1 /* 2 * linux/fs/proc/array.c 3 * 4 * Copyright (C) 1992 by Linus Torvalds 5 * based on ideas by Darren Senn 6 * 7 * Fixes: 8 * Michael. K. Johnson: stat,statm extensions. 9 * <johnsonm@stolaf.edu> 10 * 11 * Pauline Middelink : Made cmdline,envline only break at '\0's, to 12 * make sure SET_PROCTITLE works. Also removed 13 * bad '!' which forced address recalculation for 14 * EVERY character on the current page. 15 * <middelin@polyware.iaf.nl> 16 * 17 * Danny ter Haar : added cpuinfo 18 * <dth@cistron.nl> 19 * 20 * Alessandro Rubini : profile extension. 21 * <rubini@ipvvis.unipv.it> 22 * 23 * Jeff Tranter : added BogoMips field to cpuinfo 24 * <Jeff_Tranter@Mitel.COM> 25 * 26 * Bruno Haible : remove 4K limit for the maps file 27 * <haible@ma2s2.mathematik.uni-karlsruhe.de> 28 * 29 * Yves Arrouye : remove removal of trailing spaces in get_array. 30 * <Yves.Arrouye@marin.fdn.fr> 31 * 32 * Jerome Forissier : added per-CPU time information to /proc/stat 33 * and /proc/<pid>/cpu extension 34 * <forissier@isia.cma.fr> 35 * - Incorporation and non-SMP safe operation 36 * of forissier patch in 2.1.78 by 37 * Hans Marcus <crowbar@concepts.nl> 38 * 39 * aeb@cwi.nl : /proc/partitions 40 * 41 * 42 * Alan Cox : security fixes. 43 * <Alan.Cox@linux.org> 44 * 45 * Al Viro : safe handling of mm_struct 46 * 47 * Gerhard Wichert : added BIGMEM support 48 * Siemens AG <Gerhard.Wichert@pdb.siemens.de> 49 * 50 * Al Viro & Jeff Garzik : moved most of the thing into base.c and 51 * : proc_misc.c. The rest may eventually go into 52 * : base.c too. 53 */ 54 55 #include <linux/types.h> 56 #include <linux/errno.h> 57 #include <linux/time.h> 58 #include <linux/kernel.h> 59 #include <linux/kernel_stat.h> 60 #include <linux/tty.h> 61 #include <linux/string.h> 62 #include <linux/mman.h> 63 #include <linux/proc_fs.h> 64 #include <linux/ioport.h> 65 #include <linux/uaccess.h> 66 #include <linux/io.h> 67 #include <linux/mm.h> 68 #include <linux/hugetlb.h> 69 #include <linux/pagemap.h> 70 #include <linux/swap.h> 71 #include <linux/slab.h> 72 #include <linux/smp.h> 73 #include <linux/signal.h> 74 #include <linux/highmem.h> 75 #include <linux/file.h> 76 #include <linux/times.h> 77 #include <linux/cpuset.h> 78 #include <linux/rcupdate.h> 79 #include <linux/delayacct.h> 80 #include <linux/seq_file.h> 81 #include <linux/pid_namespace.h> 82 83 #include <asm/pgtable.h> 84 #include <asm/processor.h> 85 #include "internal.h" 86 87 /* Gcc optimizes away "strlen(x)" for constant x */ 88 #define ADDBUF(buffer, string) \ 89 do { memcpy(buffer, string, strlen(string)); \ 90 buffer += strlen(string); } while (0) 91 92 static inline void task_name(struct seq_file *m, struct task_struct *p) 93 { 94 int i; 95 char *buf, *end; 96 char *name; 97 char tcomm[sizeof(p->comm)]; 98 99 get_task_comm(tcomm, p); 100 101 seq_printf(m, "Name:\t"); 102 end = m->buf + m->size; 103 buf = m->buf + m->count; 104 name = tcomm; 105 i = sizeof(tcomm); 106 while (i && (buf < end)) { 107 unsigned char c = *name; 108 name++; 109 i--; 110 *buf = c; 111 if (!c) 112 break; 113 if (c == '\\') { 114 buf++; 115 if (buf < end) 116 *buf++ = c; 117 continue; 118 } 119 if (c == '\n') { 120 *buf++ = '\\'; 121 if (buf < end) 122 *buf++ = 'n'; 123 continue; 124 } 125 buf++; 126 } 127 m->count = buf - m->buf; 128 seq_printf(m, "\n"); 129 } 130 131 /* 132 * The task state array is a strange "bitmap" of 133 * reasons to sleep. Thus "running" is zero, and 134 * you can test for combinations of others with 135 * simple bit tests. 136 */ 137 static const char *task_state_array[] = { 138 "R (running)", /* 0 */ 139 "S (sleeping)", /* 1 */ 140 "D (disk sleep)", /* 2 */ 141 "T (stopped)", /* 4 */ 142 "T (tracing stop)", /* 8 */ 143 "Z (zombie)", /* 16 */ 144 "X (dead)" /* 32 */ 145 }; 146 147 static inline const char *get_task_state(struct task_struct *tsk) 148 { 149 unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state; 150 const char **p = &task_state_array[0]; 151 152 while (state) { 153 p++; 154 state >>= 1; 155 } 156 return *p; 157 } 158 159 static inline void task_state(struct seq_file *m, struct pid_namespace *ns, 160 struct pid *pid, struct task_struct *p) 161 { 162 struct group_info *group_info; 163 int g; 164 struct fdtable *fdt = NULL; 165 pid_t ppid, tpid; 166 167 rcu_read_lock(); 168 ppid = pid_alive(p) ? 169 task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0; 170 tpid = pid_alive(p) && p->ptrace ? 171 task_pid_nr_ns(rcu_dereference(p->parent), ns) : 0; 172 seq_printf(m, 173 "State:\t%s\n" 174 "Tgid:\t%d\n" 175 "Pid:\t%d\n" 176 "PPid:\t%d\n" 177 "TracerPid:\t%d\n" 178 "Uid:\t%d\t%d\t%d\t%d\n" 179 "Gid:\t%d\t%d\t%d\t%d\n", 180 get_task_state(p), 181 task_tgid_nr_ns(p, ns), 182 pid_nr_ns(pid, ns), 183 ppid, tpid, 184 p->uid, p->euid, p->suid, p->fsuid, 185 p->gid, p->egid, p->sgid, p->fsgid); 186 187 task_lock(p); 188 if (p->files) 189 fdt = files_fdtable(p->files); 190 seq_printf(m, 191 "FDSize:\t%d\n" 192 "Groups:\t", 193 fdt ? fdt->max_fds : 0); 194 rcu_read_unlock(); 195 196 group_info = p->group_info; 197 get_group_info(group_info); 198 task_unlock(p); 199 200 for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++) 201 seq_printf(m, "%d ", GROUP_AT(group_info, g)); 202 put_group_info(group_info); 203 204 seq_printf(m, "\n"); 205 } 206 207 static void render_sigset_t(struct seq_file *m, const char *header, 208 sigset_t *set) 209 { 210 int i; 211 212 seq_printf(m, "%s", header); 213 214 i = _NSIG; 215 do { 216 int x = 0; 217 218 i -= 4; 219 if (sigismember(set, i+1)) x |= 1; 220 if (sigismember(set, i+2)) x |= 2; 221 if (sigismember(set, i+3)) x |= 4; 222 if (sigismember(set, i+4)) x |= 8; 223 seq_printf(m, "%x", x); 224 } while (i >= 4); 225 226 seq_printf(m, "\n"); 227 } 228 229 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign, 230 sigset_t *catch) 231 { 232 struct k_sigaction *k; 233 int i; 234 235 k = p->sighand->action; 236 for (i = 1; i <= _NSIG; ++i, ++k) { 237 if (k->sa.sa_handler == SIG_IGN) 238 sigaddset(ign, i); 239 else if (k->sa.sa_handler != SIG_DFL) 240 sigaddset(catch, i); 241 } 242 } 243 244 static inline void task_sig(struct seq_file *m, struct task_struct *p) 245 { 246 unsigned long flags; 247 sigset_t pending, shpending, blocked, ignored, caught; 248 int num_threads = 0; 249 unsigned long qsize = 0; 250 unsigned long qlim = 0; 251 252 sigemptyset(&pending); 253 sigemptyset(&shpending); 254 sigemptyset(&blocked); 255 sigemptyset(&ignored); 256 sigemptyset(&caught); 257 258 rcu_read_lock(); 259 if (lock_task_sighand(p, &flags)) { 260 pending = p->pending.signal; 261 shpending = p->signal->shared_pending.signal; 262 blocked = p->blocked; 263 collect_sigign_sigcatch(p, &ignored, &caught); 264 num_threads = atomic_read(&p->signal->count); 265 qsize = atomic_read(&p->user->sigpending); 266 qlim = p->signal->rlim[RLIMIT_SIGPENDING].rlim_cur; 267 unlock_task_sighand(p, &flags); 268 } 269 rcu_read_unlock(); 270 271 seq_printf(m, "Threads:\t%d\n", num_threads); 272 seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim); 273 274 /* render them all */ 275 render_sigset_t(m, "SigPnd:\t", &pending); 276 render_sigset_t(m, "ShdPnd:\t", &shpending); 277 render_sigset_t(m, "SigBlk:\t", &blocked); 278 render_sigset_t(m, "SigIgn:\t", &ignored); 279 render_sigset_t(m, "SigCgt:\t", &caught); 280 } 281 282 static void render_cap_t(struct seq_file *m, const char *header, 283 kernel_cap_t *a) 284 { 285 unsigned __capi; 286 287 seq_printf(m, "%s", header); 288 CAP_FOR_EACH_U32(__capi) { 289 seq_printf(m, "%08x", 290 a->cap[(_LINUX_CAPABILITY_U32S-1) - __capi]); 291 } 292 seq_printf(m, "\n"); 293 } 294 295 static inline void task_cap(struct seq_file *m, struct task_struct *p) 296 { 297 render_cap_t(m, "CapInh:\t", &p->cap_inheritable); 298 render_cap_t(m, "CapPrm:\t", &p->cap_permitted); 299 render_cap_t(m, "CapEff:\t", &p->cap_effective); 300 } 301 302 static inline void task_context_switch_counts(struct seq_file *m, 303 struct task_struct *p) 304 { 305 seq_printf(m, "voluntary_ctxt_switches:\t%lu\n" 306 "nonvoluntary_ctxt_switches:\t%lu\n", 307 p->nvcsw, 308 p->nivcsw); 309 } 310 311 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns, 312 struct pid *pid, struct task_struct *task) 313 { 314 struct mm_struct *mm = get_task_mm(task); 315 316 task_name(m, task); 317 task_state(m, ns, pid, task); 318 319 if (mm) { 320 task_mem(m, mm); 321 mmput(mm); 322 } 323 task_sig(m, task); 324 task_cap(m, task); 325 cpuset_task_status_allowed(m, task); 326 #if defined(CONFIG_S390) 327 task_show_regs(m, task); 328 #endif 329 task_context_switch_counts(m, task); 330 return 0; 331 } 332 333 /* 334 * Use precise platform statistics if available: 335 */ 336 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 337 static cputime_t task_utime(struct task_struct *p) 338 { 339 return p->utime; 340 } 341 342 static cputime_t task_stime(struct task_struct *p) 343 { 344 return p->stime; 345 } 346 #else 347 static cputime_t task_utime(struct task_struct *p) 348 { 349 clock_t utime = cputime_to_clock_t(p->utime), 350 total = utime + cputime_to_clock_t(p->stime); 351 u64 temp; 352 353 /* 354 * Use CFS's precise accounting: 355 */ 356 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 357 358 if (total) { 359 temp *= utime; 360 do_div(temp, total); 361 } 362 utime = (clock_t)temp; 363 364 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 365 return p->prev_utime; 366 } 367 368 static cputime_t task_stime(struct task_struct *p) 369 { 370 clock_t stime; 371 372 /* 373 * Use CFS's precise accounting. (we subtract utime from 374 * the total, to make sure the total observed by userspace 375 * grows monotonically - apps rely on that): 376 */ 377 stime = nsec_to_clock_t(p->se.sum_exec_runtime) - 378 cputime_to_clock_t(task_utime(p)); 379 380 if (stime >= 0) 381 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 382 383 return p->prev_stime; 384 } 385 #endif 386 387 static cputime_t task_gtime(struct task_struct *p) 388 { 389 return p->gtime; 390 } 391 392 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns, 393 struct pid *pid, struct task_struct *task, int whole) 394 { 395 unsigned long vsize, eip, esp, wchan = ~0UL; 396 long priority, nice; 397 int tty_pgrp = -1, tty_nr = 0; 398 sigset_t sigign, sigcatch; 399 char state; 400 pid_t ppid = 0, pgid = -1, sid = -1; 401 int num_threads = 0; 402 struct mm_struct *mm; 403 unsigned long long start_time; 404 unsigned long cmin_flt = 0, cmaj_flt = 0; 405 unsigned long min_flt = 0, maj_flt = 0; 406 cputime_t cutime, cstime, utime, stime; 407 cputime_t cgtime, gtime; 408 unsigned long rsslim = 0; 409 char tcomm[sizeof(task->comm)]; 410 unsigned long flags; 411 412 state = *get_task_state(task); 413 vsize = eip = esp = 0; 414 mm = get_task_mm(task); 415 if (mm) { 416 vsize = task_vsize(mm); 417 eip = KSTK_EIP(task); 418 esp = KSTK_ESP(task); 419 } 420 421 get_task_comm(tcomm, task); 422 423 sigemptyset(&sigign); 424 sigemptyset(&sigcatch); 425 cutime = cstime = utime = stime = cputime_zero; 426 cgtime = gtime = cputime_zero; 427 428 rcu_read_lock(); 429 if (lock_task_sighand(task, &flags)) { 430 struct signal_struct *sig = task->signal; 431 432 if (sig->tty) { 433 tty_pgrp = pid_nr_ns(sig->tty->pgrp, ns); 434 tty_nr = new_encode_dev(tty_devnum(sig->tty)); 435 } 436 437 num_threads = atomic_read(&sig->count); 438 collect_sigign_sigcatch(task, &sigign, &sigcatch); 439 440 cmin_flt = sig->cmin_flt; 441 cmaj_flt = sig->cmaj_flt; 442 cutime = sig->cutime; 443 cstime = sig->cstime; 444 cgtime = sig->cgtime; 445 rsslim = sig->rlim[RLIMIT_RSS].rlim_cur; 446 447 /* add up live thread stats at the group level */ 448 if (whole) { 449 struct task_struct *t = task; 450 do { 451 min_flt += t->min_flt; 452 maj_flt += t->maj_flt; 453 utime = cputime_add(utime, task_utime(t)); 454 stime = cputime_add(stime, task_stime(t)); 455 gtime = cputime_add(gtime, task_gtime(t)); 456 t = next_thread(t); 457 } while (t != task); 458 459 min_flt += sig->min_flt; 460 maj_flt += sig->maj_flt; 461 utime = cputime_add(utime, sig->utime); 462 stime = cputime_add(stime, sig->stime); 463 gtime = cputime_add(gtime, sig->gtime); 464 } 465 466 sid = task_session_nr_ns(task, ns); 467 ppid = task_tgid_nr_ns(task->real_parent, ns); 468 pgid = task_pgrp_nr_ns(task, ns); 469 470 unlock_task_sighand(task, &flags); 471 } 472 rcu_read_unlock(); 473 474 if (!whole || num_threads < 2) 475 wchan = get_wchan(task); 476 if (!whole) { 477 min_flt = task->min_flt; 478 maj_flt = task->maj_flt; 479 utime = task_utime(task); 480 stime = task_stime(task); 481 gtime = task_gtime(task); 482 } 483 484 /* scale priority and nice values from timeslices to -20..20 */ 485 /* to make it look like a "normal" Unix priority/nice value */ 486 priority = task_prio(task); 487 nice = task_nice(task); 488 489 /* Temporary variable needed for gcc-2.96 */ 490 /* convert timespec -> nsec*/ 491 start_time = 492 (unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC 493 + task->real_start_time.tv_nsec; 494 /* convert nsec -> ticks */ 495 start_time = nsec_to_clock_t(start_time); 496 497 seq_printf(m, "%d (%s) %c %d %d %d %d %d %u %lu \ 498 %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \ 499 %lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n", 500 pid_nr_ns(pid, ns), 501 tcomm, 502 state, 503 ppid, 504 pgid, 505 sid, 506 tty_nr, 507 tty_pgrp, 508 task->flags, 509 min_flt, 510 cmin_flt, 511 maj_flt, 512 cmaj_flt, 513 cputime_to_clock_t(utime), 514 cputime_to_clock_t(stime), 515 cputime_to_clock_t(cutime), 516 cputime_to_clock_t(cstime), 517 priority, 518 nice, 519 num_threads, 520 start_time, 521 vsize, 522 mm ? get_mm_rss(mm) : 0, 523 rsslim, 524 mm ? mm->start_code : 0, 525 mm ? mm->end_code : 0, 526 mm ? mm->start_stack : 0, 527 esp, 528 eip, 529 /* The signal information here is obsolete. 530 * It must be decimal for Linux 2.0 compatibility. 531 * Use /proc/#/status for real-time signals. 532 */ 533 task->pending.signal.sig[0] & 0x7fffffffUL, 534 task->blocked.sig[0] & 0x7fffffffUL, 535 sigign .sig[0] & 0x7fffffffUL, 536 sigcatch .sig[0] & 0x7fffffffUL, 537 wchan, 538 0UL, 539 0UL, 540 task->exit_signal, 541 task_cpu(task), 542 task->rt_priority, 543 task->policy, 544 (unsigned long long)delayacct_blkio_ticks(task), 545 cputime_to_clock_t(gtime), 546 cputime_to_clock_t(cgtime)); 547 if (mm) 548 mmput(mm); 549 return 0; 550 } 551 552 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns, 553 struct pid *pid, struct task_struct *task) 554 { 555 return do_task_stat(m, ns, pid, task, 0); 556 } 557 558 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns, 559 struct pid *pid, struct task_struct *task) 560 { 561 return do_task_stat(m, ns, pid, task, 1); 562 } 563 564 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns, 565 struct pid *pid, struct task_struct *task) 566 { 567 int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0; 568 struct mm_struct *mm = get_task_mm(task); 569 570 if (mm) { 571 size = task_statm(mm, &shared, &text, &data, &resident); 572 mmput(mm); 573 } 574 seq_printf(m, "%d %d %d %d %d %d %d\n", 575 size, resident, shared, text, lib, data, 0); 576 577 return 0; 578 } 579