1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 390 if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 391 wchan = get_wchan(task); 392 else 393 wchan = 0; 394 395 if (wchan) 396 seq_printf(m, "%ps", (void *) wchan); 397 else 398 seq_putc(m, '0'); 399 400 return 0; 401 } 402 #endif /* CONFIG_KALLSYMS */ 403 404 static int lock_trace(struct task_struct *task) 405 { 406 int err = down_read_killable(&task->signal->exec_update_lock); 407 if (err) 408 return err; 409 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 410 up_read(&task->signal->exec_update_lock); 411 return -EPERM; 412 } 413 return 0; 414 } 415 416 static void unlock_trace(struct task_struct *task) 417 { 418 up_read(&task->signal->exec_update_lock); 419 } 420 421 #ifdef CONFIG_STACKTRACE 422 423 #define MAX_STACK_TRACE_DEPTH 64 424 425 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 426 struct pid *pid, struct task_struct *task) 427 { 428 unsigned long *entries; 429 int err; 430 431 /* 432 * The ability to racily run the kernel stack unwinder on a running task 433 * and then observe the unwinder output is scary; while it is useful for 434 * debugging kernel issues, it can also allow an attacker to leak kernel 435 * stack contents. 436 * Doing this in a manner that is at least safe from races would require 437 * some work to ensure that the remote task can not be scheduled; and 438 * even then, this would still expose the unwinder as local attack 439 * surface. 440 * Therefore, this interface is restricted to root. 441 */ 442 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 443 return -EACCES; 444 445 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 446 GFP_KERNEL); 447 if (!entries) 448 return -ENOMEM; 449 450 err = lock_trace(task); 451 if (!err) { 452 unsigned int i, nr_entries; 453 454 nr_entries = stack_trace_save_tsk(task, entries, 455 MAX_STACK_TRACE_DEPTH, 0); 456 457 for (i = 0; i < nr_entries; i++) { 458 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 459 } 460 461 unlock_trace(task); 462 } 463 kfree(entries); 464 465 return err; 466 } 467 #endif 468 469 #ifdef CONFIG_SCHED_INFO 470 /* 471 * Provides /proc/PID/schedstat 472 */ 473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 474 struct pid *pid, struct task_struct *task) 475 { 476 if (unlikely(!sched_info_on())) 477 seq_puts(m, "0 0 0\n"); 478 else 479 seq_printf(m, "%llu %llu %lu\n", 480 (unsigned long long)task->se.sum_exec_runtime, 481 (unsigned long long)task->sched_info.run_delay, 482 task->sched_info.pcount); 483 484 return 0; 485 } 486 #endif 487 488 #ifdef CONFIG_LATENCYTOP 489 static int lstats_show_proc(struct seq_file *m, void *v) 490 { 491 int i; 492 struct inode *inode = m->private; 493 struct task_struct *task = get_proc_task(inode); 494 495 if (!task) 496 return -ESRCH; 497 seq_puts(m, "Latency Top version : v0.1\n"); 498 for (i = 0; i < LT_SAVECOUNT; i++) { 499 struct latency_record *lr = &task->latency_record[i]; 500 if (lr->backtrace[0]) { 501 int q; 502 seq_printf(m, "%i %li %li", 503 lr->count, lr->time, lr->max); 504 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 505 unsigned long bt = lr->backtrace[q]; 506 507 if (!bt) 508 break; 509 seq_printf(m, " %ps", (void *)bt); 510 } 511 seq_putc(m, '\n'); 512 } 513 514 } 515 put_task_struct(task); 516 return 0; 517 } 518 519 static int lstats_open(struct inode *inode, struct file *file) 520 { 521 return single_open(file, lstats_show_proc, inode); 522 } 523 524 static ssize_t lstats_write(struct file *file, const char __user *buf, 525 size_t count, loff_t *offs) 526 { 527 struct task_struct *task = get_proc_task(file_inode(file)); 528 529 if (!task) 530 return -ESRCH; 531 clear_tsk_latency_tracing(task); 532 put_task_struct(task); 533 534 return count; 535 } 536 537 static const struct file_operations proc_lstats_operations = { 538 .open = lstats_open, 539 .read = seq_read, 540 .write = lstats_write, 541 .llseek = seq_lseek, 542 .release = single_release, 543 }; 544 545 #endif 546 547 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 548 struct pid *pid, struct task_struct *task) 549 { 550 unsigned long totalpages = totalram_pages() + total_swap_pages; 551 unsigned long points = 0; 552 long badness; 553 554 badness = oom_badness(task, totalpages); 555 /* 556 * Special case OOM_SCORE_ADJ_MIN for all others scale the 557 * badness value into [0, 2000] range which we have been 558 * exporting for a long time so userspace might depend on it. 559 */ 560 if (badness != LONG_MIN) 561 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 562 563 seq_printf(m, "%lu\n", points); 564 565 return 0; 566 } 567 568 struct limit_names { 569 const char *name; 570 const char *unit; 571 }; 572 573 static const struct limit_names lnames[RLIM_NLIMITS] = { 574 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 575 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 576 [RLIMIT_DATA] = {"Max data size", "bytes"}, 577 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 578 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 579 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 580 [RLIMIT_NPROC] = {"Max processes", "processes"}, 581 [RLIMIT_NOFILE] = {"Max open files", "files"}, 582 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 583 [RLIMIT_AS] = {"Max address space", "bytes"}, 584 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 585 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 586 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 587 [RLIMIT_NICE] = {"Max nice priority", NULL}, 588 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 589 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 590 }; 591 592 /* Display limits for a process */ 593 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 594 struct pid *pid, struct task_struct *task) 595 { 596 unsigned int i; 597 unsigned long flags; 598 599 struct rlimit rlim[RLIM_NLIMITS]; 600 601 if (!lock_task_sighand(task, &flags)) 602 return 0; 603 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 604 unlock_task_sighand(task, &flags); 605 606 /* 607 * print the file header 608 */ 609 seq_puts(m, "Limit " 610 "Soft Limit " 611 "Hard Limit " 612 "Units \n"); 613 614 for (i = 0; i < RLIM_NLIMITS; i++) { 615 if (rlim[i].rlim_cur == RLIM_INFINITY) 616 seq_printf(m, "%-25s %-20s ", 617 lnames[i].name, "unlimited"); 618 else 619 seq_printf(m, "%-25s %-20lu ", 620 lnames[i].name, rlim[i].rlim_cur); 621 622 if (rlim[i].rlim_max == RLIM_INFINITY) 623 seq_printf(m, "%-20s ", "unlimited"); 624 else 625 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 626 627 if (lnames[i].unit) 628 seq_printf(m, "%-10s\n", lnames[i].unit); 629 else 630 seq_putc(m, '\n'); 631 } 632 633 return 0; 634 } 635 636 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 637 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 638 struct pid *pid, struct task_struct *task) 639 { 640 struct syscall_info info; 641 u64 *args = &info.data.args[0]; 642 int res; 643 644 res = lock_trace(task); 645 if (res) 646 return res; 647 648 if (task_current_syscall(task, &info)) 649 seq_puts(m, "running\n"); 650 else if (info.data.nr < 0) 651 seq_printf(m, "%d 0x%llx 0x%llx\n", 652 info.data.nr, info.sp, info.data.instruction_pointer); 653 else 654 seq_printf(m, 655 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 656 info.data.nr, 657 args[0], args[1], args[2], args[3], args[4], args[5], 658 info.sp, info.data.instruction_pointer); 659 unlock_trace(task); 660 661 return 0; 662 } 663 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 664 665 /************************************************************************/ 666 /* Here the fs part begins */ 667 /************************************************************************/ 668 669 /* permission checks */ 670 static int proc_fd_access_allowed(struct inode *inode) 671 { 672 struct task_struct *task; 673 int allowed = 0; 674 /* Allow access to a task's file descriptors if it is us or we 675 * may use ptrace attach to the process and find out that 676 * information. 677 */ 678 task = get_proc_task(inode); 679 if (task) { 680 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 681 put_task_struct(task); 682 } 683 return allowed; 684 } 685 686 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 687 struct iattr *attr) 688 { 689 int error; 690 struct inode *inode = d_inode(dentry); 691 692 if (attr->ia_valid & ATTR_MODE) 693 return -EPERM; 694 695 error = setattr_prepare(&init_user_ns, dentry, attr); 696 if (error) 697 return error; 698 699 setattr_copy(&init_user_ns, inode, attr); 700 mark_inode_dirty(inode); 701 return 0; 702 } 703 704 /* 705 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 706 * or euid/egid (for hide_pid_min=2)? 707 */ 708 static bool has_pid_permissions(struct proc_fs_info *fs_info, 709 struct task_struct *task, 710 enum proc_hidepid hide_pid_min) 711 { 712 /* 713 * If 'hidpid' mount option is set force a ptrace check, 714 * we indicate that we are using a filesystem syscall 715 * by passing PTRACE_MODE_READ_FSCREDS 716 */ 717 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 718 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 719 720 if (fs_info->hide_pid < hide_pid_min) 721 return true; 722 if (in_group_p(fs_info->pid_gid)) 723 return true; 724 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 725 } 726 727 728 static int proc_pid_permission(struct user_namespace *mnt_userns, 729 struct inode *inode, int mask) 730 { 731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 732 struct task_struct *task; 733 bool has_perms; 734 735 task = get_proc_task(inode); 736 if (!task) 737 return -ESRCH; 738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 739 put_task_struct(task); 740 741 if (!has_perms) { 742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 743 /* 744 * Let's make getdents(), stat(), and open() 745 * consistent with each other. If a process 746 * may not stat() a file, it shouldn't be seen 747 * in procfs at all. 748 */ 749 return -ENOENT; 750 } 751 752 return -EPERM; 753 } 754 return generic_permission(&init_user_ns, inode, mask); 755 } 756 757 758 759 static const struct inode_operations proc_def_inode_operations = { 760 .setattr = proc_setattr, 761 }; 762 763 static int proc_single_show(struct seq_file *m, void *v) 764 { 765 struct inode *inode = m->private; 766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 767 struct pid *pid = proc_pid(inode); 768 struct task_struct *task; 769 int ret; 770 771 task = get_pid_task(pid, PIDTYPE_PID); 772 if (!task) 773 return -ESRCH; 774 775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 776 777 put_task_struct(task); 778 return ret; 779 } 780 781 static int proc_single_open(struct inode *inode, struct file *filp) 782 { 783 return single_open(filp, proc_single_show, inode); 784 } 785 786 static const struct file_operations proc_single_file_operations = { 787 .open = proc_single_open, 788 .read = seq_read, 789 .llseek = seq_lseek, 790 .release = single_release, 791 }; 792 793 794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 795 { 796 struct task_struct *task = get_proc_task(inode); 797 struct mm_struct *mm = ERR_PTR(-ESRCH); 798 799 if (task) { 800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 801 put_task_struct(task); 802 803 if (!IS_ERR_OR_NULL(mm)) { 804 /* ensure this mm_struct can't be freed */ 805 mmgrab(mm); 806 /* but do not pin its memory */ 807 mmput(mm); 808 } 809 } 810 811 return mm; 812 } 813 814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 815 { 816 struct mm_struct *mm = proc_mem_open(inode, mode); 817 818 if (IS_ERR(mm)) 819 return PTR_ERR(mm); 820 821 file->private_data = mm; 822 return 0; 823 } 824 825 static int mem_open(struct inode *inode, struct file *file) 826 { 827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 828 829 /* OK to pass negative loff_t, we can catch out-of-range */ 830 file->f_mode |= FMODE_UNSIGNED_OFFSET; 831 832 return ret; 833 } 834 835 static ssize_t mem_rw(struct file *file, char __user *buf, 836 size_t count, loff_t *ppos, int write) 837 { 838 struct mm_struct *mm = file->private_data; 839 unsigned long addr = *ppos; 840 ssize_t copied; 841 char *page; 842 unsigned int flags; 843 844 if (!mm) 845 return 0; 846 847 page = (char *)__get_free_page(GFP_KERNEL); 848 if (!page) 849 return -ENOMEM; 850 851 copied = 0; 852 if (!mmget_not_zero(mm)) 853 goto free; 854 855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 856 857 while (count > 0) { 858 size_t this_len = min_t(size_t, count, PAGE_SIZE); 859 860 if (write && copy_from_user(page, buf, this_len)) { 861 copied = -EFAULT; 862 break; 863 } 864 865 this_len = access_remote_vm(mm, addr, page, this_len, flags); 866 if (!this_len) { 867 if (!copied) 868 copied = -EIO; 869 break; 870 } 871 872 if (!write && copy_to_user(buf, page, this_len)) { 873 copied = -EFAULT; 874 break; 875 } 876 877 buf += this_len; 878 addr += this_len; 879 copied += this_len; 880 count -= this_len; 881 } 882 *ppos = addr; 883 884 mmput(mm); 885 free: 886 free_page((unsigned long) page); 887 return copied; 888 } 889 890 static ssize_t mem_read(struct file *file, char __user *buf, 891 size_t count, loff_t *ppos) 892 { 893 return mem_rw(file, buf, count, ppos, 0); 894 } 895 896 static ssize_t mem_write(struct file *file, const char __user *buf, 897 size_t count, loff_t *ppos) 898 { 899 return mem_rw(file, (char __user*)buf, count, ppos, 1); 900 } 901 902 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 903 { 904 switch (orig) { 905 case 0: 906 file->f_pos = offset; 907 break; 908 case 1: 909 file->f_pos += offset; 910 break; 911 default: 912 return -EINVAL; 913 } 914 force_successful_syscall_return(); 915 return file->f_pos; 916 } 917 918 static int mem_release(struct inode *inode, struct file *file) 919 { 920 struct mm_struct *mm = file->private_data; 921 if (mm) 922 mmdrop(mm); 923 return 0; 924 } 925 926 static const struct file_operations proc_mem_operations = { 927 .llseek = mem_lseek, 928 .read = mem_read, 929 .write = mem_write, 930 .open = mem_open, 931 .release = mem_release, 932 }; 933 934 static int environ_open(struct inode *inode, struct file *file) 935 { 936 return __mem_open(inode, file, PTRACE_MODE_READ); 937 } 938 939 static ssize_t environ_read(struct file *file, char __user *buf, 940 size_t count, loff_t *ppos) 941 { 942 char *page; 943 unsigned long src = *ppos; 944 int ret = 0; 945 struct mm_struct *mm = file->private_data; 946 unsigned long env_start, env_end; 947 948 /* Ensure the process spawned far enough to have an environment. */ 949 if (!mm || !mm->env_end) 950 return 0; 951 952 page = (char *)__get_free_page(GFP_KERNEL); 953 if (!page) 954 return -ENOMEM; 955 956 ret = 0; 957 if (!mmget_not_zero(mm)) 958 goto free; 959 960 spin_lock(&mm->arg_lock); 961 env_start = mm->env_start; 962 env_end = mm->env_end; 963 spin_unlock(&mm->arg_lock); 964 965 while (count > 0) { 966 size_t this_len, max_len; 967 int retval; 968 969 if (src >= (env_end - env_start)) 970 break; 971 972 this_len = env_end - (env_start + src); 973 974 max_len = min_t(size_t, PAGE_SIZE, count); 975 this_len = min(max_len, this_len); 976 977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 978 979 if (retval <= 0) { 980 ret = retval; 981 break; 982 } 983 984 if (copy_to_user(buf, page, retval)) { 985 ret = -EFAULT; 986 break; 987 } 988 989 ret += retval; 990 src += retval; 991 buf += retval; 992 count -= retval; 993 } 994 *ppos = src; 995 mmput(mm); 996 997 free: 998 free_page((unsigned long) page); 999 return ret; 1000 } 1001 1002 static const struct file_operations proc_environ_operations = { 1003 .open = environ_open, 1004 .read = environ_read, 1005 .llseek = generic_file_llseek, 1006 .release = mem_release, 1007 }; 1008 1009 static int auxv_open(struct inode *inode, struct file *file) 1010 { 1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1012 } 1013 1014 static ssize_t auxv_read(struct file *file, char __user *buf, 1015 size_t count, loff_t *ppos) 1016 { 1017 struct mm_struct *mm = file->private_data; 1018 unsigned int nwords = 0; 1019 1020 if (!mm) 1021 return 0; 1022 do { 1023 nwords += 2; 1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1026 nwords * sizeof(mm->saved_auxv[0])); 1027 } 1028 1029 static const struct file_operations proc_auxv_operations = { 1030 .open = auxv_open, 1031 .read = auxv_read, 1032 .llseek = generic_file_llseek, 1033 .release = mem_release, 1034 }; 1035 1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1037 loff_t *ppos) 1038 { 1039 struct task_struct *task = get_proc_task(file_inode(file)); 1040 char buffer[PROC_NUMBUF]; 1041 int oom_adj = OOM_ADJUST_MIN; 1042 size_t len; 1043 1044 if (!task) 1045 return -ESRCH; 1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1047 oom_adj = OOM_ADJUST_MAX; 1048 else 1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1050 OOM_SCORE_ADJ_MAX; 1051 put_task_struct(task); 1052 if (oom_adj > OOM_ADJUST_MAX) 1053 oom_adj = OOM_ADJUST_MAX; 1054 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1055 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1056 } 1057 1058 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1059 { 1060 struct mm_struct *mm = NULL; 1061 struct task_struct *task; 1062 int err = 0; 1063 1064 task = get_proc_task(file_inode(file)); 1065 if (!task) 1066 return -ESRCH; 1067 1068 mutex_lock(&oom_adj_mutex); 1069 if (legacy) { 1070 if (oom_adj < task->signal->oom_score_adj && 1071 !capable(CAP_SYS_RESOURCE)) { 1072 err = -EACCES; 1073 goto err_unlock; 1074 } 1075 /* 1076 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1077 * /proc/pid/oom_score_adj instead. 1078 */ 1079 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1080 current->comm, task_pid_nr(current), task_pid_nr(task), 1081 task_pid_nr(task)); 1082 } else { 1083 if ((short)oom_adj < task->signal->oom_score_adj_min && 1084 !capable(CAP_SYS_RESOURCE)) { 1085 err = -EACCES; 1086 goto err_unlock; 1087 } 1088 } 1089 1090 /* 1091 * Make sure we will check other processes sharing the mm if this is 1092 * not vfrok which wants its own oom_score_adj. 1093 * pin the mm so it doesn't go away and get reused after task_unlock 1094 */ 1095 if (!task->vfork_done) { 1096 struct task_struct *p = find_lock_task_mm(task); 1097 1098 if (p) { 1099 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1100 mm = p->mm; 1101 mmgrab(mm); 1102 } 1103 task_unlock(p); 1104 } 1105 } 1106 1107 task->signal->oom_score_adj = oom_adj; 1108 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1109 task->signal->oom_score_adj_min = (short)oom_adj; 1110 trace_oom_score_adj_update(task); 1111 1112 if (mm) { 1113 struct task_struct *p; 1114 1115 rcu_read_lock(); 1116 for_each_process(p) { 1117 if (same_thread_group(task, p)) 1118 continue; 1119 1120 /* do not touch kernel threads or the global init */ 1121 if (p->flags & PF_KTHREAD || is_global_init(p)) 1122 continue; 1123 1124 task_lock(p); 1125 if (!p->vfork_done && process_shares_mm(p, mm)) { 1126 p->signal->oom_score_adj = oom_adj; 1127 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1128 p->signal->oom_score_adj_min = (short)oom_adj; 1129 } 1130 task_unlock(p); 1131 } 1132 rcu_read_unlock(); 1133 mmdrop(mm); 1134 } 1135 err_unlock: 1136 mutex_unlock(&oom_adj_mutex); 1137 put_task_struct(task); 1138 return err; 1139 } 1140 1141 /* 1142 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1143 * kernels. The effective policy is defined by oom_score_adj, which has a 1144 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1145 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1146 * Processes that become oom disabled via oom_adj will still be oom disabled 1147 * with this implementation. 1148 * 1149 * oom_adj cannot be removed since existing userspace binaries use it. 1150 */ 1151 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1152 size_t count, loff_t *ppos) 1153 { 1154 char buffer[PROC_NUMBUF]; 1155 int oom_adj; 1156 int err; 1157 1158 memset(buffer, 0, sizeof(buffer)); 1159 if (count > sizeof(buffer) - 1) 1160 count = sizeof(buffer) - 1; 1161 if (copy_from_user(buffer, buf, count)) { 1162 err = -EFAULT; 1163 goto out; 1164 } 1165 1166 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1167 if (err) 1168 goto out; 1169 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1170 oom_adj != OOM_DISABLE) { 1171 err = -EINVAL; 1172 goto out; 1173 } 1174 1175 /* 1176 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1177 * value is always attainable. 1178 */ 1179 if (oom_adj == OOM_ADJUST_MAX) 1180 oom_adj = OOM_SCORE_ADJ_MAX; 1181 else 1182 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1183 1184 err = __set_oom_adj(file, oom_adj, true); 1185 out: 1186 return err < 0 ? err : count; 1187 } 1188 1189 static const struct file_operations proc_oom_adj_operations = { 1190 .read = oom_adj_read, 1191 .write = oom_adj_write, 1192 .llseek = generic_file_llseek, 1193 }; 1194 1195 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1196 size_t count, loff_t *ppos) 1197 { 1198 struct task_struct *task = get_proc_task(file_inode(file)); 1199 char buffer[PROC_NUMBUF]; 1200 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1201 size_t len; 1202 1203 if (!task) 1204 return -ESRCH; 1205 oom_score_adj = task->signal->oom_score_adj; 1206 put_task_struct(task); 1207 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1208 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1209 } 1210 1211 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1212 size_t count, loff_t *ppos) 1213 { 1214 char buffer[PROC_NUMBUF]; 1215 int oom_score_adj; 1216 int err; 1217 1218 memset(buffer, 0, sizeof(buffer)); 1219 if (count > sizeof(buffer) - 1) 1220 count = sizeof(buffer) - 1; 1221 if (copy_from_user(buffer, buf, count)) { 1222 err = -EFAULT; 1223 goto out; 1224 } 1225 1226 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1227 if (err) 1228 goto out; 1229 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1230 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1231 err = -EINVAL; 1232 goto out; 1233 } 1234 1235 err = __set_oom_adj(file, oom_score_adj, false); 1236 out: 1237 return err < 0 ? err : count; 1238 } 1239 1240 static const struct file_operations proc_oom_score_adj_operations = { 1241 .read = oom_score_adj_read, 1242 .write = oom_score_adj_write, 1243 .llseek = default_llseek, 1244 }; 1245 1246 #ifdef CONFIG_AUDIT 1247 #define TMPBUFLEN 11 1248 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1249 size_t count, loff_t *ppos) 1250 { 1251 struct inode * inode = file_inode(file); 1252 struct task_struct *task = get_proc_task(inode); 1253 ssize_t length; 1254 char tmpbuf[TMPBUFLEN]; 1255 1256 if (!task) 1257 return -ESRCH; 1258 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1259 from_kuid(file->f_cred->user_ns, 1260 audit_get_loginuid(task))); 1261 put_task_struct(task); 1262 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1263 } 1264 1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1266 size_t count, loff_t *ppos) 1267 { 1268 struct inode * inode = file_inode(file); 1269 uid_t loginuid; 1270 kuid_t kloginuid; 1271 int rv; 1272 1273 /* Don't let kthreads write their own loginuid */ 1274 if (current->flags & PF_KTHREAD) 1275 return -EPERM; 1276 1277 rcu_read_lock(); 1278 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1279 rcu_read_unlock(); 1280 return -EPERM; 1281 } 1282 rcu_read_unlock(); 1283 1284 if (*ppos != 0) { 1285 /* No partial writes. */ 1286 return -EINVAL; 1287 } 1288 1289 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1290 if (rv < 0) 1291 return rv; 1292 1293 /* is userspace tring to explicitly UNSET the loginuid? */ 1294 if (loginuid == AUDIT_UID_UNSET) { 1295 kloginuid = INVALID_UID; 1296 } else { 1297 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1298 if (!uid_valid(kloginuid)) 1299 return -EINVAL; 1300 } 1301 1302 rv = audit_set_loginuid(kloginuid); 1303 if (rv < 0) 1304 return rv; 1305 return count; 1306 } 1307 1308 static const struct file_operations proc_loginuid_operations = { 1309 .read = proc_loginuid_read, 1310 .write = proc_loginuid_write, 1311 .llseek = generic_file_llseek, 1312 }; 1313 1314 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1315 size_t count, loff_t *ppos) 1316 { 1317 struct inode * inode = file_inode(file); 1318 struct task_struct *task = get_proc_task(inode); 1319 ssize_t length; 1320 char tmpbuf[TMPBUFLEN]; 1321 1322 if (!task) 1323 return -ESRCH; 1324 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1325 audit_get_sessionid(task)); 1326 put_task_struct(task); 1327 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1328 } 1329 1330 static const struct file_operations proc_sessionid_operations = { 1331 .read = proc_sessionid_read, 1332 .llseek = generic_file_llseek, 1333 }; 1334 #endif 1335 1336 #ifdef CONFIG_FAULT_INJECTION 1337 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1338 size_t count, loff_t *ppos) 1339 { 1340 struct task_struct *task = get_proc_task(file_inode(file)); 1341 char buffer[PROC_NUMBUF]; 1342 size_t len; 1343 int make_it_fail; 1344 1345 if (!task) 1346 return -ESRCH; 1347 make_it_fail = task->make_it_fail; 1348 put_task_struct(task); 1349 1350 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1351 1352 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1353 } 1354 1355 static ssize_t proc_fault_inject_write(struct file * file, 1356 const char __user * buf, size_t count, loff_t *ppos) 1357 { 1358 struct task_struct *task; 1359 char buffer[PROC_NUMBUF]; 1360 int make_it_fail; 1361 int rv; 1362 1363 if (!capable(CAP_SYS_RESOURCE)) 1364 return -EPERM; 1365 memset(buffer, 0, sizeof(buffer)); 1366 if (count > sizeof(buffer) - 1) 1367 count = sizeof(buffer) - 1; 1368 if (copy_from_user(buffer, buf, count)) 1369 return -EFAULT; 1370 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1371 if (rv < 0) 1372 return rv; 1373 if (make_it_fail < 0 || make_it_fail > 1) 1374 return -EINVAL; 1375 1376 task = get_proc_task(file_inode(file)); 1377 if (!task) 1378 return -ESRCH; 1379 task->make_it_fail = make_it_fail; 1380 put_task_struct(task); 1381 1382 return count; 1383 } 1384 1385 static const struct file_operations proc_fault_inject_operations = { 1386 .read = proc_fault_inject_read, 1387 .write = proc_fault_inject_write, 1388 .llseek = generic_file_llseek, 1389 }; 1390 1391 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1392 size_t count, loff_t *ppos) 1393 { 1394 struct task_struct *task; 1395 int err; 1396 unsigned int n; 1397 1398 err = kstrtouint_from_user(buf, count, 0, &n); 1399 if (err) 1400 return err; 1401 1402 task = get_proc_task(file_inode(file)); 1403 if (!task) 1404 return -ESRCH; 1405 task->fail_nth = n; 1406 put_task_struct(task); 1407 1408 return count; 1409 } 1410 1411 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1412 size_t count, loff_t *ppos) 1413 { 1414 struct task_struct *task; 1415 char numbuf[PROC_NUMBUF]; 1416 ssize_t len; 1417 1418 task = get_proc_task(file_inode(file)); 1419 if (!task) 1420 return -ESRCH; 1421 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1422 put_task_struct(task); 1423 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1424 } 1425 1426 static const struct file_operations proc_fail_nth_operations = { 1427 .read = proc_fail_nth_read, 1428 .write = proc_fail_nth_write, 1429 }; 1430 #endif 1431 1432 1433 #ifdef CONFIG_SCHED_DEBUG 1434 /* 1435 * Print out various scheduling related per-task fields: 1436 */ 1437 static int sched_show(struct seq_file *m, void *v) 1438 { 1439 struct inode *inode = m->private; 1440 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1441 struct task_struct *p; 1442 1443 p = get_proc_task(inode); 1444 if (!p) 1445 return -ESRCH; 1446 proc_sched_show_task(p, ns, m); 1447 1448 put_task_struct(p); 1449 1450 return 0; 1451 } 1452 1453 static ssize_t 1454 sched_write(struct file *file, const char __user *buf, 1455 size_t count, loff_t *offset) 1456 { 1457 struct inode *inode = file_inode(file); 1458 struct task_struct *p; 1459 1460 p = get_proc_task(inode); 1461 if (!p) 1462 return -ESRCH; 1463 proc_sched_set_task(p); 1464 1465 put_task_struct(p); 1466 1467 return count; 1468 } 1469 1470 static int sched_open(struct inode *inode, struct file *filp) 1471 { 1472 return single_open(filp, sched_show, inode); 1473 } 1474 1475 static const struct file_operations proc_pid_sched_operations = { 1476 .open = sched_open, 1477 .read = seq_read, 1478 .write = sched_write, 1479 .llseek = seq_lseek, 1480 .release = single_release, 1481 }; 1482 1483 #endif 1484 1485 #ifdef CONFIG_SCHED_AUTOGROUP 1486 /* 1487 * Print out autogroup related information: 1488 */ 1489 static int sched_autogroup_show(struct seq_file *m, void *v) 1490 { 1491 struct inode *inode = m->private; 1492 struct task_struct *p; 1493 1494 p = get_proc_task(inode); 1495 if (!p) 1496 return -ESRCH; 1497 proc_sched_autogroup_show_task(p, m); 1498 1499 put_task_struct(p); 1500 1501 return 0; 1502 } 1503 1504 static ssize_t 1505 sched_autogroup_write(struct file *file, const char __user *buf, 1506 size_t count, loff_t *offset) 1507 { 1508 struct inode *inode = file_inode(file); 1509 struct task_struct *p; 1510 char buffer[PROC_NUMBUF]; 1511 int nice; 1512 int err; 1513 1514 memset(buffer, 0, sizeof(buffer)); 1515 if (count > sizeof(buffer) - 1) 1516 count = sizeof(buffer) - 1; 1517 if (copy_from_user(buffer, buf, count)) 1518 return -EFAULT; 1519 1520 err = kstrtoint(strstrip(buffer), 0, &nice); 1521 if (err < 0) 1522 return err; 1523 1524 p = get_proc_task(inode); 1525 if (!p) 1526 return -ESRCH; 1527 1528 err = proc_sched_autogroup_set_nice(p, nice); 1529 if (err) 1530 count = err; 1531 1532 put_task_struct(p); 1533 1534 return count; 1535 } 1536 1537 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1538 { 1539 int ret; 1540 1541 ret = single_open(filp, sched_autogroup_show, NULL); 1542 if (!ret) { 1543 struct seq_file *m = filp->private_data; 1544 1545 m->private = inode; 1546 } 1547 return ret; 1548 } 1549 1550 static const struct file_operations proc_pid_sched_autogroup_operations = { 1551 .open = sched_autogroup_open, 1552 .read = seq_read, 1553 .write = sched_autogroup_write, 1554 .llseek = seq_lseek, 1555 .release = single_release, 1556 }; 1557 1558 #endif /* CONFIG_SCHED_AUTOGROUP */ 1559 1560 #ifdef CONFIG_TIME_NS 1561 static int timens_offsets_show(struct seq_file *m, void *v) 1562 { 1563 struct task_struct *p; 1564 1565 p = get_proc_task(file_inode(m->file)); 1566 if (!p) 1567 return -ESRCH; 1568 proc_timens_show_offsets(p, m); 1569 1570 put_task_struct(p); 1571 1572 return 0; 1573 } 1574 1575 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1576 size_t count, loff_t *ppos) 1577 { 1578 struct inode *inode = file_inode(file); 1579 struct proc_timens_offset offsets[2]; 1580 char *kbuf = NULL, *pos, *next_line; 1581 struct task_struct *p; 1582 int ret, noffsets; 1583 1584 /* Only allow < page size writes at the beginning of the file */ 1585 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1586 return -EINVAL; 1587 1588 /* Slurp in the user data */ 1589 kbuf = memdup_user_nul(buf, count); 1590 if (IS_ERR(kbuf)) 1591 return PTR_ERR(kbuf); 1592 1593 /* Parse the user data */ 1594 ret = -EINVAL; 1595 noffsets = 0; 1596 for (pos = kbuf; pos; pos = next_line) { 1597 struct proc_timens_offset *off = &offsets[noffsets]; 1598 char clock[10]; 1599 int err; 1600 1601 /* Find the end of line and ensure we don't look past it */ 1602 next_line = strchr(pos, '\n'); 1603 if (next_line) { 1604 *next_line = '\0'; 1605 next_line++; 1606 if (*next_line == '\0') 1607 next_line = NULL; 1608 } 1609 1610 err = sscanf(pos, "%9s %lld %lu", clock, 1611 &off->val.tv_sec, &off->val.tv_nsec); 1612 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1613 goto out; 1614 1615 clock[sizeof(clock) - 1] = 0; 1616 if (strcmp(clock, "monotonic") == 0 || 1617 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1618 off->clockid = CLOCK_MONOTONIC; 1619 else if (strcmp(clock, "boottime") == 0 || 1620 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1621 off->clockid = CLOCK_BOOTTIME; 1622 else 1623 goto out; 1624 1625 noffsets++; 1626 if (noffsets == ARRAY_SIZE(offsets)) { 1627 if (next_line) 1628 count = next_line - kbuf; 1629 break; 1630 } 1631 } 1632 1633 ret = -ESRCH; 1634 p = get_proc_task(inode); 1635 if (!p) 1636 goto out; 1637 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1638 put_task_struct(p); 1639 if (ret) 1640 goto out; 1641 1642 ret = count; 1643 out: 1644 kfree(kbuf); 1645 return ret; 1646 } 1647 1648 static int timens_offsets_open(struct inode *inode, struct file *filp) 1649 { 1650 return single_open(filp, timens_offsets_show, inode); 1651 } 1652 1653 static const struct file_operations proc_timens_offsets_operations = { 1654 .open = timens_offsets_open, 1655 .read = seq_read, 1656 .write = timens_offsets_write, 1657 .llseek = seq_lseek, 1658 .release = single_release, 1659 }; 1660 #endif /* CONFIG_TIME_NS */ 1661 1662 static ssize_t comm_write(struct file *file, const char __user *buf, 1663 size_t count, loff_t *offset) 1664 { 1665 struct inode *inode = file_inode(file); 1666 struct task_struct *p; 1667 char buffer[TASK_COMM_LEN]; 1668 const size_t maxlen = sizeof(buffer) - 1; 1669 1670 memset(buffer, 0, sizeof(buffer)); 1671 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1672 return -EFAULT; 1673 1674 p = get_proc_task(inode); 1675 if (!p) 1676 return -ESRCH; 1677 1678 if (same_thread_group(current, p)) { 1679 set_task_comm(p, buffer); 1680 proc_comm_connector(p); 1681 } 1682 else 1683 count = -EINVAL; 1684 1685 put_task_struct(p); 1686 1687 return count; 1688 } 1689 1690 static int comm_show(struct seq_file *m, void *v) 1691 { 1692 struct inode *inode = m->private; 1693 struct task_struct *p; 1694 1695 p = get_proc_task(inode); 1696 if (!p) 1697 return -ESRCH; 1698 1699 proc_task_name(m, p, false); 1700 seq_putc(m, '\n'); 1701 1702 put_task_struct(p); 1703 1704 return 0; 1705 } 1706 1707 static int comm_open(struct inode *inode, struct file *filp) 1708 { 1709 return single_open(filp, comm_show, inode); 1710 } 1711 1712 static const struct file_operations proc_pid_set_comm_operations = { 1713 .open = comm_open, 1714 .read = seq_read, 1715 .write = comm_write, 1716 .llseek = seq_lseek, 1717 .release = single_release, 1718 }; 1719 1720 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1721 { 1722 struct task_struct *task; 1723 struct file *exe_file; 1724 1725 task = get_proc_task(d_inode(dentry)); 1726 if (!task) 1727 return -ENOENT; 1728 exe_file = get_task_exe_file(task); 1729 put_task_struct(task); 1730 if (exe_file) { 1731 *exe_path = exe_file->f_path; 1732 path_get(&exe_file->f_path); 1733 fput(exe_file); 1734 return 0; 1735 } else 1736 return -ENOENT; 1737 } 1738 1739 static const char *proc_pid_get_link(struct dentry *dentry, 1740 struct inode *inode, 1741 struct delayed_call *done) 1742 { 1743 struct path path; 1744 int error = -EACCES; 1745 1746 if (!dentry) 1747 return ERR_PTR(-ECHILD); 1748 1749 /* Are we allowed to snoop on the tasks file descriptors? */ 1750 if (!proc_fd_access_allowed(inode)) 1751 goto out; 1752 1753 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1754 if (error) 1755 goto out; 1756 1757 error = nd_jump_link(&path); 1758 out: 1759 return ERR_PTR(error); 1760 } 1761 1762 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1763 { 1764 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1765 char *pathname; 1766 int len; 1767 1768 if (!tmp) 1769 return -ENOMEM; 1770 1771 pathname = d_path(path, tmp, PAGE_SIZE); 1772 len = PTR_ERR(pathname); 1773 if (IS_ERR(pathname)) 1774 goto out; 1775 len = tmp + PAGE_SIZE - 1 - pathname; 1776 1777 if (len > buflen) 1778 len = buflen; 1779 if (copy_to_user(buffer, pathname, len)) 1780 len = -EFAULT; 1781 out: 1782 free_page((unsigned long)tmp); 1783 return len; 1784 } 1785 1786 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1787 { 1788 int error = -EACCES; 1789 struct inode *inode = d_inode(dentry); 1790 struct path path; 1791 1792 /* Are we allowed to snoop on the tasks file descriptors? */ 1793 if (!proc_fd_access_allowed(inode)) 1794 goto out; 1795 1796 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1797 if (error) 1798 goto out; 1799 1800 error = do_proc_readlink(&path, buffer, buflen); 1801 path_put(&path); 1802 out: 1803 return error; 1804 } 1805 1806 const struct inode_operations proc_pid_link_inode_operations = { 1807 .readlink = proc_pid_readlink, 1808 .get_link = proc_pid_get_link, 1809 .setattr = proc_setattr, 1810 }; 1811 1812 1813 /* building an inode */ 1814 1815 void task_dump_owner(struct task_struct *task, umode_t mode, 1816 kuid_t *ruid, kgid_t *rgid) 1817 { 1818 /* Depending on the state of dumpable compute who should own a 1819 * proc file for a task. 1820 */ 1821 const struct cred *cred; 1822 kuid_t uid; 1823 kgid_t gid; 1824 1825 if (unlikely(task->flags & PF_KTHREAD)) { 1826 *ruid = GLOBAL_ROOT_UID; 1827 *rgid = GLOBAL_ROOT_GID; 1828 return; 1829 } 1830 1831 /* Default to the tasks effective ownership */ 1832 rcu_read_lock(); 1833 cred = __task_cred(task); 1834 uid = cred->euid; 1835 gid = cred->egid; 1836 rcu_read_unlock(); 1837 1838 /* 1839 * Before the /proc/pid/status file was created the only way to read 1840 * the effective uid of a /process was to stat /proc/pid. Reading 1841 * /proc/pid/status is slow enough that procps and other packages 1842 * kept stating /proc/pid. To keep the rules in /proc simple I have 1843 * made this apply to all per process world readable and executable 1844 * directories. 1845 */ 1846 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1847 struct mm_struct *mm; 1848 task_lock(task); 1849 mm = task->mm; 1850 /* Make non-dumpable tasks owned by some root */ 1851 if (mm) { 1852 if (get_dumpable(mm) != SUID_DUMP_USER) { 1853 struct user_namespace *user_ns = mm->user_ns; 1854 1855 uid = make_kuid(user_ns, 0); 1856 if (!uid_valid(uid)) 1857 uid = GLOBAL_ROOT_UID; 1858 1859 gid = make_kgid(user_ns, 0); 1860 if (!gid_valid(gid)) 1861 gid = GLOBAL_ROOT_GID; 1862 } 1863 } else { 1864 uid = GLOBAL_ROOT_UID; 1865 gid = GLOBAL_ROOT_GID; 1866 } 1867 task_unlock(task); 1868 } 1869 *ruid = uid; 1870 *rgid = gid; 1871 } 1872 1873 void proc_pid_evict_inode(struct proc_inode *ei) 1874 { 1875 struct pid *pid = ei->pid; 1876 1877 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1878 spin_lock(&pid->lock); 1879 hlist_del_init_rcu(&ei->sibling_inodes); 1880 spin_unlock(&pid->lock); 1881 } 1882 1883 put_pid(pid); 1884 } 1885 1886 struct inode *proc_pid_make_inode(struct super_block * sb, 1887 struct task_struct *task, umode_t mode) 1888 { 1889 struct inode * inode; 1890 struct proc_inode *ei; 1891 struct pid *pid; 1892 1893 /* We need a new inode */ 1894 1895 inode = new_inode(sb); 1896 if (!inode) 1897 goto out; 1898 1899 /* Common stuff */ 1900 ei = PROC_I(inode); 1901 inode->i_mode = mode; 1902 inode->i_ino = get_next_ino(); 1903 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1904 inode->i_op = &proc_def_inode_operations; 1905 1906 /* 1907 * grab the reference to task. 1908 */ 1909 pid = get_task_pid(task, PIDTYPE_PID); 1910 if (!pid) 1911 goto out_unlock; 1912 1913 /* Let the pid remember us for quick removal */ 1914 ei->pid = pid; 1915 if (S_ISDIR(mode)) { 1916 spin_lock(&pid->lock); 1917 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1918 spin_unlock(&pid->lock); 1919 } 1920 1921 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1922 security_task_to_inode(task, inode); 1923 1924 out: 1925 return inode; 1926 1927 out_unlock: 1928 iput(inode); 1929 return NULL; 1930 } 1931 1932 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path, 1933 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1934 { 1935 struct inode *inode = d_inode(path->dentry); 1936 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1937 struct task_struct *task; 1938 1939 generic_fillattr(&init_user_ns, inode, stat); 1940 1941 stat->uid = GLOBAL_ROOT_UID; 1942 stat->gid = GLOBAL_ROOT_GID; 1943 rcu_read_lock(); 1944 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1945 if (task) { 1946 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1947 rcu_read_unlock(); 1948 /* 1949 * This doesn't prevent learning whether PID exists, 1950 * it only makes getattr() consistent with readdir(). 1951 */ 1952 return -ENOENT; 1953 } 1954 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1955 } 1956 rcu_read_unlock(); 1957 return 0; 1958 } 1959 1960 /* dentry stuff */ 1961 1962 /* 1963 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1964 */ 1965 void pid_update_inode(struct task_struct *task, struct inode *inode) 1966 { 1967 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1968 1969 inode->i_mode &= ~(S_ISUID | S_ISGID); 1970 security_task_to_inode(task, inode); 1971 } 1972 1973 /* 1974 * Rewrite the inode's ownerships here because the owning task may have 1975 * performed a setuid(), etc. 1976 * 1977 */ 1978 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1979 { 1980 struct inode *inode; 1981 struct task_struct *task; 1982 1983 if (flags & LOOKUP_RCU) 1984 return -ECHILD; 1985 1986 inode = d_inode(dentry); 1987 task = get_proc_task(inode); 1988 1989 if (task) { 1990 pid_update_inode(task, inode); 1991 put_task_struct(task); 1992 return 1; 1993 } 1994 return 0; 1995 } 1996 1997 static inline bool proc_inode_is_dead(struct inode *inode) 1998 { 1999 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2000 } 2001 2002 int pid_delete_dentry(const struct dentry *dentry) 2003 { 2004 /* Is the task we represent dead? 2005 * If so, then don't put the dentry on the lru list, 2006 * kill it immediately. 2007 */ 2008 return proc_inode_is_dead(d_inode(dentry)); 2009 } 2010 2011 const struct dentry_operations pid_dentry_operations = 2012 { 2013 .d_revalidate = pid_revalidate, 2014 .d_delete = pid_delete_dentry, 2015 }; 2016 2017 /* Lookups */ 2018 2019 /* 2020 * Fill a directory entry. 2021 * 2022 * If possible create the dcache entry and derive our inode number and 2023 * file type from dcache entry. 2024 * 2025 * Since all of the proc inode numbers are dynamically generated, the inode 2026 * numbers do not exist until the inode is cache. This means creating 2027 * the dcache entry in readdir is necessary to keep the inode numbers 2028 * reported by readdir in sync with the inode numbers reported 2029 * by stat. 2030 */ 2031 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2032 const char *name, unsigned int len, 2033 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2034 { 2035 struct dentry *child, *dir = file->f_path.dentry; 2036 struct qstr qname = QSTR_INIT(name, len); 2037 struct inode *inode; 2038 unsigned type = DT_UNKNOWN; 2039 ino_t ino = 1; 2040 2041 child = d_hash_and_lookup(dir, &qname); 2042 if (!child) { 2043 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2044 child = d_alloc_parallel(dir, &qname, &wq); 2045 if (IS_ERR(child)) 2046 goto end_instantiate; 2047 if (d_in_lookup(child)) { 2048 struct dentry *res; 2049 res = instantiate(child, task, ptr); 2050 d_lookup_done(child); 2051 if (unlikely(res)) { 2052 dput(child); 2053 child = res; 2054 if (IS_ERR(child)) 2055 goto end_instantiate; 2056 } 2057 } 2058 } 2059 inode = d_inode(child); 2060 ino = inode->i_ino; 2061 type = inode->i_mode >> 12; 2062 dput(child); 2063 end_instantiate: 2064 return dir_emit(ctx, name, len, ino, type); 2065 } 2066 2067 /* 2068 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2069 * which represent vma start and end addresses. 2070 */ 2071 static int dname_to_vma_addr(struct dentry *dentry, 2072 unsigned long *start, unsigned long *end) 2073 { 2074 const char *str = dentry->d_name.name; 2075 unsigned long long sval, eval; 2076 unsigned int len; 2077 2078 if (str[0] == '0' && str[1] != '-') 2079 return -EINVAL; 2080 len = _parse_integer(str, 16, &sval); 2081 if (len & KSTRTOX_OVERFLOW) 2082 return -EINVAL; 2083 if (sval != (unsigned long)sval) 2084 return -EINVAL; 2085 str += len; 2086 2087 if (*str != '-') 2088 return -EINVAL; 2089 str++; 2090 2091 if (str[0] == '0' && str[1]) 2092 return -EINVAL; 2093 len = _parse_integer(str, 16, &eval); 2094 if (len & KSTRTOX_OVERFLOW) 2095 return -EINVAL; 2096 if (eval != (unsigned long)eval) 2097 return -EINVAL; 2098 str += len; 2099 2100 if (*str != '\0') 2101 return -EINVAL; 2102 2103 *start = sval; 2104 *end = eval; 2105 2106 return 0; 2107 } 2108 2109 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2110 { 2111 unsigned long vm_start, vm_end; 2112 bool exact_vma_exists = false; 2113 struct mm_struct *mm = NULL; 2114 struct task_struct *task; 2115 struct inode *inode; 2116 int status = 0; 2117 2118 if (flags & LOOKUP_RCU) 2119 return -ECHILD; 2120 2121 inode = d_inode(dentry); 2122 task = get_proc_task(inode); 2123 if (!task) 2124 goto out_notask; 2125 2126 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2127 if (IS_ERR_OR_NULL(mm)) 2128 goto out; 2129 2130 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2131 status = mmap_read_lock_killable(mm); 2132 if (!status) { 2133 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2134 vm_end); 2135 mmap_read_unlock(mm); 2136 } 2137 } 2138 2139 mmput(mm); 2140 2141 if (exact_vma_exists) { 2142 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2143 2144 security_task_to_inode(task, inode); 2145 status = 1; 2146 } 2147 2148 out: 2149 put_task_struct(task); 2150 2151 out_notask: 2152 return status; 2153 } 2154 2155 static const struct dentry_operations tid_map_files_dentry_operations = { 2156 .d_revalidate = map_files_d_revalidate, 2157 .d_delete = pid_delete_dentry, 2158 }; 2159 2160 static int map_files_get_link(struct dentry *dentry, struct path *path) 2161 { 2162 unsigned long vm_start, vm_end; 2163 struct vm_area_struct *vma; 2164 struct task_struct *task; 2165 struct mm_struct *mm; 2166 int rc; 2167 2168 rc = -ENOENT; 2169 task = get_proc_task(d_inode(dentry)); 2170 if (!task) 2171 goto out; 2172 2173 mm = get_task_mm(task); 2174 put_task_struct(task); 2175 if (!mm) 2176 goto out; 2177 2178 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2179 if (rc) 2180 goto out_mmput; 2181 2182 rc = mmap_read_lock_killable(mm); 2183 if (rc) 2184 goto out_mmput; 2185 2186 rc = -ENOENT; 2187 vma = find_exact_vma(mm, vm_start, vm_end); 2188 if (vma && vma->vm_file) { 2189 *path = vma->vm_file->f_path; 2190 path_get(path); 2191 rc = 0; 2192 } 2193 mmap_read_unlock(mm); 2194 2195 out_mmput: 2196 mmput(mm); 2197 out: 2198 return rc; 2199 } 2200 2201 struct map_files_info { 2202 unsigned long start; 2203 unsigned long end; 2204 fmode_t mode; 2205 }; 2206 2207 /* 2208 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2209 * to concerns about how the symlinks may be used to bypass permissions on 2210 * ancestor directories in the path to the file in question. 2211 */ 2212 static const char * 2213 proc_map_files_get_link(struct dentry *dentry, 2214 struct inode *inode, 2215 struct delayed_call *done) 2216 { 2217 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2218 return ERR_PTR(-EPERM); 2219 2220 return proc_pid_get_link(dentry, inode, done); 2221 } 2222 2223 /* 2224 * Identical to proc_pid_link_inode_operations except for get_link() 2225 */ 2226 static const struct inode_operations proc_map_files_link_inode_operations = { 2227 .readlink = proc_pid_readlink, 2228 .get_link = proc_map_files_get_link, 2229 .setattr = proc_setattr, 2230 }; 2231 2232 static struct dentry * 2233 proc_map_files_instantiate(struct dentry *dentry, 2234 struct task_struct *task, const void *ptr) 2235 { 2236 fmode_t mode = (fmode_t)(unsigned long)ptr; 2237 struct proc_inode *ei; 2238 struct inode *inode; 2239 2240 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2241 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2242 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2243 if (!inode) 2244 return ERR_PTR(-ENOENT); 2245 2246 ei = PROC_I(inode); 2247 ei->op.proc_get_link = map_files_get_link; 2248 2249 inode->i_op = &proc_map_files_link_inode_operations; 2250 inode->i_size = 64; 2251 2252 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2253 return d_splice_alias(inode, dentry); 2254 } 2255 2256 static struct dentry *proc_map_files_lookup(struct inode *dir, 2257 struct dentry *dentry, unsigned int flags) 2258 { 2259 unsigned long vm_start, vm_end; 2260 struct vm_area_struct *vma; 2261 struct task_struct *task; 2262 struct dentry *result; 2263 struct mm_struct *mm; 2264 2265 result = ERR_PTR(-ENOENT); 2266 task = get_proc_task(dir); 2267 if (!task) 2268 goto out; 2269 2270 result = ERR_PTR(-EACCES); 2271 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2272 goto out_put_task; 2273 2274 result = ERR_PTR(-ENOENT); 2275 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2276 goto out_put_task; 2277 2278 mm = get_task_mm(task); 2279 if (!mm) 2280 goto out_put_task; 2281 2282 result = ERR_PTR(-EINTR); 2283 if (mmap_read_lock_killable(mm)) 2284 goto out_put_mm; 2285 2286 result = ERR_PTR(-ENOENT); 2287 vma = find_exact_vma(mm, vm_start, vm_end); 2288 if (!vma) 2289 goto out_no_vma; 2290 2291 if (vma->vm_file) 2292 result = proc_map_files_instantiate(dentry, task, 2293 (void *)(unsigned long)vma->vm_file->f_mode); 2294 2295 out_no_vma: 2296 mmap_read_unlock(mm); 2297 out_put_mm: 2298 mmput(mm); 2299 out_put_task: 2300 put_task_struct(task); 2301 out: 2302 return result; 2303 } 2304 2305 static const struct inode_operations proc_map_files_inode_operations = { 2306 .lookup = proc_map_files_lookup, 2307 .permission = proc_fd_permission, 2308 .setattr = proc_setattr, 2309 }; 2310 2311 static int 2312 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2313 { 2314 struct vm_area_struct *vma; 2315 struct task_struct *task; 2316 struct mm_struct *mm; 2317 unsigned long nr_files, pos, i; 2318 GENRADIX(struct map_files_info) fa; 2319 struct map_files_info *p; 2320 int ret; 2321 2322 genradix_init(&fa); 2323 2324 ret = -ENOENT; 2325 task = get_proc_task(file_inode(file)); 2326 if (!task) 2327 goto out; 2328 2329 ret = -EACCES; 2330 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2331 goto out_put_task; 2332 2333 ret = 0; 2334 if (!dir_emit_dots(file, ctx)) 2335 goto out_put_task; 2336 2337 mm = get_task_mm(task); 2338 if (!mm) 2339 goto out_put_task; 2340 2341 ret = mmap_read_lock_killable(mm); 2342 if (ret) { 2343 mmput(mm); 2344 goto out_put_task; 2345 } 2346 2347 nr_files = 0; 2348 2349 /* 2350 * We need two passes here: 2351 * 2352 * 1) Collect vmas of mapped files with mmap_lock taken 2353 * 2) Release mmap_lock and instantiate entries 2354 * 2355 * otherwise we get lockdep complained, since filldir() 2356 * routine might require mmap_lock taken in might_fault(). 2357 */ 2358 2359 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2360 if (!vma->vm_file) 2361 continue; 2362 if (++pos <= ctx->pos) 2363 continue; 2364 2365 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2366 if (!p) { 2367 ret = -ENOMEM; 2368 mmap_read_unlock(mm); 2369 mmput(mm); 2370 goto out_put_task; 2371 } 2372 2373 p->start = vma->vm_start; 2374 p->end = vma->vm_end; 2375 p->mode = vma->vm_file->f_mode; 2376 } 2377 mmap_read_unlock(mm); 2378 mmput(mm); 2379 2380 for (i = 0; i < nr_files; i++) { 2381 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2382 unsigned int len; 2383 2384 p = genradix_ptr(&fa, i); 2385 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2386 if (!proc_fill_cache(file, ctx, 2387 buf, len, 2388 proc_map_files_instantiate, 2389 task, 2390 (void *)(unsigned long)p->mode)) 2391 break; 2392 ctx->pos++; 2393 } 2394 2395 out_put_task: 2396 put_task_struct(task); 2397 out: 2398 genradix_free(&fa); 2399 return ret; 2400 } 2401 2402 static const struct file_operations proc_map_files_operations = { 2403 .read = generic_read_dir, 2404 .iterate_shared = proc_map_files_readdir, 2405 .llseek = generic_file_llseek, 2406 }; 2407 2408 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2409 struct timers_private { 2410 struct pid *pid; 2411 struct task_struct *task; 2412 struct sighand_struct *sighand; 2413 struct pid_namespace *ns; 2414 unsigned long flags; 2415 }; 2416 2417 static void *timers_start(struct seq_file *m, loff_t *pos) 2418 { 2419 struct timers_private *tp = m->private; 2420 2421 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2422 if (!tp->task) 2423 return ERR_PTR(-ESRCH); 2424 2425 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2426 if (!tp->sighand) 2427 return ERR_PTR(-ESRCH); 2428 2429 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2430 } 2431 2432 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2433 { 2434 struct timers_private *tp = m->private; 2435 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2436 } 2437 2438 static void timers_stop(struct seq_file *m, void *v) 2439 { 2440 struct timers_private *tp = m->private; 2441 2442 if (tp->sighand) { 2443 unlock_task_sighand(tp->task, &tp->flags); 2444 tp->sighand = NULL; 2445 } 2446 2447 if (tp->task) { 2448 put_task_struct(tp->task); 2449 tp->task = NULL; 2450 } 2451 } 2452 2453 static int show_timer(struct seq_file *m, void *v) 2454 { 2455 struct k_itimer *timer; 2456 struct timers_private *tp = m->private; 2457 int notify; 2458 static const char * const nstr[] = { 2459 [SIGEV_SIGNAL] = "signal", 2460 [SIGEV_NONE] = "none", 2461 [SIGEV_THREAD] = "thread", 2462 }; 2463 2464 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2465 notify = timer->it_sigev_notify; 2466 2467 seq_printf(m, "ID: %d\n", timer->it_id); 2468 seq_printf(m, "signal: %d/%px\n", 2469 timer->sigq->info.si_signo, 2470 timer->sigq->info.si_value.sival_ptr); 2471 seq_printf(m, "notify: %s/%s.%d\n", 2472 nstr[notify & ~SIGEV_THREAD_ID], 2473 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2474 pid_nr_ns(timer->it_pid, tp->ns)); 2475 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2476 2477 return 0; 2478 } 2479 2480 static const struct seq_operations proc_timers_seq_ops = { 2481 .start = timers_start, 2482 .next = timers_next, 2483 .stop = timers_stop, 2484 .show = show_timer, 2485 }; 2486 2487 static int proc_timers_open(struct inode *inode, struct file *file) 2488 { 2489 struct timers_private *tp; 2490 2491 tp = __seq_open_private(file, &proc_timers_seq_ops, 2492 sizeof(struct timers_private)); 2493 if (!tp) 2494 return -ENOMEM; 2495 2496 tp->pid = proc_pid(inode); 2497 tp->ns = proc_pid_ns(inode->i_sb); 2498 return 0; 2499 } 2500 2501 static const struct file_operations proc_timers_operations = { 2502 .open = proc_timers_open, 2503 .read = seq_read, 2504 .llseek = seq_lseek, 2505 .release = seq_release_private, 2506 }; 2507 #endif 2508 2509 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2510 size_t count, loff_t *offset) 2511 { 2512 struct inode *inode = file_inode(file); 2513 struct task_struct *p; 2514 u64 slack_ns; 2515 int err; 2516 2517 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2518 if (err < 0) 2519 return err; 2520 2521 p = get_proc_task(inode); 2522 if (!p) 2523 return -ESRCH; 2524 2525 if (p != current) { 2526 rcu_read_lock(); 2527 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2528 rcu_read_unlock(); 2529 count = -EPERM; 2530 goto out; 2531 } 2532 rcu_read_unlock(); 2533 2534 err = security_task_setscheduler(p); 2535 if (err) { 2536 count = err; 2537 goto out; 2538 } 2539 } 2540 2541 task_lock(p); 2542 if (slack_ns == 0) 2543 p->timer_slack_ns = p->default_timer_slack_ns; 2544 else 2545 p->timer_slack_ns = slack_ns; 2546 task_unlock(p); 2547 2548 out: 2549 put_task_struct(p); 2550 2551 return count; 2552 } 2553 2554 static int timerslack_ns_show(struct seq_file *m, void *v) 2555 { 2556 struct inode *inode = m->private; 2557 struct task_struct *p; 2558 int err = 0; 2559 2560 p = get_proc_task(inode); 2561 if (!p) 2562 return -ESRCH; 2563 2564 if (p != current) { 2565 rcu_read_lock(); 2566 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2567 rcu_read_unlock(); 2568 err = -EPERM; 2569 goto out; 2570 } 2571 rcu_read_unlock(); 2572 2573 err = security_task_getscheduler(p); 2574 if (err) 2575 goto out; 2576 } 2577 2578 task_lock(p); 2579 seq_printf(m, "%llu\n", p->timer_slack_ns); 2580 task_unlock(p); 2581 2582 out: 2583 put_task_struct(p); 2584 2585 return err; 2586 } 2587 2588 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2589 { 2590 return single_open(filp, timerslack_ns_show, inode); 2591 } 2592 2593 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2594 .open = timerslack_ns_open, 2595 .read = seq_read, 2596 .write = timerslack_ns_write, 2597 .llseek = seq_lseek, 2598 .release = single_release, 2599 }; 2600 2601 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2602 struct task_struct *task, const void *ptr) 2603 { 2604 const struct pid_entry *p = ptr; 2605 struct inode *inode; 2606 struct proc_inode *ei; 2607 2608 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2609 if (!inode) 2610 return ERR_PTR(-ENOENT); 2611 2612 ei = PROC_I(inode); 2613 if (S_ISDIR(inode->i_mode)) 2614 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2615 if (p->iop) 2616 inode->i_op = p->iop; 2617 if (p->fop) 2618 inode->i_fop = p->fop; 2619 ei->op = p->op; 2620 pid_update_inode(task, inode); 2621 d_set_d_op(dentry, &pid_dentry_operations); 2622 return d_splice_alias(inode, dentry); 2623 } 2624 2625 static struct dentry *proc_pident_lookup(struct inode *dir, 2626 struct dentry *dentry, 2627 const struct pid_entry *p, 2628 const struct pid_entry *end) 2629 { 2630 struct task_struct *task = get_proc_task(dir); 2631 struct dentry *res = ERR_PTR(-ENOENT); 2632 2633 if (!task) 2634 goto out_no_task; 2635 2636 /* 2637 * Yes, it does not scale. And it should not. Don't add 2638 * new entries into /proc/<tgid>/ without very good reasons. 2639 */ 2640 for (; p < end; p++) { 2641 if (p->len != dentry->d_name.len) 2642 continue; 2643 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2644 res = proc_pident_instantiate(dentry, task, p); 2645 break; 2646 } 2647 } 2648 put_task_struct(task); 2649 out_no_task: 2650 return res; 2651 } 2652 2653 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2654 const struct pid_entry *ents, unsigned int nents) 2655 { 2656 struct task_struct *task = get_proc_task(file_inode(file)); 2657 const struct pid_entry *p; 2658 2659 if (!task) 2660 return -ENOENT; 2661 2662 if (!dir_emit_dots(file, ctx)) 2663 goto out; 2664 2665 if (ctx->pos >= nents + 2) 2666 goto out; 2667 2668 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2669 if (!proc_fill_cache(file, ctx, p->name, p->len, 2670 proc_pident_instantiate, task, p)) 2671 break; 2672 ctx->pos++; 2673 } 2674 out: 2675 put_task_struct(task); 2676 return 0; 2677 } 2678 2679 #ifdef CONFIG_SECURITY 2680 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2681 { 2682 file->private_data = NULL; 2683 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2684 return 0; 2685 } 2686 2687 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2688 size_t count, loff_t *ppos) 2689 { 2690 struct inode * inode = file_inode(file); 2691 char *p = NULL; 2692 ssize_t length; 2693 struct task_struct *task = get_proc_task(inode); 2694 2695 if (!task) 2696 return -ESRCH; 2697 2698 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2699 (char*)file->f_path.dentry->d_name.name, 2700 &p); 2701 put_task_struct(task); 2702 if (length > 0) 2703 length = simple_read_from_buffer(buf, count, ppos, p, length); 2704 kfree(p); 2705 return length; 2706 } 2707 2708 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2709 size_t count, loff_t *ppos) 2710 { 2711 struct inode * inode = file_inode(file); 2712 struct task_struct *task; 2713 void *page; 2714 int rv; 2715 2716 /* A task may only write when it was the opener. */ 2717 if (file->private_data != current->mm) 2718 return -EPERM; 2719 2720 rcu_read_lock(); 2721 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2722 if (!task) { 2723 rcu_read_unlock(); 2724 return -ESRCH; 2725 } 2726 /* A task may only write its own attributes. */ 2727 if (current != task) { 2728 rcu_read_unlock(); 2729 return -EACCES; 2730 } 2731 /* Prevent changes to overridden credentials. */ 2732 if (current_cred() != current_real_cred()) { 2733 rcu_read_unlock(); 2734 return -EBUSY; 2735 } 2736 rcu_read_unlock(); 2737 2738 if (count > PAGE_SIZE) 2739 count = PAGE_SIZE; 2740 2741 /* No partial writes. */ 2742 if (*ppos != 0) 2743 return -EINVAL; 2744 2745 page = memdup_user(buf, count); 2746 if (IS_ERR(page)) { 2747 rv = PTR_ERR(page); 2748 goto out; 2749 } 2750 2751 /* Guard against adverse ptrace interaction */ 2752 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2753 if (rv < 0) 2754 goto out_free; 2755 2756 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2757 file->f_path.dentry->d_name.name, page, 2758 count); 2759 mutex_unlock(¤t->signal->cred_guard_mutex); 2760 out_free: 2761 kfree(page); 2762 out: 2763 return rv; 2764 } 2765 2766 static const struct file_operations proc_pid_attr_operations = { 2767 .open = proc_pid_attr_open, 2768 .read = proc_pid_attr_read, 2769 .write = proc_pid_attr_write, 2770 .llseek = generic_file_llseek, 2771 .release = mem_release, 2772 }; 2773 2774 #define LSM_DIR_OPS(LSM) \ 2775 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2776 struct dir_context *ctx) \ 2777 { \ 2778 return proc_pident_readdir(filp, ctx, \ 2779 LSM##_attr_dir_stuff, \ 2780 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2781 } \ 2782 \ 2783 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2784 .read = generic_read_dir, \ 2785 .iterate = proc_##LSM##_attr_dir_iterate, \ 2786 .llseek = default_llseek, \ 2787 }; \ 2788 \ 2789 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2790 struct dentry *dentry, unsigned int flags) \ 2791 { \ 2792 return proc_pident_lookup(dir, dentry, \ 2793 LSM##_attr_dir_stuff, \ 2794 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2795 } \ 2796 \ 2797 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2798 .lookup = proc_##LSM##_attr_dir_lookup, \ 2799 .getattr = pid_getattr, \ 2800 .setattr = proc_setattr, \ 2801 } 2802 2803 #ifdef CONFIG_SECURITY_SMACK 2804 static const struct pid_entry smack_attr_dir_stuff[] = { 2805 ATTR("smack", "current", 0666), 2806 }; 2807 LSM_DIR_OPS(smack); 2808 #endif 2809 2810 #ifdef CONFIG_SECURITY_APPARMOR 2811 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2812 ATTR("apparmor", "current", 0666), 2813 ATTR("apparmor", "prev", 0444), 2814 ATTR("apparmor", "exec", 0666), 2815 }; 2816 LSM_DIR_OPS(apparmor); 2817 #endif 2818 2819 static const struct pid_entry attr_dir_stuff[] = { 2820 ATTR(NULL, "current", 0666), 2821 ATTR(NULL, "prev", 0444), 2822 ATTR(NULL, "exec", 0666), 2823 ATTR(NULL, "fscreate", 0666), 2824 ATTR(NULL, "keycreate", 0666), 2825 ATTR(NULL, "sockcreate", 0666), 2826 #ifdef CONFIG_SECURITY_SMACK 2827 DIR("smack", 0555, 2828 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2829 #endif 2830 #ifdef CONFIG_SECURITY_APPARMOR 2831 DIR("apparmor", 0555, 2832 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2833 #endif 2834 }; 2835 2836 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2837 { 2838 return proc_pident_readdir(file, ctx, 2839 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2840 } 2841 2842 static const struct file_operations proc_attr_dir_operations = { 2843 .read = generic_read_dir, 2844 .iterate_shared = proc_attr_dir_readdir, 2845 .llseek = generic_file_llseek, 2846 }; 2847 2848 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2849 struct dentry *dentry, unsigned int flags) 2850 { 2851 return proc_pident_lookup(dir, dentry, 2852 attr_dir_stuff, 2853 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2854 } 2855 2856 static const struct inode_operations proc_attr_dir_inode_operations = { 2857 .lookup = proc_attr_dir_lookup, 2858 .getattr = pid_getattr, 2859 .setattr = proc_setattr, 2860 }; 2861 2862 #endif 2863 2864 #ifdef CONFIG_ELF_CORE 2865 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2866 size_t count, loff_t *ppos) 2867 { 2868 struct task_struct *task = get_proc_task(file_inode(file)); 2869 struct mm_struct *mm; 2870 char buffer[PROC_NUMBUF]; 2871 size_t len; 2872 int ret; 2873 2874 if (!task) 2875 return -ESRCH; 2876 2877 ret = 0; 2878 mm = get_task_mm(task); 2879 if (mm) { 2880 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2881 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2882 MMF_DUMP_FILTER_SHIFT)); 2883 mmput(mm); 2884 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2885 } 2886 2887 put_task_struct(task); 2888 2889 return ret; 2890 } 2891 2892 static ssize_t proc_coredump_filter_write(struct file *file, 2893 const char __user *buf, 2894 size_t count, 2895 loff_t *ppos) 2896 { 2897 struct task_struct *task; 2898 struct mm_struct *mm; 2899 unsigned int val; 2900 int ret; 2901 int i; 2902 unsigned long mask; 2903 2904 ret = kstrtouint_from_user(buf, count, 0, &val); 2905 if (ret < 0) 2906 return ret; 2907 2908 ret = -ESRCH; 2909 task = get_proc_task(file_inode(file)); 2910 if (!task) 2911 goto out_no_task; 2912 2913 mm = get_task_mm(task); 2914 if (!mm) 2915 goto out_no_mm; 2916 ret = 0; 2917 2918 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2919 if (val & mask) 2920 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2921 else 2922 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2923 } 2924 2925 mmput(mm); 2926 out_no_mm: 2927 put_task_struct(task); 2928 out_no_task: 2929 if (ret < 0) 2930 return ret; 2931 return count; 2932 } 2933 2934 static const struct file_operations proc_coredump_filter_operations = { 2935 .read = proc_coredump_filter_read, 2936 .write = proc_coredump_filter_write, 2937 .llseek = generic_file_llseek, 2938 }; 2939 #endif 2940 2941 #ifdef CONFIG_TASK_IO_ACCOUNTING 2942 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2943 { 2944 struct task_io_accounting acct = task->ioac; 2945 unsigned long flags; 2946 int result; 2947 2948 result = down_read_killable(&task->signal->exec_update_lock); 2949 if (result) 2950 return result; 2951 2952 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2953 result = -EACCES; 2954 goto out_unlock; 2955 } 2956 2957 if (whole && lock_task_sighand(task, &flags)) { 2958 struct task_struct *t = task; 2959 2960 task_io_accounting_add(&acct, &task->signal->ioac); 2961 while_each_thread(task, t) 2962 task_io_accounting_add(&acct, &t->ioac); 2963 2964 unlock_task_sighand(task, &flags); 2965 } 2966 seq_printf(m, 2967 "rchar: %llu\n" 2968 "wchar: %llu\n" 2969 "syscr: %llu\n" 2970 "syscw: %llu\n" 2971 "read_bytes: %llu\n" 2972 "write_bytes: %llu\n" 2973 "cancelled_write_bytes: %llu\n", 2974 (unsigned long long)acct.rchar, 2975 (unsigned long long)acct.wchar, 2976 (unsigned long long)acct.syscr, 2977 (unsigned long long)acct.syscw, 2978 (unsigned long long)acct.read_bytes, 2979 (unsigned long long)acct.write_bytes, 2980 (unsigned long long)acct.cancelled_write_bytes); 2981 result = 0; 2982 2983 out_unlock: 2984 up_read(&task->signal->exec_update_lock); 2985 return result; 2986 } 2987 2988 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2989 struct pid *pid, struct task_struct *task) 2990 { 2991 return do_io_accounting(task, m, 0); 2992 } 2993 2994 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2995 struct pid *pid, struct task_struct *task) 2996 { 2997 return do_io_accounting(task, m, 1); 2998 } 2999 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3000 3001 #ifdef CONFIG_USER_NS 3002 static int proc_id_map_open(struct inode *inode, struct file *file, 3003 const struct seq_operations *seq_ops) 3004 { 3005 struct user_namespace *ns = NULL; 3006 struct task_struct *task; 3007 struct seq_file *seq; 3008 int ret = -EINVAL; 3009 3010 task = get_proc_task(inode); 3011 if (task) { 3012 rcu_read_lock(); 3013 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3014 rcu_read_unlock(); 3015 put_task_struct(task); 3016 } 3017 if (!ns) 3018 goto err; 3019 3020 ret = seq_open(file, seq_ops); 3021 if (ret) 3022 goto err_put_ns; 3023 3024 seq = file->private_data; 3025 seq->private = ns; 3026 3027 return 0; 3028 err_put_ns: 3029 put_user_ns(ns); 3030 err: 3031 return ret; 3032 } 3033 3034 static int proc_id_map_release(struct inode *inode, struct file *file) 3035 { 3036 struct seq_file *seq = file->private_data; 3037 struct user_namespace *ns = seq->private; 3038 put_user_ns(ns); 3039 return seq_release(inode, file); 3040 } 3041 3042 static int proc_uid_map_open(struct inode *inode, struct file *file) 3043 { 3044 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3045 } 3046 3047 static int proc_gid_map_open(struct inode *inode, struct file *file) 3048 { 3049 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3050 } 3051 3052 static int proc_projid_map_open(struct inode *inode, struct file *file) 3053 { 3054 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3055 } 3056 3057 static const struct file_operations proc_uid_map_operations = { 3058 .open = proc_uid_map_open, 3059 .write = proc_uid_map_write, 3060 .read = seq_read, 3061 .llseek = seq_lseek, 3062 .release = proc_id_map_release, 3063 }; 3064 3065 static const struct file_operations proc_gid_map_operations = { 3066 .open = proc_gid_map_open, 3067 .write = proc_gid_map_write, 3068 .read = seq_read, 3069 .llseek = seq_lseek, 3070 .release = proc_id_map_release, 3071 }; 3072 3073 static const struct file_operations proc_projid_map_operations = { 3074 .open = proc_projid_map_open, 3075 .write = proc_projid_map_write, 3076 .read = seq_read, 3077 .llseek = seq_lseek, 3078 .release = proc_id_map_release, 3079 }; 3080 3081 static int proc_setgroups_open(struct inode *inode, struct file *file) 3082 { 3083 struct user_namespace *ns = NULL; 3084 struct task_struct *task; 3085 int ret; 3086 3087 ret = -ESRCH; 3088 task = get_proc_task(inode); 3089 if (task) { 3090 rcu_read_lock(); 3091 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3092 rcu_read_unlock(); 3093 put_task_struct(task); 3094 } 3095 if (!ns) 3096 goto err; 3097 3098 if (file->f_mode & FMODE_WRITE) { 3099 ret = -EACCES; 3100 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3101 goto err_put_ns; 3102 } 3103 3104 ret = single_open(file, &proc_setgroups_show, ns); 3105 if (ret) 3106 goto err_put_ns; 3107 3108 return 0; 3109 err_put_ns: 3110 put_user_ns(ns); 3111 err: 3112 return ret; 3113 } 3114 3115 static int proc_setgroups_release(struct inode *inode, struct file *file) 3116 { 3117 struct seq_file *seq = file->private_data; 3118 struct user_namespace *ns = seq->private; 3119 int ret = single_release(inode, file); 3120 put_user_ns(ns); 3121 return ret; 3122 } 3123 3124 static const struct file_operations proc_setgroups_operations = { 3125 .open = proc_setgroups_open, 3126 .write = proc_setgroups_write, 3127 .read = seq_read, 3128 .llseek = seq_lseek, 3129 .release = proc_setgroups_release, 3130 }; 3131 #endif /* CONFIG_USER_NS */ 3132 3133 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3134 struct pid *pid, struct task_struct *task) 3135 { 3136 int err = lock_trace(task); 3137 if (!err) { 3138 seq_printf(m, "%08x\n", task->personality); 3139 unlock_trace(task); 3140 } 3141 return err; 3142 } 3143 3144 #ifdef CONFIG_LIVEPATCH 3145 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3146 struct pid *pid, struct task_struct *task) 3147 { 3148 seq_printf(m, "%d\n", task->patch_state); 3149 return 0; 3150 } 3151 #endif /* CONFIG_LIVEPATCH */ 3152 3153 #ifdef CONFIG_STACKLEAK_METRICS 3154 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3155 struct pid *pid, struct task_struct *task) 3156 { 3157 unsigned long prev_depth = THREAD_SIZE - 3158 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3159 unsigned long depth = THREAD_SIZE - 3160 (task->lowest_stack & (THREAD_SIZE - 1)); 3161 3162 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3163 prev_depth, depth); 3164 return 0; 3165 } 3166 #endif /* CONFIG_STACKLEAK_METRICS */ 3167 3168 /* 3169 * Thread groups 3170 */ 3171 static const struct file_operations proc_task_operations; 3172 static const struct inode_operations proc_task_inode_operations; 3173 3174 static const struct pid_entry tgid_base_stuff[] = { 3175 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3176 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3177 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3178 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3179 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3180 #ifdef CONFIG_NET 3181 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3182 #endif 3183 REG("environ", S_IRUSR, proc_environ_operations), 3184 REG("auxv", S_IRUSR, proc_auxv_operations), 3185 ONE("status", S_IRUGO, proc_pid_status), 3186 ONE("personality", S_IRUSR, proc_pid_personality), 3187 ONE("limits", S_IRUGO, proc_pid_limits), 3188 #ifdef CONFIG_SCHED_DEBUG 3189 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3190 #endif 3191 #ifdef CONFIG_SCHED_AUTOGROUP 3192 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3193 #endif 3194 #ifdef CONFIG_TIME_NS 3195 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3196 #endif 3197 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3198 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3199 ONE("syscall", S_IRUSR, proc_pid_syscall), 3200 #endif 3201 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3202 ONE("stat", S_IRUGO, proc_tgid_stat), 3203 ONE("statm", S_IRUGO, proc_pid_statm), 3204 REG("maps", S_IRUGO, proc_pid_maps_operations), 3205 #ifdef CONFIG_NUMA 3206 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3207 #endif 3208 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3209 LNK("cwd", proc_cwd_link), 3210 LNK("root", proc_root_link), 3211 LNK("exe", proc_exe_link), 3212 REG("mounts", S_IRUGO, proc_mounts_operations), 3213 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3214 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3215 #ifdef CONFIG_PROC_PAGE_MONITOR 3216 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3217 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3218 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3219 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3220 #endif 3221 #ifdef CONFIG_SECURITY 3222 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3223 #endif 3224 #ifdef CONFIG_KALLSYMS 3225 ONE("wchan", S_IRUGO, proc_pid_wchan), 3226 #endif 3227 #ifdef CONFIG_STACKTRACE 3228 ONE("stack", S_IRUSR, proc_pid_stack), 3229 #endif 3230 #ifdef CONFIG_SCHED_INFO 3231 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3232 #endif 3233 #ifdef CONFIG_LATENCYTOP 3234 REG("latency", S_IRUGO, proc_lstats_operations), 3235 #endif 3236 #ifdef CONFIG_PROC_PID_CPUSET 3237 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3238 #endif 3239 #ifdef CONFIG_CGROUPS 3240 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3241 #endif 3242 #ifdef CONFIG_PROC_CPU_RESCTRL 3243 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3244 #endif 3245 ONE("oom_score", S_IRUGO, proc_oom_score), 3246 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3247 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3248 #ifdef CONFIG_AUDIT 3249 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3250 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3251 #endif 3252 #ifdef CONFIG_FAULT_INJECTION 3253 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3254 REG("fail-nth", 0644, proc_fail_nth_operations), 3255 #endif 3256 #ifdef CONFIG_ELF_CORE 3257 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3258 #endif 3259 #ifdef CONFIG_TASK_IO_ACCOUNTING 3260 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3261 #endif 3262 #ifdef CONFIG_USER_NS 3263 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3264 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3265 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3266 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3267 #endif 3268 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3269 REG("timers", S_IRUGO, proc_timers_operations), 3270 #endif 3271 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3272 #ifdef CONFIG_LIVEPATCH 3273 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3274 #endif 3275 #ifdef CONFIG_STACKLEAK_METRICS 3276 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3277 #endif 3278 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3279 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3280 #endif 3281 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3282 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3283 #endif 3284 }; 3285 3286 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3287 { 3288 return proc_pident_readdir(file, ctx, 3289 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3290 } 3291 3292 static const struct file_operations proc_tgid_base_operations = { 3293 .read = generic_read_dir, 3294 .iterate_shared = proc_tgid_base_readdir, 3295 .llseek = generic_file_llseek, 3296 }; 3297 3298 struct pid *tgid_pidfd_to_pid(const struct file *file) 3299 { 3300 if (file->f_op != &proc_tgid_base_operations) 3301 return ERR_PTR(-EBADF); 3302 3303 return proc_pid(file_inode(file)); 3304 } 3305 3306 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3307 { 3308 return proc_pident_lookup(dir, dentry, 3309 tgid_base_stuff, 3310 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3311 } 3312 3313 static const struct inode_operations proc_tgid_base_inode_operations = { 3314 .lookup = proc_tgid_base_lookup, 3315 .getattr = pid_getattr, 3316 .setattr = proc_setattr, 3317 .permission = proc_pid_permission, 3318 }; 3319 3320 /** 3321 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3322 * @pid: pid that should be flushed. 3323 * 3324 * This function walks a list of inodes (that belong to any proc 3325 * filesystem) that are attached to the pid and flushes them from 3326 * the dentry cache. 3327 * 3328 * It is safe and reasonable to cache /proc entries for a task until 3329 * that task exits. After that they just clog up the dcache with 3330 * useless entries, possibly causing useful dcache entries to be 3331 * flushed instead. This routine is provided to flush those useless 3332 * dcache entries when a process is reaped. 3333 * 3334 * NOTE: This routine is just an optimization so it does not guarantee 3335 * that no dcache entries will exist after a process is reaped 3336 * it just makes it very unlikely that any will persist. 3337 */ 3338 3339 void proc_flush_pid(struct pid *pid) 3340 { 3341 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3342 } 3343 3344 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3345 struct task_struct *task, const void *ptr) 3346 { 3347 struct inode *inode; 3348 3349 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3350 if (!inode) 3351 return ERR_PTR(-ENOENT); 3352 3353 inode->i_op = &proc_tgid_base_inode_operations; 3354 inode->i_fop = &proc_tgid_base_operations; 3355 inode->i_flags|=S_IMMUTABLE; 3356 3357 set_nlink(inode, nlink_tgid); 3358 pid_update_inode(task, inode); 3359 3360 d_set_d_op(dentry, &pid_dentry_operations); 3361 return d_splice_alias(inode, dentry); 3362 } 3363 3364 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3365 { 3366 struct task_struct *task; 3367 unsigned tgid; 3368 struct proc_fs_info *fs_info; 3369 struct pid_namespace *ns; 3370 struct dentry *result = ERR_PTR(-ENOENT); 3371 3372 tgid = name_to_int(&dentry->d_name); 3373 if (tgid == ~0U) 3374 goto out; 3375 3376 fs_info = proc_sb_info(dentry->d_sb); 3377 ns = fs_info->pid_ns; 3378 rcu_read_lock(); 3379 task = find_task_by_pid_ns(tgid, ns); 3380 if (task) 3381 get_task_struct(task); 3382 rcu_read_unlock(); 3383 if (!task) 3384 goto out; 3385 3386 /* Limit procfs to only ptraceable tasks */ 3387 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3388 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3389 goto out_put_task; 3390 } 3391 3392 result = proc_pid_instantiate(dentry, task, NULL); 3393 out_put_task: 3394 put_task_struct(task); 3395 out: 3396 return result; 3397 } 3398 3399 /* 3400 * Find the first task with tgid >= tgid 3401 * 3402 */ 3403 struct tgid_iter { 3404 unsigned int tgid; 3405 struct task_struct *task; 3406 }; 3407 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3408 { 3409 struct pid *pid; 3410 3411 if (iter.task) 3412 put_task_struct(iter.task); 3413 rcu_read_lock(); 3414 retry: 3415 iter.task = NULL; 3416 pid = find_ge_pid(iter.tgid, ns); 3417 if (pid) { 3418 iter.tgid = pid_nr_ns(pid, ns); 3419 iter.task = pid_task(pid, PIDTYPE_TGID); 3420 if (!iter.task) { 3421 iter.tgid += 1; 3422 goto retry; 3423 } 3424 get_task_struct(iter.task); 3425 } 3426 rcu_read_unlock(); 3427 return iter; 3428 } 3429 3430 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3431 3432 /* for the /proc/ directory itself, after non-process stuff has been done */ 3433 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3434 { 3435 struct tgid_iter iter; 3436 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3437 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3438 loff_t pos = ctx->pos; 3439 3440 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3441 return 0; 3442 3443 if (pos == TGID_OFFSET - 2) { 3444 struct inode *inode = d_inode(fs_info->proc_self); 3445 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3446 return 0; 3447 ctx->pos = pos = pos + 1; 3448 } 3449 if (pos == TGID_OFFSET - 1) { 3450 struct inode *inode = d_inode(fs_info->proc_thread_self); 3451 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3452 return 0; 3453 ctx->pos = pos = pos + 1; 3454 } 3455 iter.tgid = pos - TGID_OFFSET; 3456 iter.task = NULL; 3457 for (iter = next_tgid(ns, iter); 3458 iter.task; 3459 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3460 char name[10 + 1]; 3461 unsigned int len; 3462 3463 cond_resched(); 3464 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3465 continue; 3466 3467 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3468 ctx->pos = iter.tgid + TGID_OFFSET; 3469 if (!proc_fill_cache(file, ctx, name, len, 3470 proc_pid_instantiate, iter.task, NULL)) { 3471 put_task_struct(iter.task); 3472 return 0; 3473 } 3474 } 3475 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3476 return 0; 3477 } 3478 3479 /* 3480 * proc_tid_comm_permission is a special permission function exclusively 3481 * used for the node /proc/<pid>/task/<tid>/comm. 3482 * It bypasses generic permission checks in the case where a task of the same 3483 * task group attempts to access the node. 3484 * The rationale behind this is that glibc and bionic access this node for 3485 * cross thread naming (pthread_set/getname_np(!self)). However, if 3486 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3487 * which locks out the cross thread naming implementation. 3488 * This function makes sure that the node is always accessible for members of 3489 * same thread group. 3490 */ 3491 static int proc_tid_comm_permission(struct user_namespace *mnt_userns, 3492 struct inode *inode, int mask) 3493 { 3494 bool is_same_tgroup; 3495 struct task_struct *task; 3496 3497 task = get_proc_task(inode); 3498 if (!task) 3499 return -ESRCH; 3500 is_same_tgroup = same_thread_group(current, task); 3501 put_task_struct(task); 3502 3503 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3504 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3505 * read or written by the members of the corresponding 3506 * thread group. 3507 */ 3508 return 0; 3509 } 3510 3511 return generic_permission(&init_user_ns, inode, mask); 3512 } 3513 3514 static const struct inode_operations proc_tid_comm_inode_operations = { 3515 .permission = proc_tid_comm_permission, 3516 }; 3517 3518 /* 3519 * Tasks 3520 */ 3521 static const struct pid_entry tid_base_stuff[] = { 3522 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3523 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3524 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3525 #ifdef CONFIG_NET 3526 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3527 #endif 3528 REG("environ", S_IRUSR, proc_environ_operations), 3529 REG("auxv", S_IRUSR, proc_auxv_operations), 3530 ONE("status", S_IRUGO, proc_pid_status), 3531 ONE("personality", S_IRUSR, proc_pid_personality), 3532 ONE("limits", S_IRUGO, proc_pid_limits), 3533 #ifdef CONFIG_SCHED_DEBUG 3534 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3535 #endif 3536 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3537 &proc_tid_comm_inode_operations, 3538 &proc_pid_set_comm_operations, {}), 3539 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3540 ONE("syscall", S_IRUSR, proc_pid_syscall), 3541 #endif 3542 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3543 ONE("stat", S_IRUGO, proc_tid_stat), 3544 ONE("statm", S_IRUGO, proc_pid_statm), 3545 REG("maps", S_IRUGO, proc_pid_maps_operations), 3546 #ifdef CONFIG_PROC_CHILDREN 3547 REG("children", S_IRUGO, proc_tid_children_operations), 3548 #endif 3549 #ifdef CONFIG_NUMA 3550 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3551 #endif 3552 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3553 LNK("cwd", proc_cwd_link), 3554 LNK("root", proc_root_link), 3555 LNK("exe", proc_exe_link), 3556 REG("mounts", S_IRUGO, proc_mounts_operations), 3557 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3558 #ifdef CONFIG_PROC_PAGE_MONITOR 3559 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3560 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3561 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3562 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3563 #endif 3564 #ifdef CONFIG_SECURITY 3565 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3566 #endif 3567 #ifdef CONFIG_KALLSYMS 3568 ONE("wchan", S_IRUGO, proc_pid_wchan), 3569 #endif 3570 #ifdef CONFIG_STACKTRACE 3571 ONE("stack", S_IRUSR, proc_pid_stack), 3572 #endif 3573 #ifdef CONFIG_SCHED_INFO 3574 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3575 #endif 3576 #ifdef CONFIG_LATENCYTOP 3577 REG("latency", S_IRUGO, proc_lstats_operations), 3578 #endif 3579 #ifdef CONFIG_PROC_PID_CPUSET 3580 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3581 #endif 3582 #ifdef CONFIG_CGROUPS 3583 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3584 #endif 3585 #ifdef CONFIG_PROC_CPU_RESCTRL 3586 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3587 #endif 3588 ONE("oom_score", S_IRUGO, proc_oom_score), 3589 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3590 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3591 #ifdef CONFIG_AUDIT 3592 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3593 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3594 #endif 3595 #ifdef CONFIG_FAULT_INJECTION 3596 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3597 REG("fail-nth", 0644, proc_fail_nth_operations), 3598 #endif 3599 #ifdef CONFIG_TASK_IO_ACCOUNTING 3600 ONE("io", S_IRUSR, proc_tid_io_accounting), 3601 #endif 3602 #ifdef CONFIG_USER_NS 3603 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3604 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3605 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3606 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3607 #endif 3608 #ifdef CONFIG_LIVEPATCH 3609 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3610 #endif 3611 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3612 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3613 #endif 3614 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3615 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3616 #endif 3617 }; 3618 3619 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3620 { 3621 return proc_pident_readdir(file, ctx, 3622 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3623 } 3624 3625 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3626 { 3627 return proc_pident_lookup(dir, dentry, 3628 tid_base_stuff, 3629 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3630 } 3631 3632 static const struct file_operations proc_tid_base_operations = { 3633 .read = generic_read_dir, 3634 .iterate_shared = proc_tid_base_readdir, 3635 .llseek = generic_file_llseek, 3636 }; 3637 3638 static const struct inode_operations proc_tid_base_inode_operations = { 3639 .lookup = proc_tid_base_lookup, 3640 .getattr = pid_getattr, 3641 .setattr = proc_setattr, 3642 }; 3643 3644 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3645 struct task_struct *task, const void *ptr) 3646 { 3647 struct inode *inode; 3648 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3649 if (!inode) 3650 return ERR_PTR(-ENOENT); 3651 3652 inode->i_op = &proc_tid_base_inode_operations; 3653 inode->i_fop = &proc_tid_base_operations; 3654 inode->i_flags |= S_IMMUTABLE; 3655 3656 set_nlink(inode, nlink_tid); 3657 pid_update_inode(task, inode); 3658 3659 d_set_d_op(dentry, &pid_dentry_operations); 3660 return d_splice_alias(inode, dentry); 3661 } 3662 3663 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3664 { 3665 struct task_struct *task; 3666 struct task_struct *leader = get_proc_task(dir); 3667 unsigned tid; 3668 struct proc_fs_info *fs_info; 3669 struct pid_namespace *ns; 3670 struct dentry *result = ERR_PTR(-ENOENT); 3671 3672 if (!leader) 3673 goto out_no_task; 3674 3675 tid = name_to_int(&dentry->d_name); 3676 if (tid == ~0U) 3677 goto out; 3678 3679 fs_info = proc_sb_info(dentry->d_sb); 3680 ns = fs_info->pid_ns; 3681 rcu_read_lock(); 3682 task = find_task_by_pid_ns(tid, ns); 3683 if (task) 3684 get_task_struct(task); 3685 rcu_read_unlock(); 3686 if (!task) 3687 goto out; 3688 if (!same_thread_group(leader, task)) 3689 goto out_drop_task; 3690 3691 result = proc_task_instantiate(dentry, task, NULL); 3692 out_drop_task: 3693 put_task_struct(task); 3694 out: 3695 put_task_struct(leader); 3696 out_no_task: 3697 return result; 3698 } 3699 3700 /* 3701 * Find the first tid of a thread group to return to user space. 3702 * 3703 * Usually this is just the thread group leader, but if the users 3704 * buffer was too small or there was a seek into the middle of the 3705 * directory we have more work todo. 3706 * 3707 * In the case of a short read we start with find_task_by_pid. 3708 * 3709 * In the case of a seek we start with the leader and walk nr 3710 * threads past it. 3711 */ 3712 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3713 struct pid_namespace *ns) 3714 { 3715 struct task_struct *pos, *task; 3716 unsigned long nr = f_pos; 3717 3718 if (nr != f_pos) /* 32bit overflow? */ 3719 return NULL; 3720 3721 rcu_read_lock(); 3722 task = pid_task(pid, PIDTYPE_PID); 3723 if (!task) 3724 goto fail; 3725 3726 /* Attempt to start with the tid of a thread */ 3727 if (tid && nr) { 3728 pos = find_task_by_pid_ns(tid, ns); 3729 if (pos && same_thread_group(pos, task)) 3730 goto found; 3731 } 3732 3733 /* If nr exceeds the number of threads there is nothing todo */ 3734 if (nr >= get_nr_threads(task)) 3735 goto fail; 3736 3737 /* If we haven't found our starting place yet start 3738 * with the leader and walk nr threads forward. 3739 */ 3740 pos = task = task->group_leader; 3741 do { 3742 if (!nr--) 3743 goto found; 3744 } while_each_thread(task, pos); 3745 fail: 3746 pos = NULL; 3747 goto out; 3748 found: 3749 get_task_struct(pos); 3750 out: 3751 rcu_read_unlock(); 3752 return pos; 3753 } 3754 3755 /* 3756 * Find the next thread in the thread list. 3757 * Return NULL if there is an error or no next thread. 3758 * 3759 * The reference to the input task_struct is released. 3760 */ 3761 static struct task_struct *next_tid(struct task_struct *start) 3762 { 3763 struct task_struct *pos = NULL; 3764 rcu_read_lock(); 3765 if (pid_alive(start)) { 3766 pos = next_thread(start); 3767 if (thread_group_leader(pos)) 3768 pos = NULL; 3769 else 3770 get_task_struct(pos); 3771 } 3772 rcu_read_unlock(); 3773 put_task_struct(start); 3774 return pos; 3775 } 3776 3777 /* for the /proc/TGID/task/ directories */ 3778 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3779 { 3780 struct inode *inode = file_inode(file); 3781 struct task_struct *task; 3782 struct pid_namespace *ns; 3783 int tid; 3784 3785 if (proc_inode_is_dead(inode)) 3786 return -ENOENT; 3787 3788 if (!dir_emit_dots(file, ctx)) 3789 return 0; 3790 3791 /* f_version caches the tgid value that the last readdir call couldn't 3792 * return. lseek aka telldir automagically resets f_version to 0. 3793 */ 3794 ns = proc_pid_ns(inode->i_sb); 3795 tid = (int)file->f_version; 3796 file->f_version = 0; 3797 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3798 task; 3799 task = next_tid(task), ctx->pos++) { 3800 char name[10 + 1]; 3801 unsigned int len; 3802 tid = task_pid_nr_ns(task, ns); 3803 len = snprintf(name, sizeof(name), "%u", tid); 3804 if (!proc_fill_cache(file, ctx, name, len, 3805 proc_task_instantiate, task, NULL)) { 3806 /* returning this tgid failed, save it as the first 3807 * pid for the next readir call */ 3808 file->f_version = (u64)tid; 3809 put_task_struct(task); 3810 break; 3811 } 3812 } 3813 3814 return 0; 3815 } 3816 3817 static int proc_task_getattr(struct user_namespace *mnt_userns, 3818 const struct path *path, struct kstat *stat, 3819 u32 request_mask, unsigned int query_flags) 3820 { 3821 struct inode *inode = d_inode(path->dentry); 3822 struct task_struct *p = get_proc_task(inode); 3823 generic_fillattr(&init_user_ns, inode, stat); 3824 3825 if (p) { 3826 stat->nlink += get_nr_threads(p); 3827 put_task_struct(p); 3828 } 3829 3830 return 0; 3831 } 3832 3833 static const struct inode_operations proc_task_inode_operations = { 3834 .lookup = proc_task_lookup, 3835 .getattr = proc_task_getattr, 3836 .setattr = proc_setattr, 3837 .permission = proc_pid_permission, 3838 }; 3839 3840 static const struct file_operations proc_task_operations = { 3841 .read = generic_read_dir, 3842 .iterate_shared = proc_task_readdir, 3843 .llseek = generic_file_llseek, 3844 }; 3845 3846 void __init set_proc_pid_nlink(void) 3847 { 3848 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3849 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3850 } 3851