1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->exec_update_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->exec_update_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->exec_update_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 long badness; 555 556 badness = oom_badness(task, totalpages); 557 /* 558 * Special case OOM_SCORE_ADJ_MIN for all others scale the 559 * badness value into [0, 2000] range which we have been 560 * exporting for a long time so userspace might depend on it. 561 */ 562 if (badness != LONG_MIN) 563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 564 565 seq_printf(m, "%lu\n", points); 566 567 return 0; 568 } 569 570 struct limit_names { 571 const char *name; 572 const char *unit; 573 }; 574 575 static const struct limit_names lnames[RLIM_NLIMITS] = { 576 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 577 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 578 [RLIMIT_DATA] = {"Max data size", "bytes"}, 579 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 580 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 581 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 582 [RLIMIT_NPROC] = {"Max processes", "processes"}, 583 [RLIMIT_NOFILE] = {"Max open files", "files"}, 584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 585 [RLIMIT_AS] = {"Max address space", "bytes"}, 586 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 589 [RLIMIT_NICE] = {"Max nice priority", NULL}, 590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 592 }; 593 594 /* Display limits for a process */ 595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 596 struct pid *pid, struct task_struct *task) 597 { 598 unsigned int i; 599 unsigned long flags; 600 601 struct rlimit rlim[RLIM_NLIMITS]; 602 603 if (!lock_task_sighand(task, &flags)) 604 return 0; 605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 606 unlock_task_sighand(task, &flags); 607 608 /* 609 * print the file header 610 */ 611 seq_puts(m, "Limit " 612 "Soft Limit " 613 "Hard Limit " 614 "Units \n"); 615 616 for (i = 0; i < RLIM_NLIMITS; i++) { 617 if (rlim[i].rlim_cur == RLIM_INFINITY) 618 seq_printf(m, "%-25s %-20s ", 619 lnames[i].name, "unlimited"); 620 else 621 seq_printf(m, "%-25s %-20lu ", 622 lnames[i].name, rlim[i].rlim_cur); 623 624 if (rlim[i].rlim_max == RLIM_INFINITY) 625 seq_printf(m, "%-20s ", "unlimited"); 626 else 627 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 628 629 if (lnames[i].unit) 630 seq_printf(m, "%-10s\n", lnames[i].unit); 631 else 632 seq_putc(m, '\n'); 633 } 634 635 return 0; 636 } 637 638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 640 struct pid *pid, struct task_struct *task) 641 { 642 struct syscall_info info; 643 u64 *args = &info.data.args[0]; 644 int res; 645 646 res = lock_trace(task); 647 if (res) 648 return res; 649 650 if (task_current_syscall(task, &info)) 651 seq_puts(m, "running\n"); 652 else if (info.data.nr < 0) 653 seq_printf(m, "%d 0x%llx 0x%llx\n", 654 info.data.nr, info.sp, info.data.instruction_pointer); 655 else 656 seq_printf(m, 657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 658 info.data.nr, 659 args[0], args[1], args[2], args[3], args[4], args[5], 660 info.sp, info.data.instruction_pointer); 661 unlock_trace(task); 662 663 return 0; 664 } 665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 666 667 /************************************************************************/ 668 /* Here the fs part begins */ 669 /************************************************************************/ 670 671 /* permission checks */ 672 static int proc_fd_access_allowed(struct inode *inode) 673 { 674 struct task_struct *task; 675 int allowed = 0; 676 /* Allow access to a task's file descriptors if it is us or we 677 * may use ptrace attach to the process and find out that 678 * information. 679 */ 680 task = get_proc_task(inode); 681 if (task) { 682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 683 put_task_struct(task); 684 } 685 return allowed; 686 } 687 688 int proc_setattr(struct dentry *dentry, struct iattr *attr) 689 { 690 int error; 691 struct inode *inode = d_inode(dentry); 692 693 if (attr->ia_valid & ATTR_MODE) 694 return -EPERM; 695 696 error = setattr_prepare(dentry, attr); 697 if (error) 698 return error; 699 700 setattr_copy(inode, attr); 701 mark_inode_dirty(inode); 702 return 0; 703 } 704 705 /* 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 707 * or euid/egid (for hide_pid_min=2)? 708 */ 709 static bool has_pid_permissions(struct proc_fs_info *fs_info, 710 struct task_struct *task, 711 enum proc_hidepid hide_pid_min) 712 { 713 /* 714 * If 'hidpid' mount option is set force a ptrace check, 715 * we indicate that we are using a filesystem syscall 716 * by passing PTRACE_MODE_READ_FSCREDS 717 */ 718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 719 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 720 721 if (fs_info->hide_pid < hide_pid_min) 722 return true; 723 if (in_group_p(fs_info->pid_gid)) 724 return true; 725 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 726 } 727 728 729 static int proc_pid_permission(struct inode *inode, int mask) 730 { 731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 732 struct task_struct *task; 733 bool has_perms; 734 735 task = get_proc_task(inode); 736 if (!task) 737 return -ESRCH; 738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 739 put_task_struct(task); 740 741 if (!has_perms) { 742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 743 /* 744 * Let's make getdents(), stat(), and open() 745 * consistent with each other. If a process 746 * may not stat() a file, it shouldn't be seen 747 * in procfs at all. 748 */ 749 return -ENOENT; 750 } 751 752 return -EPERM; 753 } 754 return generic_permission(inode, mask); 755 } 756 757 758 759 static const struct inode_operations proc_def_inode_operations = { 760 .setattr = proc_setattr, 761 }; 762 763 static int proc_single_show(struct seq_file *m, void *v) 764 { 765 struct inode *inode = m->private; 766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 767 struct pid *pid = proc_pid(inode); 768 struct task_struct *task; 769 int ret; 770 771 task = get_pid_task(pid, PIDTYPE_PID); 772 if (!task) 773 return -ESRCH; 774 775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 776 777 put_task_struct(task); 778 return ret; 779 } 780 781 static int proc_single_open(struct inode *inode, struct file *filp) 782 { 783 return single_open(filp, proc_single_show, inode); 784 } 785 786 static const struct file_operations proc_single_file_operations = { 787 .open = proc_single_open, 788 .read = seq_read, 789 .llseek = seq_lseek, 790 .release = single_release, 791 }; 792 793 794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 795 { 796 struct task_struct *task = get_proc_task(inode); 797 struct mm_struct *mm = ERR_PTR(-ESRCH); 798 799 if (task) { 800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 801 put_task_struct(task); 802 803 if (!IS_ERR_OR_NULL(mm)) { 804 /* ensure this mm_struct can't be freed */ 805 mmgrab(mm); 806 /* but do not pin its memory */ 807 mmput(mm); 808 } 809 } 810 811 return mm; 812 } 813 814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 815 { 816 struct mm_struct *mm = proc_mem_open(inode, mode); 817 818 if (IS_ERR(mm)) 819 return PTR_ERR(mm); 820 821 file->private_data = mm; 822 return 0; 823 } 824 825 static int mem_open(struct inode *inode, struct file *file) 826 { 827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 828 829 /* OK to pass negative loff_t, we can catch out-of-range */ 830 file->f_mode |= FMODE_UNSIGNED_OFFSET; 831 832 return ret; 833 } 834 835 static ssize_t mem_rw(struct file *file, char __user *buf, 836 size_t count, loff_t *ppos, int write) 837 { 838 struct mm_struct *mm = file->private_data; 839 unsigned long addr = *ppos; 840 ssize_t copied; 841 char *page; 842 unsigned int flags; 843 844 if (!mm) 845 return 0; 846 847 page = (char *)__get_free_page(GFP_KERNEL); 848 if (!page) 849 return -ENOMEM; 850 851 copied = 0; 852 if (!mmget_not_zero(mm)) 853 goto free; 854 855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 856 857 while (count > 0) { 858 int this_len = min_t(int, count, PAGE_SIZE); 859 860 if (write && copy_from_user(page, buf, this_len)) { 861 copied = -EFAULT; 862 break; 863 } 864 865 this_len = access_remote_vm(mm, addr, page, this_len, flags); 866 if (!this_len) { 867 if (!copied) 868 copied = -EIO; 869 break; 870 } 871 872 if (!write && copy_to_user(buf, page, this_len)) { 873 copied = -EFAULT; 874 break; 875 } 876 877 buf += this_len; 878 addr += this_len; 879 copied += this_len; 880 count -= this_len; 881 } 882 *ppos = addr; 883 884 mmput(mm); 885 free: 886 free_page((unsigned long) page); 887 return copied; 888 } 889 890 static ssize_t mem_read(struct file *file, char __user *buf, 891 size_t count, loff_t *ppos) 892 { 893 return mem_rw(file, buf, count, ppos, 0); 894 } 895 896 static ssize_t mem_write(struct file *file, const char __user *buf, 897 size_t count, loff_t *ppos) 898 { 899 return mem_rw(file, (char __user*)buf, count, ppos, 1); 900 } 901 902 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 903 { 904 switch (orig) { 905 case 0: 906 file->f_pos = offset; 907 break; 908 case 1: 909 file->f_pos += offset; 910 break; 911 default: 912 return -EINVAL; 913 } 914 force_successful_syscall_return(); 915 return file->f_pos; 916 } 917 918 static int mem_release(struct inode *inode, struct file *file) 919 { 920 struct mm_struct *mm = file->private_data; 921 if (mm) 922 mmdrop(mm); 923 return 0; 924 } 925 926 static const struct file_operations proc_mem_operations = { 927 .llseek = mem_lseek, 928 .read = mem_read, 929 .write = mem_write, 930 .open = mem_open, 931 .release = mem_release, 932 }; 933 934 static int environ_open(struct inode *inode, struct file *file) 935 { 936 return __mem_open(inode, file, PTRACE_MODE_READ); 937 } 938 939 static ssize_t environ_read(struct file *file, char __user *buf, 940 size_t count, loff_t *ppos) 941 { 942 char *page; 943 unsigned long src = *ppos; 944 int ret = 0; 945 struct mm_struct *mm = file->private_data; 946 unsigned long env_start, env_end; 947 948 /* Ensure the process spawned far enough to have an environment. */ 949 if (!mm || !mm->env_end) 950 return 0; 951 952 page = (char *)__get_free_page(GFP_KERNEL); 953 if (!page) 954 return -ENOMEM; 955 956 ret = 0; 957 if (!mmget_not_zero(mm)) 958 goto free; 959 960 spin_lock(&mm->arg_lock); 961 env_start = mm->env_start; 962 env_end = mm->env_end; 963 spin_unlock(&mm->arg_lock); 964 965 while (count > 0) { 966 size_t this_len, max_len; 967 int retval; 968 969 if (src >= (env_end - env_start)) 970 break; 971 972 this_len = env_end - (env_start + src); 973 974 max_len = min_t(size_t, PAGE_SIZE, count); 975 this_len = min(max_len, this_len); 976 977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 978 979 if (retval <= 0) { 980 ret = retval; 981 break; 982 } 983 984 if (copy_to_user(buf, page, retval)) { 985 ret = -EFAULT; 986 break; 987 } 988 989 ret += retval; 990 src += retval; 991 buf += retval; 992 count -= retval; 993 } 994 *ppos = src; 995 mmput(mm); 996 997 free: 998 free_page((unsigned long) page); 999 return ret; 1000 } 1001 1002 static const struct file_operations proc_environ_operations = { 1003 .open = environ_open, 1004 .read = environ_read, 1005 .llseek = generic_file_llseek, 1006 .release = mem_release, 1007 }; 1008 1009 static int auxv_open(struct inode *inode, struct file *file) 1010 { 1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1012 } 1013 1014 static ssize_t auxv_read(struct file *file, char __user *buf, 1015 size_t count, loff_t *ppos) 1016 { 1017 struct mm_struct *mm = file->private_data; 1018 unsigned int nwords = 0; 1019 1020 if (!mm) 1021 return 0; 1022 do { 1023 nwords += 2; 1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1026 nwords * sizeof(mm->saved_auxv[0])); 1027 } 1028 1029 static const struct file_operations proc_auxv_operations = { 1030 .open = auxv_open, 1031 .read = auxv_read, 1032 .llseek = generic_file_llseek, 1033 .release = mem_release, 1034 }; 1035 1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1037 loff_t *ppos) 1038 { 1039 struct task_struct *task = get_proc_task(file_inode(file)); 1040 char buffer[PROC_NUMBUF]; 1041 int oom_adj = OOM_ADJUST_MIN; 1042 size_t len; 1043 1044 if (!task) 1045 return -ESRCH; 1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1047 oom_adj = OOM_ADJUST_MAX; 1048 else 1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1050 OOM_SCORE_ADJ_MAX; 1051 put_task_struct(task); 1052 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1053 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1054 } 1055 1056 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1057 { 1058 struct mm_struct *mm = NULL; 1059 struct task_struct *task; 1060 int err = 0; 1061 1062 task = get_proc_task(file_inode(file)); 1063 if (!task) 1064 return -ESRCH; 1065 1066 mutex_lock(&oom_adj_mutex); 1067 if (legacy) { 1068 if (oom_adj < task->signal->oom_score_adj && 1069 !capable(CAP_SYS_RESOURCE)) { 1070 err = -EACCES; 1071 goto err_unlock; 1072 } 1073 /* 1074 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1075 * /proc/pid/oom_score_adj instead. 1076 */ 1077 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1078 current->comm, task_pid_nr(current), task_pid_nr(task), 1079 task_pid_nr(task)); 1080 } else { 1081 if ((short)oom_adj < task->signal->oom_score_adj_min && 1082 !capable(CAP_SYS_RESOURCE)) { 1083 err = -EACCES; 1084 goto err_unlock; 1085 } 1086 } 1087 1088 /* 1089 * Make sure we will check other processes sharing the mm if this is 1090 * not vfrok which wants its own oom_score_adj. 1091 * pin the mm so it doesn't go away and get reused after task_unlock 1092 */ 1093 if (!task->vfork_done) { 1094 struct task_struct *p = find_lock_task_mm(task); 1095 1096 if (p) { 1097 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1098 mm = p->mm; 1099 mmgrab(mm); 1100 } 1101 task_unlock(p); 1102 } 1103 } 1104 1105 task->signal->oom_score_adj = oom_adj; 1106 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1107 task->signal->oom_score_adj_min = (short)oom_adj; 1108 trace_oom_score_adj_update(task); 1109 1110 if (mm) { 1111 struct task_struct *p; 1112 1113 rcu_read_lock(); 1114 for_each_process(p) { 1115 if (same_thread_group(task, p)) 1116 continue; 1117 1118 /* do not touch kernel threads or the global init */ 1119 if (p->flags & PF_KTHREAD || is_global_init(p)) 1120 continue; 1121 1122 task_lock(p); 1123 if (!p->vfork_done && process_shares_mm(p, mm)) { 1124 p->signal->oom_score_adj = oom_adj; 1125 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1126 p->signal->oom_score_adj_min = (short)oom_adj; 1127 } 1128 task_unlock(p); 1129 } 1130 rcu_read_unlock(); 1131 mmdrop(mm); 1132 } 1133 err_unlock: 1134 mutex_unlock(&oom_adj_mutex); 1135 put_task_struct(task); 1136 return err; 1137 } 1138 1139 /* 1140 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1141 * kernels. The effective policy is defined by oom_score_adj, which has a 1142 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1143 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1144 * Processes that become oom disabled via oom_adj will still be oom disabled 1145 * with this implementation. 1146 * 1147 * oom_adj cannot be removed since existing userspace binaries use it. 1148 */ 1149 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1150 size_t count, loff_t *ppos) 1151 { 1152 char buffer[PROC_NUMBUF]; 1153 int oom_adj; 1154 int err; 1155 1156 memset(buffer, 0, sizeof(buffer)); 1157 if (count > sizeof(buffer) - 1) 1158 count = sizeof(buffer) - 1; 1159 if (copy_from_user(buffer, buf, count)) { 1160 err = -EFAULT; 1161 goto out; 1162 } 1163 1164 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1165 if (err) 1166 goto out; 1167 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1168 oom_adj != OOM_DISABLE) { 1169 err = -EINVAL; 1170 goto out; 1171 } 1172 1173 /* 1174 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1175 * value is always attainable. 1176 */ 1177 if (oom_adj == OOM_ADJUST_MAX) 1178 oom_adj = OOM_SCORE_ADJ_MAX; 1179 else 1180 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1181 1182 err = __set_oom_adj(file, oom_adj, true); 1183 out: 1184 return err < 0 ? err : count; 1185 } 1186 1187 static const struct file_operations proc_oom_adj_operations = { 1188 .read = oom_adj_read, 1189 .write = oom_adj_write, 1190 .llseek = generic_file_llseek, 1191 }; 1192 1193 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1194 size_t count, loff_t *ppos) 1195 { 1196 struct task_struct *task = get_proc_task(file_inode(file)); 1197 char buffer[PROC_NUMBUF]; 1198 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1199 size_t len; 1200 1201 if (!task) 1202 return -ESRCH; 1203 oom_score_adj = task->signal->oom_score_adj; 1204 put_task_struct(task); 1205 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1206 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1207 } 1208 1209 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1210 size_t count, loff_t *ppos) 1211 { 1212 char buffer[PROC_NUMBUF]; 1213 int oom_score_adj; 1214 int err; 1215 1216 memset(buffer, 0, sizeof(buffer)); 1217 if (count > sizeof(buffer) - 1) 1218 count = sizeof(buffer) - 1; 1219 if (copy_from_user(buffer, buf, count)) { 1220 err = -EFAULT; 1221 goto out; 1222 } 1223 1224 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1225 if (err) 1226 goto out; 1227 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1228 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1229 err = -EINVAL; 1230 goto out; 1231 } 1232 1233 err = __set_oom_adj(file, oom_score_adj, false); 1234 out: 1235 return err < 0 ? err : count; 1236 } 1237 1238 static const struct file_operations proc_oom_score_adj_operations = { 1239 .read = oom_score_adj_read, 1240 .write = oom_score_adj_write, 1241 .llseek = default_llseek, 1242 }; 1243 1244 #ifdef CONFIG_AUDIT 1245 #define TMPBUFLEN 11 1246 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1247 size_t count, loff_t *ppos) 1248 { 1249 struct inode * inode = file_inode(file); 1250 struct task_struct *task = get_proc_task(inode); 1251 ssize_t length; 1252 char tmpbuf[TMPBUFLEN]; 1253 1254 if (!task) 1255 return -ESRCH; 1256 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1257 from_kuid(file->f_cred->user_ns, 1258 audit_get_loginuid(task))); 1259 put_task_struct(task); 1260 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1261 } 1262 1263 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1264 size_t count, loff_t *ppos) 1265 { 1266 struct inode * inode = file_inode(file); 1267 uid_t loginuid; 1268 kuid_t kloginuid; 1269 int rv; 1270 1271 /* Don't let kthreads write their own loginuid */ 1272 if (current->flags & PF_KTHREAD) 1273 return -EPERM; 1274 1275 rcu_read_lock(); 1276 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1277 rcu_read_unlock(); 1278 return -EPERM; 1279 } 1280 rcu_read_unlock(); 1281 1282 if (*ppos != 0) { 1283 /* No partial writes. */ 1284 return -EINVAL; 1285 } 1286 1287 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1288 if (rv < 0) 1289 return rv; 1290 1291 /* is userspace tring to explicitly UNSET the loginuid? */ 1292 if (loginuid == AUDIT_UID_UNSET) { 1293 kloginuid = INVALID_UID; 1294 } else { 1295 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1296 if (!uid_valid(kloginuid)) 1297 return -EINVAL; 1298 } 1299 1300 rv = audit_set_loginuid(kloginuid); 1301 if (rv < 0) 1302 return rv; 1303 return count; 1304 } 1305 1306 static const struct file_operations proc_loginuid_operations = { 1307 .read = proc_loginuid_read, 1308 .write = proc_loginuid_write, 1309 .llseek = generic_file_llseek, 1310 }; 1311 1312 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1313 size_t count, loff_t *ppos) 1314 { 1315 struct inode * inode = file_inode(file); 1316 struct task_struct *task = get_proc_task(inode); 1317 ssize_t length; 1318 char tmpbuf[TMPBUFLEN]; 1319 1320 if (!task) 1321 return -ESRCH; 1322 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1323 audit_get_sessionid(task)); 1324 put_task_struct(task); 1325 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1326 } 1327 1328 static const struct file_operations proc_sessionid_operations = { 1329 .read = proc_sessionid_read, 1330 .llseek = generic_file_llseek, 1331 }; 1332 #endif 1333 1334 #ifdef CONFIG_FAULT_INJECTION 1335 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1336 size_t count, loff_t *ppos) 1337 { 1338 struct task_struct *task = get_proc_task(file_inode(file)); 1339 char buffer[PROC_NUMBUF]; 1340 size_t len; 1341 int make_it_fail; 1342 1343 if (!task) 1344 return -ESRCH; 1345 make_it_fail = task->make_it_fail; 1346 put_task_struct(task); 1347 1348 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1349 1350 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1351 } 1352 1353 static ssize_t proc_fault_inject_write(struct file * file, 1354 const char __user * buf, size_t count, loff_t *ppos) 1355 { 1356 struct task_struct *task; 1357 char buffer[PROC_NUMBUF]; 1358 int make_it_fail; 1359 int rv; 1360 1361 if (!capable(CAP_SYS_RESOURCE)) 1362 return -EPERM; 1363 memset(buffer, 0, sizeof(buffer)); 1364 if (count > sizeof(buffer) - 1) 1365 count = sizeof(buffer) - 1; 1366 if (copy_from_user(buffer, buf, count)) 1367 return -EFAULT; 1368 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1369 if (rv < 0) 1370 return rv; 1371 if (make_it_fail < 0 || make_it_fail > 1) 1372 return -EINVAL; 1373 1374 task = get_proc_task(file_inode(file)); 1375 if (!task) 1376 return -ESRCH; 1377 task->make_it_fail = make_it_fail; 1378 put_task_struct(task); 1379 1380 return count; 1381 } 1382 1383 static const struct file_operations proc_fault_inject_operations = { 1384 .read = proc_fault_inject_read, 1385 .write = proc_fault_inject_write, 1386 .llseek = generic_file_llseek, 1387 }; 1388 1389 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1390 size_t count, loff_t *ppos) 1391 { 1392 struct task_struct *task; 1393 int err; 1394 unsigned int n; 1395 1396 err = kstrtouint_from_user(buf, count, 0, &n); 1397 if (err) 1398 return err; 1399 1400 task = get_proc_task(file_inode(file)); 1401 if (!task) 1402 return -ESRCH; 1403 task->fail_nth = n; 1404 put_task_struct(task); 1405 1406 return count; 1407 } 1408 1409 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1410 size_t count, loff_t *ppos) 1411 { 1412 struct task_struct *task; 1413 char numbuf[PROC_NUMBUF]; 1414 ssize_t len; 1415 1416 task = get_proc_task(file_inode(file)); 1417 if (!task) 1418 return -ESRCH; 1419 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1420 put_task_struct(task); 1421 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1422 } 1423 1424 static const struct file_operations proc_fail_nth_operations = { 1425 .read = proc_fail_nth_read, 1426 .write = proc_fail_nth_write, 1427 }; 1428 #endif 1429 1430 1431 #ifdef CONFIG_SCHED_DEBUG 1432 /* 1433 * Print out various scheduling related per-task fields: 1434 */ 1435 static int sched_show(struct seq_file *m, void *v) 1436 { 1437 struct inode *inode = m->private; 1438 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1439 struct task_struct *p; 1440 1441 p = get_proc_task(inode); 1442 if (!p) 1443 return -ESRCH; 1444 proc_sched_show_task(p, ns, m); 1445 1446 put_task_struct(p); 1447 1448 return 0; 1449 } 1450 1451 static ssize_t 1452 sched_write(struct file *file, const char __user *buf, 1453 size_t count, loff_t *offset) 1454 { 1455 struct inode *inode = file_inode(file); 1456 struct task_struct *p; 1457 1458 p = get_proc_task(inode); 1459 if (!p) 1460 return -ESRCH; 1461 proc_sched_set_task(p); 1462 1463 put_task_struct(p); 1464 1465 return count; 1466 } 1467 1468 static int sched_open(struct inode *inode, struct file *filp) 1469 { 1470 return single_open(filp, sched_show, inode); 1471 } 1472 1473 static const struct file_operations proc_pid_sched_operations = { 1474 .open = sched_open, 1475 .read = seq_read, 1476 .write = sched_write, 1477 .llseek = seq_lseek, 1478 .release = single_release, 1479 }; 1480 1481 #endif 1482 1483 #ifdef CONFIG_SCHED_AUTOGROUP 1484 /* 1485 * Print out autogroup related information: 1486 */ 1487 static int sched_autogroup_show(struct seq_file *m, void *v) 1488 { 1489 struct inode *inode = m->private; 1490 struct task_struct *p; 1491 1492 p = get_proc_task(inode); 1493 if (!p) 1494 return -ESRCH; 1495 proc_sched_autogroup_show_task(p, m); 1496 1497 put_task_struct(p); 1498 1499 return 0; 1500 } 1501 1502 static ssize_t 1503 sched_autogroup_write(struct file *file, const char __user *buf, 1504 size_t count, loff_t *offset) 1505 { 1506 struct inode *inode = file_inode(file); 1507 struct task_struct *p; 1508 char buffer[PROC_NUMBUF]; 1509 int nice; 1510 int err; 1511 1512 memset(buffer, 0, sizeof(buffer)); 1513 if (count > sizeof(buffer) - 1) 1514 count = sizeof(buffer) - 1; 1515 if (copy_from_user(buffer, buf, count)) 1516 return -EFAULT; 1517 1518 err = kstrtoint(strstrip(buffer), 0, &nice); 1519 if (err < 0) 1520 return err; 1521 1522 p = get_proc_task(inode); 1523 if (!p) 1524 return -ESRCH; 1525 1526 err = proc_sched_autogroup_set_nice(p, nice); 1527 if (err) 1528 count = err; 1529 1530 put_task_struct(p); 1531 1532 return count; 1533 } 1534 1535 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1536 { 1537 int ret; 1538 1539 ret = single_open(filp, sched_autogroup_show, NULL); 1540 if (!ret) { 1541 struct seq_file *m = filp->private_data; 1542 1543 m->private = inode; 1544 } 1545 return ret; 1546 } 1547 1548 static const struct file_operations proc_pid_sched_autogroup_operations = { 1549 .open = sched_autogroup_open, 1550 .read = seq_read, 1551 .write = sched_autogroup_write, 1552 .llseek = seq_lseek, 1553 .release = single_release, 1554 }; 1555 1556 #endif /* CONFIG_SCHED_AUTOGROUP */ 1557 1558 #ifdef CONFIG_TIME_NS 1559 static int timens_offsets_show(struct seq_file *m, void *v) 1560 { 1561 struct task_struct *p; 1562 1563 p = get_proc_task(file_inode(m->file)); 1564 if (!p) 1565 return -ESRCH; 1566 proc_timens_show_offsets(p, m); 1567 1568 put_task_struct(p); 1569 1570 return 0; 1571 } 1572 1573 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1574 size_t count, loff_t *ppos) 1575 { 1576 struct inode *inode = file_inode(file); 1577 struct proc_timens_offset offsets[2]; 1578 char *kbuf = NULL, *pos, *next_line; 1579 struct task_struct *p; 1580 int ret, noffsets; 1581 1582 /* Only allow < page size writes at the beginning of the file */ 1583 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1584 return -EINVAL; 1585 1586 /* Slurp in the user data */ 1587 kbuf = memdup_user_nul(buf, count); 1588 if (IS_ERR(kbuf)) 1589 return PTR_ERR(kbuf); 1590 1591 /* Parse the user data */ 1592 ret = -EINVAL; 1593 noffsets = 0; 1594 for (pos = kbuf; pos; pos = next_line) { 1595 struct proc_timens_offset *off = &offsets[noffsets]; 1596 char clock[10]; 1597 int err; 1598 1599 /* Find the end of line and ensure we don't look past it */ 1600 next_line = strchr(pos, '\n'); 1601 if (next_line) { 1602 *next_line = '\0'; 1603 next_line++; 1604 if (*next_line == '\0') 1605 next_line = NULL; 1606 } 1607 1608 err = sscanf(pos, "%9s %lld %lu", clock, 1609 &off->val.tv_sec, &off->val.tv_nsec); 1610 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1611 goto out; 1612 1613 clock[sizeof(clock) - 1] = 0; 1614 if (strcmp(clock, "monotonic") == 0 || 1615 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1616 off->clockid = CLOCK_MONOTONIC; 1617 else if (strcmp(clock, "boottime") == 0 || 1618 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1619 off->clockid = CLOCK_BOOTTIME; 1620 else 1621 goto out; 1622 1623 noffsets++; 1624 if (noffsets == ARRAY_SIZE(offsets)) { 1625 if (next_line) 1626 count = next_line - kbuf; 1627 break; 1628 } 1629 } 1630 1631 ret = -ESRCH; 1632 p = get_proc_task(inode); 1633 if (!p) 1634 goto out; 1635 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1636 put_task_struct(p); 1637 if (ret) 1638 goto out; 1639 1640 ret = count; 1641 out: 1642 kfree(kbuf); 1643 return ret; 1644 } 1645 1646 static int timens_offsets_open(struct inode *inode, struct file *filp) 1647 { 1648 return single_open(filp, timens_offsets_show, inode); 1649 } 1650 1651 static const struct file_operations proc_timens_offsets_operations = { 1652 .open = timens_offsets_open, 1653 .read = seq_read, 1654 .write = timens_offsets_write, 1655 .llseek = seq_lseek, 1656 .release = single_release, 1657 }; 1658 #endif /* CONFIG_TIME_NS */ 1659 1660 static ssize_t comm_write(struct file *file, const char __user *buf, 1661 size_t count, loff_t *offset) 1662 { 1663 struct inode *inode = file_inode(file); 1664 struct task_struct *p; 1665 char buffer[TASK_COMM_LEN]; 1666 const size_t maxlen = sizeof(buffer) - 1; 1667 1668 memset(buffer, 0, sizeof(buffer)); 1669 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1670 return -EFAULT; 1671 1672 p = get_proc_task(inode); 1673 if (!p) 1674 return -ESRCH; 1675 1676 if (same_thread_group(current, p)) 1677 set_task_comm(p, buffer); 1678 else 1679 count = -EINVAL; 1680 1681 put_task_struct(p); 1682 1683 return count; 1684 } 1685 1686 static int comm_show(struct seq_file *m, void *v) 1687 { 1688 struct inode *inode = m->private; 1689 struct task_struct *p; 1690 1691 p = get_proc_task(inode); 1692 if (!p) 1693 return -ESRCH; 1694 1695 proc_task_name(m, p, false); 1696 seq_putc(m, '\n'); 1697 1698 put_task_struct(p); 1699 1700 return 0; 1701 } 1702 1703 static int comm_open(struct inode *inode, struct file *filp) 1704 { 1705 return single_open(filp, comm_show, inode); 1706 } 1707 1708 static const struct file_operations proc_pid_set_comm_operations = { 1709 .open = comm_open, 1710 .read = seq_read, 1711 .write = comm_write, 1712 .llseek = seq_lseek, 1713 .release = single_release, 1714 }; 1715 1716 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1717 { 1718 struct task_struct *task; 1719 struct file *exe_file; 1720 1721 task = get_proc_task(d_inode(dentry)); 1722 if (!task) 1723 return -ENOENT; 1724 exe_file = get_task_exe_file(task); 1725 put_task_struct(task); 1726 if (exe_file) { 1727 *exe_path = exe_file->f_path; 1728 path_get(&exe_file->f_path); 1729 fput(exe_file); 1730 return 0; 1731 } else 1732 return -ENOENT; 1733 } 1734 1735 static const char *proc_pid_get_link(struct dentry *dentry, 1736 struct inode *inode, 1737 struct delayed_call *done) 1738 { 1739 struct path path; 1740 int error = -EACCES; 1741 1742 if (!dentry) 1743 return ERR_PTR(-ECHILD); 1744 1745 /* Are we allowed to snoop on the tasks file descriptors? */ 1746 if (!proc_fd_access_allowed(inode)) 1747 goto out; 1748 1749 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1750 if (error) 1751 goto out; 1752 1753 error = nd_jump_link(&path); 1754 out: 1755 return ERR_PTR(error); 1756 } 1757 1758 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1759 { 1760 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1761 char *pathname; 1762 int len; 1763 1764 if (!tmp) 1765 return -ENOMEM; 1766 1767 pathname = d_path(path, tmp, PAGE_SIZE); 1768 len = PTR_ERR(pathname); 1769 if (IS_ERR(pathname)) 1770 goto out; 1771 len = tmp + PAGE_SIZE - 1 - pathname; 1772 1773 if (len > buflen) 1774 len = buflen; 1775 if (copy_to_user(buffer, pathname, len)) 1776 len = -EFAULT; 1777 out: 1778 free_page((unsigned long)tmp); 1779 return len; 1780 } 1781 1782 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1783 { 1784 int error = -EACCES; 1785 struct inode *inode = d_inode(dentry); 1786 struct path path; 1787 1788 /* Are we allowed to snoop on the tasks file descriptors? */ 1789 if (!proc_fd_access_allowed(inode)) 1790 goto out; 1791 1792 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1793 if (error) 1794 goto out; 1795 1796 error = do_proc_readlink(&path, buffer, buflen); 1797 path_put(&path); 1798 out: 1799 return error; 1800 } 1801 1802 const struct inode_operations proc_pid_link_inode_operations = { 1803 .readlink = proc_pid_readlink, 1804 .get_link = proc_pid_get_link, 1805 .setattr = proc_setattr, 1806 }; 1807 1808 1809 /* building an inode */ 1810 1811 void task_dump_owner(struct task_struct *task, umode_t mode, 1812 kuid_t *ruid, kgid_t *rgid) 1813 { 1814 /* Depending on the state of dumpable compute who should own a 1815 * proc file for a task. 1816 */ 1817 const struct cred *cred; 1818 kuid_t uid; 1819 kgid_t gid; 1820 1821 if (unlikely(task->flags & PF_KTHREAD)) { 1822 *ruid = GLOBAL_ROOT_UID; 1823 *rgid = GLOBAL_ROOT_GID; 1824 return; 1825 } 1826 1827 /* Default to the tasks effective ownership */ 1828 rcu_read_lock(); 1829 cred = __task_cred(task); 1830 uid = cred->euid; 1831 gid = cred->egid; 1832 rcu_read_unlock(); 1833 1834 /* 1835 * Before the /proc/pid/status file was created the only way to read 1836 * the effective uid of a /process was to stat /proc/pid. Reading 1837 * /proc/pid/status is slow enough that procps and other packages 1838 * kept stating /proc/pid. To keep the rules in /proc simple I have 1839 * made this apply to all per process world readable and executable 1840 * directories. 1841 */ 1842 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1843 struct mm_struct *mm; 1844 task_lock(task); 1845 mm = task->mm; 1846 /* Make non-dumpable tasks owned by some root */ 1847 if (mm) { 1848 if (get_dumpable(mm) != SUID_DUMP_USER) { 1849 struct user_namespace *user_ns = mm->user_ns; 1850 1851 uid = make_kuid(user_ns, 0); 1852 if (!uid_valid(uid)) 1853 uid = GLOBAL_ROOT_UID; 1854 1855 gid = make_kgid(user_ns, 0); 1856 if (!gid_valid(gid)) 1857 gid = GLOBAL_ROOT_GID; 1858 } 1859 } else { 1860 uid = GLOBAL_ROOT_UID; 1861 gid = GLOBAL_ROOT_GID; 1862 } 1863 task_unlock(task); 1864 } 1865 *ruid = uid; 1866 *rgid = gid; 1867 } 1868 1869 void proc_pid_evict_inode(struct proc_inode *ei) 1870 { 1871 struct pid *pid = ei->pid; 1872 1873 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1874 spin_lock(&pid->lock); 1875 hlist_del_init_rcu(&ei->sibling_inodes); 1876 spin_unlock(&pid->lock); 1877 } 1878 1879 put_pid(pid); 1880 } 1881 1882 struct inode *proc_pid_make_inode(struct super_block * sb, 1883 struct task_struct *task, umode_t mode) 1884 { 1885 struct inode * inode; 1886 struct proc_inode *ei; 1887 struct pid *pid; 1888 1889 /* We need a new inode */ 1890 1891 inode = new_inode(sb); 1892 if (!inode) 1893 goto out; 1894 1895 /* Common stuff */ 1896 ei = PROC_I(inode); 1897 inode->i_mode = mode; 1898 inode->i_ino = get_next_ino(); 1899 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1900 inode->i_op = &proc_def_inode_operations; 1901 1902 /* 1903 * grab the reference to task. 1904 */ 1905 pid = get_task_pid(task, PIDTYPE_PID); 1906 if (!pid) 1907 goto out_unlock; 1908 1909 /* Let the pid remember us for quick removal */ 1910 ei->pid = pid; 1911 if (S_ISDIR(mode)) { 1912 spin_lock(&pid->lock); 1913 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1914 spin_unlock(&pid->lock); 1915 } 1916 1917 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1918 security_task_to_inode(task, inode); 1919 1920 out: 1921 return inode; 1922 1923 out_unlock: 1924 iput(inode); 1925 return NULL; 1926 } 1927 1928 int pid_getattr(const struct path *path, struct kstat *stat, 1929 u32 request_mask, unsigned int query_flags) 1930 { 1931 struct inode *inode = d_inode(path->dentry); 1932 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1933 struct task_struct *task; 1934 1935 generic_fillattr(inode, stat); 1936 1937 stat->uid = GLOBAL_ROOT_UID; 1938 stat->gid = GLOBAL_ROOT_GID; 1939 rcu_read_lock(); 1940 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1941 if (task) { 1942 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1943 rcu_read_unlock(); 1944 /* 1945 * This doesn't prevent learning whether PID exists, 1946 * it only makes getattr() consistent with readdir(). 1947 */ 1948 return -ENOENT; 1949 } 1950 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1951 } 1952 rcu_read_unlock(); 1953 return 0; 1954 } 1955 1956 /* dentry stuff */ 1957 1958 /* 1959 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1960 */ 1961 void pid_update_inode(struct task_struct *task, struct inode *inode) 1962 { 1963 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1964 1965 inode->i_mode &= ~(S_ISUID | S_ISGID); 1966 security_task_to_inode(task, inode); 1967 } 1968 1969 /* 1970 * Rewrite the inode's ownerships here because the owning task may have 1971 * performed a setuid(), etc. 1972 * 1973 */ 1974 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1975 { 1976 struct inode *inode; 1977 struct task_struct *task; 1978 1979 if (flags & LOOKUP_RCU) 1980 return -ECHILD; 1981 1982 inode = d_inode(dentry); 1983 task = get_proc_task(inode); 1984 1985 if (task) { 1986 pid_update_inode(task, inode); 1987 put_task_struct(task); 1988 return 1; 1989 } 1990 return 0; 1991 } 1992 1993 static inline bool proc_inode_is_dead(struct inode *inode) 1994 { 1995 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1996 } 1997 1998 int pid_delete_dentry(const struct dentry *dentry) 1999 { 2000 /* Is the task we represent dead? 2001 * If so, then don't put the dentry on the lru list, 2002 * kill it immediately. 2003 */ 2004 return proc_inode_is_dead(d_inode(dentry)); 2005 } 2006 2007 const struct dentry_operations pid_dentry_operations = 2008 { 2009 .d_revalidate = pid_revalidate, 2010 .d_delete = pid_delete_dentry, 2011 }; 2012 2013 /* Lookups */ 2014 2015 /* 2016 * Fill a directory entry. 2017 * 2018 * If possible create the dcache entry and derive our inode number and 2019 * file type from dcache entry. 2020 * 2021 * Since all of the proc inode numbers are dynamically generated, the inode 2022 * numbers do not exist until the inode is cache. This means creating the 2023 * the dcache entry in readdir is necessary to keep the inode numbers 2024 * reported by readdir in sync with the inode numbers reported 2025 * by stat. 2026 */ 2027 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2028 const char *name, unsigned int len, 2029 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2030 { 2031 struct dentry *child, *dir = file->f_path.dentry; 2032 struct qstr qname = QSTR_INIT(name, len); 2033 struct inode *inode; 2034 unsigned type = DT_UNKNOWN; 2035 ino_t ino = 1; 2036 2037 child = d_hash_and_lookup(dir, &qname); 2038 if (!child) { 2039 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2040 child = d_alloc_parallel(dir, &qname, &wq); 2041 if (IS_ERR(child)) 2042 goto end_instantiate; 2043 if (d_in_lookup(child)) { 2044 struct dentry *res; 2045 res = instantiate(child, task, ptr); 2046 d_lookup_done(child); 2047 if (unlikely(res)) { 2048 dput(child); 2049 child = res; 2050 if (IS_ERR(child)) 2051 goto end_instantiate; 2052 } 2053 } 2054 } 2055 inode = d_inode(child); 2056 ino = inode->i_ino; 2057 type = inode->i_mode >> 12; 2058 dput(child); 2059 end_instantiate: 2060 return dir_emit(ctx, name, len, ino, type); 2061 } 2062 2063 /* 2064 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2065 * which represent vma start and end addresses. 2066 */ 2067 static int dname_to_vma_addr(struct dentry *dentry, 2068 unsigned long *start, unsigned long *end) 2069 { 2070 const char *str = dentry->d_name.name; 2071 unsigned long long sval, eval; 2072 unsigned int len; 2073 2074 if (str[0] == '0' && str[1] != '-') 2075 return -EINVAL; 2076 len = _parse_integer(str, 16, &sval); 2077 if (len & KSTRTOX_OVERFLOW) 2078 return -EINVAL; 2079 if (sval != (unsigned long)sval) 2080 return -EINVAL; 2081 str += len; 2082 2083 if (*str != '-') 2084 return -EINVAL; 2085 str++; 2086 2087 if (str[0] == '0' && str[1]) 2088 return -EINVAL; 2089 len = _parse_integer(str, 16, &eval); 2090 if (len & KSTRTOX_OVERFLOW) 2091 return -EINVAL; 2092 if (eval != (unsigned long)eval) 2093 return -EINVAL; 2094 str += len; 2095 2096 if (*str != '\0') 2097 return -EINVAL; 2098 2099 *start = sval; 2100 *end = eval; 2101 2102 return 0; 2103 } 2104 2105 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2106 { 2107 unsigned long vm_start, vm_end; 2108 bool exact_vma_exists = false; 2109 struct mm_struct *mm = NULL; 2110 struct task_struct *task; 2111 struct inode *inode; 2112 int status = 0; 2113 2114 if (flags & LOOKUP_RCU) 2115 return -ECHILD; 2116 2117 inode = d_inode(dentry); 2118 task = get_proc_task(inode); 2119 if (!task) 2120 goto out_notask; 2121 2122 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2123 if (IS_ERR_OR_NULL(mm)) 2124 goto out; 2125 2126 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2127 status = mmap_read_lock_killable(mm); 2128 if (!status) { 2129 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2130 vm_end); 2131 mmap_read_unlock(mm); 2132 } 2133 } 2134 2135 mmput(mm); 2136 2137 if (exact_vma_exists) { 2138 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2139 2140 security_task_to_inode(task, inode); 2141 status = 1; 2142 } 2143 2144 out: 2145 put_task_struct(task); 2146 2147 out_notask: 2148 return status; 2149 } 2150 2151 static const struct dentry_operations tid_map_files_dentry_operations = { 2152 .d_revalidate = map_files_d_revalidate, 2153 .d_delete = pid_delete_dentry, 2154 }; 2155 2156 static int map_files_get_link(struct dentry *dentry, struct path *path) 2157 { 2158 unsigned long vm_start, vm_end; 2159 struct vm_area_struct *vma; 2160 struct task_struct *task; 2161 struct mm_struct *mm; 2162 int rc; 2163 2164 rc = -ENOENT; 2165 task = get_proc_task(d_inode(dentry)); 2166 if (!task) 2167 goto out; 2168 2169 mm = get_task_mm(task); 2170 put_task_struct(task); 2171 if (!mm) 2172 goto out; 2173 2174 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2175 if (rc) 2176 goto out_mmput; 2177 2178 rc = mmap_read_lock_killable(mm); 2179 if (rc) 2180 goto out_mmput; 2181 2182 rc = -ENOENT; 2183 vma = find_exact_vma(mm, vm_start, vm_end); 2184 if (vma && vma->vm_file) { 2185 *path = vma->vm_file->f_path; 2186 path_get(path); 2187 rc = 0; 2188 } 2189 mmap_read_unlock(mm); 2190 2191 out_mmput: 2192 mmput(mm); 2193 out: 2194 return rc; 2195 } 2196 2197 struct map_files_info { 2198 unsigned long start; 2199 unsigned long end; 2200 fmode_t mode; 2201 }; 2202 2203 /* 2204 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2205 * to concerns about how the symlinks may be used to bypass permissions on 2206 * ancestor directories in the path to the file in question. 2207 */ 2208 static const char * 2209 proc_map_files_get_link(struct dentry *dentry, 2210 struct inode *inode, 2211 struct delayed_call *done) 2212 { 2213 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2214 return ERR_PTR(-EPERM); 2215 2216 return proc_pid_get_link(dentry, inode, done); 2217 } 2218 2219 /* 2220 * Identical to proc_pid_link_inode_operations except for get_link() 2221 */ 2222 static const struct inode_operations proc_map_files_link_inode_operations = { 2223 .readlink = proc_pid_readlink, 2224 .get_link = proc_map_files_get_link, 2225 .setattr = proc_setattr, 2226 }; 2227 2228 static struct dentry * 2229 proc_map_files_instantiate(struct dentry *dentry, 2230 struct task_struct *task, const void *ptr) 2231 { 2232 fmode_t mode = (fmode_t)(unsigned long)ptr; 2233 struct proc_inode *ei; 2234 struct inode *inode; 2235 2236 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2237 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2238 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2239 if (!inode) 2240 return ERR_PTR(-ENOENT); 2241 2242 ei = PROC_I(inode); 2243 ei->op.proc_get_link = map_files_get_link; 2244 2245 inode->i_op = &proc_map_files_link_inode_operations; 2246 inode->i_size = 64; 2247 2248 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2249 return d_splice_alias(inode, dentry); 2250 } 2251 2252 static struct dentry *proc_map_files_lookup(struct inode *dir, 2253 struct dentry *dentry, unsigned int flags) 2254 { 2255 unsigned long vm_start, vm_end; 2256 struct vm_area_struct *vma; 2257 struct task_struct *task; 2258 struct dentry *result; 2259 struct mm_struct *mm; 2260 2261 result = ERR_PTR(-ENOENT); 2262 task = get_proc_task(dir); 2263 if (!task) 2264 goto out; 2265 2266 result = ERR_PTR(-EACCES); 2267 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2268 goto out_put_task; 2269 2270 result = ERR_PTR(-ENOENT); 2271 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2272 goto out_put_task; 2273 2274 mm = get_task_mm(task); 2275 if (!mm) 2276 goto out_put_task; 2277 2278 result = ERR_PTR(-EINTR); 2279 if (mmap_read_lock_killable(mm)) 2280 goto out_put_mm; 2281 2282 result = ERR_PTR(-ENOENT); 2283 vma = find_exact_vma(mm, vm_start, vm_end); 2284 if (!vma) 2285 goto out_no_vma; 2286 2287 if (vma->vm_file) 2288 result = proc_map_files_instantiate(dentry, task, 2289 (void *)(unsigned long)vma->vm_file->f_mode); 2290 2291 out_no_vma: 2292 mmap_read_unlock(mm); 2293 out_put_mm: 2294 mmput(mm); 2295 out_put_task: 2296 put_task_struct(task); 2297 out: 2298 return result; 2299 } 2300 2301 static const struct inode_operations proc_map_files_inode_operations = { 2302 .lookup = proc_map_files_lookup, 2303 .permission = proc_fd_permission, 2304 .setattr = proc_setattr, 2305 }; 2306 2307 static int 2308 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2309 { 2310 struct vm_area_struct *vma; 2311 struct task_struct *task; 2312 struct mm_struct *mm; 2313 unsigned long nr_files, pos, i; 2314 GENRADIX(struct map_files_info) fa; 2315 struct map_files_info *p; 2316 int ret; 2317 2318 genradix_init(&fa); 2319 2320 ret = -ENOENT; 2321 task = get_proc_task(file_inode(file)); 2322 if (!task) 2323 goto out; 2324 2325 ret = -EACCES; 2326 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2327 goto out_put_task; 2328 2329 ret = 0; 2330 if (!dir_emit_dots(file, ctx)) 2331 goto out_put_task; 2332 2333 mm = get_task_mm(task); 2334 if (!mm) 2335 goto out_put_task; 2336 2337 ret = mmap_read_lock_killable(mm); 2338 if (ret) { 2339 mmput(mm); 2340 goto out_put_task; 2341 } 2342 2343 nr_files = 0; 2344 2345 /* 2346 * We need two passes here: 2347 * 2348 * 1) Collect vmas of mapped files with mmap_lock taken 2349 * 2) Release mmap_lock and instantiate entries 2350 * 2351 * otherwise we get lockdep complained, since filldir() 2352 * routine might require mmap_lock taken in might_fault(). 2353 */ 2354 2355 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2356 if (!vma->vm_file) 2357 continue; 2358 if (++pos <= ctx->pos) 2359 continue; 2360 2361 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2362 if (!p) { 2363 ret = -ENOMEM; 2364 mmap_read_unlock(mm); 2365 mmput(mm); 2366 goto out_put_task; 2367 } 2368 2369 p->start = vma->vm_start; 2370 p->end = vma->vm_end; 2371 p->mode = vma->vm_file->f_mode; 2372 } 2373 mmap_read_unlock(mm); 2374 mmput(mm); 2375 2376 for (i = 0; i < nr_files; i++) { 2377 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2378 unsigned int len; 2379 2380 p = genradix_ptr(&fa, i); 2381 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2382 if (!proc_fill_cache(file, ctx, 2383 buf, len, 2384 proc_map_files_instantiate, 2385 task, 2386 (void *)(unsigned long)p->mode)) 2387 break; 2388 ctx->pos++; 2389 } 2390 2391 out_put_task: 2392 put_task_struct(task); 2393 out: 2394 genradix_free(&fa); 2395 return ret; 2396 } 2397 2398 static const struct file_operations proc_map_files_operations = { 2399 .read = generic_read_dir, 2400 .iterate_shared = proc_map_files_readdir, 2401 .llseek = generic_file_llseek, 2402 }; 2403 2404 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2405 struct timers_private { 2406 struct pid *pid; 2407 struct task_struct *task; 2408 struct sighand_struct *sighand; 2409 struct pid_namespace *ns; 2410 unsigned long flags; 2411 }; 2412 2413 static void *timers_start(struct seq_file *m, loff_t *pos) 2414 { 2415 struct timers_private *tp = m->private; 2416 2417 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2418 if (!tp->task) 2419 return ERR_PTR(-ESRCH); 2420 2421 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2422 if (!tp->sighand) 2423 return ERR_PTR(-ESRCH); 2424 2425 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2426 } 2427 2428 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2429 { 2430 struct timers_private *tp = m->private; 2431 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2432 } 2433 2434 static void timers_stop(struct seq_file *m, void *v) 2435 { 2436 struct timers_private *tp = m->private; 2437 2438 if (tp->sighand) { 2439 unlock_task_sighand(tp->task, &tp->flags); 2440 tp->sighand = NULL; 2441 } 2442 2443 if (tp->task) { 2444 put_task_struct(tp->task); 2445 tp->task = NULL; 2446 } 2447 } 2448 2449 static int show_timer(struct seq_file *m, void *v) 2450 { 2451 struct k_itimer *timer; 2452 struct timers_private *tp = m->private; 2453 int notify; 2454 static const char * const nstr[] = { 2455 [SIGEV_SIGNAL] = "signal", 2456 [SIGEV_NONE] = "none", 2457 [SIGEV_THREAD] = "thread", 2458 }; 2459 2460 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2461 notify = timer->it_sigev_notify; 2462 2463 seq_printf(m, "ID: %d\n", timer->it_id); 2464 seq_printf(m, "signal: %d/%px\n", 2465 timer->sigq->info.si_signo, 2466 timer->sigq->info.si_value.sival_ptr); 2467 seq_printf(m, "notify: %s/%s.%d\n", 2468 nstr[notify & ~SIGEV_THREAD_ID], 2469 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2470 pid_nr_ns(timer->it_pid, tp->ns)); 2471 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2472 2473 return 0; 2474 } 2475 2476 static const struct seq_operations proc_timers_seq_ops = { 2477 .start = timers_start, 2478 .next = timers_next, 2479 .stop = timers_stop, 2480 .show = show_timer, 2481 }; 2482 2483 static int proc_timers_open(struct inode *inode, struct file *file) 2484 { 2485 struct timers_private *tp; 2486 2487 tp = __seq_open_private(file, &proc_timers_seq_ops, 2488 sizeof(struct timers_private)); 2489 if (!tp) 2490 return -ENOMEM; 2491 2492 tp->pid = proc_pid(inode); 2493 tp->ns = proc_pid_ns(inode->i_sb); 2494 return 0; 2495 } 2496 2497 static const struct file_operations proc_timers_operations = { 2498 .open = proc_timers_open, 2499 .read = seq_read, 2500 .llseek = seq_lseek, 2501 .release = seq_release_private, 2502 }; 2503 #endif 2504 2505 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2506 size_t count, loff_t *offset) 2507 { 2508 struct inode *inode = file_inode(file); 2509 struct task_struct *p; 2510 u64 slack_ns; 2511 int err; 2512 2513 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2514 if (err < 0) 2515 return err; 2516 2517 p = get_proc_task(inode); 2518 if (!p) 2519 return -ESRCH; 2520 2521 if (p != current) { 2522 rcu_read_lock(); 2523 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2524 rcu_read_unlock(); 2525 count = -EPERM; 2526 goto out; 2527 } 2528 rcu_read_unlock(); 2529 2530 err = security_task_setscheduler(p); 2531 if (err) { 2532 count = err; 2533 goto out; 2534 } 2535 } 2536 2537 task_lock(p); 2538 if (slack_ns == 0) 2539 p->timer_slack_ns = p->default_timer_slack_ns; 2540 else 2541 p->timer_slack_ns = slack_ns; 2542 task_unlock(p); 2543 2544 out: 2545 put_task_struct(p); 2546 2547 return count; 2548 } 2549 2550 static int timerslack_ns_show(struct seq_file *m, void *v) 2551 { 2552 struct inode *inode = m->private; 2553 struct task_struct *p; 2554 int err = 0; 2555 2556 p = get_proc_task(inode); 2557 if (!p) 2558 return -ESRCH; 2559 2560 if (p != current) { 2561 rcu_read_lock(); 2562 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2563 rcu_read_unlock(); 2564 err = -EPERM; 2565 goto out; 2566 } 2567 rcu_read_unlock(); 2568 2569 err = security_task_getscheduler(p); 2570 if (err) 2571 goto out; 2572 } 2573 2574 task_lock(p); 2575 seq_printf(m, "%llu\n", p->timer_slack_ns); 2576 task_unlock(p); 2577 2578 out: 2579 put_task_struct(p); 2580 2581 return err; 2582 } 2583 2584 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2585 { 2586 return single_open(filp, timerslack_ns_show, inode); 2587 } 2588 2589 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2590 .open = timerslack_ns_open, 2591 .read = seq_read, 2592 .write = timerslack_ns_write, 2593 .llseek = seq_lseek, 2594 .release = single_release, 2595 }; 2596 2597 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2598 struct task_struct *task, const void *ptr) 2599 { 2600 const struct pid_entry *p = ptr; 2601 struct inode *inode; 2602 struct proc_inode *ei; 2603 2604 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2605 if (!inode) 2606 return ERR_PTR(-ENOENT); 2607 2608 ei = PROC_I(inode); 2609 if (S_ISDIR(inode->i_mode)) 2610 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2611 if (p->iop) 2612 inode->i_op = p->iop; 2613 if (p->fop) 2614 inode->i_fop = p->fop; 2615 ei->op = p->op; 2616 pid_update_inode(task, inode); 2617 d_set_d_op(dentry, &pid_dentry_operations); 2618 return d_splice_alias(inode, dentry); 2619 } 2620 2621 static struct dentry *proc_pident_lookup(struct inode *dir, 2622 struct dentry *dentry, 2623 const struct pid_entry *p, 2624 const struct pid_entry *end) 2625 { 2626 struct task_struct *task = get_proc_task(dir); 2627 struct dentry *res = ERR_PTR(-ENOENT); 2628 2629 if (!task) 2630 goto out_no_task; 2631 2632 /* 2633 * Yes, it does not scale. And it should not. Don't add 2634 * new entries into /proc/<tgid>/ without very good reasons. 2635 */ 2636 for (; p < end; p++) { 2637 if (p->len != dentry->d_name.len) 2638 continue; 2639 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2640 res = proc_pident_instantiate(dentry, task, p); 2641 break; 2642 } 2643 } 2644 put_task_struct(task); 2645 out_no_task: 2646 return res; 2647 } 2648 2649 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2650 const struct pid_entry *ents, unsigned int nents) 2651 { 2652 struct task_struct *task = get_proc_task(file_inode(file)); 2653 const struct pid_entry *p; 2654 2655 if (!task) 2656 return -ENOENT; 2657 2658 if (!dir_emit_dots(file, ctx)) 2659 goto out; 2660 2661 if (ctx->pos >= nents + 2) 2662 goto out; 2663 2664 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2665 if (!proc_fill_cache(file, ctx, p->name, p->len, 2666 proc_pident_instantiate, task, p)) 2667 break; 2668 ctx->pos++; 2669 } 2670 out: 2671 put_task_struct(task); 2672 return 0; 2673 } 2674 2675 #ifdef CONFIG_SECURITY 2676 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2677 size_t count, loff_t *ppos) 2678 { 2679 struct inode * inode = file_inode(file); 2680 char *p = NULL; 2681 ssize_t length; 2682 struct task_struct *task = get_proc_task(inode); 2683 2684 if (!task) 2685 return -ESRCH; 2686 2687 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2688 (char*)file->f_path.dentry->d_name.name, 2689 &p); 2690 put_task_struct(task); 2691 if (length > 0) 2692 length = simple_read_from_buffer(buf, count, ppos, p, length); 2693 kfree(p); 2694 return length; 2695 } 2696 2697 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2698 size_t count, loff_t *ppos) 2699 { 2700 struct inode * inode = file_inode(file); 2701 struct task_struct *task; 2702 void *page; 2703 int rv; 2704 2705 rcu_read_lock(); 2706 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2707 if (!task) { 2708 rcu_read_unlock(); 2709 return -ESRCH; 2710 } 2711 /* A task may only write its own attributes. */ 2712 if (current != task) { 2713 rcu_read_unlock(); 2714 return -EACCES; 2715 } 2716 /* Prevent changes to overridden credentials. */ 2717 if (current_cred() != current_real_cred()) { 2718 rcu_read_unlock(); 2719 return -EBUSY; 2720 } 2721 rcu_read_unlock(); 2722 2723 if (count > PAGE_SIZE) 2724 count = PAGE_SIZE; 2725 2726 /* No partial writes. */ 2727 if (*ppos != 0) 2728 return -EINVAL; 2729 2730 page = memdup_user(buf, count); 2731 if (IS_ERR(page)) { 2732 rv = PTR_ERR(page); 2733 goto out; 2734 } 2735 2736 /* Guard against adverse ptrace interaction */ 2737 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2738 if (rv < 0) 2739 goto out_free; 2740 2741 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2742 file->f_path.dentry->d_name.name, page, 2743 count); 2744 mutex_unlock(¤t->signal->cred_guard_mutex); 2745 out_free: 2746 kfree(page); 2747 out: 2748 return rv; 2749 } 2750 2751 static const struct file_operations proc_pid_attr_operations = { 2752 .read = proc_pid_attr_read, 2753 .write = proc_pid_attr_write, 2754 .llseek = generic_file_llseek, 2755 }; 2756 2757 #define LSM_DIR_OPS(LSM) \ 2758 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2759 struct dir_context *ctx) \ 2760 { \ 2761 return proc_pident_readdir(filp, ctx, \ 2762 LSM##_attr_dir_stuff, \ 2763 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2764 } \ 2765 \ 2766 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2767 .read = generic_read_dir, \ 2768 .iterate = proc_##LSM##_attr_dir_iterate, \ 2769 .llseek = default_llseek, \ 2770 }; \ 2771 \ 2772 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2773 struct dentry *dentry, unsigned int flags) \ 2774 { \ 2775 return proc_pident_lookup(dir, dentry, \ 2776 LSM##_attr_dir_stuff, \ 2777 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2778 } \ 2779 \ 2780 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2781 .lookup = proc_##LSM##_attr_dir_lookup, \ 2782 .getattr = pid_getattr, \ 2783 .setattr = proc_setattr, \ 2784 } 2785 2786 #ifdef CONFIG_SECURITY_SMACK 2787 static const struct pid_entry smack_attr_dir_stuff[] = { 2788 ATTR("smack", "current", 0666), 2789 }; 2790 LSM_DIR_OPS(smack); 2791 #endif 2792 2793 #ifdef CONFIG_SECURITY_APPARMOR 2794 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2795 ATTR("apparmor", "current", 0666), 2796 ATTR("apparmor", "prev", 0444), 2797 ATTR("apparmor", "exec", 0666), 2798 }; 2799 LSM_DIR_OPS(apparmor); 2800 #endif 2801 2802 static const struct pid_entry attr_dir_stuff[] = { 2803 ATTR(NULL, "current", 0666), 2804 ATTR(NULL, "prev", 0444), 2805 ATTR(NULL, "exec", 0666), 2806 ATTR(NULL, "fscreate", 0666), 2807 ATTR(NULL, "keycreate", 0666), 2808 ATTR(NULL, "sockcreate", 0666), 2809 #ifdef CONFIG_SECURITY_SMACK 2810 DIR("smack", 0555, 2811 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2812 #endif 2813 #ifdef CONFIG_SECURITY_APPARMOR 2814 DIR("apparmor", 0555, 2815 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2816 #endif 2817 }; 2818 2819 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2820 { 2821 return proc_pident_readdir(file, ctx, 2822 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2823 } 2824 2825 static const struct file_operations proc_attr_dir_operations = { 2826 .read = generic_read_dir, 2827 .iterate_shared = proc_attr_dir_readdir, 2828 .llseek = generic_file_llseek, 2829 }; 2830 2831 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2832 struct dentry *dentry, unsigned int flags) 2833 { 2834 return proc_pident_lookup(dir, dentry, 2835 attr_dir_stuff, 2836 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2837 } 2838 2839 static const struct inode_operations proc_attr_dir_inode_operations = { 2840 .lookup = proc_attr_dir_lookup, 2841 .getattr = pid_getattr, 2842 .setattr = proc_setattr, 2843 }; 2844 2845 #endif 2846 2847 #ifdef CONFIG_ELF_CORE 2848 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2849 size_t count, loff_t *ppos) 2850 { 2851 struct task_struct *task = get_proc_task(file_inode(file)); 2852 struct mm_struct *mm; 2853 char buffer[PROC_NUMBUF]; 2854 size_t len; 2855 int ret; 2856 2857 if (!task) 2858 return -ESRCH; 2859 2860 ret = 0; 2861 mm = get_task_mm(task); 2862 if (mm) { 2863 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2864 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2865 MMF_DUMP_FILTER_SHIFT)); 2866 mmput(mm); 2867 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2868 } 2869 2870 put_task_struct(task); 2871 2872 return ret; 2873 } 2874 2875 static ssize_t proc_coredump_filter_write(struct file *file, 2876 const char __user *buf, 2877 size_t count, 2878 loff_t *ppos) 2879 { 2880 struct task_struct *task; 2881 struct mm_struct *mm; 2882 unsigned int val; 2883 int ret; 2884 int i; 2885 unsigned long mask; 2886 2887 ret = kstrtouint_from_user(buf, count, 0, &val); 2888 if (ret < 0) 2889 return ret; 2890 2891 ret = -ESRCH; 2892 task = get_proc_task(file_inode(file)); 2893 if (!task) 2894 goto out_no_task; 2895 2896 mm = get_task_mm(task); 2897 if (!mm) 2898 goto out_no_mm; 2899 ret = 0; 2900 2901 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2902 if (val & mask) 2903 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2904 else 2905 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2906 } 2907 2908 mmput(mm); 2909 out_no_mm: 2910 put_task_struct(task); 2911 out_no_task: 2912 if (ret < 0) 2913 return ret; 2914 return count; 2915 } 2916 2917 static const struct file_operations proc_coredump_filter_operations = { 2918 .read = proc_coredump_filter_read, 2919 .write = proc_coredump_filter_write, 2920 .llseek = generic_file_llseek, 2921 }; 2922 #endif 2923 2924 #ifdef CONFIG_TASK_IO_ACCOUNTING 2925 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2926 { 2927 struct task_io_accounting acct = task->ioac; 2928 unsigned long flags; 2929 int result; 2930 2931 result = mutex_lock_killable(&task->signal->exec_update_mutex); 2932 if (result) 2933 return result; 2934 2935 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2936 result = -EACCES; 2937 goto out_unlock; 2938 } 2939 2940 if (whole && lock_task_sighand(task, &flags)) { 2941 struct task_struct *t = task; 2942 2943 task_io_accounting_add(&acct, &task->signal->ioac); 2944 while_each_thread(task, t) 2945 task_io_accounting_add(&acct, &t->ioac); 2946 2947 unlock_task_sighand(task, &flags); 2948 } 2949 seq_printf(m, 2950 "rchar: %llu\n" 2951 "wchar: %llu\n" 2952 "syscr: %llu\n" 2953 "syscw: %llu\n" 2954 "read_bytes: %llu\n" 2955 "write_bytes: %llu\n" 2956 "cancelled_write_bytes: %llu\n", 2957 (unsigned long long)acct.rchar, 2958 (unsigned long long)acct.wchar, 2959 (unsigned long long)acct.syscr, 2960 (unsigned long long)acct.syscw, 2961 (unsigned long long)acct.read_bytes, 2962 (unsigned long long)acct.write_bytes, 2963 (unsigned long long)acct.cancelled_write_bytes); 2964 result = 0; 2965 2966 out_unlock: 2967 mutex_unlock(&task->signal->exec_update_mutex); 2968 return result; 2969 } 2970 2971 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2972 struct pid *pid, struct task_struct *task) 2973 { 2974 return do_io_accounting(task, m, 0); 2975 } 2976 2977 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2978 struct pid *pid, struct task_struct *task) 2979 { 2980 return do_io_accounting(task, m, 1); 2981 } 2982 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2983 2984 #ifdef CONFIG_USER_NS 2985 static int proc_id_map_open(struct inode *inode, struct file *file, 2986 const struct seq_operations *seq_ops) 2987 { 2988 struct user_namespace *ns = NULL; 2989 struct task_struct *task; 2990 struct seq_file *seq; 2991 int ret = -EINVAL; 2992 2993 task = get_proc_task(inode); 2994 if (task) { 2995 rcu_read_lock(); 2996 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2997 rcu_read_unlock(); 2998 put_task_struct(task); 2999 } 3000 if (!ns) 3001 goto err; 3002 3003 ret = seq_open(file, seq_ops); 3004 if (ret) 3005 goto err_put_ns; 3006 3007 seq = file->private_data; 3008 seq->private = ns; 3009 3010 return 0; 3011 err_put_ns: 3012 put_user_ns(ns); 3013 err: 3014 return ret; 3015 } 3016 3017 static int proc_id_map_release(struct inode *inode, struct file *file) 3018 { 3019 struct seq_file *seq = file->private_data; 3020 struct user_namespace *ns = seq->private; 3021 put_user_ns(ns); 3022 return seq_release(inode, file); 3023 } 3024 3025 static int proc_uid_map_open(struct inode *inode, struct file *file) 3026 { 3027 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3028 } 3029 3030 static int proc_gid_map_open(struct inode *inode, struct file *file) 3031 { 3032 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3033 } 3034 3035 static int proc_projid_map_open(struct inode *inode, struct file *file) 3036 { 3037 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3038 } 3039 3040 static const struct file_operations proc_uid_map_operations = { 3041 .open = proc_uid_map_open, 3042 .write = proc_uid_map_write, 3043 .read = seq_read, 3044 .llseek = seq_lseek, 3045 .release = proc_id_map_release, 3046 }; 3047 3048 static const struct file_operations proc_gid_map_operations = { 3049 .open = proc_gid_map_open, 3050 .write = proc_gid_map_write, 3051 .read = seq_read, 3052 .llseek = seq_lseek, 3053 .release = proc_id_map_release, 3054 }; 3055 3056 static const struct file_operations proc_projid_map_operations = { 3057 .open = proc_projid_map_open, 3058 .write = proc_projid_map_write, 3059 .read = seq_read, 3060 .llseek = seq_lseek, 3061 .release = proc_id_map_release, 3062 }; 3063 3064 static int proc_setgroups_open(struct inode *inode, struct file *file) 3065 { 3066 struct user_namespace *ns = NULL; 3067 struct task_struct *task; 3068 int ret; 3069 3070 ret = -ESRCH; 3071 task = get_proc_task(inode); 3072 if (task) { 3073 rcu_read_lock(); 3074 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3075 rcu_read_unlock(); 3076 put_task_struct(task); 3077 } 3078 if (!ns) 3079 goto err; 3080 3081 if (file->f_mode & FMODE_WRITE) { 3082 ret = -EACCES; 3083 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3084 goto err_put_ns; 3085 } 3086 3087 ret = single_open(file, &proc_setgroups_show, ns); 3088 if (ret) 3089 goto err_put_ns; 3090 3091 return 0; 3092 err_put_ns: 3093 put_user_ns(ns); 3094 err: 3095 return ret; 3096 } 3097 3098 static int proc_setgroups_release(struct inode *inode, struct file *file) 3099 { 3100 struct seq_file *seq = file->private_data; 3101 struct user_namespace *ns = seq->private; 3102 int ret = single_release(inode, file); 3103 put_user_ns(ns); 3104 return ret; 3105 } 3106 3107 static const struct file_operations proc_setgroups_operations = { 3108 .open = proc_setgroups_open, 3109 .write = proc_setgroups_write, 3110 .read = seq_read, 3111 .llseek = seq_lseek, 3112 .release = proc_setgroups_release, 3113 }; 3114 #endif /* CONFIG_USER_NS */ 3115 3116 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3117 struct pid *pid, struct task_struct *task) 3118 { 3119 int err = lock_trace(task); 3120 if (!err) { 3121 seq_printf(m, "%08x\n", task->personality); 3122 unlock_trace(task); 3123 } 3124 return err; 3125 } 3126 3127 #ifdef CONFIG_LIVEPATCH 3128 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3129 struct pid *pid, struct task_struct *task) 3130 { 3131 seq_printf(m, "%d\n", task->patch_state); 3132 return 0; 3133 } 3134 #endif /* CONFIG_LIVEPATCH */ 3135 3136 #ifdef CONFIG_STACKLEAK_METRICS 3137 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3138 struct pid *pid, struct task_struct *task) 3139 { 3140 unsigned long prev_depth = THREAD_SIZE - 3141 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3142 unsigned long depth = THREAD_SIZE - 3143 (task->lowest_stack & (THREAD_SIZE - 1)); 3144 3145 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3146 prev_depth, depth); 3147 return 0; 3148 } 3149 #endif /* CONFIG_STACKLEAK_METRICS */ 3150 3151 /* 3152 * Thread groups 3153 */ 3154 static const struct file_operations proc_task_operations; 3155 static const struct inode_operations proc_task_inode_operations; 3156 3157 static const struct pid_entry tgid_base_stuff[] = { 3158 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3159 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3160 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3161 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3162 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3163 #ifdef CONFIG_NET 3164 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3165 #endif 3166 REG("environ", S_IRUSR, proc_environ_operations), 3167 REG("auxv", S_IRUSR, proc_auxv_operations), 3168 ONE("status", S_IRUGO, proc_pid_status), 3169 ONE("personality", S_IRUSR, proc_pid_personality), 3170 ONE("limits", S_IRUGO, proc_pid_limits), 3171 #ifdef CONFIG_SCHED_DEBUG 3172 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3173 #endif 3174 #ifdef CONFIG_SCHED_AUTOGROUP 3175 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3176 #endif 3177 #ifdef CONFIG_TIME_NS 3178 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3179 #endif 3180 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3181 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3182 ONE("syscall", S_IRUSR, proc_pid_syscall), 3183 #endif 3184 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3185 ONE("stat", S_IRUGO, proc_tgid_stat), 3186 ONE("statm", S_IRUGO, proc_pid_statm), 3187 REG("maps", S_IRUGO, proc_pid_maps_operations), 3188 #ifdef CONFIG_NUMA 3189 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3190 #endif 3191 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3192 LNK("cwd", proc_cwd_link), 3193 LNK("root", proc_root_link), 3194 LNK("exe", proc_exe_link), 3195 REG("mounts", S_IRUGO, proc_mounts_operations), 3196 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3197 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3198 #ifdef CONFIG_PROC_PAGE_MONITOR 3199 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3200 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3201 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3202 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3203 #endif 3204 #ifdef CONFIG_SECURITY 3205 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3206 #endif 3207 #ifdef CONFIG_KALLSYMS 3208 ONE("wchan", S_IRUGO, proc_pid_wchan), 3209 #endif 3210 #ifdef CONFIG_STACKTRACE 3211 ONE("stack", S_IRUSR, proc_pid_stack), 3212 #endif 3213 #ifdef CONFIG_SCHED_INFO 3214 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3215 #endif 3216 #ifdef CONFIG_LATENCYTOP 3217 REG("latency", S_IRUGO, proc_lstats_operations), 3218 #endif 3219 #ifdef CONFIG_PROC_PID_CPUSET 3220 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3221 #endif 3222 #ifdef CONFIG_CGROUPS 3223 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3224 #endif 3225 #ifdef CONFIG_PROC_CPU_RESCTRL 3226 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3227 #endif 3228 ONE("oom_score", S_IRUGO, proc_oom_score), 3229 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3230 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3231 #ifdef CONFIG_AUDIT 3232 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3233 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3234 #endif 3235 #ifdef CONFIG_FAULT_INJECTION 3236 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3237 REG("fail-nth", 0644, proc_fail_nth_operations), 3238 #endif 3239 #ifdef CONFIG_ELF_CORE 3240 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3241 #endif 3242 #ifdef CONFIG_TASK_IO_ACCOUNTING 3243 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3244 #endif 3245 #ifdef CONFIG_USER_NS 3246 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3247 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3248 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3249 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3250 #endif 3251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3252 REG("timers", S_IRUGO, proc_timers_operations), 3253 #endif 3254 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3255 #ifdef CONFIG_LIVEPATCH 3256 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3257 #endif 3258 #ifdef CONFIG_STACKLEAK_METRICS 3259 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3260 #endif 3261 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3262 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3263 #endif 3264 }; 3265 3266 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3267 { 3268 return proc_pident_readdir(file, ctx, 3269 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3270 } 3271 3272 static const struct file_operations proc_tgid_base_operations = { 3273 .read = generic_read_dir, 3274 .iterate_shared = proc_tgid_base_readdir, 3275 .llseek = generic_file_llseek, 3276 }; 3277 3278 struct pid *tgid_pidfd_to_pid(const struct file *file) 3279 { 3280 if (file->f_op != &proc_tgid_base_operations) 3281 return ERR_PTR(-EBADF); 3282 3283 return proc_pid(file_inode(file)); 3284 } 3285 3286 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3287 { 3288 return proc_pident_lookup(dir, dentry, 3289 tgid_base_stuff, 3290 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3291 } 3292 3293 static const struct inode_operations proc_tgid_base_inode_operations = { 3294 .lookup = proc_tgid_base_lookup, 3295 .getattr = pid_getattr, 3296 .setattr = proc_setattr, 3297 .permission = proc_pid_permission, 3298 }; 3299 3300 /** 3301 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3302 * @pid: pid that should be flushed. 3303 * 3304 * This function walks a list of inodes (that belong to any proc 3305 * filesystem) that are attached to the pid and flushes them from 3306 * the dentry cache. 3307 * 3308 * It is safe and reasonable to cache /proc entries for a task until 3309 * that task exits. After that they just clog up the dcache with 3310 * useless entries, possibly causing useful dcache entries to be 3311 * flushed instead. This routine is provided to flush those useless 3312 * dcache entries when a process is reaped. 3313 * 3314 * NOTE: This routine is just an optimization so it does not guarantee 3315 * that no dcache entries will exist after a process is reaped 3316 * it just makes it very unlikely that any will persist. 3317 */ 3318 3319 void proc_flush_pid(struct pid *pid) 3320 { 3321 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3322 } 3323 3324 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3325 struct task_struct *task, const void *ptr) 3326 { 3327 struct inode *inode; 3328 3329 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3330 if (!inode) 3331 return ERR_PTR(-ENOENT); 3332 3333 inode->i_op = &proc_tgid_base_inode_operations; 3334 inode->i_fop = &proc_tgid_base_operations; 3335 inode->i_flags|=S_IMMUTABLE; 3336 3337 set_nlink(inode, nlink_tgid); 3338 pid_update_inode(task, inode); 3339 3340 d_set_d_op(dentry, &pid_dentry_operations); 3341 return d_splice_alias(inode, dentry); 3342 } 3343 3344 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3345 { 3346 struct task_struct *task; 3347 unsigned tgid; 3348 struct proc_fs_info *fs_info; 3349 struct pid_namespace *ns; 3350 struct dentry *result = ERR_PTR(-ENOENT); 3351 3352 tgid = name_to_int(&dentry->d_name); 3353 if (tgid == ~0U) 3354 goto out; 3355 3356 fs_info = proc_sb_info(dentry->d_sb); 3357 ns = fs_info->pid_ns; 3358 rcu_read_lock(); 3359 task = find_task_by_pid_ns(tgid, ns); 3360 if (task) 3361 get_task_struct(task); 3362 rcu_read_unlock(); 3363 if (!task) 3364 goto out; 3365 3366 /* Limit procfs to only ptraceable tasks */ 3367 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3368 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3369 goto out_put_task; 3370 } 3371 3372 result = proc_pid_instantiate(dentry, task, NULL); 3373 out_put_task: 3374 put_task_struct(task); 3375 out: 3376 return result; 3377 } 3378 3379 /* 3380 * Find the first task with tgid >= tgid 3381 * 3382 */ 3383 struct tgid_iter { 3384 unsigned int tgid; 3385 struct task_struct *task; 3386 }; 3387 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3388 { 3389 struct pid *pid; 3390 3391 if (iter.task) 3392 put_task_struct(iter.task); 3393 rcu_read_lock(); 3394 retry: 3395 iter.task = NULL; 3396 pid = find_ge_pid(iter.tgid, ns); 3397 if (pid) { 3398 iter.tgid = pid_nr_ns(pid, ns); 3399 iter.task = pid_task(pid, PIDTYPE_TGID); 3400 if (!iter.task) { 3401 iter.tgid += 1; 3402 goto retry; 3403 } 3404 get_task_struct(iter.task); 3405 } 3406 rcu_read_unlock(); 3407 return iter; 3408 } 3409 3410 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3411 3412 /* for the /proc/ directory itself, after non-process stuff has been done */ 3413 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3414 { 3415 struct tgid_iter iter; 3416 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3417 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3418 loff_t pos = ctx->pos; 3419 3420 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3421 return 0; 3422 3423 if (pos == TGID_OFFSET - 2) { 3424 struct inode *inode = d_inode(fs_info->proc_self); 3425 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3426 return 0; 3427 ctx->pos = pos = pos + 1; 3428 } 3429 if (pos == TGID_OFFSET - 1) { 3430 struct inode *inode = d_inode(fs_info->proc_thread_self); 3431 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3432 return 0; 3433 ctx->pos = pos = pos + 1; 3434 } 3435 iter.tgid = pos - TGID_OFFSET; 3436 iter.task = NULL; 3437 for (iter = next_tgid(ns, iter); 3438 iter.task; 3439 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3440 char name[10 + 1]; 3441 unsigned int len; 3442 3443 cond_resched(); 3444 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3445 continue; 3446 3447 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3448 ctx->pos = iter.tgid + TGID_OFFSET; 3449 if (!proc_fill_cache(file, ctx, name, len, 3450 proc_pid_instantiate, iter.task, NULL)) { 3451 put_task_struct(iter.task); 3452 return 0; 3453 } 3454 } 3455 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3456 return 0; 3457 } 3458 3459 /* 3460 * proc_tid_comm_permission is a special permission function exclusively 3461 * used for the node /proc/<pid>/task/<tid>/comm. 3462 * It bypasses generic permission checks in the case where a task of the same 3463 * task group attempts to access the node. 3464 * The rationale behind this is that glibc and bionic access this node for 3465 * cross thread naming (pthread_set/getname_np(!self)). However, if 3466 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3467 * which locks out the cross thread naming implementation. 3468 * This function makes sure that the node is always accessible for members of 3469 * same thread group. 3470 */ 3471 static int proc_tid_comm_permission(struct inode *inode, int mask) 3472 { 3473 bool is_same_tgroup; 3474 struct task_struct *task; 3475 3476 task = get_proc_task(inode); 3477 if (!task) 3478 return -ESRCH; 3479 is_same_tgroup = same_thread_group(current, task); 3480 put_task_struct(task); 3481 3482 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3483 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3484 * read or written by the members of the corresponding 3485 * thread group. 3486 */ 3487 return 0; 3488 } 3489 3490 return generic_permission(inode, mask); 3491 } 3492 3493 static const struct inode_operations proc_tid_comm_inode_operations = { 3494 .permission = proc_tid_comm_permission, 3495 }; 3496 3497 /* 3498 * Tasks 3499 */ 3500 static const struct pid_entry tid_base_stuff[] = { 3501 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3502 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3503 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3504 #ifdef CONFIG_NET 3505 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3506 #endif 3507 REG("environ", S_IRUSR, proc_environ_operations), 3508 REG("auxv", S_IRUSR, proc_auxv_operations), 3509 ONE("status", S_IRUGO, proc_pid_status), 3510 ONE("personality", S_IRUSR, proc_pid_personality), 3511 ONE("limits", S_IRUGO, proc_pid_limits), 3512 #ifdef CONFIG_SCHED_DEBUG 3513 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3514 #endif 3515 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3516 &proc_tid_comm_inode_operations, 3517 &proc_pid_set_comm_operations, {}), 3518 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3519 ONE("syscall", S_IRUSR, proc_pid_syscall), 3520 #endif 3521 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3522 ONE("stat", S_IRUGO, proc_tid_stat), 3523 ONE("statm", S_IRUGO, proc_pid_statm), 3524 REG("maps", S_IRUGO, proc_pid_maps_operations), 3525 #ifdef CONFIG_PROC_CHILDREN 3526 REG("children", S_IRUGO, proc_tid_children_operations), 3527 #endif 3528 #ifdef CONFIG_NUMA 3529 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3530 #endif 3531 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3532 LNK("cwd", proc_cwd_link), 3533 LNK("root", proc_root_link), 3534 LNK("exe", proc_exe_link), 3535 REG("mounts", S_IRUGO, proc_mounts_operations), 3536 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3537 #ifdef CONFIG_PROC_PAGE_MONITOR 3538 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3539 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3540 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3541 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3542 #endif 3543 #ifdef CONFIG_SECURITY 3544 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3545 #endif 3546 #ifdef CONFIG_KALLSYMS 3547 ONE("wchan", S_IRUGO, proc_pid_wchan), 3548 #endif 3549 #ifdef CONFIG_STACKTRACE 3550 ONE("stack", S_IRUSR, proc_pid_stack), 3551 #endif 3552 #ifdef CONFIG_SCHED_INFO 3553 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3554 #endif 3555 #ifdef CONFIG_LATENCYTOP 3556 REG("latency", S_IRUGO, proc_lstats_operations), 3557 #endif 3558 #ifdef CONFIG_PROC_PID_CPUSET 3559 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3560 #endif 3561 #ifdef CONFIG_CGROUPS 3562 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3563 #endif 3564 #ifdef CONFIG_PROC_CPU_RESCTRL 3565 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3566 #endif 3567 ONE("oom_score", S_IRUGO, proc_oom_score), 3568 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3569 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3570 #ifdef CONFIG_AUDIT 3571 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3572 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3573 #endif 3574 #ifdef CONFIG_FAULT_INJECTION 3575 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3576 REG("fail-nth", 0644, proc_fail_nth_operations), 3577 #endif 3578 #ifdef CONFIG_TASK_IO_ACCOUNTING 3579 ONE("io", S_IRUSR, proc_tid_io_accounting), 3580 #endif 3581 #ifdef CONFIG_USER_NS 3582 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3583 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3584 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3585 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3586 #endif 3587 #ifdef CONFIG_LIVEPATCH 3588 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3589 #endif 3590 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3591 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3592 #endif 3593 }; 3594 3595 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3596 { 3597 return proc_pident_readdir(file, ctx, 3598 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3599 } 3600 3601 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3602 { 3603 return proc_pident_lookup(dir, dentry, 3604 tid_base_stuff, 3605 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3606 } 3607 3608 static const struct file_operations proc_tid_base_operations = { 3609 .read = generic_read_dir, 3610 .iterate_shared = proc_tid_base_readdir, 3611 .llseek = generic_file_llseek, 3612 }; 3613 3614 static const struct inode_operations proc_tid_base_inode_operations = { 3615 .lookup = proc_tid_base_lookup, 3616 .getattr = pid_getattr, 3617 .setattr = proc_setattr, 3618 }; 3619 3620 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3621 struct task_struct *task, const void *ptr) 3622 { 3623 struct inode *inode; 3624 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3625 if (!inode) 3626 return ERR_PTR(-ENOENT); 3627 3628 inode->i_op = &proc_tid_base_inode_operations; 3629 inode->i_fop = &proc_tid_base_operations; 3630 inode->i_flags |= S_IMMUTABLE; 3631 3632 set_nlink(inode, nlink_tid); 3633 pid_update_inode(task, inode); 3634 3635 d_set_d_op(dentry, &pid_dentry_operations); 3636 return d_splice_alias(inode, dentry); 3637 } 3638 3639 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3640 { 3641 struct task_struct *task; 3642 struct task_struct *leader = get_proc_task(dir); 3643 unsigned tid; 3644 struct proc_fs_info *fs_info; 3645 struct pid_namespace *ns; 3646 struct dentry *result = ERR_PTR(-ENOENT); 3647 3648 if (!leader) 3649 goto out_no_task; 3650 3651 tid = name_to_int(&dentry->d_name); 3652 if (tid == ~0U) 3653 goto out; 3654 3655 fs_info = proc_sb_info(dentry->d_sb); 3656 ns = fs_info->pid_ns; 3657 rcu_read_lock(); 3658 task = find_task_by_pid_ns(tid, ns); 3659 if (task) 3660 get_task_struct(task); 3661 rcu_read_unlock(); 3662 if (!task) 3663 goto out; 3664 if (!same_thread_group(leader, task)) 3665 goto out_drop_task; 3666 3667 result = proc_task_instantiate(dentry, task, NULL); 3668 out_drop_task: 3669 put_task_struct(task); 3670 out: 3671 put_task_struct(leader); 3672 out_no_task: 3673 return result; 3674 } 3675 3676 /* 3677 * Find the first tid of a thread group to return to user space. 3678 * 3679 * Usually this is just the thread group leader, but if the users 3680 * buffer was too small or there was a seek into the middle of the 3681 * directory we have more work todo. 3682 * 3683 * In the case of a short read we start with find_task_by_pid. 3684 * 3685 * In the case of a seek we start with the leader and walk nr 3686 * threads past it. 3687 */ 3688 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3689 struct pid_namespace *ns) 3690 { 3691 struct task_struct *pos, *task; 3692 unsigned long nr = f_pos; 3693 3694 if (nr != f_pos) /* 32bit overflow? */ 3695 return NULL; 3696 3697 rcu_read_lock(); 3698 task = pid_task(pid, PIDTYPE_PID); 3699 if (!task) 3700 goto fail; 3701 3702 /* Attempt to start with the tid of a thread */ 3703 if (tid && nr) { 3704 pos = find_task_by_pid_ns(tid, ns); 3705 if (pos && same_thread_group(pos, task)) 3706 goto found; 3707 } 3708 3709 /* If nr exceeds the number of threads there is nothing todo */ 3710 if (nr >= get_nr_threads(task)) 3711 goto fail; 3712 3713 /* If we haven't found our starting place yet start 3714 * with the leader and walk nr threads forward. 3715 */ 3716 pos = task = task->group_leader; 3717 do { 3718 if (!nr--) 3719 goto found; 3720 } while_each_thread(task, pos); 3721 fail: 3722 pos = NULL; 3723 goto out; 3724 found: 3725 get_task_struct(pos); 3726 out: 3727 rcu_read_unlock(); 3728 return pos; 3729 } 3730 3731 /* 3732 * Find the next thread in the thread list. 3733 * Return NULL if there is an error or no next thread. 3734 * 3735 * The reference to the input task_struct is released. 3736 */ 3737 static struct task_struct *next_tid(struct task_struct *start) 3738 { 3739 struct task_struct *pos = NULL; 3740 rcu_read_lock(); 3741 if (pid_alive(start)) { 3742 pos = next_thread(start); 3743 if (thread_group_leader(pos)) 3744 pos = NULL; 3745 else 3746 get_task_struct(pos); 3747 } 3748 rcu_read_unlock(); 3749 put_task_struct(start); 3750 return pos; 3751 } 3752 3753 /* for the /proc/TGID/task/ directories */ 3754 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3755 { 3756 struct inode *inode = file_inode(file); 3757 struct task_struct *task; 3758 struct pid_namespace *ns; 3759 int tid; 3760 3761 if (proc_inode_is_dead(inode)) 3762 return -ENOENT; 3763 3764 if (!dir_emit_dots(file, ctx)) 3765 return 0; 3766 3767 /* f_version caches the tgid value that the last readdir call couldn't 3768 * return. lseek aka telldir automagically resets f_version to 0. 3769 */ 3770 ns = proc_pid_ns(inode->i_sb); 3771 tid = (int)file->f_version; 3772 file->f_version = 0; 3773 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3774 task; 3775 task = next_tid(task), ctx->pos++) { 3776 char name[10 + 1]; 3777 unsigned int len; 3778 tid = task_pid_nr_ns(task, ns); 3779 len = snprintf(name, sizeof(name), "%u", tid); 3780 if (!proc_fill_cache(file, ctx, name, len, 3781 proc_task_instantiate, task, NULL)) { 3782 /* returning this tgid failed, save it as the first 3783 * pid for the next readir call */ 3784 file->f_version = (u64)tid; 3785 put_task_struct(task); 3786 break; 3787 } 3788 } 3789 3790 return 0; 3791 } 3792 3793 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3794 u32 request_mask, unsigned int query_flags) 3795 { 3796 struct inode *inode = d_inode(path->dentry); 3797 struct task_struct *p = get_proc_task(inode); 3798 generic_fillattr(inode, stat); 3799 3800 if (p) { 3801 stat->nlink += get_nr_threads(p); 3802 put_task_struct(p); 3803 } 3804 3805 return 0; 3806 } 3807 3808 static const struct inode_operations proc_task_inode_operations = { 3809 .lookup = proc_task_lookup, 3810 .getattr = proc_task_getattr, 3811 .setattr = proc_setattr, 3812 .permission = proc_pid_permission, 3813 }; 3814 3815 static const struct file_operations proc_task_operations = { 3816 .read = generic_read_dir, 3817 .iterate_shared = proc_task_readdir, 3818 .llseek = generic_file_llseek, 3819 }; 3820 3821 void __init set_proc_pid_nlink(void) 3822 { 3823 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3824 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3825 } 3826