink_dcache_parent(dentry);
2558 		d_drop(dentry);
2559 		dput(dentry);
2560 	}
2561 
2562 	if (tgid == 0)
2563 		goto out;
2564 
2565 	name.name = buf;
2566 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2567 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2568 	if (!leader)
2569 		goto out;
2570 
2571 	name.name = "task";
2572 	name.len = strlen(name.name);
2573 	dir = d_hash_and_lookup(leader, &name);
2574 	if (!dir)
2575 		goto out_put_leader;
2576 
2577 	name.name = buf;
2578 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2579 	dentry = d_hash_and_lookup(dir, &name);
2580 	if (dentry) {
2581 		shrink_dcache_parent(dentry);
2582 		d_drop(dentry);
2583 		dput(dentry);
2584 	}
2585 
2586 	dput(dir);
2587 out_put_leader:
2588 	dput(leader);
2589 out:
2590 	return;
2591 }
2592 
2593 /**
2594  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2595  * @task: task that should be flushed.
2596  *
2597  * When flushing dentries from proc, one needs to flush them from global
2598  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2599  * in. This call is supposed to do all of this job.
2600  *
2601  * Looks in the dcache for
2602  * /proc/@pid
2603  * /proc/@tgid/task/@pid
2604  * if either directory is present flushes it and all of it'ts children
2605  * from the dcache.
2606  *
2607  * It is safe and reasonable to cache /proc entries for a task until
2608  * that task exits.  After that they just clog up the dcache with
2609  * useless entries, possibly causing useful dcache entries to be
2610  * flushed instead.  This routine is proved to flush those useless
2611  * dcache entries at process exit time.
2612  *
2613  * NOTE: This routine is just an optimization so it does not guarantee
2614  *       that no dcache entries will exist at process exit time it
2615  *       just makes it very unlikely that any will persist.
2616  */
2617 
2618 void proc_flush_task(struct task_struct *task)
2619 {
2620 	int i;
2621 	struct pid *pid, *tgid = NULL;
2622 	struct upid *upid;
2623 
2624 	pid = task_pid(task);
2625 	if (thread_group_leader(task))
2626 		tgid = task_tgid(task);
2627 
2628 	for (i = 0; i <= pid->level; i++) {
2629 		upid = &pid->numbers[i];
2630 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2631 			tgid ? tgid->numbers[i].nr : 0);
2632 	}
2633 
2634 	upid = &pid->numbers[pid->level];
2635 	if (upid->nr == 1)
2636 		pid_ns_release_proc(upid->ns);
2637 }
2638 
2639 static struct dentry *proc_pid_instantiate(struct inode *dir,
2640 					   struct dentry * dentry,
2641 					   struct task_struct *task, const void *ptr)
2642 {
2643 	struct dentry *error = ERR_PTR(-ENOENT);
2644 	struct inode *inode;
2645 
2646 	inode = proc_pid_make_inode(dir->i_sb, task);
2647 	if (!inode)
2648 		goto out;
2649 
2650 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2651 	inode->i_op = &proc_tgid_base_inode_operations;
2652 	inode->i_fop = &proc_tgid_base_operations;
2653 	inode->i_flags|=S_IMMUTABLE;
2654 
2655 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2656 		ARRAY_SIZE(tgid_base_stuff));
2657 
2658 	dentry->d_op = &pid_dentry_operations;
2659 
2660 	d_add(dentry, inode);
2661 	/* Close the race of the process dying before we return the dentry */
2662 	if (pid_revalidate(dentry, NULL))
2663 		error = NULL;
2664 out:
2665 	return error;
2666 }
2667 
2668 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2669 {
2670 	struct dentry *result = ERR_PTR(-ENOENT);
2671 	struct task_struct *task;
2672 	unsigned tgid;
2673 	struct pid_namespace *ns;
2674 
2675 	result = proc_base_lookup(dir, dentry);
2676 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2677 		goto out;
2678 
2679 	tgid = name_to_int(dentry);
2680 	if (tgid == ~0U)
2681 		goto out;
2682 
2683 	ns = dentry->d_sb->s_fs_info;
2684 	rcu_read_lock();
2685 	task = find_task_by_pid_ns(tgid, ns);
2686 	if (task)
2687 		get_task_struct(task);
2688 	rcu_read_unlock();
2689 	if (!task)
2690 		goto out;
2691 
2692 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2693 	put_task_struct(task);
2694 out:
2695 	return result;
2696 }
2697 
2698 /*
2699  * Find the first task with tgid >= tgid
2700  *
2701  */
2702 struct tgid_iter {
2703 	unsigned int tgid;
2704 	struct task_struct *task;
2705 };
2706 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2707 {
2708 	struct pid *pid;
2709 
2710 	if (iter.task)
2711 		put_task_struct(iter.task);
2712 	rcu_read_lock();
2713 retry:
2714 	iter.task = NULL;
2715 	pid = find_ge_pid(iter.tgid, ns);
2716 	if (pid) {
2717 		iter.tgid = pid_nr_ns(pid, ns);
2718 		iter.task = pid_task(pid, PIDTYPE_PID);
2719 		/* What we to know is if the pid we have find is the
2720 		 * pid of a thread_group_leader.  Testing for task
2721 		 * being a thread_group_leader is the obvious thing
2722 		 * todo but there is a window when it fails, due to
2723 		 * the pid transfer logic in de_thread.
2724 		 *
2725 		 * So we perform the straight forward test of seeing
2726 		 * if the pid we have found is the pid of a thread
2727 		 * group leader, and don't worry if the task we have
2728 		 * found doesn't happen to be a thread group leader.
2729 		 * As we don't care in the case of readdir.
2730 		 */
2731 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2732 			iter.tgid += 1;
2733 			goto retry;
2734 		}
2735 		get_task_struct(iter.task);
2736 	}
2737 	rcu_read_unlock();
2738 	return iter;
2739 }
2740 
2741 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2742 
2743 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2744 	struct tgid_iter iter)
2745 {
2746 	char name[PROC_NUMBUF];
2747 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2748 	return proc_fill_cache(filp, dirent, filldir, name, len,
2749 				proc_pid_instantiate, iter.task, NULL);
2750 }
2751 
2752 /* for the /proc/ directory itself, after non-process stuff has been done */
2753 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2754 {
2755 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2756 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2757 	struct tgid_iter iter;
2758 	struct pid_namespace *ns;
2759 
2760 	if (!reaper)
2761 		goto out_no_task;
2762 
2763 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2764 		const struct pid_entry *p = &proc_base_stuff[nr];
2765 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2766 			goto out;
2767 	}
2768 
2769 	ns = filp->f_dentry->d_sb->s_fs_info;
2770 	iter.task = NULL;
2771 	iter.tgid = filp->f_pos - TGID_OFFSET;
2772 	for (iter = next_tgid(ns, iter);
2773 	     iter.task;
2774 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2775 		filp->f_pos = iter.tgid + TGID_OFFSET;
2776 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2777 			put_task_struct(iter.task);
2778 			goto out;
2779 		}
2780 	}
2781 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2782 out:
2783 	put_task_struct(reaper);
2784 out_no_task:
2785 	return 0;
2786 }
2787 
2788 /*
2789  * Tasks
2790  */
2791 static const struct pid_entry tid_base_stuff[] = {
2792 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2793 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2794 	REG("environ",   S_IRUSR, environ),
2795 	INF("auxv",      S_IRUSR, pid_auxv),
2796 	ONE("status",    S_IRUGO, pid_status),
2797 	INF("limits",	 S_IRUSR, pid_limits),
2798 #ifdef CONFIG_SCHED_DEBUG
2799 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2800 #endif
2801 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2802 	INF("syscall",   S_IRUSR, pid_syscall),
2803 #endif
2804 	INF("cmdline",   S_IRUGO, pid_cmdline),
2805 	ONE("stat",      S_IRUGO, tid_stat),
2806 	ONE("statm",     S_IRUGO, pid_statm),
2807 	REG("maps",      S_IRUGO, maps),
2808 #ifdef CONFIG_NUMA
2809 	REG("numa_maps", S_IRUGO, numa_maps),
2810 #endif
2811 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2812 	LNK("cwd",       cwd),
2813 	LNK("root",      root),
2814 	LNK("exe",       exe),
2815 	REG("mounts",    S_IRUGO, mounts),
2816 	REG("mountinfo",  S_IRUGO, mountinfo),
2817 #ifdef CONFIG_PROC_PAGE_MONITOR
2818 	REG("clear_refs", S_IWUSR, clear_refs),
2819 	REG("smaps",     S_IRUGO, smaps),
2820 	REG("pagemap",    S_IRUSR, pagemap),
2821 #endif
2822 #ifdef CONFIG_SECURITY
2823 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2824 #endif
2825 #ifdef CONFIG_KALLSYMS
2826 	INF("wchan",     S_IRUGO, pid_wchan),
2827 #endif
2828 #ifdef CONFIG_SCHEDSTATS
2829 	INF("schedstat", S_IRUGO, pid_schedstat),
2830 #endif
2831 #ifdef CONFIG_LATENCYTOP
2832 	REG("latency",  S_IRUGO, lstats),
2833 #endif
2834 #ifdef CONFIG_PROC_PID_CPUSET
2835 	REG("cpuset",    S_IRUGO, cpuset),
2836 #endif
2837 #ifdef CONFIG_CGROUPS
2838 	REG("cgroup",  S_IRUGO, cgroup),
2839 #endif
2840 	INF("oom_score", S_IRUGO, oom_score),
2841 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2842 #ifdef CONFIG_AUDITSYSCALL
2843 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2844 	REG("sessionid",  S_IRUSR, sessionid),
2845 #endif
2846 #ifdef CONFIG_FAULT_INJECTION
2847 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2848 #endif
2849 #ifdef CONFIG_TASK_IO_ACCOUNTING
2850 	INF("io",	S_IRUGO, tid_io_accounting),
2851 #endif
2852 };
2853 
2854 static int proc_tid_base_readdir(struct file * filp,
2855 			     void * dirent, filldir_t filldir)
2856 {
2857 	return proc_pident_readdir(filp,dirent,filldir,
2858 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2859 }
2860 
2861 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2862 	return proc_pident_lookup(dir, dentry,
2863 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2864 }
2865 
2866 static const struct file_operations proc_tid_base_operations = {
2867 	.read		= generic_read_dir,
2868 	.readdir	= proc_tid_base_readdir,
2869 };
2870 
2871 static const struct inode_operations proc_tid_base_inode_operations = {
2872 	.lookup		= proc_tid_base_lookup,
2873 	.getattr	= pid_getattr,
2874 	.setattr	= proc_setattr,
2875 };
2876 
2877 static struct dentry *proc_task_instantiate(struct inode *dir,
2878 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2879 {
2880 	struct dentry *error = ERR_PTR(-ENOENT);
2881 	struct inode *inode;
2882 	inode = proc_pid_make_inode(dir->i_sb, task);
2883 
2884 	if (!inode)
2885 		goto out;
2886 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2887 	inode->i_op = &proc_tid_base_inode_operations;
2888 	inode->i_fop = &proc_tid_base_operations;
2889 	inode->i_flags|=S_IMMUTABLE;
2890 
2891 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2892 		ARRAY_SIZE(tid_base_stuff));
2893 
2894 	dentry->d_op = &pid_dentry_operations;
2895 
2896 	d_add(dentry, inode);
2897 	/* Close the race of the process dying before we return the dentry */
2898 	if (pid_revalidate(dentry, NULL))
2899 		error = NULL;
2900 out:
2901 	return error;
2902 }
2903 
2904 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2905 {
2906 	struct dentry *result = ERR_PTR(-ENOENT);
2907 	struct task_struct *task;
2908 	struct task_struct *leader = get_proc_task(dir);
2909 	unsigned tid;
2910 	struct pid_namespace *ns;
2911 
2912 	if (!leader)
2913 		goto out_no_task;
2914 
2915 	tid = name_to_int(dentry);
2916 	if (tid == ~0U)
2917 		goto out;
2918 
2919 	ns = dentry->d_sb->s_fs_info;
2920 	rcu_read_lock();
2921 	task = find_task_by_pid_ns(tid, ns);
2922 	if (task)
2923 		get_task_struct(task);
2924 	rcu_read_unlock();
2925 	if (!task)
2926 		goto out;
2927 	if (!same_thread_group(leader, task))
2928 		goto out_drop_task;
2929 
2930 	result = proc_task_instantiate(dir, dentry, task, NULL);
2931 out_drop_task:
2932 	put_task_struct(task);
2933 out:
2934 	put_task_struct(leader);
2935 out_no_task:
2936 	return result;
2937 }
2938 
2939 /*
2940  * Find the first tid of a thread group to return to user space.
2941  *
2942  * Usually this is just the thread group leader, but if the users
2943  * buffer was too small or there was a seek into the middle of the
2944  * directory we have more work todo.
2945  *
2946  * In the case of a short read we start with find_task_by_pid.
2947  *
2948  * In the case of a seek we start with the leader and walk nr
2949  * threads past it.
2950  */
2951 static struct task_struct *first_tid(struct task_struct *leader,
2952 		int tid, int nr, struct pid_namespace *ns)
2953 {
2954 	struct task_struct *pos;
2955 
2956 	rcu_read_lock();
2957 	/* Attempt to start with the pid of a thread */
2958 	if (tid && (nr > 0)) {
2959 		pos = find_task_by_pid_ns(tid, ns);
2960 		if (pos && (pos->group_leader == leader))
2961 			goto found;
2962 	}
2963 
2964 	/* If nr exceeds the number of threads there is nothing todo */
2965 	pos = NULL;
2966 	if (nr && nr >= get_nr_threads(leader))
2967 		goto out;
2968 
2969 	/* If we haven't found our starting place yet start
2970 	 * with the leader and walk nr threads forward.
2971 	 */
2972 	for (pos = leader; nr > 0; --nr) {
2973 		pos = next_thread(pos);
2974 		if (pos == leader) {
2975 			pos = NULL;
2976 			goto out;
2977 		}
2978 	}
2979 found:
2980 	get_task_struct(pos);
2981 out:
2982 	rcu_read_unlock();
2983 	return pos;
2984 }
2985 
2986 /*
2987  * Find the next thread in the thread list.
2988  * Return NULL if there is an error or no next thread.
2989  *
2990  * The reference to the input task_struct is released.
2991  */
2992 static struct task_struct *next_tid(struct task_struct *start)
2993 {
2994 	struct task_struct *pos = NULL;
2995 	rcu_read_lock();
2996 	if (pid_alive(start)) {
2997 		pos = next_thread(start);
2998 		if (thread_group_leader(pos))
2999 			pos = NULL;
3000 		else
3001 			get_task_struct(pos);
3002 	}
3003 	rcu_read_unlock();
3004 	put_task_struct(start);
3005 	return pos;
3006 }
3007 
3008 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3009 	struct task_struct *task, int tid)
3010 {
3011 	char name[PROC_NUMBUF];
3012 	int len = snprintf(name, sizeof(name), "%d", tid);
3013 	return proc_fill_cache(filp, dirent, filldir, name, len,
3014 				proc_task_instantiate, task, NULL);
3015 }
3016 
3017 /* for the /proc/TGID/task/ directories */
3018 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3019 {
3020 	struct dentry *dentry = filp->f_path.dentry;
3021 	struct inode *inode = dentry->d_inode;
3022 	struct task_struct *leader = NULL;
3023 	struct task_struct *task;
3024 	int retval = -ENOENT;
3025 	ino_t ino;
3026 	int tid;
3027 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
3028 	struct pid_namespace *ns;
3029 
3030 	task = get_proc_task(inode);
3031 	if (!task)
3032 		goto out_no_task;
3033 	rcu_read_lock();
3034 	if (pid_alive(task)) {
3035 		leader = task->group_leader;
3036 		get_task_struct(leader);
3037 	}
3038 	rcu_read_unlock();
3039 	put_task_struct(task);
3040 	if (!leader)
3041 		goto out_no_task;
3042 	retval = 0;
3043 
3044 	switch (pos) {
3045 	case 0:
3046 		ino = inode->i_ino;
3047 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3048 			goto out;
3049 		pos++;
3050 		/* fall through */
3051 	case 1:
3052 		ino = parent_ino(dentry);
3053 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3054 			goto out;
3055 		pos++;
3056 		/* fall through */
3057 	}
3058 
3059 	/* f_version caches the tgid value that the last readdir call couldn't
3060 	 * return. lseek aka telldir automagically resets f_version to 0.
3061 	 */
3062 	ns = filp->f_dentry->d_sb->s_fs_info;
3063 	tid = (int)filp->f_version;
3064 	filp->f_version = 0;
3065 	for (task = first_tid(leader, tid, pos - 2, ns);
3066 	     task;
3067 	     task = next_tid(task), pos++) {
3068 		tid = task_pid_nr_ns(task, ns);
3069 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3070 			/* returning this tgid failed, save it as the first
3071 			 * pid for the next readir call */
3072 			filp->f_version = (u64)tid;
3073 			put_task_struct(task);
3074 			break;
3075 		}
3076 	}
3077 out:
3078 	filp->f_pos = pos;
3079 	put_task_struct(leader);
3080 out_no_task:
3081 	return retval;
3082 }
3083 
3084 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3085 {
3086 	struct inode *inode = dentry->d_inode;
3087 	struct task_struct *p = get_proc_task(inode);
3088 	generic_fillattr(inode, stat);
3089 
3090 	if (p) {
3091 		rcu_read_lock();
3092 		stat->nlink += get_nr_threads(p);
3093 		rcu_read_unlock();
3094 		put_task_struct(p);
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 static const struct inode_operations proc_task_inode_operations = {
3101 	.lookup		= proc_task_lookup,
3102 	.getattr	= proc_task_getattr,
3103 	.setattr	= proc_setattr,
3104 };
3105 
3106 static const struct file_operations proc_task_operations = {
3107 	.read		= generic_read_dir,
3108 	.readdir	= proc_task_readdir,
3109 };
3110