1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/rcupdate.h> 67 #include <linux/kallsyms.h> 68 #include <linux/resource.h> 69 #include <linux/module.h> 70 #include <linux/mount.h> 71 #include <linux/security.h> 72 #include <linux/ptrace.h> 73 #include <linux/tracehook.h> 74 #include <linux/cgroup.h> 75 #include <linux/cpuset.h> 76 #include <linux/audit.h> 77 #include <linux/poll.h> 78 #include <linux/nsproxy.h> 79 #include <linux/oom.h> 80 #include <linux/elf.h> 81 #include <linux/pid_namespace.h> 82 #include "internal.h" 83 84 /* NOTE: 85 * Implementing inode permission operations in /proc is almost 86 * certainly an error. Permission checks need to happen during 87 * each system call not at open time. The reason is that most of 88 * what we wish to check for permissions in /proc varies at runtime. 89 * 90 * The classic example of a problem is opening file descriptors 91 * in /proc for a task before it execs a suid executable. 92 */ 93 94 struct pid_entry { 95 char *name; 96 int len; 97 mode_t mode; 98 const struct inode_operations *iop; 99 const struct file_operations *fop; 100 union proc_op op; 101 }; 102 103 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 104 .name = (NAME), \ 105 .len = sizeof(NAME) - 1, \ 106 .mode = MODE, \ 107 .iop = IOP, \ 108 .fop = FOP, \ 109 .op = OP, \ 110 } 111 112 #define DIR(NAME, MODE, OTYPE) \ 113 NOD(NAME, (S_IFDIR|(MODE)), \ 114 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \ 115 {} ) 116 #define LNK(NAME, OTYPE) \ 117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 118 &proc_pid_link_inode_operations, NULL, \ 119 { .proc_get_link = &proc_##OTYPE##_link } ) 120 #define REG(NAME, MODE, OTYPE) \ 121 NOD(NAME, (S_IFREG|(MODE)), NULL, \ 122 &proc_##OTYPE##_operations, {}) 123 #define INF(NAME, MODE, OTYPE) \ 124 NOD(NAME, (S_IFREG|(MODE)), \ 125 NULL, &proc_info_file_operations, \ 126 { .proc_read = &proc_##OTYPE } ) 127 #define ONE(NAME, MODE, OTYPE) \ 128 NOD(NAME, (S_IFREG|(MODE)), \ 129 NULL, &proc_single_file_operations, \ 130 { .proc_show = &proc_##OTYPE } ) 131 132 /* 133 * Count the number of hardlinks for the pid_entry table, excluding the . 134 * and .. links. 135 */ 136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 137 unsigned int n) 138 { 139 unsigned int i; 140 unsigned int count; 141 142 count = 0; 143 for (i = 0; i < n; ++i) { 144 if (S_ISDIR(entries[i].mode)) 145 ++count; 146 } 147 148 return count; 149 } 150 151 static struct fs_struct *get_fs_struct(struct task_struct *task) 152 { 153 struct fs_struct *fs; 154 task_lock(task); 155 fs = task->fs; 156 if(fs) 157 atomic_inc(&fs->count); 158 task_unlock(task); 159 return fs; 160 } 161 162 static int get_nr_threads(struct task_struct *tsk) 163 { 164 unsigned long flags; 165 int count = 0; 166 167 if (lock_task_sighand(tsk, &flags)) { 168 count = atomic_read(&tsk->signal->count); 169 unlock_task_sighand(tsk, &flags); 170 } 171 return count; 172 } 173 174 static int proc_cwd_link(struct inode *inode, struct path *path) 175 { 176 struct task_struct *task = get_proc_task(inode); 177 struct fs_struct *fs = NULL; 178 int result = -ENOENT; 179 180 if (task) { 181 fs = get_fs_struct(task); 182 put_task_struct(task); 183 } 184 if (fs) { 185 read_lock(&fs->lock); 186 *path = fs->pwd; 187 path_get(&fs->pwd); 188 read_unlock(&fs->lock); 189 result = 0; 190 put_fs_struct(fs); 191 } 192 return result; 193 } 194 195 static int proc_root_link(struct inode *inode, struct path *path) 196 { 197 struct task_struct *task = get_proc_task(inode); 198 struct fs_struct *fs = NULL; 199 int result = -ENOENT; 200 201 if (task) { 202 fs = get_fs_struct(task); 203 put_task_struct(task); 204 } 205 if (fs) { 206 read_lock(&fs->lock); 207 *path = fs->root; 208 path_get(&fs->root); 209 read_unlock(&fs->lock); 210 result = 0; 211 put_fs_struct(fs); 212 } 213 return result; 214 } 215 216 /* 217 * Return zero if current may access user memory in @task, -error if not. 218 */ 219 static int check_mem_permission(struct task_struct *task) 220 { 221 /* 222 * A task can always look at itself, in case it chooses 223 * to use system calls instead of load instructions. 224 */ 225 if (task == current) 226 return 0; 227 228 /* 229 * If current is actively ptrace'ing, and would also be 230 * permitted to freshly attach with ptrace now, permit it. 231 */ 232 if (task_is_stopped_or_traced(task)) { 233 int match; 234 rcu_read_lock(); 235 match = (tracehook_tracer_task(task) == current); 236 rcu_read_unlock(); 237 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 238 return 0; 239 } 240 241 /* 242 * Noone else is allowed. 243 */ 244 return -EPERM; 245 } 246 247 struct mm_struct *mm_for_maps(struct task_struct *task) 248 { 249 struct mm_struct *mm = get_task_mm(task); 250 if (!mm) 251 return NULL; 252 down_read(&mm->mmap_sem); 253 task_lock(task); 254 if (task->mm != mm) 255 goto out; 256 if (task->mm != current->mm && 257 __ptrace_may_access(task, PTRACE_MODE_READ) < 0) 258 goto out; 259 task_unlock(task); 260 return mm; 261 out: 262 task_unlock(task); 263 up_read(&mm->mmap_sem); 264 mmput(mm); 265 return NULL; 266 } 267 268 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 269 { 270 int res = 0; 271 unsigned int len; 272 struct mm_struct *mm = get_task_mm(task); 273 if (!mm) 274 goto out; 275 if (!mm->arg_end) 276 goto out_mm; /* Shh! No looking before we're done */ 277 278 len = mm->arg_end - mm->arg_start; 279 280 if (len > PAGE_SIZE) 281 len = PAGE_SIZE; 282 283 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 284 285 // If the nul at the end of args has been overwritten, then 286 // assume application is using setproctitle(3). 287 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 288 len = strnlen(buffer, res); 289 if (len < res) { 290 res = len; 291 } else { 292 len = mm->env_end - mm->env_start; 293 if (len > PAGE_SIZE - res) 294 len = PAGE_SIZE - res; 295 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 296 res = strnlen(buffer, res); 297 } 298 } 299 out_mm: 300 mmput(mm); 301 out: 302 return res; 303 } 304 305 static int proc_pid_auxv(struct task_struct *task, char *buffer) 306 { 307 int res = 0; 308 struct mm_struct *mm = get_task_mm(task); 309 if (mm) { 310 unsigned int nwords = 0; 311 do 312 nwords += 2; 313 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 314 res = nwords * sizeof(mm->saved_auxv[0]); 315 if (res > PAGE_SIZE) 316 res = PAGE_SIZE; 317 memcpy(buffer, mm->saved_auxv, res); 318 mmput(mm); 319 } 320 return res; 321 } 322 323 324 #ifdef CONFIG_KALLSYMS 325 /* 326 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 327 * Returns the resolved symbol. If that fails, simply return the address. 328 */ 329 static int proc_pid_wchan(struct task_struct *task, char *buffer) 330 { 331 unsigned long wchan; 332 char symname[KSYM_NAME_LEN]; 333 334 wchan = get_wchan(task); 335 336 if (lookup_symbol_name(wchan, symname) < 0) 337 return sprintf(buffer, "%lu", wchan); 338 else 339 return sprintf(buffer, "%s", symname); 340 } 341 #endif /* CONFIG_KALLSYMS */ 342 343 #ifdef CONFIG_SCHEDSTATS 344 /* 345 * Provides /proc/PID/schedstat 346 */ 347 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 348 { 349 return sprintf(buffer, "%llu %llu %lu\n", 350 task->sched_info.cpu_time, 351 task->sched_info.run_delay, 352 task->sched_info.pcount); 353 } 354 #endif 355 356 #ifdef CONFIG_LATENCYTOP 357 static int lstats_show_proc(struct seq_file *m, void *v) 358 { 359 int i; 360 struct inode *inode = m->private; 361 struct task_struct *task = get_proc_task(inode); 362 363 if (!task) 364 return -ESRCH; 365 seq_puts(m, "Latency Top version : v0.1\n"); 366 for (i = 0; i < 32; i++) { 367 if (task->latency_record[i].backtrace[0]) { 368 int q; 369 seq_printf(m, "%i %li %li ", 370 task->latency_record[i].count, 371 task->latency_record[i].time, 372 task->latency_record[i].max); 373 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 374 char sym[KSYM_NAME_LEN]; 375 char *c; 376 if (!task->latency_record[i].backtrace[q]) 377 break; 378 if (task->latency_record[i].backtrace[q] == ULONG_MAX) 379 break; 380 sprint_symbol(sym, task->latency_record[i].backtrace[q]); 381 c = strchr(sym, '+'); 382 if (c) 383 *c = 0; 384 seq_printf(m, "%s ", sym); 385 } 386 seq_printf(m, "\n"); 387 } 388 389 } 390 put_task_struct(task); 391 return 0; 392 } 393 394 static int lstats_open(struct inode *inode, struct file *file) 395 { 396 return single_open(file, lstats_show_proc, inode); 397 } 398 399 static ssize_t lstats_write(struct file *file, const char __user *buf, 400 size_t count, loff_t *offs) 401 { 402 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 403 404 if (!task) 405 return -ESRCH; 406 clear_all_latency_tracing(task); 407 put_task_struct(task); 408 409 return count; 410 } 411 412 static const struct file_operations proc_lstats_operations = { 413 .open = lstats_open, 414 .read = seq_read, 415 .write = lstats_write, 416 .llseek = seq_lseek, 417 .release = single_release, 418 }; 419 420 #endif 421 422 /* The badness from the OOM killer */ 423 unsigned long badness(struct task_struct *p, unsigned long uptime); 424 static int proc_oom_score(struct task_struct *task, char *buffer) 425 { 426 unsigned long points; 427 struct timespec uptime; 428 429 do_posix_clock_monotonic_gettime(&uptime); 430 read_lock(&tasklist_lock); 431 points = badness(task, uptime.tv_sec); 432 read_unlock(&tasklist_lock); 433 return sprintf(buffer, "%lu\n", points); 434 } 435 436 struct limit_names { 437 char *name; 438 char *unit; 439 }; 440 441 static const struct limit_names lnames[RLIM_NLIMITS] = { 442 [RLIMIT_CPU] = {"Max cpu time", "ms"}, 443 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 444 [RLIMIT_DATA] = {"Max data size", "bytes"}, 445 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 446 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 447 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 448 [RLIMIT_NPROC] = {"Max processes", "processes"}, 449 [RLIMIT_NOFILE] = {"Max open files", "files"}, 450 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 451 [RLIMIT_AS] = {"Max address space", "bytes"}, 452 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 453 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 454 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 455 [RLIMIT_NICE] = {"Max nice priority", NULL}, 456 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 457 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 458 }; 459 460 /* Display limits for a process */ 461 static int proc_pid_limits(struct task_struct *task, char *buffer) 462 { 463 unsigned int i; 464 int count = 0; 465 unsigned long flags; 466 char *bufptr = buffer; 467 468 struct rlimit rlim[RLIM_NLIMITS]; 469 470 if (!lock_task_sighand(task, &flags)) 471 return 0; 472 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 473 unlock_task_sighand(task, &flags); 474 475 /* 476 * print the file header 477 */ 478 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 479 "Limit", "Soft Limit", "Hard Limit", "Units"); 480 481 for (i = 0; i < RLIM_NLIMITS; i++) { 482 if (rlim[i].rlim_cur == RLIM_INFINITY) 483 count += sprintf(&bufptr[count], "%-25s %-20s ", 484 lnames[i].name, "unlimited"); 485 else 486 count += sprintf(&bufptr[count], "%-25s %-20lu ", 487 lnames[i].name, rlim[i].rlim_cur); 488 489 if (rlim[i].rlim_max == RLIM_INFINITY) 490 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 491 else 492 count += sprintf(&bufptr[count], "%-20lu ", 493 rlim[i].rlim_max); 494 495 if (lnames[i].unit) 496 count += sprintf(&bufptr[count], "%-10s\n", 497 lnames[i].unit); 498 else 499 count += sprintf(&bufptr[count], "\n"); 500 } 501 502 return count; 503 } 504 505 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 506 static int proc_pid_syscall(struct task_struct *task, char *buffer) 507 { 508 long nr; 509 unsigned long args[6], sp, pc; 510 511 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 512 return sprintf(buffer, "running\n"); 513 514 if (nr < 0) 515 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 516 517 return sprintf(buffer, 518 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 519 nr, 520 args[0], args[1], args[2], args[3], args[4], args[5], 521 sp, pc); 522 } 523 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 524 525 /************************************************************************/ 526 /* Here the fs part begins */ 527 /************************************************************************/ 528 529 /* permission checks */ 530 static int proc_fd_access_allowed(struct inode *inode) 531 { 532 struct task_struct *task; 533 int allowed = 0; 534 /* Allow access to a task's file descriptors if it is us or we 535 * may use ptrace attach to the process and find out that 536 * information. 537 */ 538 task = get_proc_task(inode); 539 if (task) { 540 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 541 put_task_struct(task); 542 } 543 return allowed; 544 } 545 546 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 547 { 548 int error; 549 struct inode *inode = dentry->d_inode; 550 551 if (attr->ia_valid & ATTR_MODE) 552 return -EPERM; 553 554 error = inode_change_ok(inode, attr); 555 if (!error) 556 error = inode_setattr(inode, attr); 557 return error; 558 } 559 560 static const struct inode_operations proc_def_inode_operations = { 561 .setattr = proc_setattr, 562 }; 563 564 static int mounts_open_common(struct inode *inode, struct file *file, 565 const struct seq_operations *op) 566 { 567 struct task_struct *task = get_proc_task(inode); 568 struct nsproxy *nsp; 569 struct mnt_namespace *ns = NULL; 570 struct fs_struct *fs = NULL; 571 struct path root; 572 struct proc_mounts *p; 573 int ret = -EINVAL; 574 575 if (task) { 576 rcu_read_lock(); 577 nsp = task_nsproxy(task); 578 if (nsp) { 579 ns = nsp->mnt_ns; 580 if (ns) 581 get_mnt_ns(ns); 582 } 583 rcu_read_unlock(); 584 if (ns) 585 fs = get_fs_struct(task); 586 put_task_struct(task); 587 } 588 589 if (!ns) 590 goto err; 591 if (!fs) 592 goto err_put_ns; 593 594 read_lock(&fs->lock); 595 root = fs->root; 596 path_get(&root); 597 read_unlock(&fs->lock); 598 put_fs_struct(fs); 599 600 ret = -ENOMEM; 601 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 602 if (!p) 603 goto err_put_path; 604 605 file->private_data = &p->m; 606 ret = seq_open(file, op); 607 if (ret) 608 goto err_free; 609 610 p->m.private = p; 611 p->ns = ns; 612 p->root = root; 613 p->event = ns->event; 614 615 return 0; 616 617 err_free: 618 kfree(p); 619 err_put_path: 620 path_put(&root); 621 err_put_ns: 622 put_mnt_ns(ns); 623 err: 624 return ret; 625 } 626 627 static int mounts_release(struct inode *inode, struct file *file) 628 { 629 struct proc_mounts *p = file->private_data; 630 path_put(&p->root); 631 put_mnt_ns(p->ns); 632 return seq_release(inode, file); 633 } 634 635 static unsigned mounts_poll(struct file *file, poll_table *wait) 636 { 637 struct proc_mounts *p = file->private_data; 638 struct mnt_namespace *ns = p->ns; 639 unsigned res = 0; 640 641 poll_wait(file, &ns->poll, wait); 642 643 spin_lock(&vfsmount_lock); 644 if (p->event != ns->event) { 645 p->event = ns->event; 646 res = POLLERR; 647 } 648 spin_unlock(&vfsmount_lock); 649 650 return res; 651 } 652 653 static int mounts_open(struct inode *inode, struct file *file) 654 { 655 return mounts_open_common(inode, file, &mounts_op); 656 } 657 658 static const struct file_operations proc_mounts_operations = { 659 .open = mounts_open, 660 .read = seq_read, 661 .llseek = seq_lseek, 662 .release = mounts_release, 663 .poll = mounts_poll, 664 }; 665 666 static int mountinfo_open(struct inode *inode, struct file *file) 667 { 668 return mounts_open_common(inode, file, &mountinfo_op); 669 } 670 671 static const struct file_operations proc_mountinfo_operations = { 672 .open = mountinfo_open, 673 .read = seq_read, 674 .llseek = seq_lseek, 675 .release = mounts_release, 676 .poll = mounts_poll, 677 }; 678 679 static int mountstats_open(struct inode *inode, struct file *file) 680 { 681 return mounts_open_common(inode, file, &mountstats_op); 682 } 683 684 static const struct file_operations proc_mountstats_operations = { 685 .open = mountstats_open, 686 .read = seq_read, 687 .llseek = seq_lseek, 688 .release = mounts_release, 689 }; 690 691 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 692 693 static ssize_t proc_info_read(struct file * file, char __user * buf, 694 size_t count, loff_t *ppos) 695 { 696 struct inode * inode = file->f_path.dentry->d_inode; 697 unsigned long page; 698 ssize_t length; 699 struct task_struct *task = get_proc_task(inode); 700 701 length = -ESRCH; 702 if (!task) 703 goto out_no_task; 704 705 if (count > PROC_BLOCK_SIZE) 706 count = PROC_BLOCK_SIZE; 707 708 length = -ENOMEM; 709 if (!(page = __get_free_page(GFP_TEMPORARY))) 710 goto out; 711 712 length = PROC_I(inode)->op.proc_read(task, (char*)page); 713 714 if (length >= 0) 715 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 716 free_page(page); 717 out: 718 put_task_struct(task); 719 out_no_task: 720 return length; 721 } 722 723 static const struct file_operations proc_info_file_operations = { 724 .read = proc_info_read, 725 }; 726 727 static int proc_single_show(struct seq_file *m, void *v) 728 { 729 struct inode *inode = m->private; 730 struct pid_namespace *ns; 731 struct pid *pid; 732 struct task_struct *task; 733 int ret; 734 735 ns = inode->i_sb->s_fs_info; 736 pid = proc_pid(inode); 737 task = get_pid_task(pid, PIDTYPE_PID); 738 if (!task) 739 return -ESRCH; 740 741 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 742 743 put_task_struct(task); 744 return ret; 745 } 746 747 static int proc_single_open(struct inode *inode, struct file *filp) 748 { 749 int ret; 750 ret = single_open(filp, proc_single_show, NULL); 751 if (!ret) { 752 struct seq_file *m = filp->private_data; 753 754 m->private = inode; 755 } 756 return ret; 757 } 758 759 static const struct file_operations proc_single_file_operations = { 760 .open = proc_single_open, 761 .read = seq_read, 762 .llseek = seq_lseek, 763 .release = single_release, 764 }; 765 766 static int mem_open(struct inode* inode, struct file* file) 767 { 768 file->private_data = (void*)((long)current->self_exec_id); 769 return 0; 770 } 771 772 static ssize_t mem_read(struct file * file, char __user * buf, 773 size_t count, loff_t *ppos) 774 { 775 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 776 char *page; 777 unsigned long src = *ppos; 778 int ret = -ESRCH; 779 struct mm_struct *mm; 780 781 if (!task) 782 goto out_no_task; 783 784 if (check_mem_permission(task)) 785 goto out; 786 787 ret = -ENOMEM; 788 page = (char *)__get_free_page(GFP_TEMPORARY); 789 if (!page) 790 goto out; 791 792 ret = 0; 793 794 mm = get_task_mm(task); 795 if (!mm) 796 goto out_free; 797 798 ret = -EIO; 799 800 if (file->private_data != (void*)((long)current->self_exec_id)) 801 goto out_put; 802 803 ret = 0; 804 805 while (count > 0) { 806 int this_len, retval; 807 808 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 809 retval = access_process_vm(task, src, page, this_len, 0); 810 if (!retval || check_mem_permission(task)) { 811 if (!ret) 812 ret = -EIO; 813 break; 814 } 815 816 if (copy_to_user(buf, page, retval)) { 817 ret = -EFAULT; 818 break; 819 } 820 821 ret += retval; 822 src += retval; 823 buf += retval; 824 count -= retval; 825 } 826 *ppos = src; 827 828 out_put: 829 mmput(mm); 830 out_free: 831 free_page((unsigned long) page); 832 out: 833 put_task_struct(task); 834 out_no_task: 835 return ret; 836 } 837 838 #define mem_write NULL 839 840 #ifndef mem_write 841 /* This is a security hazard */ 842 static ssize_t mem_write(struct file * file, const char __user *buf, 843 size_t count, loff_t *ppos) 844 { 845 int copied; 846 char *page; 847 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 848 unsigned long dst = *ppos; 849 850 copied = -ESRCH; 851 if (!task) 852 goto out_no_task; 853 854 if (check_mem_permission(task)) 855 goto out; 856 857 copied = -ENOMEM; 858 page = (char *)__get_free_page(GFP_TEMPORARY); 859 if (!page) 860 goto out; 861 862 copied = 0; 863 while (count > 0) { 864 int this_len, retval; 865 866 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 867 if (copy_from_user(page, buf, this_len)) { 868 copied = -EFAULT; 869 break; 870 } 871 retval = access_process_vm(task, dst, page, this_len, 1); 872 if (!retval) { 873 if (!copied) 874 copied = -EIO; 875 break; 876 } 877 copied += retval; 878 buf += retval; 879 dst += retval; 880 count -= retval; 881 } 882 *ppos = dst; 883 free_page((unsigned long) page); 884 out: 885 put_task_struct(task); 886 out_no_task: 887 return copied; 888 } 889 #endif 890 891 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 892 { 893 switch (orig) { 894 case 0: 895 file->f_pos = offset; 896 break; 897 case 1: 898 file->f_pos += offset; 899 break; 900 default: 901 return -EINVAL; 902 } 903 force_successful_syscall_return(); 904 return file->f_pos; 905 } 906 907 static const struct file_operations proc_mem_operations = { 908 .llseek = mem_lseek, 909 .read = mem_read, 910 .write = mem_write, 911 .open = mem_open, 912 }; 913 914 static ssize_t environ_read(struct file *file, char __user *buf, 915 size_t count, loff_t *ppos) 916 { 917 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 918 char *page; 919 unsigned long src = *ppos; 920 int ret = -ESRCH; 921 struct mm_struct *mm; 922 923 if (!task) 924 goto out_no_task; 925 926 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 927 goto out; 928 929 ret = -ENOMEM; 930 page = (char *)__get_free_page(GFP_TEMPORARY); 931 if (!page) 932 goto out; 933 934 ret = 0; 935 936 mm = get_task_mm(task); 937 if (!mm) 938 goto out_free; 939 940 while (count > 0) { 941 int this_len, retval, max_len; 942 943 this_len = mm->env_end - (mm->env_start + src); 944 945 if (this_len <= 0) 946 break; 947 948 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 949 this_len = (this_len > max_len) ? max_len : this_len; 950 951 retval = access_process_vm(task, (mm->env_start + src), 952 page, this_len, 0); 953 954 if (retval <= 0) { 955 ret = retval; 956 break; 957 } 958 959 if (copy_to_user(buf, page, retval)) { 960 ret = -EFAULT; 961 break; 962 } 963 964 ret += retval; 965 src += retval; 966 buf += retval; 967 count -= retval; 968 } 969 *ppos = src; 970 971 mmput(mm); 972 out_free: 973 free_page((unsigned long) page); 974 out: 975 put_task_struct(task); 976 out_no_task: 977 return ret; 978 } 979 980 static const struct file_operations proc_environ_operations = { 981 .read = environ_read, 982 }; 983 984 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 985 size_t count, loff_t *ppos) 986 { 987 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 988 char buffer[PROC_NUMBUF]; 989 size_t len; 990 int oom_adjust; 991 992 if (!task) 993 return -ESRCH; 994 oom_adjust = task->oomkilladj; 995 put_task_struct(task); 996 997 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 998 999 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1000 } 1001 1002 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 1003 size_t count, loff_t *ppos) 1004 { 1005 struct task_struct *task; 1006 char buffer[PROC_NUMBUF], *end; 1007 int oom_adjust; 1008 1009 memset(buffer, 0, sizeof(buffer)); 1010 if (count > sizeof(buffer) - 1) 1011 count = sizeof(buffer) - 1; 1012 if (copy_from_user(buffer, buf, count)) 1013 return -EFAULT; 1014 oom_adjust = simple_strtol(buffer, &end, 0); 1015 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 1016 oom_adjust != OOM_DISABLE) 1017 return -EINVAL; 1018 if (*end == '\n') 1019 end++; 1020 task = get_proc_task(file->f_path.dentry->d_inode); 1021 if (!task) 1022 return -ESRCH; 1023 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) { 1024 put_task_struct(task); 1025 return -EACCES; 1026 } 1027 task->oomkilladj = oom_adjust; 1028 put_task_struct(task); 1029 if (end - buffer == 0) 1030 return -EIO; 1031 return end - buffer; 1032 } 1033 1034 static const struct file_operations proc_oom_adjust_operations = { 1035 .read = oom_adjust_read, 1036 .write = oom_adjust_write, 1037 }; 1038 1039 #ifdef CONFIG_AUDITSYSCALL 1040 #define TMPBUFLEN 21 1041 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1042 size_t count, loff_t *ppos) 1043 { 1044 struct inode * inode = file->f_path.dentry->d_inode; 1045 struct task_struct *task = get_proc_task(inode); 1046 ssize_t length; 1047 char tmpbuf[TMPBUFLEN]; 1048 1049 if (!task) 1050 return -ESRCH; 1051 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1052 audit_get_loginuid(task)); 1053 put_task_struct(task); 1054 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1055 } 1056 1057 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1058 size_t count, loff_t *ppos) 1059 { 1060 struct inode * inode = file->f_path.dentry->d_inode; 1061 char *page, *tmp; 1062 ssize_t length; 1063 uid_t loginuid; 1064 1065 if (!capable(CAP_AUDIT_CONTROL)) 1066 return -EPERM; 1067 1068 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) 1069 return -EPERM; 1070 1071 if (count >= PAGE_SIZE) 1072 count = PAGE_SIZE - 1; 1073 1074 if (*ppos != 0) { 1075 /* No partial writes. */ 1076 return -EINVAL; 1077 } 1078 page = (char*)__get_free_page(GFP_TEMPORARY); 1079 if (!page) 1080 return -ENOMEM; 1081 length = -EFAULT; 1082 if (copy_from_user(page, buf, count)) 1083 goto out_free_page; 1084 1085 page[count] = '\0'; 1086 loginuid = simple_strtoul(page, &tmp, 10); 1087 if (tmp == page) { 1088 length = -EINVAL; 1089 goto out_free_page; 1090 1091 } 1092 length = audit_set_loginuid(current, loginuid); 1093 if (likely(length == 0)) 1094 length = count; 1095 1096 out_free_page: 1097 free_page((unsigned long) page); 1098 return length; 1099 } 1100 1101 static const struct file_operations proc_loginuid_operations = { 1102 .read = proc_loginuid_read, 1103 .write = proc_loginuid_write, 1104 }; 1105 1106 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1107 size_t count, loff_t *ppos) 1108 { 1109 struct inode * inode = file->f_path.dentry->d_inode; 1110 struct task_struct *task = get_proc_task(inode); 1111 ssize_t length; 1112 char tmpbuf[TMPBUFLEN]; 1113 1114 if (!task) 1115 return -ESRCH; 1116 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1117 audit_get_sessionid(task)); 1118 put_task_struct(task); 1119 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1120 } 1121 1122 static const struct file_operations proc_sessionid_operations = { 1123 .read = proc_sessionid_read, 1124 }; 1125 #endif 1126 1127 #ifdef CONFIG_FAULT_INJECTION 1128 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1129 size_t count, loff_t *ppos) 1130 { 1131 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1132 char buffer[PROC_NUMBUF]; 1133 size_t len; 1134 int make_it_fail; 1135 1136 if (!task) 1137 return -ESRCH; 1138 make_it_fail = task->make_it_fail; 1139 put_task_struct(task); 1140 1141 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1142 1143 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1144 } 1145 1146 static ssize_t proc_fault_inject_write(struct file * file, 1147 const char __user * buf, size_t count, loff_t *ppos) 1148 { 1149 struct task_struct *task; 1150 char buffer[PROC_NUMBUF], *end; 1151 int make_it_fail; 1152 1153 if (!capable(CAP_SYS_RESOURCE)) 1154 return -EPERM; 1155 memset(buffer, 0, sizeof(buffer)); 1156 if (count > sizeof(buffer) - 1) 1157 count = sizeof(buffer) - 1; 1158 if (copy_from_user(buffer, buf, count)) 1159 return -EFAULT; 1160 make_it_fail = simple_strtol(buffer, &end, 0); 1161 if (*end == '\n') 1162 end++; 1163 task = get_proc_task(file->f_dentry->d_inode); 1164 if (!task) 1165 return -ESRCH; 1166 task->make_it_fail = make_it_fail; 1167 put_task_struct(task); 1168 if (end - buffer == 0) 1169 return -EIO; 1170 return end - buffer; 1171 } 1172 1173 static const struct file_operations proc_fault_inject_operations = { 1174 .read = proc_fault_inject_read, 1175 .write = proc_fault_inject_write, 1176 }; 1177 #endif 1178 1179 1180 #ifdef CONFIG_SCHED_DEBUG 1181 /* 1182 * Print out various scheduling related per-task fields: 1183 */ 1184 static int sched_show(struct seq_file *m, void *v) 1185 { 1186 struct inode *inode = m->private; 1187 struct task_struct *p; 1188 1189 WARN_ON(!inode); 1190 1191 p = get_proc_task(inode); 1192 if (!p) 1193 return -ESRCH; 1194 proc_sched_show_task(p, m); 1195 1196 put_task_struct(p); 1197 1198 return 0; 1199 } 1200 1201 static ssize_t 1202 sched_write(struct file *file, const char __user *buf, 1203 size_t count, loff_t *offset) 1204 { 1205 struct inode *inode = file->f_path.dentry->d_inode; 1206 struct task_struct *p; 1207 1208 WARN_ON(!inode); 1209 1210 p = get_proc_task(inode); 1211 if (!p) 1212 return -ESRCH; 1213 proc_sched_set_task(p); 1214 1215 put_task_struct(p); 1216 1217 return count; 1218 } 1219 1220 static int sched_open(struct inode *inode, struct file *filp) 1221 { 1222 int ret; 1223 1224 ret = single_open(filp, sched_show, NULL); 1225 if (!ret) { 1226 struct seq_file *m = filp->private_data; 1227 1228 m->private = inode; 1229 } 1230 return ret; 1231 } 1232 1233 static const struct file_operations proc_pid_sched_operations = { 1234 .open = sched_open, 1235 .read = seq_read, 1236 .write = sched_write, 1237 .llseek = seq_lseek, 1238 .release = single_release, 1239 }; 1240 1241 #endif 1242 1243 /* 1244 * We added or removed a vma mapping the executable. The vmas are only mapped 1245 * during exec and are not mapped with the mmap system call. 1246 * Callers must hold down_write() on the mm's mmap_sem for these 1247 */ 1248 void added_exe_file_vma(struct mm_struct *mm) 1249 { 1250 mm->num_exe_file_vmas++; 1251 } 1252 1253 void removed_exe_file_vma(struct mm_struct *mm) 1254 { 1255 mm->num_exe_file_vmas--; 1256 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 1257 fput(mm->exe_file); 1258 mm->exe_file = NULL; 1259 } 1260 1261 } 1262 1263 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1264 { 1265 if (new_exe_file) 1266 get_file(new_exe_file); 1267 if (mm->exe_file) 1268 fput(mm->exe_file); 1269 mm->exe_file = new_exe_file; 1270 mm->num_exe_file_vmas = 0; 1271 } 1272 1273 struct file *get_mm_exe_file(struct mm_struct *mm) 1274 { 1275 struct file *exe_file; 1276 1277 /* We need mmap_sem to protect against races with removal of 1278 * VM_EXECUTABLE vmas */ 1279 down_read(&mm->mmap_sem); 1280 exe_file = mm->exe_file; 1281 if (exe_file) 1282 get_file(exe_file); 1283 up_read(&mm->mmap_sem); 1284 return exe_file; 1285 } 1286 1287 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 1288 { 1289 /* It's safe to write the exe_file pointer without exe_file_lock because 1290 * this is called during fork when the task is not yet in /proc */ 1291 newmm->exe_file = get_mm_exe_file(oldmm); 1292 } 1293 1294 static int proc_exe_link(struct inode *inode, struct path *exe_path) 1295 { 1296 struct task_struct *task; 1297 struct mm_struct *mm; 1298 struct file *exe_file; 1299 1300 task = get_proc_task(inode); 1301 if (!task) 1302 return -ENOENT; 1303 mm = get_task_mm(task); 1304 put_task_struct(task); 1305 if (!mm) 1306 return -ENOENT; 1307 exe_file = get_mm_exe_file(mm); 1308 mmput(mm); 1309 if (exe_file) { 1310 *exe_path = exe_file->f_path; 1311 path_get(&exe_file->f_path); 1312 fput(exe_file); 1313 return 0; 1314 } else 1315 return -ENOENT; 1316 } 1317 1318 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1319 { 1320 struct inode *inode = dentry->d_inode; 1321 int error = -EACCES; 1322 1323 /* We don't need a base pointer in the /proc filesystem */ 1324 path_put(&nd->path); 1325 1326 /* Are we allowed to snoop on the tasks file descriptors? */ 1327 if (!proc_fd_access_allowed(inode)) 1328 goto out; 1329 1330 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1331 nd->last_type = LAST_BIND; 1332 out: 1333 return ERR_PTR(error); 1334 } 1335 1336 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1337 { 1338 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1339 char *pathname; 1340 int len; 1341 1342 if (!tmp) 1343 return -ENOMEM; 1344 1345 pathname = d_path(path, tmp, PAGE_SIZE); 1346 len = PTR_ERR(pathname); 1347 if (IS_ERR(pathname)) 1348 goto out; 1349 len = tmp + PAGE_SIZE - 1 - pathname; 1350 1351 if (len > buflen) 1352 len = buflen; 1353 if (copy_to_user(buffer, pathname, len)) 1354 len = -EFAULT; 1355 out: 1356 free_page((unsigned long)tmp); 1357 return len; 1358 } 1359 1360 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1361 { 1362 int error = -EACCES; 1363 struct inode *inode = dentry->d_inode; 1364 struct path path; 1365 1366 /* Are we allowed to snoop on the tasks file descriptors? */ 1367 if (!proc_fd_access_allowed(inode)) 1368 goto out; 1369 1370 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1371 if (error) 1372 goto out; 1373 1374 error = do_proc_readlink(&path, buffer, buflen); 1375 path_put(&path); 1376 out: 1377 return error; 1378 } 1379 1380 static const struct inode_operations proc_pid_link_inode_operations = { 1381 .readlink = proc_pid_readlink, 1382 .follow_link = proc_pid_follow_link, 1383 .setattr = proc_setattr, 1384 }; 1385 1386 1387 /* building an inode */ 1388 1389 static int task_dumpable(struct task_struct *task) 1390 { 1391 int dumpable = 0; 1392 struct mm_struct *mm; 1393 1394 task_lock(task); 1395 mm = task->mm; 1396 if (mm) 1397 dumpable = get_dumpable(mm); 1398 task_unlock(task); 1399 if(dumpable == 1) 1400 return 1; 1401 return 0; 1402 } 1403 1404 1405 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1406 { 1407 struct inode * inode; 1408 struct proc_inode *ei; 1409 1410 /* We need a new inode */ 1411 1412 inode = new_inode(sb); 1413 if (!inode) 1414 goto out; 1415 1416 /* Common stuff */ 1417 ei = PROC_I(inode); 1418 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1419 inode->i_op = &proc_def_inode_operations; 1420 1421 /* 1422 * grab the reference to task. 1423 */ 1424 ei->pid = get_task_pid(task, PIDTYPE_PID); 1425 if (!ei->pid) 1426 goto out_unlock; 1427 1428 inode->i_uid = 0; 1429 inode->i_gid = 0; 1430 if (task_dumpable(task)) { 1431 inode->i_uid = task->euid; 1432 inode->i_gid = task->egid; 1433 } 1434 security_task_to_inode(task, inode); 1435 1436 out: 1437 return inode; 1438 1439 out_unlock: 1440 iput(inode); 1441 return NULL; 1442 } 1443 1444 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1445 { 1446 struct inode *inode = dentry->d_inode; 1447 struct task_struct *task; 1448 generic_fillattr(inode, stat); 1449 1450 rcu_read_lock(); 1451 stat->uid = 0; 1452 stat->gid = 0; 1453 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1454 if (task) { 1455 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1456 task_dumpable(task)) { 1457 stat->uid = task->euid; 1458 stat->gid = task->egid; 1459 } 1460 } 1461 rcu_read_unlock(); 1462 return 0; 1463 } 1464 1465 /* dentry stuff */ 1466 1467 /* 1468 * Exceptional case: normally we are not allowed to unhash a busy 1469 * directory. In this case, however, we can do it - no aliasing problems 1470 * due to the way we treat inodes. 1471 * 1472 * Rewrite the inode's ownerships here because the owning task may have 1473 * performed a setuid(), etc. 1474 * 1475 * Before the /proc/pid/status file was created the only way to read 1476 * the effective uid of a /process was to stat /proc/pid. Reading 1477 * /proc/pid/status is slow enough that procps and other packages 1478 * kept stating /proc/pid. To keep the rules in /proc simple I have 1479 * made this apply to all per process world readable and executable 1480 * directories. 1481 */ 1482 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1483 { 1484 struct inode *inode = dentry->d_inode; 1485 struct task_struct *task = get_proc_task(inode); 1486 if (task) { 1487 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1488 task_dumpable(task)) { 1489 inode->i_uid = task->euid; 1490 inode->i_gid = task->egid; 1491 } else { 1492 inode->i_uid = 0; 1493 inode->i_gid = 0; 1494 } 1495 inode->i_mode &= ~(S_ISUID | S_ISGID); 1496 security_task_to_inode(task, inode); 1497 put_task_struct(task); 1498 return 1; 1499 } 1500 d_drop(dentry); 1501 return 0; 1502 } 1503 1504 static int pid_delete_dentry(struct dentry * dentry) 1505 { 1506 /* Is the task we represent dead? 1507 * If so, then don't put the dentry on the lru list, 1508 * kill it immediately. 1509 */ 1510 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1511 } 1512 1513 static struct dentry_operations pid_dentry_operations = 1514 { 1515 .d_revalidate = pid_revalidate, 1516 .d_delete = pid_delete_dentry, 1517 }; 1518 1519 /* Lookups */ 1520 1521 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, 1522 struct task_struct *, const void *); 1523 1524 /* 1525 * Fill a directory entry. 1526 * 1527 * If possible create the dcache entry and derive our inode number and 1528 * file type from dcache entry. 1529 * 1530 * Since all of the proc inode numbers are dynamically generated, the inode 1531 * numbers do not exist until the inode is cache. This means creating the 1532 * the dcache entry in readdir is necessary to keep the inode numbers 1533 * reported by readdir in sync with the inode numbers reported 1534 * by stat. 1535 */ 1536 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1537 char *name, int len, 1538 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1539 { 1540 struct dentry *child, *dir = filp->f_path.dentry; 1541 struct inode *inode; 1542 struct qstr qname; 1543 ino_t ino = 0; 1544 unsigned type = DT_UNKNOWN; 1545 1546 qname.name = name; 1547 qname.len = len; 1548 qname.hash = full_name_hash(name, len); 1549 1550 child = d_lookup(dir, &qname); 1551 if (!child) { 1552 struct dentry *new; 1553 new = d_alloc(dir, &qname); 1554 if (new) { 1555 child = instantiate(dir->d_inode, new, task, ptr); 1556 if (child) 1557 dput(new); 1558 else 1559 child = new; 1560 } 1561 } 1562 if (!child || IS_ERR(child) || !child->d_inode) 1563 goto end_instantiate; 1564 inode = child->d_inode; 1565 if (inode) { 1566 ino = inode->i_ino; 1567 type = inode->i_mode >> 12; 1568 } 1569 dput(child); 1570 end_instantiate: 1571 if (!ino) 1572 ino = find_inode_number(dir, &qname); 1573 if (!ino) 1574 ino = 1; 1575 return filldir(dirent, name, len, filp->f_pos, ino, type); 1576 } 1577 1578 static unsigned name_to_int(struct dentry *dentry) 1579 { 1580 const char *name = dentry->d_name.name; 1581 int len = dentry->d_name.len; 1582 unsigned n = 0; 1583 1584 if (len > 1 && *name == '0') 1585 goto out; 1586 while (len-- > 0) { 1587 unsigned c = *name++ - '0'; 1588 if (c > 9) 1589 goto out; 1590 if (n >= (~0U-9)/10) 1591 goto out; 1592 n *= 10; 1593 n += c; 1594 } 1595 return n; 1596 out: 1597 return ~0U; 1598 } 1599 1600 #define PROC_FDINFO_MAX 64 1601 1602 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1603 { 1604 struct task_struct *task = get_proc_task(inode); 1605 struct files_struct *files = NULL; 1606 struct file *file; 1607 int fd = proc_fd(inode); 1608 1609 if (task) { 1610 files = get_files_struct(task); 1611 put_task_struct(task); 1612 } 1613 if (files) { 1614 /* 1615 * We are not taking a ref to the file structure, so we must 1616 * hold ->file_lock. 1617 */ 1618 spin_lock(&files->file_lock); 1619 file = fcheck_files(files, fd); 1620 if (file) { 1621 if (path) { 1622 *path = file->f_path; 1623 path_get(&file->f_path); 1624 } 1625 if (info) 1626 snprintf(info, PROC_FDINFO_MAX, 1627 "pos:\t%lli\n" 1628 "flags:\t0%o\n", 1629 (long long) file->f_pos, 1630 file->f_flags); 1631 spin_unlock(&files->file_lock); 1632 put_files_struct(files); 1633 return 0; 1634 } 1635 spin_unlock(&files->file_lock); 1636 put_files_struct(files); 1637 } 1638 return -ENOENT; 1639 } 1640 1641 static int proc_fd_link(struct inode *inode, struct path *path) 1642 { 1643 return proc_fd_info(inode, path, NULL); 1644 } 1645 1646 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1647 { 1648 struct inode *inode = dentry->d_inode; 1649 struct task_struct *task = get_proc_task(inode); 1650 int fd = proc_fd(inode); 1651 struct files_struct *files; 1652 1653 if (task) { 1654 files = get_files_struct(task); 1655 if (files) { 1656 rcu_read_lock(); 1657 if (fcheck_files(files, fd)) { 1658 rcu_read_unlock(); 1659 put_files_struct(files); 1660 if (task_dumpable(task)) { 1661 inode->i_uid = task->euid; 1662 inode->i_gid = task->egid; 1663 } else { 1664 inode->i_uid = 0; 1665 inode->i_gid = 0; 1666 } 1667 inode->i_mode &= ~(S_ISUID | S_ISGID); 1668 security_task_to_inode(task, inode); 1669 put_task_struct(task); 1670 return 1; 1671 } 1672 rcu_read_unlock(); 1673 put_files_struct(files); 1674 } 1675 put_task_struct(task); 1676 } 1677 d_drop(dentry); 1678 return 0; 1679 } 1680 1681 static struct dentry_operations tid_fd_dentry_operations = 1682 { 1683 .d_revalidate = tid_fd_revalidate, 1684 .d_delete = pid_delete_dentry, 1685 }; 1686 1687 static struct dentry *proc_fd_instantiate(struct inode *dir, 1688 struct dentry *dentry, struct task_struct *task, const void *ptr) 1689 { 1690 unsigned fd = *(const unsigned *)ptr; 1691 struct file *file; 1692 struct files_struct *files; 1693 struct inode *inode; 1694 struct proc_inode *ei; 1695 struct dentry *error = ERR_PTR(-ENOENT); 1696 1697 inode = proc_pid_make_inode(dir->i_sb, task); 1698 if (!inode) 1699 goto out; 1700 ei = PROC_I(inode); 1701 ei->fd = fd; 1702 files = get_files_struct(task); 1703 if (!files) 1704 goto out_iput; 1705 inode->i_mode = S_IFLNK; 1706 1707 /* 1708 * We are not taking a ref to the file structure, so we must 1709 * hold ->file_lock. 1710 */ 1711 spin_lock(&files->file_lock); 1712 file = fcheck_files(files, fd); 1713 if (!file) 1714 goto out_unlock; 1715 if (file->f_mode & FMODE_READ) 1716 inode->i_mode |= S_IRUSR | S_IXUSR; 1717 if (file->f_mode & FMODE_WRITE) 1718 inode->i_mode |= S_IWUSR | S_IXUSR; 1719 spin_unlock(&files->file_lock); 1720 put_files_struct(files); 1721 1722 inode->i_op = &proc_pid_link_inode_operations; 1723 inode->i_size = 64; 1724 ei->op.proc_get_link = proc_fd_link; 1725 dentry->d_op = &tid_fd_dentry_operations; 1726 d_add(dentry, inode); 1727 /* Close the race of the process dying before we return the dentry */ 1728 if (tid_fd_revalidate(dentry, NULL)) 1729 error = NULL; 1730 1731 out: 1732 return error; 1733 out_unlock: 1734 spin_unlock(&files->file_lock); 1735 put_files_struct(files); 1736 out_iput: 1737 iput(inode); 1738 goto out; 1739 } 1740 1741 static struct dentry *proc_lookupfd_common(struct inode *dir, 1742 struct dentry *dentry, 1743 instantiate_t instantiate) 1744 { 1745 struct task_struct *task = get_proc_task(dir); 1746 unsigned fd = name_to_int(dentry); 1747 struct dentry *result = ERR_PTR(-ENOENT); 1748 1749 if (!task) 1750 goto out_no_task; 1751 if (fd == ~0U) 1752 goto out; 1753 1754 result = instantiate(dir, dentry, task, &fd); 1755 out: 1756 put_task_struct(task); 1757 out_no_task: 1758 return result; 1759 } 1760 1761 static int proc_readfd_common(struct file * filp, void * dirent, 1762 filldir_t filldir, instantiate_t instantiate) 1763 { 1764 struct dentry *dentry = filp->f_path.dentry; 1765 struct inode *inode = dentry->d_inode; 1766 struct task_struct *p = get_proc_task(inode); 1767 unsigned int fd, ino; 1768 int retval; 1769 struct files_struct * files; 1770 1771 retval = -ENOENT; 1772 if (!p) 1773 goto out_no_task; 1774 retval = 0; 1775 1776 fd = filp->f_pos; 1777 switch (fd) { 1778 case 0: 1779 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1780 goto out; 1781 filp->f_pos++; 1782 case 1: 1783 ino = parent_ino(dentry); 1784 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1785 goto out; 1786 filp->f_pos++; 1787 default: 1788 files = get_files_struct(p); 1789 if (!files) 1790 goto out; 1791 rcu_read_lock(); 1792 for (fd = filp->f_pos-2; 1793 fd < files_fdtable(files)->max_fds; 1794 fd++, filp->f_pos++) { 1795 char name[PROC_NUMBUF]; 1796 int len; 1797 1798 if (!fcheck_files(files, fd)) 1799 continue; 1800 rcu_read_unlock(); 1801 1802 len = snprintf(name, sizeof(name), "%d", fd); 1803 if (proc_fill_cache(filp, dirent, filldir, 1804 name, len, instantiate, 1805 p, &fd) < 0) { 1806 rcu_read_lock(); 1807 break; 1808 } 1809 rcu_read_lock(); 1810 } 1811 rcu_read_unlock(); 1812 put_files_struct(files); 1813 } 1814 out: 1815 put_task_struct(p); 1816 out_no_task: 1817 return retval; 1818 } 1819 1820 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1821 struct nameidata *nd) 1822 { 1823 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1824 } 1825 1826 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1827 { 1828 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1829 } 1830 1831 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1832 size_t len, loff_t *ppos) 1833 { 1834 char tmp[PROC_FDINFO_MAX]; 1835 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1836 if (!err) 1837 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1838 return err; 1839 } 1840 1841 static const struct file_operations proc_fdinfo_file_operations = { 1842 .open = nonseekable_open, 1843 .read = proc_fdinfo_read, 1844 }; 1845 1846 static const struct file_operations proc_fd_operations = { 1847 .read = generic_read_dir, 1848 .readdir = proc_readfd, 1849 }; 1850 1851 /* 1852 * /proc/pid/fd needs a special permission handler so that a process can still 1853 * access /proc/self/fd after it has executed a setuid(). 1854 */ 1855 static int proc_fd_permission(struct inode *inode, int mask) 1856 { 1857 int rv; 1858 1859 rv = generic_permission(inode, mask, NULL); 1860 if (rv == 0) 1861 return 0; 1862 if (task_pid(current) == proc_pid(inode)) 1863 rv = 0; 1864 return rv; 1865 } 1866 1867 /* 1868 * proc directories can do almost nothing.. 1869 */ 1870 static const struct inode_operations proc_fd_inode_operations = { 1871 .lookup = proc_lookupfd, 1872 .permission = proc_fd_permission, 1873 .setattr = proc_setattr, 1874 }; 1875 1876 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 1877 struct dentry *dentry, struct task_struct *task, const void *ptr) 1878 { 1879 unsigned fd = *(unsigned *)ptr; 1880 struct inode *inode; 1881 struct proc_inode *ei; 1882 struct dentry *error = ERR_PTR(-ENOENT); 1883 1884 inode = proc_pid_make_inode(dir->i_sb, task); 1885 if (!inode) 1886 goto out; 1887 ei = PROC_I(inode); 1888 ei->fd = fd; 1889 inode->i_mode = S_IFREG | S_IRUSR; 1890 inode->i_fop = &proc_fdinfo_file_operations; 1891 dentry->d_op = &tid_fd_dentry_operations; 1892 d_add(dentry, inode); 1893 /* Close the race of the process dying before we return the dentry */ 1894 if (tid_fd_revalidate(dentry, NULL)) 1895 error = NULL; 1896 1897 out: 1898 return error; 1899 } 1900 1901 static struct dentry *proc_lookupfdinfo(struct inode *dir, 1902 struct dentry *dentry, 1903 struct nameidata *nd) 1904 { 1905 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 1906 } 1907 1908 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 1909 { 1910 return proc_readfd_common(filp, dirent, filldir, 1911 proc_fdinfo_instantiate); 1912 } 1913 1914 static const struct file_operations proc_fdinfo_operations = { 1915 .read = generic_read_dir, 1916 .readdir = proc_readfdinfo, 1917 }; 1918 1919 /* 1920 * proc directories can do almost nothing.. 1921 */ 1922 static const struct inode_operations proc_fdinfo_inode_operations = { 1923 .lookup = proc_lookupfdinfo, 1924 .setattr = proc_setattr, 1925 }; 1926 1927 1928 static struct dentry *proc_pident_instantiate(struct inode *dir, 1929 struct dentry *dentry, struct task_struct *task, const void *ptr) 1930 { 1931 const struct pid_entry *p = ptr; 1932 struct inode *inode; 1933 struct proc_inode *ei; 1934 struct dentry *error = ERR_PTR(-EINVAL); 1935 1936 inode = proc_pid_make_inode(dir->i_sb, task); 1937 if (!inode) 1938 goto out; 1939 1940 ei = PROC_I(inode); 1941 inode->i_mode = p->mode; 1942 if (S_ISDIR(inode->i_mode)) 1943 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 1944 if (p->iop) 1945 inode->i_op = p->iop; 1946 if (p->fop) 1947 inode->i_fop = p->fop; 1948 ei->op = p->op; 1949 dentry->d_op = &pid_dentry_operations; 1950 d_add(dentry, inode); 1951 /* Close the race of the process dying before we return the dentry */ 1952 if (pid_revalidate(dentry, NULL)) 1953 error = NULL; 1954 out: 1955 return error; 1956 } 1957 1958 static struct dentry *proc_pident_lookup(struct inode *dir, 1959 struct dentry *dentry, 1960 const struct pid_entry *ents, 1961 unsigned int nents) 1962 { 1963 struct inode *inode; 1964 struct dentry *error; 1965 struct task_struct *task = get_proc_task(dir); 1966 const struct pid_entry *p, *last; 1967 1968 error = ERR_PTR(-ENOENT); 1969 inode = NULL; 1970 1971 if (!task) 1972 goto out_no_task; 1973 1974 /* 1975 * Yes, it does not scale. And it should not. Don't add 1976 * new entries into /proc/<tgid>/ without very good reasons. 1977 */ 1978 last = &ents[nents - 1]; 1979 for (p = ents; p <= last; p++) { 1980 if (p->len != dentry->d_name.len) 1981 continue; 1982 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1983 break; 1984 } 1985 if (p > last) 1986 goto out; 1987 1988 error = proc_pident_instantiate(dir, dentry, task, p); 1989 out: 1990 put_task_struct(task); 1991 out_no_task: 1992 return error; 1993 } 1994 1995 static int proc_pident_fill_cache(struct file *filp, void *dirent, 1996 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 1997 { 1998 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1999 proc_pident_instantiate, task, p); 2000 } 2001 2002 static int proc_pident_readdir(struct file *filp, 2003 void *dirent, filldir_t filldir, 2004 const struct pid_entry *ents, unsigned int nents) 2005 { 2006 int i; 2007 struct dentry *dentry = filp->f_path.dentry; 2008 struct inode *inode = dentry->d_inode; 2009 struct task_struct *task = get_proc_task(inode); 2010 const struct pid_entry *p, *last; 2011 ino_t ino; 2012 int ret; 2013 2014 ret = -ENOENT; 2015 if (!task) 2016 goto out_no_task; 2017 2018 ret = 0; 2019 i = filp->f_pos; 2020 switch (i) { 2021 case 0: 2022 ino = inode->i_ino; 2023 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2024 goto out; 2025 i++; 2026 filp->f_pos++; 2027 /* fall through */ 2028 case 1: 2029 ino = parent_ino(dentry); 2030 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2031 goto out; 2032 i++; 2033 filp->f_pos++; 2034 /* fall through */ 2035 default: 2036 i -= 2; 2037 if (i >= nents) { 2038 ret = 1; 2039 goto out; 2040 } 2041 p = ents + i; 2042 last = &ents[nents - 1]; 2043 while (p <= last) { 2044 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2045 goto out; 2046 filp->f_pos++; 2047 p++; 2048 } 2049 } 2050 2051 ret = 1; 2052 out: 2053 put_task_struct(task); 2054 out_no_task: 2055 return ret; 2056 } 2057 2058 #ifdef CONFIG_SECURITY 2059 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2060 size_t count, loff_t *ppos) 2061 { 2062 struct inode * inode = file->f_path.dentry->d_inode; 2063 char *p = NULL; 2064 ssize_t length; 2065 struct task_struct *task = get_proc_task(inode); 2066 2067 if (!task) 2068 return -ESRCH; 2069 2070 length = security_getprocattr(task, 2071 (char*)file->f_path.dentry->d_name.name, 2072 &p); 2073 put_task_struct(task); 2074 if (length > 0) 2075 length = simple_read_from_buffer(buf, count, ppos, p, length); 2076 kfree(p); 2077 return length; 2078 } 2079 2080 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2081 size_t count, loff_t *ppos) 2082 { 2083 struct inode * inode = file->f_path.dentry->d_inode; 2084 char *page; 2085 ssize_t length; 2086 struct task_struct *task = get_proc_task(inode); 2087 2088 length = -ESRCH; 2089 if (!task) 2090 goto out_no_task; 2091 if (count > PAGE_SIZE) 2092 count = PAGE_SIZE; 2093 2094 /* No partial writes. */ 2095 length = -EINVAL; 2096 if (*ppos != 0) 2097 goto out; 2098 2099 length = -ENOMEM; 2100 page = (char*)__get_free_page(GFP_TEMPORARY); 2101 if (!page) 2102 goto out; 2103 2104 length = -EFAULT; 2105 if (copy_from_user(page, buf, count)) 2106 goto out_free; 2107 2108 length = security_setprocattr(task, 2109 (char*)file->f_path.dentry->d_name.name, 2110 (void*)page, count); 2111 out_free: 2112 free_page((unsigned long) page); 2113 out: 2114 put_task_struct(task); 2115 out_no_task: 2116 return length; 2117 } 2118 2119 static const struct file_operations proc_pid_attr_operations = { 2120 .read = proc_pid_attr_read, 2121 .write = proc_pid_attr_write, 2122 }; 2123 2124 static const struct pid_entry attr_dir_stuff[] = { 2125 REG("current", S_IRUGO|S_IWUGO, pid_attr), 2126 REG("prev", S_IRUGO, pid_attr), 2127 REG("exec", S_IRUGO|S_IWUGO, pid_attr), 2128 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr), 2129 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr), 2130 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr), 2131 }; 2132 2133 static int proc_attr_dir_readdir(struct file * filp, 2134 void * dirent, filldir_t filldir) 2135 { 2136 return proc_pident_readdir(filp,dirent,filldir, 2137 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2138 } 2139 2140 static const struct file_operations proc_attr_dir_operations = { 2141 .read = generic_read_dir, 2142 .readdir = proc_attr_dir_readdir, 2143 }; 2144 2145 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2146 struct dentry *dentry, struct nameidata *nd) 2147 { 2148 return proc_pident_lookup(dir, dentry, 2149 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2150 } 2151 2152 static const struct inode_operations proc_attr_dir_inode_operations = { 2153 .lookup = proc_attr_dir_lookup, 2154 .getattr = pid_getattr, 2155 .setattr = proc_setattr, 2156 }; 2157 2158 #endif 2159 2160 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2161 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2162 size_t count, loff_t *ppos) 2163 { 2164 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2165 struct mm_struct *mm; 2166 char buffer[PROC_NUMBUF]; 2167 size_t len; 2168 int ret; 2169 2170 if (!task) 2171 return -ESRCH; 2172 2173 ret = 0; 2174 mm = get_task_mm(task); 2175 if (mm) { 2176 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2177 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2178 MMF_DUMP_FILTER_SHIFT)); 2179 mmput(mm); 2180 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2181 } 2182 2183 put_task_struct(task); 2184 2185 return ret; 2186 } 2187 2188 static ssize_t proc_coredump_filter_write(struct file *file, 2189 const char __user *buf, 2190 size_t count, 2191 loff_t *ppos) 2192 { 2193 struct task_struct *task; 2194 struct mm_struct *mm; 2195 char buffer[PROC_NUMBUF], *end; 2196 unsigned int val; 2197 int ret; 2198 int i; 2199 unsigned long mask; 2200 2201 ret = -EFAULT; 2202 memset(buffer, 0, sizeof(buffer)); 2203 if (count > sizeof(buffer) - 1) 2204 count = sizeof(buffer) - 1; 2205 if (copy_from_user(buffer, buf, count)) 2206 goto out_no_task; 2207 2208 ret = -EINVAL; 2209 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2210 if (*end == '\n') 2211 end++; 2212 if (end - buffer == 0) 2213 goto out_no_task; 2214 2215 ret = -ESRCH; 2216 task = get_proc_task(file->f_dentry->d_inode); 2217 if (!task) 2218 goto out_no_task; 2219 2220 ret = end - buffer; 2221 mm = get_task_mm(task); 2222 if (!mm) 2223 goto out_no_mm; 2224 2225 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2226 if (val & mask) 2227 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2228 else 2229 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2230 } 2231 2232 mmput(mm); 2233 out_no_mm: 2234 put_task_struct(task); 2235 out_no_task: 2236 return ret; 2237 } 2238 2239 static const struct file_operations proc_coredump_filter_operations = { 2240 .read = proc_coredump_filter_read, 2241 .write = proc_coredump_filter_write, 2242 }; 2243 #endif 2244 2245 /* 2246 * /proc/self: 2247 */ 2248 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2249 int buflen) 2250 { 2251 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2252 pid_t tgid = task_tgid_nr_ns(current, ns); 2253 char tmp[PROC_NUMBUF]; 2254 if (!tgid) 2255 return -ENOENT; 2256 sprintf(tmp, "%d", tgid); 2257 return vfs_readlink(dentry,buffer,buflen,tmp); 2258 } 2259 2260 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2261 { 2262 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2263 pid_t tgid = task_tgid_nr_ns(current, ns); 2264 char tmp[PROC_NUMBUF]; 2265 if (!tgid) 2266 return ERR_PTR(-ENOENT); 2267 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns)); 2268 return ERR_PTR(vfs_follow_link(nd,tmp)); 2269 } 2270 2271 static const struct inode_operations proc_self_inode_operations = { 2272 .readlink = proc_self_readlink, 2273 .follow_link = proc_self_follow_link, 2274 }; 2275 2276 /* 2277 * proc base 2278 * 2279 * These are the directory entries in the root directory of /proc 2280 * that properly belong to the /proc filesystem, as they describe 2281 * describe something that is process related. 2282 */ 2283 static const struct pid_entry proc_base_stuff[] = { 2284 NOD("self", S_IFLNK|S_IRWXUGO, 2285 &proc_self_inode_operations, NULL, {}), 2286 }; 2287 2288 /* 2289 * Exceptional case: normally we are not allowed to unhash a busy 2290 * directory. In this case, however, we can do it - no aliasing problems 2291 * due to the way we treat inodes. 2292 */ 2293 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 2294 { 2295 struct inode *inode = dentry->d_inode; 2296 struct task_struct *task = get_proc_task(inode); 2297 if (task) { 2298 put_task_struct(task); 2299 return 1; 2300 } 2301 d_drop(dentry); 2302 return 0; 2303 } 2304 2305 static struct dentry_operations proc_base_dentry_operations = 2306 { 2307 .d_revalidate = proc_base_revalidate, 2308 .d_delete = pid_delete_dentry, 2309 }; 2310 2311 static struct dentry *proc_base_instantiate(struct inode *dir, 2312 struct dentry *dentry, struct task_struct *task, const void *ptr) 2313 { 2314 const struct pid_entry *p = ptr; 2315 struct inode *inode; 2316 struct proc_inode *ei; 2317 struct dentry *error = ERR_PTR(-EINVAL); 2318 2319 /* Allocate the inode */ 2320 error = ERR_PTR(-ENOMEM); 2321 inode = new_inode(dir->i_sb); 2322 if (!inode) 2323 goto out; 2324 2325 /* Initialize the inode */ 2326 ei = PROC_I(inode); 2327 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2328 2329 /* 2330 * grab the reference to the task. 2331 */ 2332 ei->pid = get_task_pid(task, PIDTYPE_PID); 2333 if (!ei->pid) 2334 goto out_iput; 2335 2336 inode->i_uid = 0; 2337 inode->i_gid = 0; 2338 inode->i_mode = p->mode; 2339 if (S_ISDIR(inode->i_mode)) 2340 inode->i_nlink = 2; 2341 if (S_ISLNK(inode->i_mode)) 2342 inode->i_size = 64; 2343 if (p->iop) 2344 inode->i_op = p->iop; 2345 if (p->fop) 2346 inode->i_fop = p->fop; 2347 ei->op = p->op; 2348 dentry->d_op = &proc_base_dentry_operations; 2349 d_add(dentry, inode); 2350 error = NULL; 2351 out: 2352 return error; 2353 out_iput: 2354 iput(inode); 2355 goto out; 2356 } 2357 2358 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2359 { 2360 struct dentry *error; 2361 struct task_struct *task = get_proc_task(dir); 2362 const struct pid_entry *p, *last; 2363 2364 error = ERR_PTR(-ENOENT); 2365 2366 if (!task) 2367 goto out_no_task; 2368 2369 /* Lookup the directory entry */ 2370 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2371 for (p = proc_base_stuff; p <= last; p++) { 2372 if (p->len != dentry->d_name.len) 2373 continue; 2374 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2375 break; 2376 } 2377 if (p > last) 2378 goto out; 2379 2380 error = proc_base_instantiate(dir, dentry, task, p); 2381 2382 out: 2383 put_task_struct(task); 2384 out_no_task: 2385 return error; 2386 } 2387 2388 static int proc_base_fill_cache(struct file *filp, void *dirent, 2389 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2390 { 2391 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2392 proc_base_instantiate, task, p); 2393 } 2394 2395 #ifdef CONFIG_TASK_IO_ACCOUNTING 2396 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2397 { 2398 struct task_io_accounting acct = task->ioac; 2399 unsigned long flags; 2400 2401 if (whole && lock_task_sighand(task, &flags)) { 2402 struct task_struct *t = task; 2403 2404 task_io_accounting_add(&acct, &task->signal->ioac); 2405 while_each_thread(task, t) 2406 task_io_accounting_add(&acct, &t->ioac); 2407 2408 unlock_task_sighand(task, &flags); 2409 } 2410 return sprintf(buffer, 2411 "rchar: %llu\n" 2412 "wchar: %llu\n" 2413 "syscr: %llu\n" 2414 "syscw: %llu\n" 2415 "read_bytes: %llu\n" 2416 "write_bytes: %llu\n" 2417 "cancelled_write_bytes: %llu\n", 2418 (unsigned long long)acct.rchar, 2419 (unsigned long long)acct.wchar, 2420 (unsigned long long)acct.syscr, 2421 (unsigned long long)acct.syscw, 2422 (unsigned long long)acct.read_bytes, 2423 (unsigned long long)acct.write_bytes, 2424 (unsigned long long)acct.cancelled_write_bytes); 2425 } 2426 2427 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2428 { 2429 return do_io_accounting(task, buffer, 0); 2430 } 2431 2432 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2433 { 2434 return do_io_accounting(task, buffer, 1); 2435 } 2436 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2437 2438 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2439 struct pid *pid, struct task_struct *task) 2440 { 2441 seq_printf(m, "%08x\n", task->personality); 2442 return 0; 2443 } 2444 2445 /* 2446 * Thread groups 2447 */ 2448 static const struct file_operations proc_task_operations; 2449 static const struct inode_operations proc_task_inode_operations; 2450 2451 static const struct pid_entry tgid_base_stuff[] = { 2452 DIR("task", S_IRUGO|S_IXUGO, task), 2453 DIR("fd", S_IRUSR|S_IXUSR, fd), 2454 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo), 2455 #ifdef CONFIG_NET 2456 DIR("net", S_IRUGO|S_IXUGO, net), 2457 #endif 2458 REG("environ", S_IRUSR, environ), 2459 INF("auxv", S_IRUSR, pid_auxv), 2460 ONE("status", S_IRUGO, pid_status), 2461 ONE("personality", S_IRUSR, pid_personality), 2462 INF("limits", S_IRUSR, pid_limits), 2463 #ifdef CONFIG_SCHED_DEBUG 2464 REG("sched", S_IRUGO|S_IWUSR, pid_sched), 2465 #endif 2466 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2467 INF("syscall", S_IRUSR, pid_syscall), 2468 #endif 2469 INF("cmdline", S_IRUGO, pid_cmdline), 2470 ONE("stat", S_IRUGO, tgid_stat), 2471 ONE("statm", S_IRUGO, pid_statm), 2472 REG("maps", S_IRUGO, maps), 2473 #ifdef CONFIG_NUMA 2474 REG("numa_maps", S_IRUGO, numa_maps), 2475 #endif 2476 REG("mem", S_IRUSR|S_IWUSR, mem), 2477 LNK("cwd", cwd), 2478 LNK("root", root), 2479 LNK("exe", exe), 2480 REG("mounts", S_IRUGO, mounts), 2481 REG("mountinfo", S_IRUGO, mountinfo), 2482 REG("mountstats", S_IRUSR, mountstats), 2483 #ifdef CONFIG_PROC_PAGE_MONITOR 2484 REG("clear_refs", S_IWUSR, clear_refs), 2485 REG("smaps", S_IRUGO, smaps), 2486 REG("pagemap", S_IRUSR, pagemap), 2487 #endif 2488 #ifdef CONFIG_SECURITY 2489 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2490 #endif 2491 #ifdef CONFIG_KALLSYMS 2492 INF("wchan", S_IRUGO, pid_wchan), 2493 #endif 2494 #ifdef CONFIG_SCHEDSTATS 2495 INF("schedstat", S_IRUGO, pid_schedstat), 2496 #endif 2497 #ifdef CONFIG_LATENCYTOP 2498 REG("latency", S_IRUGO, lstats), 2499 #endif 2500 #ifdef CONFIG_PROC_PID_CPUSET 2501 REG("cpuset", S_IRUGO, cpuset), 2502 #endif 2503 #ifdef CONFIG_CGROUPS 2504 REG("cgroup", S_IRUGO, cgroup), 2505 #endif 2506 INF("oom_score", S_IRUGO, oom_score), 2507 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2508 #ifdef CONFIG_AUDITSYSCALL 2509 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2510 REG("sessionid", S_IRUGO, sessionid), 2511 #endif 2512 #ifdef CONFIG_FAULT_INJECTION 2513 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 2514 #endif 2515 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2516 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter), 2517 #endif 2518 #ifdef CONFIG_TASK_IO_ACCOUNTING 2519 INF("io", S_IRUGO, tgid_io_accounting), 2520 #endif 2521 }; 2522 2523 static int proc_tgid_base_readdir(struct file * filp, 2524 void * dirent, filldir_t filldir) 2525 { 2526 return proc_pident_readdir(filp,dirent,filldir, 2527 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2528 } 2529 2530 static const struct file_operations proc_tgid_base_operations = { 2531 .read = generic_read_dir, 2532 .readdir = proc_tgid_base_readdir, 2533 }; 2534 2535 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2536 return proc_pident_lookup(dir, dentry, 2537 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2538 } 2539 2540 static const struct inode_operations proc_tgid_base_inode_operations = { 2541 .lookup = proc_tgid_base_lookup, 2542 .getattr = pid_getattr, 2543 .setattr = proc_setattr, 2544 }; 2545 2546 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2547 { 2548 struct dentry *dentry, *leader, *dir; 2549 char buf[PROC_NUMBUF]; 2550 struct qstr name; 2551 2552 name.name = buf; 2553 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2554 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2555 if (dentry) { 2556 if (!(current->flags & PF_EXITING)) 2557 shrink_dcache_parent(dentry); 2558 d_drop(dentry); 2559 dput(dentry); 2560 } 2561 2562 if (tgid == 0) 2563 goto out; 2564 2565 name.name = buf; 2566 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2567 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2568 if (!leader) 2569 goto out; 2570 2571 name.name = "task"; 2572 name.len = strlen(name.name); 2573 dir = d_hash_and_lookup(leader, &name); 2574 if (!dir) 2575 goto out_put_leader; 2576 2577 name.name = buf; 2578 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2579 dentry = d_hash_and_lookup(dir, &name); 2580 if (dentry) { 2581 shrink_dcache_parent(dentry); 2582 d_drop(dentry); 2583 dput(dentry); 2584 } 2585 2586 dput(dir); 2587 out_put_leader: 2588 dput(leader); 2589 out: 2590 return; 2591 } 2592 2593 /** 2594 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2595 * @task: task that should be flushed. 2596 * 2597 * When flushing dentries from proc, one needs to flush them from global 2598 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2599 * in. This call is supposed to do all of this job. 2600 * 2601 * Looks in the dcache for 2602 * /proc/@pid 2603 * /proc/@tgid/task/@pid 2604 * if either directory is present flushes it and all of it'ts children 2605 * from the dcache. 2606 * 2607 * It is safe and reasonable to cache /proc entries for a task until 2608 * that task exits. After that they just clog up the dcache with 2609 * useless entries, possibly causing useful dcache entries to be 2610 * flushed instead. This routine is proved to flush those useless 2611 * dcache entries at process exit time. 2612 * 2613 * NOTE: This routine is just an optimization so it does not guarantee 2614 * that no dcache entries will exist at process exit time it 2615 * just makes it very unlikely that any will persist. 2616 */ 2617 2618 void proc_flush_task(struct task_struct *task) 2619 { 2620 int i; 2621 struct pid *pid, *tgid = NULL; 2622 struct upid *upid; 2623 2624 pid = task_pid(task); 2625 if (thread_group_leader(task)) 2626 tgid = task_tgid(task); 2627 2628 for (i = 0; i <= pid->level; i++) { 2629 upid = &pid->numbers[i]; 2630 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2631 tgid ? tgid->numbers[i].nr : 0); 2632 } 2633 2634 upid = &pid->numbers[pid->level]; 2635 if (upid->nr == 1) 2636 pid_ns_release_proc(upid->ns); 2637 } 2638 2639 static struct dentry *proc_pid_instantiate(struct inode *dir, 2640 struct dentry * dentry, 2641 struct task_struct *task, const void *ptr) 2642 { 2643 struct dentry *error = ERR_PTR(-ENOENT); 2644 struct inode *inode; 2645 2646 inode = proc_pid_make_inode(dir->i_sb, task); 2647 if (!inode) 2648 goto out; 2649 2650 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2651 inode->i_op = &proc_tgid_base_inode_operations; 2652 inode->i_fop = &proc_tgid_base_operations; 2653 inode->i_flags|=S_IMMUTABLE; 2654 2655 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff, 2656 ARRAY_SIZE(tgid_base_stuff)); 2657 2658 dentry->d_op = &pid_dentry_operations; 2659 2660 d_add(dentry, inode); 2661 /* Close the race of the process dying before we return the dentry */ 2662 if (pid_revalidate(dentry, NULL)) 2663 error = NULL; 2664 out: 2665 return error; 2666 } 2667 2668 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2669 { 2670 struct dentry *result = ERR_PTR(-ENOENT); 2671 struct task_struct *task; 2672 unsigned tgid; 2673 struct pid_namespace *ns; 2674 2675 result = proc_base_lookup(dir, dentry); 2676 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2677 goto out; 2678 2679 tgid = name_to_int(dentry); 2680 if (tgid == ~0U) 2681 goto out; 2682 2683 ns = dentry->d_sb->s_fs_info; 2684 rcu_read_lock(); 2685 task = find_task_by_pid_ns(tgid, ns); 2686 if (task) 2687 get_task_struct(task); 2688 rcu_read_unlock(); 2689 if (!task) 2690 goto out; 2691 2692 result = proc_pid_instantiate(dir, dentry, task, NULL); 2693 put_task_struct(task); 2694 out: 2695 return result; 2696 } 2697 2698 /* 2699 * Find the first task with tgid >= tgid 2700 * 2701 */ 2702 struct tgid_iter { 2703 unsigned int tgid; 2704 struct task_struct *task; 2705 }; 2706 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2707 { 2708 struct pid *pid; 2709 2710 if (iter.task) 2711 put_task_struct(iter.task); 2712 rcu_read_lock(); 2713 retry: 2714 iter.task = NULL; 2715 pid = find_ge_pid(iter.tgid, ns); 2716 if (pid) { 2717 iter.tgid = pid_nr_ns(pid, ns); 2718 iter.task = pid_task(pid, PIDTYPE_PID); 2719 /* What we to know is if the pid we have find is the 2720 * pid of a thread_group_leader. Testing for task 2721 * being a thread_group_leader is the obvious thing 2722 * todo but there is a window when it fails, due to 2723 * the pid transfer logic in de_thread. 2724 * 2725 * So we perform the straight forward test of seeing 2726 * if the pid we have found is the pid of a thread 2727 * group leader, and don't worry if the task we have 2728 * found doesn't happen to be a thread group leader. 2729 * As we don't care in the case of readdir. 2730 */ 2731 if (!iter.task || !has_group_leader_pid(iter.task)) { 2732 iter.tgid += 1; 2733 goto retry; 2734 } 2735 get_task_struct(iter.task); 2736 } 2737 rcu_read_unlock(); 2738 return iter; 2739 } 2740 2741 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2742 2743 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2744 struct tgid_iter iter) 2745 { 2746 char name[PROC_NUMBUF]; 2747 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2748 return proc_fill_cache(filp, dirent, filldir, name, len, 2749 proc_pid_instantiate, iter.task, NULL); 2750 } 2751 2752 /* for the /proc/ directory itself, after non-process stuff has been done */ 2753 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2754 { 2755 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2756 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2757 struct tgid_iter iter; 2758 struct pid_namespace *ns; 2759 2760 if (!reaper) 2761 goto out_no_task; 2762 2763 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2764 const struct pid_entry *p = &proc_base_stuff[nr]; 2765 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2766 goto out; 2767 } 2768 2769 ns = filp->f_dentry->d_sb->s_fs_info; 2770 iter.task = NULL; 2771 iter.tgid = filp->f_pos - TGID_OFFSET; 2772 for (iter = next_tgid(ns, iter); 2773 iter.task; 2774 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2775 filp->f_pos = iter.tgid + TGID_OFFSET; 2776 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2777 put_task_struct(iter.task); 2778 goto out; 2779 } 2780 } 2781 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2782 out: 2783 put_task_struct(reaper); 2784 out_no_task: 2785 return 0; 2786 } 2787 2788 /* 2789 * Tasks 2790 */ 2791 static const struct pid_entry tid_base_stuff[] = { 2792 DIR("fd", S_IRUSR|S_IXUSR, fd), 2793 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo), 2794 REG("environ", S_IRUSR, environ), 2795 INF("auxv", S_IRUSR, pid_auxv), 2796 ONE("status", S_IRUGO, pid_status), 2797 ONE("personality", S_IRUSR, pid_personality), 2798 INF("limits", S_IRUSR, pid_limits), 2799 #ifdef CONFIG_SCHED_DEBUG 2800 REG("sched", S_IRUGO|S_IWUSR, pid_sched), 2801 #endif 2802 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2803 INF("syscall", S_IRUSR, pid_syscall), 2804 #endif 2805 INF("cmdline", S_IRUGO, pid_cmdline), 2806 ONE("stat", S_IRUGO, tid_stat), 2807 ONE("statm", S_IRUGO, pid_statm), 2808 REG("maps", S_IRUGO, maps), 2809 #ifdef CONFIG_NUMA 2810 REG("numa_maps", S_IRUGO, numa_maps), 2811 #endif 2812 REG("mem", S_IRUSR|S_IWUSR, mem), 2813 LNK("cwd", cwd), 2814 LNK("root", root), 2815 LNK("exe", exe), 2816 REG("mounts", S_IRUGO, mounts), 2817 REG("mountinfo", S_IRUGO, mountinfo), 2818 #ifdef CONFIG_PROC_PAGE_MONITOR 2819 REG("clear_refs", S_IWUSR, clear_refs), 2820 REG("smaps", S_IRUGO, smaps), 2821 REG("pagemap", S_IRUSR, pagemap), 2822 #endif 2823 #ifdef CONFIG_SECURITY 2824 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2825 #endif 2826 #ifdef CONFIG_KALLSYMS 2827 INF("wchan", S_IRUGO, pid_wchan), 2828 #endif 2829 #ifdef CONFIG_SCHEDSTATS 2830 INF("schedstat", S_IRUGO, pid_schedstat), 2831 #endif 2832 #ifdef CONFIG_LATENCYTOP 2833 REG("latency", S_IRUGO, lstats), 2834 #endif 2835 #ifdef CONFIG_PROC_PID_CPUSET 2836 REG("cpuset", S_IRUGO, cpuset), 2837 #endif 2838 #ifdef CONFIG_CGROUPS 2839 REG("cgroup", S_IRUGO, cgroup), 2840 #endif 2841 INF("oom_score", S_IRUGO, oom_score), 2842 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2843 #ifdef CONFIG_AUDITSYSCALL 2844 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2845 REG("sessionid", S_IRUSR, sessionid), 2846 #endif 2847 #ifdef CONFIG_FAULT_INJECTION 2848 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 2849 #endif 2850 #ifdef CONFIG_TASK_IO_ACCOUNTING 2851 INF("io", S_IRUGO, tid_io_accounting), 2852 #endif 2853 }; 2854 2855 static int proc_tid_base_readdir(struct file * filp, 2856 void * dirent, filldir_t filldir) 2857 { 2858 return proc_pident_readdir(filp,dirent,filldir, 2859 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2860 } 2861 2862 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2863 return proc_pident_lookup(dir, dentry, 2864 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2865 } 2866 2867 static const struct file_operations proc_tid_base_operations = { 2868 .read = generic_read_dir, 2869 .readdir = proc_tid_base_readdir, 2870 }; 2871 2872 static const struct inode_operations proc_tid_base_inode_operations = { 2873 .lookup = proc_tid_base_lookup, 2874 .getattr = pid_getattr, 2875 .setattr = proc_setattr, 2876 }; 2877 2878 static struct dentry *proc_task_instantiate(struct inode *dir, 2879 struct dentry *dentry, struct task_struct *task, const void *ptr) 2880 { 2881 struct dentry *error = ERR_PTR(-ENOENT); 2882 struct inode *inode; 2883 inode = proc_pid_make_inode(dir->i_sb, task); 2884 2885 if (!inode) 2886 goto out; 2887 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2888 inode->i_op = &proc_tid_base_inode_operations; 2889 inode->i_fop = &proc_tid_base_operations; 2890 inode->i_flags|=S_IMMUTABLE; 2891 2892 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff, 2893 ARRAY_SIZE(tid_base_stuff)); 2894 2895 dentry->d_op = &pid_dentry_operations; 2896 2897 d_add(dentry, inode); 2898 /* Close the race of the process dying before we return the dentry */ 2899 if (pid_revalidate(dentry, NULL)) 2900 error = NULL; 2901 out: 2902 return error; 2903 } 2904 2905 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2906 { 2907 struct dentry *result = ERR_PTR(-ENOENT); 2908 struct task_struct *task; 2909 struct task_struct *leader = get_proc_task(dir); 2910 unsigned tid; 2911 struct pid_namespace *ns; 2912 2913 if (!leader) 2914 goto out_no_task; 2915 2916 tid = name_to_int(dentry); 2917 if (tid == ~0U) 2918 goto out; 2919 2920 ns = dentry->d_sb->s_fs_info; 2921 rcu_read_lock(); 2922 task = find_task_by_pid_ns(tid, ns); 2923 if (task) 2924 get_task_struct(task); 2925 rcu_read_unlock(); 2926 if (!task) 2927 goto out; 2928 if (!same_thread_group(leader, task)) 2929 goto out_drop_task; 2930 2931 result = proc_task_instantiate(dir, dentry, task, NULL); 2932 out_drop_task: 2933 put_task_struct(task); 2934 out: 2935 put_task_struct(leader); 2936 out_no_task: 2937 return result; 2938 } 2939 2940 /* 2941 * Find the first tid of a thread group to return to user space. 2942 * 2943 * Usually this is just the thread group leader, but if the users 2944 * buffer was too small or there was a seek into the middle of the 2945 * directory we have more work todo. 2946 * 2947 * In the case of a short read we start with find_task_by_pid. 2948 * 2949 * In the case of a seek we start with the leader and walk nr 2950 * threads past it. 2951 */ 2952 static struct task_struct *first_tid(struct task_struct *leader, 2953 int tid, int nr, struct pid_namespace *ns) 2954 { 2955 struct task_struct *pos; 2956 2957 rcu_read_lock(); 2958 /* Attempt to start with the pid of a thread */ 2959 if (tid && (nr > 0)) { 2960 pos = find_task_by_pid_ns(tid, ns); 2961 if (pos && (pos->group_leader == leader)) 2962 goto found; 2963 } 2964 2965 /* If nr exceeds the number of threads there is nothing todo */ 2966 pos = NULL; 2967 if (nr && nr >= get_nr_threads(leader)) 2968 goto out; 2969 2970 /* If we haven't found our starting place yet start 2971 * with the leader and walk nr threads forward. 2972 */ 2973 for (pos = leader; nr > 0; --nr) { 2974 pos = next_thread(pos); 2975 if (pos == leader) { 2976 pos = NULL; 2977 goto out; 2978 } 2979 } 2980 found: 2981 get_task_struct(pos); 2982 out: 2983 rcu_read_unlock(); 2984 return pos; 2985 } 2986 2987 /* 2988 * Find the next thread in the thread list. 2989 * Return NULL if there is an error or no next thread. 2990 * 2991 * The reference to the input task_struct is released. 2992 */ 2993 static struct task_struct *next_tid(struct task_struct *start) 2994 { 2995 struct task_struct *pos = NULL; 2996 rcu_read_lock(); 2997 if (pid_alive(start)) { 2998 pos = next_thread(start); 2999 if (thread_group_leader(pos)) 3000 pos = NULL; 3001 else 3002 get_task_struct(pos); 3003 } 3004 rcu_read_unlock(); 3005 put_task_struct(start); 3006 return pos; 3007 } 3008 3009 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3010 struct task_struct *task, int tid) 3011 { 3012 char name[PROC_NUMBUF]; 3013 int len = snprintf(name, sizeof(name), "%d", tid); 3014 return proc_fill_cache(filp, dirent, filldir, name, len, 3015 proc_task_instantiate, task, NULL); 3016 } 3017 3018 /* for the /proc/TGID/task/ directories */ 3019 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3020 { 3021 struct dentry *dentry = filp->f_path.dentry; 3022 struct inode *inode = dentry->d_inode; 3023 struct task_struct *leader = NULL; 3024 struct task_struct *task; 3025 int retval = -ENOENT; 3026 ino_t ino; 3027 int tid; 3028 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ 3029 struct pid_namespace *ns; 3030 3031 task = get_proc_task(inode); 3032 if (!task) 3033 goto out_no_task; 3034 rcu_read_lock(); 3035 if (pid_alive(task)) { 3036 leader = task->group_leader; 3037 get_task_struct(leader); 3038 } 3039 rcu_read_unlock(); 3040 put_task_struct(task); 3041 if (!leader) 3042 goto out_no_task; 3043 retval = 0; 3044 3045 switch (pos) { 3046 case 0: 3047 ino = inode->i_ino; 3048 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) 3049 goto out; 3050 pos++; 3051 /* fall through */ 3052 case 1: 3053 ino = parent_ino(dentry); 3054 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) 3055 goto out; 3056 pos++; 3057 /* fall through */ 3058 } 3059 3060 /* f_version caches the tgid value that the last readdir call couldn't 3061 * return. lseek aka telldir automagically resets f_version to 0. 3062 */ 3063 ns = filp->f_dentry->d_sb->s_fs_info; 3064 tid = (int)filp->f_version; 3065 filp->f_version = 0; 3066 for (task = first_tid(leader, tid, pos - 2, ns); 3067 task; 3068 task = next_tid(task), pos++) { 3069 tid = task_pid_nr_ns(task, ns); 3070 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3071 /* returning this tgid failed, save it as the first 3072 * pid for the next readir call */ 3073 filp->f_version = (u64)tid; 3074 put_task_struct(task); 3075 break; 3076 } 3077 } 3078 out: 3079 filp->f_pos = pos; 3080 put_task_struct(leader); 3081 out_no_task: 3082 return retval; 3083 } 3084 3085 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3086 { 3087 struct inode *inode = dentry->d_inode; 3088 struct task_struct *p = get_proc_task(inode); 3089 generic_fillattr(inode, stat); 3090 3091 if (p) { 3092 stat->nlink += get_nr_threads(p); 3093 put_task_struct(p); 3094 } 3095 3096 return 0; 3097 } 3098 3099 static const struct inode_operations proc_task_inode_operations = { 3100 .lookup = proc_task_lookup, 3101 .getattr = proc_task_getattr, 3102 .setattr = proc_setattr, 3103 }; 3104 3105 static const struct file_operations proc_task_operations = { 3106 .read = generic_read_dir, 3107 .readdir = proc_task_readdir, 3108 }; 3109