xref: /openbmc/linux/fs/proc/array.c (revision f42b3800)
1 /*
2  *  linux/fs/proc/array.c
3  *
4  *  Copyright (C) 1992  by Linus Torvalds
5  *  based on ideas by Darren Senn
6  *
7  * Fixes:
8  * Michael. K. Johnson: stat,statm extensions.
9  *                      <johnsonm@stolaf.edu>
10  *
11  * Pauline Middelink :  Made cmdline,envline only break at '\0's, to
12  *                      make sure SET_PROCTITLE works. Also removed
13  *                      bad '!' which forced address recalculation for
14  *                      EVERY character on the current page.
15  *                      <middelin@polyware.iaf.nl>
16  *
17  * Danny ter Haar    :	added cpuinfo
18  *			<dth@cistron.nl>
19  *
20  * Alessandro Rubini :  profile extension.
21  *                      <rubini@ipvvis.unipv.it>
22  *
23  * Jeff Tranter      :  added BogoMips field to cpuinfo
24  *                      <Jeff_Tranter@Mitel.COM>
25  *
26  * Bruno Haible      :  remove 4K limit for the maps file
27  *			<haible@ma2s2.mathematik.uni-karlsruhe.de>
28  *
29  * Yves Arrouye      :  remove removal of trailing spaces in get_array.
30  *			<Yves.Arrouye@marin.fdn.fr>
31  *
32  * Jerome Forissier  :  added per-CPU time information to /proc/stat
33  *                      and /proc/<pid>/cpu extension
34  *                      <forissier@isia.cma.fr>
35  *			- Incorporation and non-SMP safe operation
36  *			of forissier patch in 2.1.78 by
37  *			Hans Marcus <crowbar@concepts.nl>
38  *
39  * aeb@cwi.nl        :  /proc/partitions
40  *
41  *
42  * Alan Cox	     :  security fixes.
43  *			<Alan.Cox@linux.org>
44  *
45  * Al Viro           :  safe handling of mm_struct
46  *
47  * Gerhard Wichert   :  added BIGMEM support
48  * Siemens AG           <Gerhard.Wichert@pdb.siemens.de>
49  *
50  * Al Viro & Jeff Garzik :  moved most of the thing into base.c and
51  *			 :  proc_misc.c. The rest may eventually go into
52  *			 :  base.c too.
53  */
54 
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/time.h>
58 #include <linux/kernel.h>
59 #include <linux/kernel_stat.h>
60 #include <linux/tty.h>
61 #include <linux/string.h>
62 #include <linux/mman.h>
63 #include <linux/proc_fs.h>
64 #include <linux/ioport.h>
65 #include <linux/uaccess.h>
66 #include <linux/io.h>
67 #include <linux/mm.h>
68 #include <linux/hugetlb.h>
69 #include <linux/pagemap.h>
70 #include <linux/swap.h>
71 #include <linux/slab.h>
72 #include <linux/smp.h>
73 #include <linux/signal.h>
74 #include <linux/highmem.h>
75 #include <linux/file.h>
76 #include <linux/times.h>
77 #include <linux/cpuset.h>
78 #include <linux/rcupdate.h>
79 #include <linux/delayacct.h>
80 #include <linux/seq_file.h>
81 #include <linux/pid_namespace.h>
82 
83 #include <asm/pgtable.h>
84 #include <asm/processor.h>
85 #include "internal.h"
86 
87 /* Gcc optimizes away "strlen(x)" for constant x */
88 #define ADDBUF(buffer, string) \
89 do { memcpy(buffer, string, strlen(string)); \
90      buffer += strlen(string); } while (0)
91 
92 static inline void task_name(struct seq_file *m, struct task_struct *p)
93 {
94 	int i;
95 	char *buf, *end;
96 	char *name;
97 	char tcomm[sizeof(p->comm)];
98 
99 	get_task_comm(tcomm, p);
100 
101 	seq_printf(m, "Name:\t");
102 	end = m->buf + m->size;
103 	buf = m->buf + m->count;
104 	name = tcomm;
105 	i = sizeof(tcomm);
106 	while (i && (buf < end)) {
107 		unsigned char c = *name;
108 		name++;
109 		i--;
110 		*buf = c;
111 		if (!c)
112 			break;
113 		if (c == '\\') {
114 			buf++;
115 			if (buf < end)
116 				*buf++ = c;
117 			continue;
118 		}
119 		if (c == '\n') {
120 			*buf++ = '\\';
121 			if (buf < end)
122 				*buf++ = 'n';
123 			continue;
124 		}
125 		buf++;
126 	}
127 	m->count = buf - m->buf;
128 	seq_printf(m, "\n");
129 }
130 
131 /*
132  * The task state array is a strange "bitmap" of
133  * reasons to sleep. Thus "running" is zero, and
134  * you can test for combinations of others with
135  * simple bit tests.
136  */
137 static const char *task_state_array[] = {
138 	"R (running)",		/*  0 */
139 	"S (sleeping)",		/*  1 */
140 	"D (disk sleep)",	/*  2 */
141 	"T (stopped)",		/*  4 */
142 	"T (tracing stop)",	/*  8 */
143 	"Z (zombie)",		/* 16 */
144 	"X (dead)"		/* 32 */
145 };
146 
147 static inline const char *get_task_state(struct task_struct *tsk)
148 {
149 	unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state;
150 	const char **p = &task_state_array[0];
151 
152 	while (state) {
153 		p++;
154 		state >>= 1;
155 	}
156 	return *p;
157 }
158 
159 static inline void task_state(struct seq_file *m, struct pid_namespace *ns,
160 				struct pid *pid, struct task_struct *p)
161 {
162 	struct group_info *group_info;
163 	int g;
164 	struct fdtable *fdt = NULL;
165 	pid_t ppid, tpid;
166 
167 	rcu_read_lock();
168 	ppid = pid_alive(p) ?
169 		task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0;
170 	tpid = pid_alive(p) && p->ptrace ?
171 		task_pid_nr_ns(rcu_dereference(p->parent), ns) : 0;
172 	seq_printf(m,
173 		"State:\t%s\n"
174 		"Tgid:\t%d\n"
175 		"Pid:\t%d\n"
176 		"PPid:\t%d\n"
177 		"TracerPid:\t%d\n"
178 		"Uid:\t%d\t%d\t%d\t%d\n"
179 		"Gid:\t%d\t%d\t%d\t%d\n",
180 		get_task_state(p),
181 		task_tgid_nr_ns(p, ns),
182 		pid_nr_ns(pid, ns),
183 		ppid, tpid,
184 		p->uid, p->euid, p->suid, p->fsuid,
185 		p->gid, p->egid, p->sgid, p->fsgid);
186 
187 	task_lock(p);
188 	if (p->files)
189 		fdt = files_fdtable(p->files);
190 	seq_printf(m,
191 		"FDSize:\t%d\n"
192 		"Groups:\t",
193 		fdt ? fdt->max_fds : 0);
194 	rcu_read_unlock();
195 
196 	group_info = p->group_info;
197 	get_group_info(group_info);
198 	task_unlock(p);
199 
200 	for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++)
201 		seq_printf(m, "%d ", GROUP_AT(group_info, g));
202 	put_group_info(group_info);
203 
204 	seq_printf(m, "\n");
205 }
206 
207 static void render_sigset_t(struct seq_file *m, const char *header,
208 				sigset_t *set)
209 {
210 	int i;
211 
212 	seq_printf(m, "%s", header);
213 
214 	i = _NSIG;
215 	do {
216 		int x = 0;
217 
218 		i -= 4;
219 		if (sigismember(set, i+1)) x |= 1;
220 		if (sigismember(set, i+2)) x |= 2;
221 		if (sigismember(set, i+3)) x |= 4;
222 		if (sigismember(set, i+4)) x |= 8;
223 		seq_printf(m, "%x", x);
224 	} while (i >= 4);
225 
226 	seq_printf(m, "\n");
227 }
228 
229 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign,
230 				    sigset_t *catch)
231 {
232 	struct k_sigaction *k;
233 	int i;
234 
235 	k = p->sighand->action;
236 	for (i = 1; i <= _NSIG; ++i, ++k) {
237 		if (k->sa.sa_handler == SIG_IGN)
238 			sigaddset(ign, i);
239 		else if (k->sa.sa_handler != SIG_DFL)
240 			sigaddset(catch, i);
241 	}
242 }
243 
244 static inline void task_sig(struct seq_file *m, struct task_struct *p)
245 {
246 	unsigned long flags;
247 	sigset_t pending, shpending, blocked, ignored, caught;
248 	int num_threads = 0;
249 	unsigned long qsize = 0;
250 	unsigned long qlim = 0;
251 
252 	sigemptyset(&pending);
253 	sigemptyset(&shpending);
254 	sigemptyset(&blocked);
255 	sigemptyset(&ignored);
256 	sigemptyset(&caught);
257 
258 	rcu_read_lock();
259 	if (lock_task_sighand(p, &flags)) {
260 		pending = p->pending.signal;
261 		shpending = p->signal->shared_pending.signal;
262 		blocked = p->blocked;
263 		collect_sigign_sigcatch(p, &ignored, &caught);
264 		num_threads = atomic_read(&p->signal->count);
265 		qsize = atomic_read(&p->user->sigpending);
266 		qlim = p->signal->rlim[RLIMIT_SIGPENDING].rlim_cur;
267 		unlock_task_sighand(p, &flags);
268 	}
269 	rcu_read_unlock();
270 
271 	seq_printf(m, "Threads:\t%d\n", num_threads);
272 	seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim);
273 
274 	/* render them all */
275 	render_sigset_t(m, "SigPnd:\t", &pending);
276 	render_sigset_t(m, "ShdPnd:\t", &shpending);
277 	render_sigset_t(m, "SigBlk:\t", &blocked);
278 	render_sigset_t(m, "SigIgn:\t", &ignored);
279 	render_sigset_t(m, "SigCgt:\t", &caught);
280 }
281 
282 static void render_cap_t(struct seq_file *m, const char *header,
283 			kernel_cap_t *a)
284 {
285 	unsigned __capi;
286 
287 	seq_printf(m, "%s", header);
288 	CAP_FOR_EACH_U32(__capi) {
289 		seq_printf(m, "%08x",
290 			   a->cap[(_LINUX_CAPABILITY_U32S-1) - __capi]);
291 	}
292 	seq_printf(m, "\n");
293 }
294 
295 static inline void task_cap(struct seq_file *m, struct task_struct *p)
296 {
297 	render_cap_t(m, "CapInh:\t", &p->cap_inheritable);
298 	render_cap_t(m, "CapPrm:\t", &p->cap_permitted);
299 	render_cap_t(m, "CapEff:\t", &p->cap_effective);
300 }
301 
302 static inline void task_context_switch_counts(struct seq_file *m,
303 						struct task_struct *p)
304 {
305 	seq_printf(m,	"voluntary_ctxt_switches:\t%lu\n"
306 			"nonvoluntary_ctxt_switches:\t%lu\n",
307 			p->nvcsw,
308 			p->nivcsw);
309 }
310 
311 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns,
312 			struct pid *pid, struct task_struct *task)
313 {
314 	struct mm_struct *mm = get_task_mm(task);
315 
316 	task_name(m, task);
317 	task_state(m, ns, pid, task);
318 
319 	if (mm) {
320 		task_mem(m, mm);
321 		mmput(mm);
322 	}
323 	task_sig(m, task);
324 	task_cap(m, task);
325 	cpuset_task_status_allowed(m, task);
326 #if defined(CONFIG_S390)
327 	task_show_regs(m, task);
328 #endif
329 	task_context_switch_counts(m, task);
330 	return 0;
331 }
332 
333 /*
334  * Use precise platform statistics if available:
335  */
336 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
337 static cputime_t task_utime(struct task_struct *p)
338 {
339 	return p->utime;
340 }
341 
342 static cputime_t task_stime(struct task_struct *p)
343 {
344 	return p->stime;
345 }
346 #else
347 static cputime_t task_utime(struct task_struct *p)
348 {
349 	clock_t utime = cputime_to_clock_t(p->utime),
350 		total = utime + cputime_to_clock_t(p->stime);
351 	u64 temp;
352 
353 	/*
354 	 * Use CFS's precise accounting:
355 	 */
356 	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
357 
358 	if (total) {
359 		temp *= utime;
360 		do_div(temp, total);
361 	}
362 	utime = (clock_t)temp;
363 
364 	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
365 	return p->prev_utime;
366 }
367 
368 static cputime_t task_stime(struct task_struct *p)
369 {
370 	clock_t stime;
371 
372 	/*
373 	 * Use CFS's precise accounting. (we subtract utime from
374 	 * the total, to make sure the total observed by userspace
375 	 * grows monotonically - apps rely on that):
376 	 */
377 	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
378 			cputime_to_clock_t(task_utime(p));
379 
380 	if (stime >= 0)
381 		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
382 
383 	return p->prev_stime;
384 }
385 #endif
386 
387 static cputime_t task_gtime(struct task_struct *p)
388 {
389 	return p->gtime;
390 }
391 
392 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
393 			struct pid *pid, struct task_struct *task, int whole)
394 {
395 	unsigned long vsize, eip, esp, wchan = ~0UL;
396 	long priority, nice;
397 	int tty_pgrp = -1, tty_nr = 0;
398 	sigset_t sigign, sigcatch;
399 	char state;
400 	pid_t ppid = 0, pgid = -1, sid = -1;
401 	int num_threads = 0;
402 	struct mm_struct *mm;
403 	unsigned long long start_time;
404 	unsigned long cmin_flt = 0, cmaj_flt = 0;
405 	unsigned long  min_flt = 0,  maj_flt = 0;
406 	cputime_t cutime, cstime, utime, stime;
407 	cputime_t cgtime, gtime;
408 	unsigned long rsslim = 0;
409 	char tcomm[sizeof(task->comm)];
410 	unsigned long flags;
411 
412 	state = *get_task_state(task);
413 	vsize = eip = esp = 0;
414 	mm = get_task_mm(task);
415 	if (mm) {
416 		vsize = task_vsize(mm);
417 		eip = KSTK_EIP(task);
418 		esp = KSTK_ESP(task);
419 	}
420 
421 	get_task_comm(tcomm, task);
422 
423 	sigemptyset(&sigign);
424 	sigemptyset(&sigcatch);
425 	cutime = cstime = utime = stime = cputime_zero;
426 	cgtime = gtime = cputime_zero;
427 
428 	rcu_read_lock();
429 	if (lock_task_sighand(task, &flags)) {
430 		struct signal_struct *sig = task->signal;
431 
432 		if (sig->tty) {
433 			tty_pgrp = pid_nr_ns(sig->tty->pgrp, ns);
434 			tty_nr = new_encode_dev(tty_devnum(sig->tty));
435 		}
436 
437 		num_threads = atomic_read(&sig->count);
438 		collect_sigign_sigcatch(task, &sigign, &sigcatch);
439 
440 		cmin_flt = sig->cmin_flt;
441 		cmaj_flt = sig->cmaj_flt;
442 		cutime = sig->cutime;
443 		cstime = sig->cstime;
444 		cgtime = sig->cgtime;
445 		rsslim = sig->rlim[RLIMIT_RSS].rlim_cur;
446 
447 		/* add up live thread stats at the group level */
448 		if (whole) {
449 			struct task_struct *t = task;
450 			do {
451 				min_flt += t->min_flt;
452 				maj_flt += t->maj_flt;
453 				utime = cputime_add(utime, task_utime(t));
454 				stime = cputime_add(stime, task_stime(t));
455 				gtime = cputime_add(gtime, task_gtime(t));
456 				t = next_thread(t);
457 			} while (t != task);
458 
459 			min_flt += sig->min_flt;
460 			maj_flt += sig->maj_flt;
461 			utime = cputime_add(utime, sig->utime);
462 			stime = cputime_add(stime, sig->stime);
463 			gtime = cputime_add(gtime, sig->gtime);
464 		}
465 
466 		sid = task_session_nr_ns(task, ns);
467 		ppid = task_tgid_nr_ns(task->real_parent, ns);
468 		pgid = task_pgrp_nr_ns(task, ns);
469 
470 		unlock_task_sighand(task, &flags);
471 	}
472 	rcu_read_unlock();
473 
474 	if (!whole || num_threads < 2)
475 		wchan = get_wchan(task);
476 	if (!whole) {
477 		min_flt = task->min_flt;
478 		maj_flt = task->maj_flt;
479 		utime = task_utime(task);
480 		stime = task_stime(task);
481 		gtime = task_gtime(task);
482 	}
483 
484 	/* scale priority and nice values from timeslices to -20..20 */
485 	/* to make it look like a "normal" Unix priority/nice value  */
486 	priority = task_prio(task);
487 	nice = task_nice(task);
488 
489 	/* Temporary variable needed for gcc-2.96 */
490 	/* convert timespec -> nsec*/
491 	start_time =
492 		(unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC
493 				+ task->real_start_time.tv_nsec;
494 	/* convert nsec -> ticks */
495 	start_time = nsec_to_clock_t(start_time);
496 
497 	seq_printf(m, "%d (%s) %c %d %d %d %d %d %u %lu \
498 %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \
499 %lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n",
500 		pid_nr_ns(pid, ns),
501 		tcomm,
502 		state,
503 		ppid,
504 		pgid,
505 		sid,
506 		tty_nr,
507 		tty_pgrp,
508 		task->flags,
509 		min_flt,
510 		cmin_flt,
511 		maj_flt,
512 		cmaj_flt,
513 		cputime_to_clock_t(utime),
514 		cputime_to_clock_t(stime),
515 		cputime_to_clock_t(cutime),
516 		cputime_to_clock_t(cstime),
517 		priority,
518 		nice,
519 		num_threads,
520 		start_time,
521 		vsize,
522 		mm ? get_mm_rss(mm) : 0,
523 		rsslim,
524 		mm ? mm->start_code : 0,
525 		mm ? mm->end_code : 0,
526 		mm ? mm->start_stack : 0,
527 		esp,
528 		eip,
529 		/* The signal information here is obsolete.
530 		 * It must be decimal for Linux 2.0 compatibility.
531 		 * Use /proc/#/status for real-time signals.
532 		 */
533 		task->pending.signal.sig[0] & 0x7fffffffUL,
534 		task->blocked.sig[0] & 0x7fffffffUL,
535 		sigign      .sig[0] & 0x7fffffffUL,
536 		sigcatch    .sig[0] & 0x7fffffffUL,
537 		wchan,
538 		0UL,
539 		0UL,
540 		task->exit_signal,
541 		task_cpu(task),
542 		task->rt_priority,
543 		task->policy,
544 		(unsigned long long)delayacct_blkio_ticks(task),
545 		cputime_to_clock_t(gtime),
546 		cputime_to_clock_t(cgtime));
547 	if (mm)
548 		mmput(mm);
549 	return 0;
550 }
551 
552 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns,
553 			struct pid *pid, struct task_struct *task)
554 {
555 	return do_task_stat(m, ns, pid, task, 0);
556 }
557 
558 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns,
559 			struct pid *pid, struct task_struct *task)
560 {
561 	return do_task_stat(m, ns, pid, task, 1);
562 }
563 
564 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns,
565 			struct pid *pid, struct task_struct *task)
566 {
567 	int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0;
568 	struct mm_struct *mm = get_task_mm(task);
569 
570 	if (mm) {
571 		size = task_statm(mm, &shared, &text, &data, &resident);
572 		mmput(mm);
573 	}
574 	seq_printf(m, "%d %d %d %d %d %d %d\n",
575 			size, resident, shared, text, lib, data, 0);
576 
577 	return 0;
578 }
579