xref: /openbmc/linux/fs/proc/base.c (revision 05bcf503)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94 
95 /* NOTE:
96  *	Implementing inode permission operations in /proc is almost
97  *	certainly an error.  Permission checks need to happen during
98  *	each system call not at open time.  The reason is that most of
99  *	what we wish to check for permissions in /proc varies at runtime.
100  *
101  *	The classic example of a problem is opening file descriptors
102  *	in /proc for a task before it execs a suid executable.
103  */
104 
105 struct pid_entry {
106 	char *name;
107 	int len;
108 	umode_t mode;
109 	const struct inode_operations *iop;
110 	const struct file_operations *fop;
111 	union proc_op op;
112 };
113 
114 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
115 	.name = (NAME),					\
116 	.len  = sizeof(NAME) - 1,			\
117 	.mode = MODE,					\
118 	.iop  = IOP,					\
119 	.fop  = FOP,					\
120 	.op   = OP,					\
121 }
122 
123 #define DIR(NAME, MODE, iops, fops)	\
124 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link)					\
126 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
127 		&proc_pid_link_inode_operations, NULL,		\
128 		{ .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops)				\
130 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_info_file_operations,	\
134 		{ .proc_read = read } )
135 #define ONE(NAME, MODE, show)				\
136 	NOD(NAME, (S_IFREG|(MODE)), 			\
137 		NULL, &proc_single_file_operations,	\
138 		{ .proc_show = show } )
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 	int res = 0;
204 	unsigned int len;
205 	struct mm_struct *mm = get_task_mm(task);
206 	if (!mm)
207 		goto out;
208 	if (!mm->arg_end)
209 		goto out_mm;	/* Shh! No looking before we're done */
210 
211  	len = mm->arg_end - mm->arg_start;
212 
213 	if (len > PAGE_SIZE)
214 		len = PAGE_SIZE;
215 
216 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217 
218 	// If the nul at the end of args has been overwritten, then
219 	// assume application is using setproctitle(3).
220 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 		len = strnlen(buffer, res);
222 		if (len < res) {
223 		    res = len;
224 		} else {
225 			len = mm->env_end - mm->env_start;
226 			if (len > PAGE_SIZE - res)
227 				len = PAGE_SIZE - res;
228 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 			res = strnlen(buffer, res);
230 		}
231 	}
232 out_mm:
233 	mmput(mm);
234 out:
235 	return res;
236 }
237 
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 	int res = PTR_ERR(mm);
242 	if (mm && !IS_ERR(mm)) {
243 		unsigned int nwords = 0;
244 		do {
245 			nwords += 2;
246 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 		res = nwords * sizeof(mm->saved_auxv[0]);
248 		if (res > PAGE_SIZE)
249 			res = PAGE_SIZE;
250 		memcpy(buffer, mm->saved_auxv, res);
251 		mmput(mm);
252 	}
253 	return res;
254 }
255 
256 
257 #ifdef CONFIG_KALLSYMS
258 /*
259  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260  * Returns the resolved symbol.  If that fails, simply return the address.
261  */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 	unsigned long wchan;
265 	char symname[KSYM_NAME_LEN];
266 
267 	wchan = get_wchan(task);
268 
269 	if (lookup_symbol_name(wchan, symname) < 0)
270 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 			return 0;
272 		else
273 			return sprintf(buffer, "%lu", wchan);
274 	else
275 		return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278 
279 static int lock_trace(struct task_struct *task)
280 {
281 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 	if (err)
283 		return err;
284 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 		mutex_unlock(&task->signal->cred_guard_mutex);
286 		return -EPERM;
287 	}
288 	return 0;
289 }
290 
291 static void unlock_trace(struct task_struct *task)
292 {
293 	mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295 
296 #ifdef CONFIG_STACKTRACE
297 
298 #define MAX_STACK_TRACE_DEPTH	64
299 
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 			  struct pid *pid, struct task_struct *task)
302 {
303 	struct stack_trace trace;
304 	unsigned long *entries;
305 	int err;
306 	int i;
307 
308 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 	if (!entries)
310 		return -ENOMEM;
311 
312 	trace.nr_entries	= 0;
313 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
314 	trace.entries		= entries;
315 	trace.skip		= 0;
316 
317 	err = lock_trace(task);
318 	if (!err) {
319 		save_stack_trace_tsk(task, &trace);
320 
321 		for (i = 0; i < trace.nr_entries; i++) {
322 			seq_printf(m, "[<%pK>] %pS\n",
323 				   (void *)entries[i], (void *)entries[i]);
324 		}
325 		unlock_trace(task);
326 	}
327 	kfree(entries);
328 
329 	return err;
330 }
331 #endif
332 
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335  * Provides /proc/PID/schedstat
336  */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 	return sprintf(buffer, "%llu %llu %lu\n",
340 			(unsigned long long)task->se.sum_exec_runtime,
341 			(unsigned long long)task->sched_info.run_delay,
342 			task->sched_info.pcount);
343 }
344 #endif
345 
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 	int i;
350 	struct inode *inode = m->private;
351 	struct task_struct *task = get_proc_task(inode);
352 
353 	if (!task)
354 		return -ESRCH;
355 	seq_puts(m, "Latency Top version : v0.1\n");
356 	for (i = 0; i < 32; i++) {
357 		struct latency_record *lr = &task->latency_record[i];
358 		if (lr->backtrace[0]) {
359 			int q;
360 			seq_printf(m, "%i %li %li",
361 				   lr->count, lr->time, lr->max);
362 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 				unsigned long bt = lr->backtrace[q];
364 				if (!bt)
365 					break;
366 				if (bt == ULONG_MAX)
367 					break;
368 				seq_printf(m, " %ps", (void *)bt);
369 			}
370 			seq_putc(m, '\n');
371 		}
372 
373 	}
374 	put_task_struct(task);
375 	return 0;
376 }
377 
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, lstats_show_proc, inode);
381 }
382 
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 			    size_t count, loff_t *offs)
385 {
386 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387 
388 	if (!task)
389 		return -ESRCH;
390 	clear_all_latency_tracing(task);
391 	put_task_struct(task);
392 
393 	return count;
394 }
395 
396 static const struct file_operations proc_lstats_operations = {
397 	.open		= lstats_open,
398 	.read		= seq_read,
399 	.write		= lstats_write,
400 	.llseek		= seq_lseek,
401 	.release	= single_release,
402 };
403 
404 #endif
405 
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 	unsigned long totalpages = totalram_pages + total_swap_pages;
409 	unsigned long points = 0;
410 
411 	read_lock(&tasklist_lock);
412 	if (pid_alive(task))
413 		points = oom_badness(task, NULL, NULL, totalpages) *
414 						1000 / totalpages;
415 	read_unlock(&tasklist_lock);
416 	return sprintf(buffer, "%lu\n", points);
417 }
418 
419 struct limit_names {
420 	char *name;
421 	char *unit;
422 };
423 
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 	[RLIMIT_DATA] = {"Max data size", "bytes"},
428 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
429 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
430 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
431 	[RLIMIT_NPROC] = {"Max processes", "processes"},
432 	[RLIMIT_NOFILE] = {"Max open files", "files"},
433 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 	[RLIMIT_AS] = {"Max address space", "bytes"},
435 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 	[RLIMIT_NICE] = {"Max nice priority", NULL},
439 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442 
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 	unsigned int i;
447 	int count = 0;
448 	unsigned long flags;
449 	char *bufptr = buffer;
450 
451 	struct rlimit rlim[RLIM_NLIMITS];
452 
453 	if (!lock_task_sighand(task, &flags))
454 		return 0;
455 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 	unlock_task_sighand(task, &flags);
457 
458 	/*
459 	 * print the file header
460 	 */
461 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 			"Limit", "Soft Limit", "Hard Limit", "Units");
463 
464 	for (i = 0; i < RLIM_NLIMITS; i++) {
465 		if (rlim[i].rlim_cur == RLIM_INFINITY)
466 			count += sprintf(&bufptr[count], "%-25s %-20s ",
467 					 lnames[i].name, "unlimited");
468 		else
469 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 					 lnames[i].name, rlim[i].rlim_cur);
471 
472 		if (rlim[i].rlim_max == RLIM_INFINITY)
473 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 		else
475 			count += sprintf(&bufptr[count], "%-20lu ",
476 					 rlim[i].rlim_max);
477 
478 		if (lnames[i].unit)
479 			count += sprintf(&bufptr[count], "%-10s\n",
480 					 lnames[i].unit);
481 		else
482 			count += sprintf(&bufptr[count], "\n");
483 	}
484 
485 	return count;
486 }
487 
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 	long nr;
492 	unsigned long args[6], sp, pc;
493 	int res = lock_trace(task);
494 	if (res)
495 		return res;
496 
497 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 		res = sprintf(buffer, "running\n");
499 	else if (nr < 0)
500 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 	else
502 		res = sprintf(buffer,
503 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 		       nr,
505 		       args[0], args[1], args[2], args[3], args[4], args[5],
506 		       sp, pc);
507 	unlock_trace(task);
508 	return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511 
512 /************************************************************************/
513 /*                       Here the fs part begins                        */
514 /************************************************************************/
515 
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 	struct task_struct *task;
520 	int allowed = 0;
521 	/* Allow access to a task's file descriptors if it is us or we
522 	 * may use ptrace attach to the process and find out that
523 	 * information.
524 	 */
525 	task = get_proc_task(inode);
526 	if (task) {
527 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 		put_task_struct(task);
529 	}
530 	return allowed;
531 }
532 
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	int error;
536 	struct inode *inode = dentry->d_inode;
537 
538 	if (attr->ia_valid & ATTR_MODE)
539 		return -EPERM;
540 
541 	error = inode_change_ok(inode, attr);
542 	if (error)
543 		return error;
544 
545 	if ((attr->ia_valid & ATTR_SIZE) &&
546 	    attr->ia_size != i_size_read(inode)) {
547 		error = vmtruncate(inode, attr->ia_size);
548 		if (error)
549 			return error;
550 	}
551 
552 	setattr_copy(inode, attr);
553 	mark_inode_dirty(inode);
554 	return 0;
555 }
556 
557 /*
558  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
559  * or euid/egid (for hide_pid_min=2)?
560  */
561 static bool has_pid_permissions(struct pid_namespace *pid,
562 				 struct task_struct *task,
563 				 int hide_pid_min)
564 {
565 	if (pid->hide_pid < hide_pid_min)
566 		return true;
567 	if (in_group_p(pid->pid_gid))
568 		return true;
569 	return ptrace_may_access(task, PTRACE_MODE_READ);
570 }
571 
572 
573 static int proc_pid_permission(struct inode *inode, int mask)
574 {
575 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
576 	struct task_struct *task;
577 	bool has_perms;
578 
579 	task = get_proc_task(inode);
580 	if (!task)
581 		return -ESRCH;
582 	has_perms = has_pid_permissions(pid, task, 1);
583 	put_task_struct(task);
584 
585 	if (!has_perms) {
586 		if (pid->hide_pid == 2) {
587 			/*
588 			 * Let's make getdents(), stat(), and open()
589 			 * consistent with each other.  If a process
590 			 * may not stat() a file, it shouldn't be seen
591 			 * in procfs at all.
592 			 */
593 			return -ENOENT;
594 		}
595 
596 		return -EPERM;
597 	}
598 	return generic_permission(inode, mask);
599 }
600 
601 
602 
603 static const struct inode_operations proc_def_inode_operations = {
604 	.setattr	= proc_setattr,
605 };
606 
607 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
608 
609 static ssize_t proc_info_read(struct file * file, char __user * buf,
610 			  size_t count, loff_t *ppos)
611 {
612 	struct inode * inode = file->f_path.dentry->d_inode;
613 	unsigned long page;
614 	ssize_t length;
615 	struct task_struct *task = get_proc_task(inode);
616 
617 	length = -ESRCH;
618 	if (!task)
619 		goto out_no_task;
620 
621 	if (count > PROC_BLOCK_SIZE)
622 		count = PROC_BLOCK_SIZE;
623 
624 	length = -ENOMEM;
625 	if (!(page = __get_free_page(GFP_TEMPORARY)))
626 		goto out;
627 
628 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
629 
630 	if (length >= 0)
631 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
632 	free_page(page);
633 out:
634 	put_task_struct(task);
635 out_no_task:
636 	return length;
637 }
638 
639 static const struct file_operations proc_info_file_operations = {
640 	.read		= proc_info_read,
641 	.llseek		= generic_file_llseek,
642 };
643 
644 static int proc_single_show(struct seq_file *m, void *v)
645 {
646 	struct inode *inode = m->private;
647 	struct pid_namespace *ns;
648 	struct pid *pid;
649 	struct task_struct *task;
650 	int ret;
651 
652 	ns = inode->i_sb->s_fs_info;
653 	pid = proc_pid(inode);
654 	task = get_pid_task(pid, PIDTYPE_PID);
655 	if (!task)
656 		return -ESRCH;
657 
658 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
659 
660 	put_task_struct(task);
661 	return ret;
662 }
663 
664 static int proc_single_open(struct inode *inode, struct file *filp)
665 {
666 	return single_open(filp, proc_single_show, inode);
667 }
668 
669 static const struct file_operations proc_single_file_operations = {
670 	.open		= proc_single_open,
671 	.read		= seq_read,
672 	.llseek		= seq_lseek,
673 	.release	= single_release,
674 };
675 
676 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
677 {
678 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
679 	struct mm_struct *mm;
680 
681 	if (!task)
682 		return -ESRCH;
683 
684 	mm = mm_access(task, mode);
685 	put_task_struct(task);
686 
687 	if (IS_ERR(mm))
688 		return PTR_ERR(mm);
689 
690 	if (mm) {
691 		/* ensure this mm_struct can't be freed */
692 		atomic_inc(&mm->mm_count);
693 		/* but do not pin its memory */
694 		mmput(mm);
695 	}
696 
697 	file->private_data = mm;
698 
699 	return 0;
700 }
701 
702 static int mem_open(struct inode *inode, struct file *file)
703 {
704 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
705 
706 	/* OK to pass negative loff_t, we can catch out-of-range */
707 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
708 
709 	return ret;
710 }
711 
712 static ssize_t mem_rw(struct file *file, char __user *buf,
713 			size_t count, loff_t *ppos, int write)
714 {
715 	struct mm_struct *mm = file->private_data;
716 	unsigned long addr = *ppos;
717 	ssize_t copied;
718 	char *page;
719 
720 	if (!mm)
721 		return 0;
722 
723 	page = (char *)__get_free_page(GFP_TEMPORARY);
724 	if (!page)
725 		return -ENOMEM;
726 
727 	copied = 0;
728 	if (!atomic_inc_not_zero(&mm->mm_users))
729 		goto free;
730 
731 	while (count > 0) {
732 		int this_len = min_t(int, count, PAGE_SIZE);
733 
734 		if (write && copy_from_user(page, buf, this_len)) {
735 			copied = -EFAULT;
736 			break;
737 		}
738 
739 		this_len = access_remote_vm(mm, addr, page, this_len, write);
740 		if (!this_len) {
741 			if (!copied)
742 				copied = -EIO;
743 			break;
744 		}
745 
746 		if (!write && copy_to_user(buf, page, this_len)) {
747 			copied = -EFAULT;
748 			break;
749 		}
750 
751 		buf += this_len;
752 		addr += this_len;
753 		copied += this_len;
754 		count -= this_len;
755 	}
756 	*ppos = addr;
757 
758 	mmput(mm);
759 free:
760 	free_page((unsigned long) page);
761 	return copied;
762 }
763 
764 static ssize_t mem_read(struct file *file, char __user *buf,
765 			size_t count, loff_t *ppos)
766 {
767 	return mem_rw(file, buf, count, ppos, 0);
768 }
769 
770 static ssize_t mem_write(struct file *file, const char __user *buf,
771 			 size_t count, loff_t *ppos)
772 {
773 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
774 }
775 
776 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
777 {
778 	switch (orig) {
779 	case 0:
780 		file->f_pos = offset;
781 		break;
782 	case 1:
783 		file->f_pos += offset;
784 		break;
785 	default:
786 		return -EINVAL;
787 	}
788 	force_successful_syscall_return();
789 	return file->f_pos;
790 }
791 
792 static int mem_release(struct inode *inode, struct file *file)
793 {
794 	struct mm_struct *mm = file->private_data;
795 	if (mm)
796 		mmdrop(mm);
797 	return 0;
798 }
799 
800 static const struct file_operations proc_mem_operations = {
801 	.llseek		= mem_lseek,
802 	.read		= mem_read,
803 	.write		= mem_write,
804 	.open		= mem_open,
805 	.release	= mem_release,
806 };
807 
808 static int environ_open(struct inode *inode, struct file *file)
809 {
810 	return __mem_open(inode, file, PTRACE_MODE_READ);
811 }
812 
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 			size_t count, loff_t *ppos)
815 {
816 	char *page;
817 	unsigned long src = *ppos;
818 	int ret = 0;
819 	struct mm_struct *mm = file->private_data;
820 
821 	if (!mm)
822 		return 0;
823 
824 	page = (char *)__get_free_page(GFP_TEMPORARY);
825 	if (!page)
826 		return -ENOMEM;
827 
828 	ret = 0;
829 	if (!atomic_inc_not_zero(&mm->mm_users))
830 		goto free;
831 	while (count > 0) {
832 		size_t this_len, max_len;
833 		int retval;
834 
835 		if (src >= (mm->env_end - mm->env_start))
836 			break;
837 
838 		this_len = mm->env_end - (mm->env_start + src);
839 
840 		max_len = min_t(size_t, PAGE_SIZE, count);
841 		this_len = min(max_len, this_len);
842 
843 		retval = access_remote_vm(mm, (mm->env_start + src),
844 			page, this_len, 0);
845 
846 		if (retval <= 0) {
847 			ret = retval;
848 			break;
849 		}
850 
851 		if (copy_to_user(buf, page, retval)) {
852 			ret = -EFAULT;
853 			break;
854 		}
855 
856 		ret += retval;
857 		src += retval;
858 		buf += retval;
859 		count -= retval;
860 	}
861 	*ppos = src;
862 	mmput(mm);
863 
864 free:
865 	free_page((unsigned long) page);
866 	return ret;
867 }
868 
869 static const struct file_operations proc_environ_operations = {
870 	.open		= environ_open,
871 	.read		= environ_read,
872 	.llseek		= generic_file_llseek,
873 	.release	= mem_release,
874 };
875 
876 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
877 			    loff_t *ppos)
878 {
879 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
880 	char buffer[PROC_NUMBUF];
881 	int oom_adj = OOM_ADJUST_MIN;
882 	size_t len;
883 	unsigned long flags;
884 
885 	if (!task)
886 		return -ESRCH;
887 	if (lock_task_sighand(task, &flags)) {
888 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
889 			oom_adj = OOM_ADJUST_MAX;
890 		else
891 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
892 				  OOM_SCORE_ADJ_MAX;
893 		unlock_task_sighand(task, &flags);
894 	}
895 	put_task_struct(task);
896 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
897 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
898 }
899 
900 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
901 			     size_t count, loff_t *ppos)
902 {
903 	struct task_struct *task;
904 	char buffer[PROC_NUMBUF];
905 	int oom_adj;
906 	unsigned long flags;
907 	int err;
908 
909 	memset(buffer, 0, sizeof(buffer));
910 	if (count > sizeof(buffer) - 1)
911 		count = sizeof(buffer) - 1;
912 	if (copy_from_user(buffer, buf, count)) {
913 		err = -EFAULT;
914 		goto out;
915 	}
916 
917 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
918 	if (err)
919 		goto out;
920 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
921 	     oom_adj != OOM_DISABLE) {
922 		err = -EINVAL;
923 		goto out;
924 	}
925 
926 	task = get_proc_task(file->f_path.dentry->d_inode);
927 	if (!task) {
928 		err = -ESRCH;
929 		goto out;
930 	}
931 
932 	task_lock(task);
933 	if (!task->mm) {
934 		err = -EINVAL;
935 		goto err_task_lock;
936 	}
937 
938 	if (!lock_task_sighand(task, &flags)) {
939 		err = -ESRCH;
940 		goto err_task_lock;
941 	}
942 
943 	/*
944 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
945 	 * value is always attainable.
946 	 */
947 	if (oom_adj == OOM_ADJUST_MAX)
948 		oom_adj = OOM_SCORE_ADJ_MAX;
949 	else
950 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
951 
952 	if (oom_adj < task->signal->oom_score_adj &&
953 	    !capable(CAP_SYS_RESOURCE)) {
954 		err = -EACCES;
955 		goto err_sighand;
956 	}
957 
958 	/*
959 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
960 	 * /proc/pid/oom_score_adj instead.
961 	 */
962 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
963 		  current->comm, task_pid_nr(current), task_pid_nr(task),
964 		  task_pid_nr(task));
965 
966 	task->signal->oom_score_adj = oom_adj;
967 	trace_oom_score_adj_update(task);
968 err_sighand:
969 	unlock_task_sighand(task, &flags);
970 err_task_lock:
971 	task_unlock(task);
972 	put_task_struct(task);
973 out:
974 	return err < 0 ? err : count;
975 }
976 
977 static const struct file_operations proc_oom_adj_operations = {
978 	.read		= oom_adj_read,
979 	.write		= oom_adj_write,
980 	.llseek		= generic_file_llseek,
981 };
982 
983 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
984 					size_t count, loff_t *ppos)
985 {
986 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
987 	char buffer[PROC_NUMBUF];
988 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
989 	unsigned long flags;
990 	size_t len;
991 
992 	if (!task)
993 		return -ESRCH;
994 	if (lock_task_sighand(task, &flags)) {
995 		oom_score_adj = task->signal->oom_score_adj;
996 		unlock_task_sighand(task, &flags);
997 	}
998 	put_task_struct(task);
999 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1000 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1001 }
1002 
1003 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1004 					size_t count, loff_t *ppos)
1005 {
1006 	struct task_struct *task;
1007 	char buffer[PROC_NUMBUF];
1008 	unsigned long flags;
1009 	int oom_score_adj;
1010 	int err;
1011 
1012 	memset(buffer, 0, sizeof(buffer));
1013 	if (count > sizeof(buffer) - 1)
1014 		count = sizeof(buffer) - 1;
1015 	if (copy_from_user(buffer, buf, count)) {
1016 		err = -EFAULT;
1017 		goto out;
1018 	}
1019 
1020 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1021 	if (err)
1022 		goto out;
1023 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1024 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1025 		err = -EINVAL;
1026 		goto out;
1027 	}
1028 
1029 	task = get_proc_task(file->f_path.dentry->d_inode);
1030 	if (!task) {
1031 		err = -ESRCH;
1032 		goto out;
1033 	}
1034 
1035 	task_lock(task);
1036 	if (!task->mm) {
1037 		err = -EINVAL;
1038 		goto err_task_lock;
1039 	}
1040 
1041 	if (!lock_task_sighand(task, &flags)) {
1042 		err = -ESRCH;
1043 		goto err_task_lock;
1044 	}
1045 
1046 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1047 			!capable(CAP_SYS_RESOURCE)) {
1048 		err = -EACCES;
1049 		goto err_sighand;
1050 	}
1051 
1052 	task->signal->oom_score_adj = oom_score_adj;
1053 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1054 		task->signal->oom_score_adj_min = oom_score_adj;
1055 	trace_oom_score_adj_update(task);
1056 
1057 err_sighand:
1058 	unlock_task_sighand(task, &flags);
1059 err_task_lock:
1060 	task_unlock(task);
1061 	put_task_struct(task);
1062 out:
1063 	return err < 0 ? err : count;
1064 }
1065 
1066 static const struct file_operations proc_oom_score_adj_operations = {
1067 	.read		= oom_score_adj_read,
1068 	.write		= oom_score_adj_write,
1069 	.llseek		= default_llseek,
1070 };
1071 
1072 #ifdef CONFIG_AUDITSYSCALL
1073 #define TMPBUFLEN 21
1074 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1075 				  size_t count, loff_t *ppos)
1076 {
1077 	struct inode * inode = file->f_path.dentry->d_inode;
1078 	struct task_struct *task = get_proc_task(inode);
1079 	ssize_t length;
1080 	char tmpbuf[TMPBUFLEN];
1081 
1082 	if (!task)
1083 		return -ESRCH;
1084 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1085 			   from_kuid(file->f_cred->user_ns,
1086 				     audit_get_loginuid(task)));
1087 	put_task_struct(task);
1088 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1089 }
1090 
1091 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1092 				   size_t count, loff_t *ppos)
1093 {
1094 	struct inode * inode = file->f_path.dentry->d_inode;
1095 	char *page, *tmp;
1096 	ssize_t length;
1097 	uid_t loginuid;
1098 	kuid_t kloginuid;
1099 
1100 	rcu_read_lock();
1101 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1102 		rcu_read_unlock();
1103 		return -EPERM;
1104 	}
1105 	rcu_read_unlock();
1106 
1107 	if (count >= PAGE_SIZE)
1108 		count = PAGE_SIZE - 1;
1109 
1110 	if (*ppos != 0) {
1111 		/* No partial writes. */
1112 		return -EINVAL;
1113 	}
1114 	page = (char*)__get_free_page(GFP_TEMPORARY);
1115 	if (!page)
1116 		return -ENOMEM;
1117 	length = -EFAULT;
1118 	if (copy_from_user(page, buf, count))
1119 		goto out_free_page;
1120 
1121 	page[count] = '\0';
1122 	loginuid = simple_strtoul(page, &tmp, 10);
1123 	if (tmp == page) {
1124 		length = -EINVAL;
1125 		goto out_free_page;
1126 
1127 	}
1128 	kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1129 	if (!uid_valid(kloginuid)) {
1130 		length = -EINVAL;
1131 		goto out_free_page;
1132 	}
1133 
1134 	length = audit_set_loginuid(kloginuid);
1135 	if (likely(length == 0))
1136 		length = count;
1137 
1138 out_free_page:
1139 	free_page((unsigned long) page);
1140 	return length;
1141 }
1142 
1143 static const struct file_operations proc_loginuid_operations = {
1144 	.read		= proc_loginuid_read,
1145 	.write		= proc_loginuid_write,
1146 	.llseek		= generic_file_llseek,
1147 };
1148 
1149 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150 				  size_t count, loff_t *ppos)
1151 {
1152 	struct inode * inode = file->f_path.dentry->d_inode;
1153 	struct task_struct *task = get_proc_task(inode);
1154 	ssize_t length;
1155 	char tmpbuf[TMPBUFLEN];
1156 
1157 	if (!task)
1158 		return -ESRCH;
1159 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160 				audit_get_sessionid(task));
1161 	put_task_struct(task);
1162 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163 }
1164 
1165 static const struct file_operations proc_sessionid_operations = {
1166 	.read		= proc_sessionid_read,
1167 	.llseek		= generic_file_llseek,
1168 };
1169 #endif
1170 
1171 #ifdef CONFIG_FAULT_INJECTION
1172 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173 				      size_t count, loff_t *ppos)
1174 {
1175 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1176 	char buffer[PROC_NUMBUF];
1177 	size_t len;
1178 	int make_it_fail;
1179 
1180 	if (!task)
1181 		return -ESRCH;
1182 	make_it_fail = task->make_it_fail;
1183 	put_task_struct(task);
1184 
1185 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186 
1187 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188 }
1189 
1190 static ssize_t proc_fault_inject_write(struct file * file,
1191 			const char __user * buf, size_t count, loff_t *ppos)
1192 {
1193 	struct task_struct *task;
1194 	char buffer[PROC_NUMBUF], *end;
1195 	int make_it_fail;
1196 
1197 	if (!capable(CAP_SYS_RESOURCE))
1198 		return -EPERM;
1199 	memset(buffer, 0, sizeof(buffer));
1200 	if (count > sizeof(buffer) - 1)
1201 		count = sizeof(buffer) - 1;
1202 	if (copy_from_user(buffer, buf, count))
1203 		return -EFAULT;
1204 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205 	if (*end)
1206 		return -EINVAL;
1207 	task = get_proc_task(file->f_dentry->d_inode);
1208 	if (!task)
1209 		return -ESRCH;
1210 	task->make_it_fail = make_it_fail;
1211 	put_task_struct(task);
1212 
1213 	return count;
1214 }
1215 
1216 static const struct file_operations proc_fault_inject_operations = {
1217 	.read		= proc_fault_inject_read,
1218 	.write		= proc_fault_inject_write,
1219 	.llseek		= generic_file_llseek,
1220 };
1221 #endif
1222 
1223 
1224 #ifdef CONFIG_SCHED_DEBUG
1225 /*
1226  * Print out various scheduling related per-task fields:
1227  */
1228 static int sched_show(struct seq_file *m, void *v)
1229 {
1230 	struct inode *inode = m->private;
1231 	struct task_struct *p;
1232 
1233 	p = get_proc_task(inode);
1234 	if (!p)
1235 		return -ESRCH;
1236 	proc_sched_show_task(p, m);
1237 
1238 	put_task_struct(p);
1239 
1240 	return 0;
1241 }
1242 
1243 static ssize_t
1244 sched_write(struct file *file, const char __user *buf,
1245 	    size_t count, loff_t *offset)
1246 {
1247 	struct inode *inode = file->f_path.dentry->d_inode;
1248 	struct task_struct *p;
1249 
1250 	p = get_proc_task(inode);
1251 	if (!p)
1252 		return -ESRCH;
1253 	proc_sched_set_task(p);
1254 
1255 	put_task_struct(p);
1256 
1257 	return count;
1258 }
1259 
1260 static int sched_open(struct inode *inode, struct file *filp)
1261 {
1262 	return single_open(filp, sched_show, inode);
1263 }
1264 
1265 static const struct file_operations proc_pid_sched_operations = {
1266 	.open		= sched_open,
1267 	.read		= seq_read,
1268 	.write		= sched_write,
1269 	.llseek		= seq_lseek,
1270 	.release	= single_release,
1271 };
1272 
1273 #endif
1274 
1275 #ifdef CONFIG_SCHED_AUTOGROUP
1276 /*
1277  * Print out autogroup related information:
1278  */
1279 static int sched_autogroup_show(struct seq_file *m, void *v)
1280 {
1281 	struct inode *inode = m->private;
1282 	struct task_struct *p;
1283 
1284 	p = get_proc_task(inode);
1285 	if (!p)
1286 		return -ESRCH;
1287 	proc_sched_autogroup_show_task(p, m);
1288 
1289 	put_task_struct(p);
1290 
1291 	return 0;
1292 }
1293 
1294 static ssize_t
1295 sched_autogroup_write(struct file *file, const char __user *buf,
1296 	    size_t count, loff_t *offset)
1297 {
1298 	struct inode *inode = file->f_path.dentry->d_inode;
1299 	struct task_struct *p;
1300 	char buffer[PROC_NUMBUF];
1301 	int nice;
1302 	int err;
1303 
1304 	memset(buffer, 0, sizeof(buffer));
1305 	if (count > sizeof(buffer) - 1)
1306 		count = sizeof(buffer) - 1;
1307 	if (copy_from_user(buffer, buf, count))
1308 		return -EFAULT;
1309 
1310 	err = kstrtoint(strstrip(buffer), 0, &nice);
1311 	if (err < 0)
1312 		return err;
1313 
1314 	p = get_proc_task(inode);
1315 	if (!p)
1316 		return -ESRCH;
1317 
1318 	err = proc_sched_autogroup_set_nice(p, nice);
1319 	if (err)
1320 		count = err;
1321 
1322 	put_task_struct(p);
1323 
1324 	return count;
1325 }
1326 
1327 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1328 {
1329 	int ret;
1330 
1331 	ret = single_open(filp, sched_autogroup_show, NULL);
1332 	if (!ret) {
1333 		struct seq_file *m = filp->private_data;
1334 
1335 		m->private = inode;
1336 	}
1337 	return ret;
1338 }
1339 
1340 static const struct file_operations proc_pid_sched_autogroup_operations = {
1341 	.open		= sched_autogroup_open,
1342 	.read		= seq_read,
1343 	.write		= sched_autogroup_write,
1344 	.llseek		= seq_lseek,
1345 	.release	= single_release,
1346 };
1347 
1348 #endif /* CONFIG_SCHED_AUTOGROUP */
1349 
1350 static ssize_t comm_write(struct file *file, const char __user *buf,
1351 				size_t count, loff_t *offset)
1352 {
1353 	struct inode *inode = file->f_path.dentry->d_inode;
1354 	struct task_struct *p;
1355 	char buffer[TASK_COMM_LEN];
1356 
1357 	memset(buffer, 0, sizeof(buffer));
1358 	if (count > sizeof(buffer) - 1)
1359 		count = sizeof(buffer) - 1;
1360 	if (copy_from_user(buffer, buf, count))
1361 		return -EFAULT;
1362 
1363 	p = get_proc_task(inode);
1364 	if (!p)
1365 		return -ESRCH;
1366 
1367 	if (same_thread_group(current, p))
1368 		set_task_comm(p, buffer);
1369 	else
1370 		count = -EINVAL;
1371 
1372 	put_task_struct(p);
1373 
1374 	return count;
1375 }
1376 
1377 static int comm_show(struct seq_file *m, void *v)
1378 {
1379 	struct inode *inode = m->private;
1380 	struct task_struct *p;
1381 
1382 	p = get_proc_task(inode);
1383 	if (!p)
1384 		return -ESRCH;
1385 
1386 	task_lock(p);
1387 	seq_printf(m, "%s\n", p->comm);
1388 	task_unlock(p);
1389 
1390 	put_task_struct(p);
1391 
1392 	return 0;
1393 }
1394 
1395 static int comm_open(struct inode *inode, struct file *filp)
1396 {
1397 	return single_open(filp, comm_show, inode);
1398 }
1399 
1400 static const struct file_operations proc_pid_set_comm_operations = {
1401 	.open		= comm_open,
1402 	.read		= seq_read,
1403 	.write		= comm_write,
1404 	.llseek		= seq_lseek,
1405 	.release	= single_release,
1406 };
1407 
1408 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1409 {
1410 	struct task_struct *task;
1411 	struct mm_struct *mm;
1412 	struct file *exe_file;
1413 
1414 	task = get_proc_task(dentry->d_inode);
1415 	if (!task)
1416 		return -ENOENT;
1417 	mm = get_task_mm(task);
1418 	put_task_struct(task);
1419 	if (!mm)
1420 		return -ENOENT;
1421 	exe_file = get_mm_exe_file(mm);
1422 	mmput(mm);
1423 	if (exe_file) {
1424 		*exe_path = exe_file->f_path;
1425 		path_get(&exe_file->f_path);
1426 		fput(exe_file);
1427 		return 0;
1428 	} else
1429 		return -ENOENT;
1430 }
1431 
1432 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1433 {
1434 	struct inode *inode = dentry->d_inode;
1435 	struct path path;
1436 	int error = -EACCES;
1437 
1438 	/* Are we allowed to snoop on the tasks file descriptors? */
1439 	if (!proc_fd_access_allowed(inode))
1440 		goto out;
1441 
1442 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1443 	if (error)
1444 		goto out;
1445 
1446 	nd_jump_link(nd, &path);
1447 	return NULL;
1448 out:
1449 	return ERR_PTR(error);
1450 }
1451 
1452 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1453 {
1454 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1455 	char *pathname;
1456 	int len;
1457 
1458 	if (!tmp)
1459 		return -ENOMEM;
1460 
1461 	pathname = d_path(path, tmp, PAGE_SIZE);
1462 	len = PTR_ERR(pathname);
1463 	if (IS_ERR(pathname))
1464 		goto out;
1465 	len = tmp + PAGE_SIZE - 1 - pathname;
1466 
1467 	if (len > buflen)
1468 		len = buflen;
1469 	if (copy_to_user(buffer, pathname, len))
1470 		len = -EFAULT;
1471  out:
1472 	free_page((unsigned long)tmp);
1473 	return len;
1474 }
1475 
1476 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1477 {
1478 	int error = -EACCES;
1479 	struct inode *inode = dentry->d_inode;
1480 	struct path path;
1481 
1482 	/* Are we allowed to snoop on the tasks file descriptors? */
1483 	if (!proc_fd_access_allowed(inode))
1484 		goto out;
1485 
1486 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1487 	if (error)
1488 		goto out;
1489 
1490 	error = do_proc_readlink(&path, buffer, buflen);
1491 	path_put(&path);
1492 out:
1493 	return error;
1494 }
1495 
1496 const struct inode_operations proc_pid_link_inode_operations = {
1497 	.readlink	= proc_pid_readlink,
1498 	.follow_link	= proc_pid_follow_link,
1499 	.setattr	= proc_setattr,
1500 };
1501 
1502 
1503 /* building an inode */
1504 
1505 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1506 {
1507 	struct inode * inode;
1508 	struct proc_inode *ei;
1509 	const struct cred *cred;
1510 
1511 	/* We need a new inode */
1512 
1513 	inode = new_inode(sb);
1514 	if (!inode)
1515 		goto out;
1516 
1517 	/* Common stuff */
1518 	ei = PROC_I(inode);
1519 	inode->i_ino = get_next_ino();
1520 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1521 	inode->i_op = &proc_def_inode_operations;
1522 
1523 	/*
1524 	 * grab the reference to task.
1525 	 */
1526 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1527 	if (!ei->pid)
1528 		goto out_unlock;
1529 
1530 	if (task_dumpable(task)) {
1531 		rcu_read_lock();
1532 		cred = __task_cred(task);
1533 		inode->i_uid = cred->euid;
1534 		inode->i_gid = cred->egid;
1535 		rcu_read_unlock();
1536 	}
1537 	security_task_to_inode(task, inode);
1538 
1539 out:
1540 	return inode;
1541 
1542 out_unlock:
1543 	iput(inode);
1544 	return NULL;
1545 }
1546 
1547 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1548 {
1549 	struct inode *inode = dentry->d_inode;
1550 	struct task_struct *task;
1551 	const struct cred *cred;
1552 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1553 
1554 	generic_fillattr(inode, stat);
1555 
1556 	rcu_read_lock();
1557 	stat->uid = GLOBAL_ROOT_UID;
1558 	stat->gid = GLOBAL_ROOT_GID;
1559 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1560 	if (task) {
1561 		if (!has_pid_permissions(pid, task, 2)) {
1562 			rcu_read_unlock();
1563 			/*
1564 			 * This doesn't prevent learning whether PID exists,
1565 			 * it only makes getattr() consistent with readdir().
1566 			 */
1567 			return -ENOENT;
1568 		}
1569 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1570 		    task_dumpable(task)) {
1571 			cred = __task_cred(task);
1572 			stat->uid = cred->euid;
1573 			stat->gid = cred->egid;
1574 		}
1575 	}
1576 	rcu_read_unlock();
1577 	return 0;
1578 }
1579 
1580 /* dentry stuff */
1581 
1582 /*
1583  *	Exceptional case: normally we are not allowed to unhash a busy
1584  * directory. In this case, however, we can do it - no aliasing problems
1585  * due to the way we treat inodes.
1586  *
1587  * Rewrite the inode's ownerships here because the owning task may have
1588  * performed a setuid(), etc.
1589  *
1590  * Before the /proc/pid/status file was created the only way to read
1591  * the effective uid of a /process was to stat /proc/pid.  Reading
1592  * /proc/pid/status is slow enough that procps and other packages
1593  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1594  * made this apply to all per process world readable and executable
1595  * directories.
1596  */
1597 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1598 {
1599 	struct inode *inode;
1600 	struct task_struct *task;
1601 	const struct cred *cred;
1602 
1603 	if (flags & LOOKUP_RCU)
1604 		return -ECHILD;
1605 
1606 	inode = dentry->d_inode;
1607 	task = get_proc_task(inode);
1608 
1609 	if (task) {
1610 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1611 		    task_dumpable(task)) {
1612 			rcu_read_lock();
1613 			cred = __task_cred(task);
1614 			inode->i_uid = cred->euid;
1615 			inode->i_gid = cred->egid;
1616 			rcu_read_unlock();
1617 		} else {
1618 			inode->i_uid = GLOBAL_ROOT_UID;
1619 			inode->i_gid = GLOBAL_ROOT_GID;
1620 		}
1621 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1622 		security_task_to_inode(task, inode);
1623 		put_task_struct(task);
1624 		return 1;
1625 	}
1626 	d_drop(dentry);
1627 	return 0;
1628 }
1629 
1630 const struct dentry_operations pid_dentry_operations =
1631 {
1632 	.d_revalidate	= pid_revalidate,
1633 	.d_delete	= pid_delete_dentry,
1634 };
1635 
1636 /* Lookups */
1637 
1638 /*
1639  * Fill a directory entry.
1640  *
1641  * If possible create the dcache entry and derive our inode number and
1642  * file type from dcache entry.
1643  *
1644  * Since all of the proc inode numbers are dynamically generated, the inode
1645  * numbers do not exist until the inode is cache.  This means creating the
1646  * the dcache entry in readdir is necessary to keep the inode numbers
1647  * reported by readdir in sync with the inode numbers reported
1648  * by stat.
1649  */
1650 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1651 	const char *name, int len,
1652 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1653 {
1654 	struct dentry *child, *dir = filp->f_path.dentry;
1655 	struct inode *inode;
1656 	struct qstr qname;
1657 	ino_t ino = 0;
1658 	unsigned type = DT_UNKNOWN;
1659 
1660 	qname.name = name;
1661 	qname.len  = len;
1662 	qname.hash = full_name_hash(name, len);
1663 
1664 	child = d_lookup(dir, &qname);
1665 	if (!child) {
1666 		struct dentry *new;
1667 		new = d_alloc(dir, &qname);
1668 		if (new) {
1669 			child = instantiate(dir->d_inode, new, task, ptr);
1670 			if (child)
1671 				dput(new);
1672 			else
1673 				child = new;
1674 		}
1675 	}
1676 	if (!child || IS_ERR(child) || !child->d_inode)
1677 		goto end_instantiate;
1678 	inode = child->d_inode;
1679 	if (inode) {
1680 		ino = inode->i_ino;
1681 		type = inode->i_mode >> 12;
1682 	}
1683 	dput(child);
1684 end_instantiate:
1685 	if (!ino)
1686 		ino = find_inode_number(dir, &qname);
1687 	if (!ino)
1688 		ino = 1;
1689 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1690 }
1691 
1692 #ifdef CONFIG_CHECKPOINT_RESTORE
1693 
1694 /*
1695  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1696  * which represent vma start and end addresses.
1697  */
1698 static int dname_to_vma_addr(struct dentry *dentry,
1699 			     unsigned long *start, unsigned long *end)
1700 {
1701 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1702 		return -EINVAL;
1703 
1704 	return 0;
1705 }
1706 
1707 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1708 {
1709 	unsigned long vm_start, vm_end;
1710 	bool exact_vma_exists = false;
1711 	struct mm_struct *mm = NULL;
1712 	struct task_struct *task;
1713 	const struct cred *cred;
1714 	struct inode *inode;
1715 	int status = 0;
1716 
1717 	if (flags & LOOKUP_RCU)
1718 		return -ECHILD;
1719 
1720 	if (!capable(CAP_SYS_ADMIN)) {
1721 		status = -EACCES;
1722 		goto out_notask;
1723 	}
1724 
1725 	inode = dentry->d_inode;
1726 	task = get_proc_task(inode);
1727 	if (!task)
1728 		goto out_notask;
1729 
1730 	mm = mm_access(task, PTRACE_MODE_READ);
1731 	if (IS_ERR_OR_NULL(mm))
1732 		goto out;
1733 
1734 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1735 		down_read(&mm->mmap_sem);
1736 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1737 		up_read(&mm->mmap_sem);
1738 	}
1739 
1740 	mmput(mm);
1741 
1742 	if (exact_vma_exists) {
1743 		if (task_dumpable(task)) {
1744 			rcu_read_lock();
1745 			cred = __task_cred(task);
1746 			inode->i_uid = cred->euid;
1747 			inode->i_gid = cred->egid;
1748 			rcu_read_unlock();
1749 		} else {
1750 			inode->i_uid = GLOBAL_ROOT_UID;
1751 			inode->i_gid = GLOBAL_ROOT_GID;
1752 		}
1753 		security_task_to_inode(task, inode);
1754 		status = 1;
1755 	}
1756 
1757 out:
1758 	put_task_struct(task);
1759 
1760 out_notask:
1761 	if (status <= 0)
1762 		d_drop(dentry);
1763 
1764 	return status;
1765 }
1766 
1767 static const struct dentry_operations tid_map_files_dentry_operations = {
1768 	.d_revalidate	= map_files_d_revalidate,
1769 	.d_delete	= pid_delete_dentry,
1770 };
1771 
1772 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1773 {
1774 	unsigned long vm_start, vm_end;
1775 	struct vm_area_struct *vma;
1776 	struct task_struct *task;
1777 	struct mm_struct *mm;
1778 	int rc;
1779 
1780 	rc = -ENOENT;
1781 	task = get_proc_task(dentry->d_inode);
1782 	if (!task)
1783 		goto out;
1784 
1785 	mm = get_task_mm(task);
1786 	put_task_struct(task);
1787 	if (!mm)
1788 		goto out;
1789 
1790 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1791 	if (rc)
1792 		goto out_mmput;
1793 
1794 	down_read(&mm->mmap_sem);
1795 	vma = find_exact_vma(mm, vm_start, vm_end);
1796 	if (vma && vma->vm_file) {
1797 		*path = vma->vm_file->f_path;
1798 		path_get(path);
1799 		rc = 0;
1800 	}
1801 	up_read(&mm->mmap_sem);
1802 
1803 out_mmput:
1804 	mmput(mm);
1805 out:
1806 	return rc;
1807 }
1808 
1809 struct map_files_info {
1810 	fmode_t		mode;
1811 	unsigned long	len;
1812 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1813 };
1814 
1815 static struct dentry *
1816 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1817 			   struct task_struct *task, const void *ptr)
1818 {
1819 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1820 	struct proc_inode *ei;
1821 	struct inode *inode;
1822 
1823 	inode = proc_pid_make_inode(dir->i_sb, task);
1824 	if (!inode)
1825 		return ERR_PTR(-ENOENT);
1826 
1827 	ei = PROC_I(inode);
1828 	ei->op.proc_get_link = proc_map_files_get_link;
1829 
1830 	inode->i_op = &proc_pid_link_inode_operations;
1831 	inode->i_size = 64;
1832 	inode->i_mode = S_IFLNK;
1833 
1834 	if (mode & FMODE_READ)
1835 		inode->i_mode |= S_IRUSR;
1836 	if (mode & FMODE_WRITE)
1837 		inode->i_mode |= S_IWUSR;
1838 
1839 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1840 	d_add(dentry, inode);
1841 
1842 	return NULL;
1843 }
1844 
1845 static struct dentry *proc_map_files_lookup(struct inode *dir,
1846 		struct dentry *dentry, unsigned int flags)
1847 {
1848 	unsigned long vm_start, vm_end;
1849 	struct vm_area_struct *vma;
1850 	struct task_struct *task;
1851 	struct dentry *result;
1852 	struct mm_struct *mm;
1853 
1854 	result = ERR_PTR(-EACCES);
1855 	if (!capable(CAP_SYS_ADMIN))
1856 		goto out;
1857 
1858 	result = ERR_PTR(-ENOENT);
1859 	task = get_proc_task(dir);
1860 	if (!task)
1861 		goto out;
1862 
1863 	result = ERR_PTR(-EACCES);
1864 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1865 		goto out_put_task;
1866 
1867 	result = ERR_PTR(-ENOENT);
1868 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1869 		goto out_put_task;
1870 
1871 	mm = get_task_mm(task);
1872 	if (!mm)
1873 		goto out_put_task;
1874 
1875 	down_read(&mm->mmap_sem);
1876 	vma = find_exact_vma(mm, vm_start, vm_end);
1877 	if (!vma)
1878 		goto out_no_vma;
1879 
1880 	result = proc_map_files_instantiate(dir, dentry, task,
1881 			(void *)(unsigned long)vma->vm_file->f_mode);
1882 
1883 out_no_vma:
1884 	up_read(&mm->mmap_sem);
1885 	mmput(mm);
1886 out_put_task:
1887 	put_task_struct(task);
1888 out:
1889 	return result;
1890 }
1891 
1892 static const struct inode_operations proc_map_files_inode_operations = {
1893 	.lookup		= proc_map_files_lookup,
1894 	.permission	= proc_fd_permission,
1895 	.setattr	= proc_setattr,
1896 };
1897 
1898 static int
1899 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1900 {
1901 	struct dentry *dentry = filp->f_path.dentry;
1902 	struct inode *inode = dentry->d_inode;
1903 	struct vm_area_struct *vma;
1904 	struct task_struct *task;
1905 	struct mm_struct *mm;
1906 	ino_t ino;
1907 	int ret;
1908 
1909 	ret = -EACCES;
1910 	if (!capable(CAP_SYS_ADMIN))
1911 		goto out;
1912 
1913 	ret = -ENOENT;
1914 	task = get_proc_task(inode);
1915 	if (!task)
1916 		goto out;
1917 
1918 	ret = -EACCES;
1919 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1920 		goto out_put_task;
1921 
1922 	ret = 0;
1923 	switch (filp->f_pos) {
1924 	case 0:
1925 		ino = inode->i_ino;
1926 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1927 			goto out_put_task;
1928 		filp->f_pos++;
1929 	case 1:
1930 		ino = parent_ino(dentry);
1931 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1932 			goto out_put_task;
1933 		filp->f_pos++;
1934 	default:
1935 	{
1936 		unsigned long nr_files, pos, i;
1937 		struct flex_array *fa = NULL;
1938 		struct map_files_info info;
1939 		struct map_files_info *p;
1940 
1941 		mm = get_task_mm(task);
1942 		if (!mm)
1943 			goto out_put_task;
1944 		down_read(&mm->mmap_sem);
1945 
1946 		nr_files = 0;
1947 
1948 		/*
1949 		 * We need two passes here:
1950 		 *
1951 		 *  1) Collect vmas of mapped files with mmap_sem taken
1952 		 *  2) Release mmap_sem and instantiate entries
1953 		 *
1954 		 * otherwise we get lockdep complained, since filldir()
1955 		 * routine might require mmap_sem taken in might_fault().
1956 		 */
1957 
1958 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1959 			if (vma->vm_file && ++pos > filp->f_pos)
1960 				nr_files++;
1961 		}
1962 
1963 		if (nr_files) {
1964 			fa = flex_array_alloc(sizeof(info), nr_files,
1965 						GFP_KERNEL);
1966 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
1967 							GFP_KERNEL)) {
1968 				ret = -ENOMEM;
1969 				if (fa)
1970 					flex_array_free(fa);
1971 				up_read(&mm->mmap_sem);
1972 				mmput(mm);
1973 				goto out_put_task;
1974 			}
1975 			for (i = 0, vma = mm->mmap, pos = 2; vma;
1976 					vma = vma->vm_next) {
1977 				if (!vma->vm_file)
1978 					continue;
1979 				if (++pos <= filp->f_pos)
1980 					continue;
1981 
1982 				info.mode = vma->vm_file->f_mode;
1983 				info.len = snprintf(info.name,
1984 						sizeof(info.name), "%lx-%lx",
1985 						vma->vm_start, vma->vm_end);
1986 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1987 					BUG();
1988 			}
1989 		}
1990 		up_read(&mm->mmap_sem);
1991 
1992 		for (i = 0; i < nr_files; i++) {
1993 			p = flex_array_get(fa, i);
1994 			ret = proc_fill_cache(filp, dirent, filldir,
1995 					      p->name, p->len,
1996 					      proc_map_files_instantiate,
1997 					      task,
1998 					      (void *)(unsigned long)p->mode);
1999 			if (ret)
2000 				break;
2001 			filp->f_pos++;
2002 		}
2003 		if (fa)
2004 			flex_array_free(fa);
2005 		mmput(mm);
2006 	}
2007 	}
2008 
2009 out_put_task:
2010 	put_task_struct(task);
2011 out:
2012 	return ret;
2013 }
2014 
2015 static const struct file_operations proc_map_files_operations = {
2016 	.read		= generic_read_dir,
2017 	.readdir	= proc_map_files_readdir,
2018 	.llseek		= default_llseek,
2019 };
2020 
2021 #endif /* CONFIG_CHECKPOINT_RESTORE */
2022 
2023 static struct dentry *proc_pident_instantiate(struct inode *dir,
2024 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2025 {
2026 	const struct pid_entry *p = ptr;
2027 	struct inode *inode;
2028 	struct proc_inode *ei;
2029 	struct dentry *error = ERR_PTR(-ENOENT);
2030 
2031 	inode = proc_pid_make_inode(dir->i_sb, task);
2032 	if (!inode)
2033 		goto out;
2034 
2035 	ei = PROC_I(inode);
2036 	inode->i_mode = p->mode;
2037 	if (S_ISDIR(inode->i_mode))
2038 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2039 	if (p->iop)
2040 		inode->i_op = p->iop;
2041 	if (p->fop)
2042 		inode->i_fop = p->fop;
2043 	ei->op = p->op;
2044 	d_set_d_op(dentry, &pid_dentry_operations);
2045 	d_add(dentry, inode);
2046 	/* Close the race of the process dying before we return the dentry */
2047 	if (pid_revalidate(dentry, 0))
2048 		error = NULL;
2049 out:
2050 	return error;
2051 }
2052 
2053 static struct dentry *proc_pident_lookup(struct inode *dir,
2054 					 struct dentry *dentry,
2055 					 const struct pid_entry *ents,
2056 					 unsigned int nents)
2057 {
2058 	struct dentry *error;
2059 	struct task_struct *task = get_proc_task(dir);
2060 	const struct pid_entry *p, *last;
2061 
2062 	error = ERR_PTR(-ENOENT);
2063 
2064 	if (!task)
2065 		goto out_no_task;
2066 
2067 	/*
2068 	 * Yes, it does not scale. And it should not. Don't add
2069 	 * new entries into /proc/<tgid>/ without very good reasons.
2070 	 */
2071 	last = &ents[nents - 1];
2072 	for (p = ents; p <= last; p++) {
2073 		if (p->len != dentry->d_name.len)
2074 			continue;
2075 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2076 			break;
2077 	}
2078 	if (p > last)
2079 		goto out;
2080 
2081 	error = proc_pident_instantiate(dir, dentry, task, p);
2082 out:
2083 	put_task_struct(task);
2084 out_no_task:
2085 	return error;
2086 }
2087 
2088 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2089 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2090 {
2091 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2092 				proc_pident_instantiate, task, p);
2093 }
2094 
2095 static int proc_pident_readdir(struct file *filp,
2096 		void *dirent, filldir_t filldir,
2097 		const struct pid_entry *ents, unsigned int nents)
2098 {
2099 	int i;
2100 	struct dentry *dentry = filp->f_path.dentry;
2101 	struct inode *inode = dentry->d_inode;
2102 	struct task_struct *task = get_proc_task(inode);
2103 	const struct pid_entry *p, *last;
2104 	ino_t ino;
2105 	int ret;
2106 
2107 	ret = -ENOENT;
2108 	if (!task)
2109 		goto out_no_task;
2110 
2111 	ret = 0;
2112 	i = filp->f_pos;
2113 	switch (i) {
2114 	case 0:
2115 		ino = inode->i_ino;
2116 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2117 			goto out;
2118 		i++;
2119 		filp->f_pos++;
2120 		/* fall through */
2121 	case 1:
2122 		ino = parent_ino(dentry);
2123 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2124 			goto out;
2125 		i++;
2126 		filp->f_pos++;
2127 		/* fall through */
2128 	default:
2129 		i -= 2;
2130 		if (i >= nents) {
2131 			ret = 1;
2132 			goto out;
2133 		}
2134 		p = ents + i;
2135 		last = &ents[nents - 1];
2136 		while (p <= last) {
2137 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2138 				goto out;
2139 			filp->f_pos++;
2140 			p++;
2141 		}
2142 	}
2143 
2144 	ret = 1;
2145 out:
2146 	put_task_struct(task);
2147 out_no_task:
2148 	return ret;
2149 }
2150 
2151 #ifdef CONFIG_SECURITY
2152 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2153 				  size_t count, loff_t *ppos)
2154 {
2155 	struct inode * inode = file->f_path.dentry->d_inode;
2156 	char *p = NULL;
2157 	ssize_t length;
2158 	struct task_struct *task = get_proc_task(inode);
2159 
2160 	if (!task)
2161 		return -ESRCH;
2162 
2163 	length = security_getprocattr(task,
2164 				      (char*)file->f_path.dentry->d_name.name,
2165 				      &p);
2166 	put_task_struct(task);
2167 	if (length > 0)
2168 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2169 	kfree(p);
2170 	return length;
2171 }
2172 
2173 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2174 				   size_t count, loff_t *ppos)
2175 {
2176 	struct inode * inode = file->f_path.dentry->d_inode;
2177 	char *page;
2178 	ssize_t length;
2179 	struct task_struct *task = get_proc_task(inode);
2180 
2181 	length = -ESRCH;
2182 	if (!task)
2183 		goto out_no_task;
2184 	if (count > PAGE_SIZE)
2185 		count = PAGE_SIZE;
2186 
2187 	/* No partial writes. */
2188 	length = -EINVAL;
2189 	if (*ppos != 0)
2190 		goto out;
2191 
2192 	length = -ENOMEM;
2193 	page = (char*)__get_free_page(GFP_TEMPORARY);
2194 	if (!page)
2195 		goto out;
2196 
2197 	length = -EFAULT;
2198 	if (copy_from_user(page, buf, count))
2199 		goto out_free;
2200 
2201 	/* Guard against adverse ptrace interaction */
2202 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2203 	if (length < 0)
2204 		goto out_free;
2205 
2206 	length = security_setprocattr(task,
2207 				      (char*)file->f_path.dentry->d_name.name,
2208 				      (void*)page, count);
2209 	mutex_unlock(&task->signal->cred_guard_mutex);
2210 out_free:
2211 	free_page((unsigned long) page);
2212 out:
2213 	put_task_struct(task);
2214 out_no_task:
2215 	return length;
2216 }
2217 
2218 static const struct file_operations proc_pid_attr_operations = {
2219 	.read		= proc_pid_attr_read,
2220 	.write		= proc_pid_attr_write,
2221 	.llseek		= generic_file_llseek,
2222 };
2223 
2224 static const struct pid_entry attr_dir_stuff[] = {
2225 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2226 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2227 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2228 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2229 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2230 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2231 };
2232 
2233 static int proc_attr_dir_readdir(struct file * filp,
2234 			     void * dirent, filldir_t filldir)
2235 {
2236 	return proc_pident_readdir(filp,dirent,filldir,
2237 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2238 }
2239 
2240 static const struct file_operations proc_attr_dir_operations = {
2241 	.read		= generic_read_dir,
2242 	.readdir	= proc_attr_dir_readdir,
2243 	.llseek		= default_llseek,
2244 };
2245 
2246 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2247 				struct dentry *dentry, unsigned int flags)
2248 {
2249 	return proc_pident_lookup(dir, dentry,
2250 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2251 }
2252 
2253 static const struct inode_operations proc_attr_dir_inode_operations = {
2254 	.lookup		= proc_attr_dir_lookup,
2255 	.getattr	= pid_getattr,
2256 	.setattr	= proc_setattr,
2257 };
2258 
2259 #endif
2260 
2261 #ifdef CONFIG_ELF_CORE
2262 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2263 					 size_t count, loff_t *ppos)
2264 {
2265 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2266 	struct mm_struct *mm;
2267 	char buffer[PROC_NUMBUF];
2268 	size_t len;
2269 	int ret;
2270 
2271 	if (!task)
2272 		return -ESRCH;
2273 
2274 	ret = 0;
2275 	mm = get_task_mm(task);
2276 	if (mm) {
2277 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2278 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2279 				MMF_DUMP_FILTER_SHIFT));
2280 		mmput(mm);
2281 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2282 	}
2283 
2284 	put_task_struct(task);
2285 
2286 	return ret;
2287 }
2288 
2289 static ssize_t proc_coredump_filter_write(struct file *file,
2290 					  const char __user *buf,
2291 					  size_t count,
2292 					  loff_t *ppos)
2293 {
2294 	struct task_struct *task;
2295 	struct mm_struct *mm;
2296 	char buffer[PROC_NUMBUF], *end;
2297 	unsigned int val;
2298 	int ret;
2299 	int i;
2300 	unsigned long mask;
2301 
2302 	ret = -EFAULT;
2303 	memset(buffer, 0, sizeof(buffer));
2304 	if (count > sizeof(buffer) - 1)
2305 		count = sizeof(buffer) - 1;
2306 	if (copy_from_user(buffer, buf, count))
2307 		goto out_no_task;
2308 
2309 	ret = -EINVAL;
2310 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2311 	if (*end == '\n')
2312 		end++;
2313 	if (end - buffer == 0)
2314 		goto out_no_task;
2315 
2316 	ret = -ESRCH;
2317 	task = get_proc_task(file->f_dentry->d_inode);
2318 	if (!task)
2319 		goto out_no_task;
2320 
2321 	ret = end - buffer;
2322 	mm = get_task_mm(task);
2323 	if (!mm)
2324 		goto out_no_mm;
2325 
2326 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2327 		if (val & mask)
2328 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2329 		else
2330 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2331 	}
2332 
2333 	mmput(mm);
2334  out_no_mm:
2335 	put_task_struct(task);
2336  out_no_task:
2337 	return ret;
2338 }
2339 
2340 static const struct file_operations proc_coredump_filter_operations = {
2341 	.read		= proc_coredump_filter_read,
2342 	.write		= proc_coredump_filter_write,
2343 	.llseek		= generic_file_llseek,
2344 };
2345 #endif
2346 
2347 /*
2348  * /proc/self:
2349  */
2350 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2351 			      int buflen)
2352 {
2353 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2354 	pid_t tgid = task_tgid_nr_ns(current, ns);
2355 	char tmp[PROC_NUMBUF];
2356 	if (!tgid)
2357 		return -ENOENT;
2358 	sprintf(tmp, "%d", tgid);
2359 	return vfs_readlink(dentry,buffer,buflen,tmp);
2360 }
2361 
2362 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2363 {
2364 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2365 	pid_t tgid = task_tgid_nr_ns(current, ns);
2366 	char *name = ERR_PTR(-ENOENT);
2367 	if (tgid) {
2368 		/* 11 for max length of signed int in decimal + NULL term */
2369 		name = kmalloc(12, GFP_KERNEL);
2370 		if (!name)
2371 			name = ERR_PTR(-ENOMEM);
2372 		else
2373 			sprintf(name, "%d", tgid);
2374 	}
2375 	nd_set_link(nd, name);
2376 	return NULL;
2377 }
2378 
2379 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2380 				void *cookie)
2381 {
2382 	char *s = nd_get_link(nd);
2383 	if (!IS_ERR(s))
2384 		kfree(s);
2385 }
2386 
2387 static const struct inode_operations proc_self_inode_operations = {
2388 	.readlink	= proc_self_readlink,
2389 	.follow_link	= proc_self_follow_link,
2390 	.put_link	= proc_self_put_link,
2391 };
2392 
2393 /*
2394  * proc base
2395  *
2396  * These are the directory entries in the root directory of /proc
2397  * that properly belong to the /proc filesystem, as they describe
2398  * describe something that is process related.
2399  */
2400 static const struct pid_entry proc_base_stuff[] = {
2401 	NOD("self", S_IFLNK|S_IRWXUGO,
2402 		&proc_self_inode_operations, NULL, {}),
2403 };
2404 
2405 static struct dentry *proc_base_instantiate(struct inode *dir,
2406 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2407 {
2408 	const struct pid_entry *p = ptr;
2409 	struct inode *inode;
2410 	struct proc_inode *ei;
2411 	struct dentry *error;
2412 
2413 	/* Allocate the inode */
2414 	error = ERR_PTR(-ENOMEM);
2415 	inode = new_inode(dir->i_sb);
2416 	if (!inode)
2417 		goto out;
2418 
2419 	/* Initialize the inode */
2420 	ei = PROC_I(inode);
2421 	inode->i_ino = get_next_ino();
2422 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2423 
2424 	/*
2425 	 * grab the reference to the task.
2426 	 */
2427 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2428 	if (!ei->pid)
2429 		goto out_iput;
2430 
2431 	inode->i_mode = p->mode;
2432 	if (S_ISDIR(inode->i_mode))
2433 		set_nlink(inode, 2);
2434 	if (S_ISLNK(inode->i_mode))
2435 		inode->i_size = 64;
2436 	if (p->iop)
2437 		inode->i_op = p->iop;
2438 	if (p->fop)
2439 		inode->i_fop = p->fop;
2440 	ei->op = p->op;
2441 	d_add(dentry, inode);
2442 	error = NULL;
2443 out:
2444 	return error;
2445 out_iput:
2446 	iput(inode);
2447 	goto out;
2448 }
2449 
2450 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2451 {
2452 	struct dentry *error;
2453 	struct task_struct *task = get_proc_task(dir);
2454 	const struct pid_entry *p, *last;
2455 
2456 	error = ERR_PTR(-ENOENT);
2457 
2458 	if (!task)
2459 		goto out_no_task;
2460 
2461 	/* Lookup the directory entry */
2462 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2463 	for (p = proc_base_stuff; p <= last; p++) {
2464 		if (p->len != dentry->d_name.len)
2465 			continue;
2466 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2467 			break;
2468 	}
2469 	if (p > last)
2470 		goto out;
2471 
2472 	error = proc_base_instantiate(dir, dentry, task, p);
2473 
2474 out:
2475 	put_task_struct(task);
2476 out_no_task:
2477 	return error;
2478 }
2479 
2480 static int proc_base_fill_cache(struct file *filp, void *dirent,
2481 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2482 {
2483 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2484 				proc_base_instantiate, task, p);
2485 }
2486 
2487 #ifdef CONFIG_TASK_IO_ACCOUNTING
2488 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2489 {
2490 	struct task_io_accounting acct = task->ioac;
2491 	unsigned long flags;
2492 	int result;
2493 
2494 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2495 	if (result)
2496 		return result;
2497 
2498 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2499 		result = -EACCES;
2500 		goto out_unlock;
2501 	}
2502 
2503 	if (whole && lock_task_sighand(task, &flags)) {
2504 		struct task_struct *t = task;
2505 
2506 		task_io_accounting_add(&acct, &task->signal->ioac);
2507 		while_each_thread(task, t)
2508 			task_io_accounting_add(&acct, &t->ioac);
2509 
2510 		unlock_task_sighand(task, &flags);
2511 	}
2512 	result = sprintf(buffer,
2513 			"rchar: %llu\n"
2514 			"wchar: %llu\n"
2515 			"syscr: %llu\n"
2516 			"syscw: %llu\n"
2517 			"read_bytes: %llu\n"
2518 			"write_bytes: %llu\n"
2519 			"cancelled_write_bytes: %llu\n",
2520 			(unsigned long long)acct.rchar,
2521 			(unsigned long long)acct.wchar,
2522 			(unsigned long long)acct.syscr,
2523 			(unsigned long long)acct.syscw,
2524 			(unsigned long long)acct.read_bytes,
2525 			(unsigned long long)acct.write_bytes,
2526 			(unsigned long long)acct.cancelled_write_bytes);
2527 out_unlock:
2528 	mutex_unlock(&task->signal->cred_guard_mutex);
2529 	return result;
2530 }
2531 
2532 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2533 {
2534 	return do_io_accounting(task, buffer, 0);
2535 }
2536 
2537 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2538 {
2539 	return do_io_accounting(task, buffer, 1);
2540 }
2541 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2542 
2543 #ifdef CONFIG_USER_NS
2544 static int proc_id_map_open(struct inode *inode, struct file *file,
2545 	struct seq_operations *seq_ops)
2546 {
2547 	struct user_namespace *ns = NULL;
2548 	struct task_struct *task;
2549 	struct seq_file *seq;
2550 	int ret = -EINVAL;
2551 
2552 	task = get_proc_task(inode);
2553 	if (task) {
2554 		rcu_read_lock();
2555 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2556 		rcu_read_unlock();
2557 		put_task_struct(task);
2558 	}
2559 	if (!ns)
2560 		goto err;
2561 
2562 	ret = seq_open(file, seq_ops);
2563 	if (ret)
2564 		goto err_put_ns;
2565 
2566 	seq = file->private_data;
2567 	seq->private = ns;
2568 
2569 	return 0;
2570 err_put_ns:
2571 	put_user_ns(ns);
2572 err:
2573 	return ret;
2574 }
2575 
2576 static int proc_id_map_release(struct inode *inode, struct file *file)
2577 {
2578 	struct seq_file *seq = file->private_data;
2579 	struct user_namespace *ns = seq->private;
2580 	put_user_ns(ns);
2581 	return seq_release(inode, file);
2582 }
2583 
2584 static int proc_uid_map_open(struct inode *inode, struct file *file)
2585 {
2586 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2587 }
2588 
2589 static int proc_gid_map_open(struct inode *inode, struct file *file)
2590 {
2591 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2592 }
2593 
2594 static int proc_projid_map_open(struct inode *inode, struct file *file)
2595 {
2596 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2597 }
2598 
2599 static const struct file_operations proc_uid_map_operations = {
2600 	.open		= proc_uid_map_open,
2601 	.write		= proc_uid_map_write,
2602 	.read		= seq_read,
2603 	.llseek		= seq_lseek,
2604 	.release	= proc_id_map_release,
2605 };
2606 
2607 static const struct file_operations proc_gid_map_operations = {
2608 	.open		= proc_gid_map_open,
2609 	.write		= proc_gid_map_write,
2610 	.read		= seq_read,
2611 	.llseek		= seq_lseek,
2612 	.release	= proc_id_map_release,
2613 };
2614 
2615 static const struct file_operations proc_projid_map_operations = {
2616 	.open		= proc_projid_map_open,
2617 	.write		= proc_projid_map_write,
2618 	.read		= seq_read,
2619 	.llseek		= seq_lseek,
2620 	.release	= proc_id_map_release,
2621 };
2622 #endif /* CONFIG_USER_NS */
2623 
2624 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2625 				struct pid *pid, struct task_struct *task)
2626 {
2627 	int err = lock_trace(task);
2628 	if (!err) {
2629 		seq_printf(m, "%08x\n", task->personality);
2630 		unlock_trace(task);
2631 	}
2632 	return err;
2633 }
2634 
2635 /*
2636  * Thread groups
2637  */
2638 static const struct file_operations proc_task_operations;
2639 static const struct inode_operations proc_task_inode_operations;
2640 
2641 static const struct pid_entry tgid_base_stuff[] = {
2642 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2643 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2644 #ifdef CONFIG_CHECKPOINT_RESTORE
2645 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2646 #endif
2647 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2648 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2649 #ifdef CONFIG_NET
2650 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2651 #endif
2652 	REG("environ",    S_IRUSR, proc_environ_operations),
2653 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2654 	ONE("status",     S_IRUGO, proc_pid_status),
2655 	ONE("personality", S_IRUGO, proc_pid_personality),
2656 	INF("limits",	  S_IRUGO, proc_pid_limits),
2657 #ifdef CONFIG_SCHED_DEBUG
2658 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2659 #endif
2660 #ifdef CONFIG_SCHED_AUTOGROUP
2661 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2662 #endif
2663 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2664 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2665 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2666 #endif
2667 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2668 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2669 	ONE("statm",      S_IRUGO, proc_pid_statm),
2670 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2671 #ifdef CONFIG_NUMA
2672 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2673 #endif
2674 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2675 	LNK("cwd",        proc_cwd_link),
2676 	LNK("root",       proc_root_link),
2677 	LNK("exe",        proc_exe_link),
2678 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2679 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2680 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2681 #ifdef CONFIG_PROC_PAGE_MONITOR
2682 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2683 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2684 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2685 #endif
2686 #ifdef CONFIG_SECURITY
2687 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2688 #endif
2689 #ifdef CONFIG_KALLSYMS
2690 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2691 #endif
2692 #ifdef CONFIG_STACKTRACE
2693 	ONE("stack",      S_IRUGO, proc_pid_stack),
2694 #endif
2695 #ifdef CONFIG_SCHEDSTATS
2696 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2697 #endif
2698 #ifdef CONFIG_LATENCYTOP
2699 	REG("latency",  S_IRUGO, proc_lstats_operations),
2700 #endif
2701 #ifdef CONFIG_PROC_PID_CPUSET
2702 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2703 #endif
2704 #ifdef CONFIG_CGROUPS
2705 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2706 #endif
2707 	INF("oom_score",  S_IRUGO, proc_oom_score),
2708 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2709 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2710 #ifdef CONFIG_AUDITSYSCALL
2711 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2712 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2713 #endif
2714 #ifdef CONFIG_FAULT_INJECTION
2715 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2716 #endif
2717 #ifdef CONFIG_ELF_CORE
2718 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2719 #endif
2720 #ifdef CONFIG_TASK_IO_ACCOUNTING
2721 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2722 #endif
2723 #ifdef CONFIG_HARDWALL
2724 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2725 #endif
2726 #ifdef CONFIG_USER_NS
2727 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2728 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2729 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2730 #endif
2731 };
2732 
2733 static int proc_tgid_base_readdir(struct file * filp,
2734 			     void * dirent, filldir_t filldir)
2735 {
2736 	return proc_pident_readdir(filp,dirent,filldir,
2737 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2738 }
2739 
2740 static const struct file_operations proc_tgid_base_operations = {
2741 	.read		= generic_read_dir,
2742 	.readdir	= proc_tgid_base_readdir,
2743 	.llseek		= default_llseek,
2744 };
2745 
2746 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2747 {
2748 	return proc_pident_lookup(dir, dentry,
2749 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2750 }
2751 
2752 static const struct inode_operations proc_tgid_base_inode_operations = {
2753 	.lookup		= proc_tgid_base_lookup,
2754 	.getattr	= pid_getattr,
2755 	.setattr	= proc_setattr,
2756 	.permission	= proc_pid_permission,
2757 };
2758 
2759 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2760 {
2761 	struct dentry *dentry, *leader, *dir;
2762 	char buf[PROC_NUMBUF];
2763 	struct qstr name;
2764 
2765 	name.name = buf;
2766 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2767 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2768 	if (dentry) {
2769 		shrink_dcache_parent(dentry);
2770 		d_drop(dentry);
2771 		dput(dentry);
2772 	}
2773 
2774 	name.name = buf;
2775 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2776 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2777 	if (!leader)
2778 		goto out;
2779 
2780 	name.name = "task";
2781 	name.len = strlen(name.name);
2782 	dir = d_hash_and_lookup(leader, &name);
2783 	if (!dir)
2784 		goto out_put_leader;
2785 
2786 	name.name = buf;
2787 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2788 	dentry = d_hash_and_lookup(dir, &name);
2789 	if (dentry) {
2790 		shrink_dcache_parent(dentry);
2791 		d_drop(dentry);
2792 		dput(dentry);
2793 	}
2794 
2795 	dput(dir);
2796 out_put_leader:
2797 	dput(leader);
2798 out:
2799 	return;
2800 }
2801 
2802 /**
2803  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2804  * @task: task that should be flushed.
2805  *
2806  * When flushing dentries from proc, one needs to flush them from global
2807  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2808  * in. This call is supposed to do all of this job.
2809  *
2810  * Looks in the dcache for
2811  * /proc/@pid
2812  * /proc/@tgid/task/@pid
2813  * if either directory is present flushes it and all of it'ts children
2814  * from the dcache.
2815  *
2816  * It is safe and reasonable to cache /proc entries for a task until
2817  * that task exits.  After that they just clog up the dcache with
2818  * useless entries, possibly causing useful dcache entries to be
2819  * flushed instead.  This routine is proved to flush those useless
2820  * dcache entries at process exit time.
2821  *
2822  * NOTE: This routine is just an optimization so it does not guarantee
2823  *       that no dcache entries will exist at process exit time it
2824  *       just makes it very unlikely that any will persist.
2825  */
2826 
2827 void proc_flush_task(struct task_struct *task)
2828 {
2829 	int i;
2830 	struct pid *pid, *tgid;
2831 	struct upid *upid;
2832 
2833 	pid = task_pid(task);
2834 	tgid = task_tgid(task);
2835 
2836 	for (i = 0; i <= pid->level; i++) {
2837 		upid = &pid->numbers[i];
2838 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2839 					tgid->numbers[i].nr);
2840 	}
2841 
2842 	upid = &pid->numbers[pid->level];
2843 	if (upid->nr == 1)
2844 		pid_ns_release_proc(upid->ns);
2845 }
2846 
2847 static struct dentry *proc_pid_instantiate(struct inode *dir,
2848 					   struct dentry * dentry,
2849 					   struct task_struct *task, const void *ptr)
2850 {
2851 	struct dentry *error = ERR_PTR(-ENOENT);
2852 	struct inode *inode;
2853 
2854 	inode = proc_pid_make_inode(dir->i_sb, task);
2855 	if (!inode)
2856 		goto out;
2857 
2858 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2859 	inode->i_op = &proc_tgid_base_inode_operations;
2860 	inode->i_fop = &proc_tgid_base_operations;
2861 	inode->i_flags|=S_IMMUTABLE;
2862 
2863 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2864 						  ARRAY_SIZE(tgid_base_stuff)));
2865 
2866 	d_set_d_op(dentry, &pid_dentry_operations);
2867 
2868 	d_add(dentry, inode);
2869 	/* Close the race of the process dying before we return the dentry */
2870 	if (pid_revalidate(dentry, 0))
2871 		error = NULL;
2872 out:
2873 	return error;
2874 }
2875 
2876 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2877 {
2878 	struct dentry *result;
2879 	struct task_struct *task;
2880 	unsigned tgid;
2881 	struct pid_namespace *ns;
2882 
2883 	result = proc_base_lookup(dir, dentry);
2884 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2885 		goto out;
2886 
2887 	tgid = name_to_int(dentry);
2888 	if (tgid == ~0U)
2889 		goto out;
2890 
2891 	ns = dentry->d_sb->s_fs_info;
2892 	rcu_read_lock();
2893 	task = find_task_by_pid_ns(tgid, ns);
2894 	if (task)
2895 		get_task_struct(task);
2896 	rcu_read_unlock();
2897 	if (!task)
2898 		goto out;
2899 
2900 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2901 	put_task_struct(task);
2902 out:
2903 	return result;
2904 }
2905 
2906 /*
2907  * Find the first task with tgid >= tgid
2908  *
2909  */
2910 struct tgid_iter {
2911 	unsigned int tgid;
2912 	struct task_struct *task;
2913 };
2914 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2915 {
2916 	struct pid *pid;
2917 
2918 	if (iter.task)
2919 		put_task_struct(iter.task);
2920 	rcu_read_lock();
2921 retry:
2922 	iter.task = NULL;
2923 	pid = find_ge_pid(iter.tgid, ns);
2924 	if (pid) {
2925 		iter.tgid = pid_nr_ns(pid, ns);
2926 		iter.task = pid_task(pid, PIDTYPE_PID);
2927 		/* What we to know is if the pid we have find is the
2928 		 * pid of a thread_group_leader.  Testing for task
2929 		 * being a thread_group_leader is the obvious thing
2930 		 * todo but there is a window when it fails, due to
2931 		 * the pid transfer logic in de_thread.
2932 		 *
2933 		 * So we perform the straight forward test of seeing
2934 		 * if the pid we have found is the pid of a thread
2935 		 * group leader, and don't worry if the task we have
2936 		 * found doesn't happen to be a thread group leader.
2937 		 * As we don't care in the case of readdir.
2938 		 */
2939 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2940 			iter.tgid += 1;
2941 			goto retry;
2942 		}
2943 		get_task_struct(iter.task);
2944 	}
2945 	rcu_read_unlock();
2946 	return iter;
2947 }
2948 
2949 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2950 
2951 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2952 	struct tgid_iter iter)
2953 {
2954 	char name[PROC_NUMBUF];
2955 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2956 	return proc_fill_cache(filp, dirent, filldir, name, len,
2957 				proc_pid_instantiate, iter.task, NULL);
2958 }
2959 
2960 static int fake_filldir(void *buf, const char *name, int namelen,
2961 			loff_t offset, u64 ino, unsigned d_type)
2962 {
2963 	return 0;
2964 }
2965 
2966 /* for the /proc/ directory itself, after non-process stuff has been done */
2967 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2968 {
2969 	unsigned int nr;
2970 	struct task_struct *reaper;
2971 	struct tgid_iter iter;
2972 	struct pid_namespace *ns;
2973 	filldir_t __filldir;
2974 
2975 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2976 		goto out_no_task;
2977 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2978 
2979 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
2980 	if (!reaper)
2981 		goto out_no_task;
2982 
2983 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2984 		const struct pid_entry *p = &proc_base_stuff[nr];
2985 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2986 			goto out;
2987 	}
2988 
2989 	ns = filp->f_dentry->d_sb->s_fs_info;
2990 	iter.task = NULL;
2991 	iter.tgid = filp->f_pos - TGID_OFFSET;
2992 	for (iter = next_tgid(ns, iter);
2993 	     iter.task;
2994 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2995 		if (has_pid_permissions(ns, iter.task, 2))
2996 			__filldir = filldir;
2997 		else
2998 			__filldir = fake_filldir;
2999 
3000 		filp->f_pos = iter.tgid + TGID_OFFSET;
3001 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3002 			put_task_struct(iter.task);
3003 			goto out;
3004 		}
3005 	}
3006 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3007 out:
3008 	put_task_struct(reaper);
3009 out_no_task:
3010 	return 0;
3011 }
3012 
3013 /*
3014  * Tasks
3015  */
3016 static const struct pid_entry tid_base_stuff[] = {
3017 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3018 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3019 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3020 	REG("environ",   S_IRUSR, proc_environ_operations),
3021 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3022 	ONE("status",    S_IRUGO, proc_pid_status),
3023 	ONE("personality", S_IRUGO, proc_pid_personality),
3024 	INF("limits",	 S_IRUGO, proc_pid_limits),
3025 #ifdef CONFIG_SCHED_DEBUG
3026 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3027 #endif
3028 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3029 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3030 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3031 #endif
3032 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3033 	ONE("stat",      S_IRUGO, proc_tid_stat),
3034 	ONE("statm",     S_IRUGO, proc_pid_statm),
3035 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3036 #ifdef CONFIG_CHECKPOINT_RESTORE
3037 	REG("children",  S_IRUGO, proc_tid_children_operations),
3038 #endif
3039 #ifdef CONFIG_NUMA
3040 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3041 #endif
3042 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3043 	LNK("cwd",       proc_cwd_link),
3044 	LNK("root",      proc_root_link),
3045 	LNK("exe",       proc_exe_link),
3046 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3047 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3048 #ifdef CONFIG_PROC_PAGE_MONITOR
3049 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3050 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3051 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3052 #endif
3053 #ifdef CONFIG_SECURITY
3054 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3055 #endif
3056 #ifdef CONFIG_KALLSYMS
3057 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3058 #endif
3059 #ifdef CONFIG_STACKTRACE
3060 	ONE("stack",      S_IRUGO, proc_pid_stack),
3061 #endif
3062 #ifdef CONFIG_SCHEDSTATS
3063 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3064 #endif
3065 #ifdef CONFIG_LATENCYTOP
3066 	REG("latency",  S_IRUGO, proc_lstats_operations),
3067 #endif
3068 #ifdef CONFIG_PROC_PID_CPUSET
3069 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3070 #endif
3071 #ifdef CONFIG_CGROUPS
3072 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3073 #endif
3074 	INF("oom_score", S_IRUGO, proc_oom_score),
3075 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3076 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3077 #ifdef CONFIG_AUDITSYSCALL
3078 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3079 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3080 #endif
3081 #ifdef CONFIG_FAULT_INJECTION
3082 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3083 #endif
3084 #ifdef CONFIG_TASK_IO_ACCOUNTING
3085 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3086 #endif
3087 #ifdef CONFIG_HARDWALL
3088 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3089 #endif
3090 #ifdef CONFIG_USER_NS
3091 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3092 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3093 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3094 #endif
3095 };
3096 
3097 static int proc_tid_base_readdir(struct file * filp,
3098 			     void * dirent, filldir_t filldir)
3099 {
3100 	return proc_pident_readdir(filp,dirent,filldir,
3101 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3102 }
3103 
3104 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3105 {
3106 	return proc_pident_lookup(dir, dentry,
3107 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3108 }
3109 
3110 static const struct file_operations proc_tid_base_operations = {
3111 	.read		= generic_read_dir,
3112 	.readdir	= proc_tid_base_readdir,
3113 	.llseek		= default_llseek,
3114 };
3115 
3116 static const struct inode_operations proc_tid_base_inode_operations = {
3117 	.lookup		= proc_tid_base_lookup,
3118 	.getattr	= pid_getattr,
3119 	.setattr	= proc_setattr,
3120 };
3121 
3122 static struct dentry *proc_task_instantiate(struct inode *dir,
3123 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3124 {
3125 	struct dentry *error = ERR_PTR(-ENOENT);
3126 	struct inode *inode;
3127 	inode = proc_pid_make_inode(dir->i_sb, task);
3128 
3129 	if (!inode)
3130 		goto out;
3131 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3132 	inode->i_op = &proc_tid_base_inode_operations;
3133 	inode->i_fop = &proc_tid_base_operations;
3134 	inode->i_flags|=S_IMMUTABLE;
3135 
3136 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3137 						  ARRAY_SIZE(tid_base_stuff)));
3138 
3139 	d_set_d_op(dentry, &pid_dentry_operations);
3140 
3141 	d_add(dentry, inode);
3142 	/* Close the race of the process dying before we return the dentry */
3143 	if (pid_revalidate(dentry, 0))
3144 		error = NULL;
3145 out:
3146 	return error;
3147 }
3148 
3149 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3150 {
3151 	struct dentry *result = ERR_PTR(-ENOENT);
3152 	struct task_struct *task;
3153 	struct task_struct *leader = get_proc_task(dir);
3154 	unsigned tid;
3155 	struct pid_namespace *ns;
3156 
3157 	if (!leader)
3158 		goto out_no_task;
3159 
3160 	tid = name_to_int(dentry);
3161 	if (tid == ~0U)
3162 		goto out;
3163 
3164 	ns = dentry->d_sb->s_fs_info;
3165 	rcu_read_lock();
3166 	task = find_task_by_pid_ns(tid, ns);
3167 	if (task)
3168 		get_task_struct(task);
3169 	rcu_read_unlock();
3170 	if (!task)
3171 		goto out;
3172 	if (!same_thread_group(leader, task))
3173 		goto out_drop_task;
3174 
3175 	result = proc_task_instantiate(dir, dentry, task, NULL);
3176 out_drop_task:
3177 	put_task_struct(task);
3178 out:
3179 	put_task_struct(leader);
3180 out_no_task:
3181 	return result;
3182 }
3183 
3184 /*
3185  * Find the first tid of a thread group to return to user space.
3186  *
3187  * Usually this is just the thread group leader, but if the users
3188  * buffer was too small or there was a seek into the middle of the
3189  * directory we have more work todo.
3190  *
3191  * In the case of a short read we start with find_task_by_pid.
3192  *
3193  * In the case of a seek we start with the leader and walk nr
3194  * threads past it.
3195  */
3196 static struct task_struct *first_tid(struct task_struct *leader,
3197 		int tid, int nr, struct pid_namespace *ns)
3198 {
3199 	struct task_struct *pos;
3200 
3201 	rcu_read_lock();
3202 	/* Attempt to start with the pid of a thread */
3203 	if (tid && (nr > 0)) {
3204 		pos = find_task_by_pid_ns(tid, ns);
3205 		if (pos && (pos->group_leader == leader))
3206 			goto found;
3207 	}
3208 
3209 	/* If nr exceeds the number of threads there is nothing todo */
3210 	pos = NULL;
3211 	if (nr && nr >= get_nr_threads(leader))
3212 		goto out;
3213 
3214 	/* If we haven't found our starting place yet start
3215 	 * with the leader and walk nr threads forward.
3216 	 */
3217 	for (pos = leader; nr > 0; --nr) {
3218 		pos = next_thread(pos);
3219 		if (pos == leader) {
3220 			pos = NULL;
3221 			goto out;
3222 		}
3223 	}
3224 found:
3225 	get_task_struct(pos);
3226 out:
3227 	rcu_read_unlock();
3228 	return pos;
3229 }
3230 
3231 /*
3232  * Find the next thread in the thread list.
3233  * Return NULL if there is an error or no next thread.
3234  *
3235  * The reference to the input task_struct is released.
3236  */
3237 static struct task_struct *next_tid(struct task_struct *start)
3238 {
3239 	struct task_struct *pos = NULL;
3240 	rcu_read_lock();
3241 	if (pid_alive(start)) {
3242 		pos = next_thread(start);
3243 		if (thread_group_leader(pos))
3244 			pos = NULL;
3245 		else
3246 			get_task_struct(pos);
3247 	}
3248 	rcu_read_unlock();
3249 	put_task_struct(start);
3250 	return pos;
3251 }
3252 
3253 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3254 	struct task_struct *task, int tid)
3255 {
3256 	char name[PROC_NUMBUF];
3257 	int len = snprintf(name, sizeof(name), "%d", tid);
3258 	return proc_fill_cache(filp, dirent, filldir, name, len,
3259 				proc_task_instantiate, task, NULL);
3260 }
3261 
3262 /* for the /proc/TGID/task/ directories */
3263 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3264 {
3265 	struct dentry *dentry = filp->f_path.dentry;
3266 	struct inode *inode = dentry->d_inode;
3267 	struct task_struct *leader = NULL;
3268 	struct task_struct *task;
3269 	int retval = -ENOENT;
3270 	ino_t ino;
3271 	int tid;
3272 	struct pid_namespace *ns;
3273 
3274 	task = get_proc_task(inode);
3275 	if (!task)
3276 		goto out_no_task;
3277 	rcu_read_lock();
3278 	if (pid_alive(task)) {
3279 		leader = task->group_leader;
3280 		get_task_struct(leader);
3281 	}
3282 	rcu_read_unlock();
3283 	put_task_struct(task);
3284 	if (!leader)
3285 		goto out_no_task;
3286 	retval = 0;
3287 
3288 	switch ((unsigned long)filp->f_pos) {
3289 	case 0:
3290 		ino = inode->i_ino;
3291 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3292 			goto out;
3293 		filp->f_pos++;
3294 		/* fall through */
3295 	case 1:
3296 		ino = parent_ino(dentry);
3297 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3298 			goto out;
3299 		filp->f_pos++;
3300 		/* fall through */
3301 	}
3302 
3303 	/* f_version caches the tgid value that the last readdir call couldn't
3304 	 * return. lseek aka telldir automagically resets f_version to 0.
3305 	 */
3306 	ns = filp->f_dentry->d_sb->s_fs_info;
3307 	tid = (int)filp->f_version;
3308 	filp->f_version = 0;
3309 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3310 	     task;
3311 	     task = next_tid(task), filp->f_pos++) {
3312 		tid = task_pid_nr_ns(task, ns);
3313 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3314 			/* returning this tgid failed, save it as the first
3315 			 * pid for the next readir call */
3316 			filp->f_version = (u64)tid;
3317 			put_task_struct(task);
3318 			break;
3319 		}
3320 	}
3321 out:
3322 	put_task_struct(leader);
3323 out_no_task:
3324 	return retval;
3325 }
3326 
3327 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3328 {
3329 	struct inode *inode = dentry->d_inode;
3330 	struct task_struct *p = get_proc_task(inode);
3331 	generic_fillattr(inode, stat);
3332 
3333 	if (p) {
3334 		stat->nlink += get_nr_threads(p);
3335 		put_task_struct(p);
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static const struct inode_operations proc_task_inode_operations = {
3342 	.lookup		= proc_task_lookup,
3343 	.getattr	= proc_task_getattr,
3344 	.setattr	= proc_setattr,
3345 	.permission	= proc_pid_permission,
3346 };
3347 
3348 static const struct file_operations proc_task_operations = {
3349 	.read		= generic_read_dir,
3350 	.readdir	= proc_task_readdir,
3351 	.llseek		= default_llseek,
3352 };
3353