1 /* 2 * linux/fs/proc/array.c 3 * 4 * Copyright (C) 1992 by Linus Torvalds 5 * based on ideas by Darren Senn 6 * 7 * Fixes: 8 * Michael. K. Johnson: stat,statm extensions. 9 * <johnsonm@stolaf.edu> 10 * 11 * Pauline Middelink : Made cmdline,envline only break at '\0's, to 12 * make sure SET_PROCTITLE works. Also removed 13 * bad '!' which forced address recalculation for 14 * EVERY character on the current page. 15 * <middelin@polyware.iaf.nl> 16 * 17 * Danny ter Haar : added cpuinfo 18 * <dth@cistron.nl> 19 * 20 * Alessandro Rubini : profile extension. 21 * <rubini@ipvvis.unipv.it> 22 * 23 * Jeff Tranter : added BogoMips field to cpuinfo 24 * <Jeff_Tranter@Mitel.COM> 25 * 26 * Bruno Haible : remove 4K limit for the maps file 27 * <haible@ma2s2.mathematik.uni-karlsruhe.de> 28 * 29 * Yves Arrouye : remove removal of trailing spaces in get_array. 30 * <Yves.Arrouye@marin.fdn.fr> 31 * 32 * Jerome Forissier : added per-CPU time information to /proc/stat 33 * and /proc/<pid>/cpu extension 34 * <forissier@isia.cma.fr> 35 * - Incorporation and non-SMP safe operation 36 * of forissier patch in 2.1.78 by 37 * Hans Marcus <crowbar@concepts.nl> 38 * 39 * aeb@cwi.nl : /proc/partitions 40 * 41 * 42 * Alan Cox : security fixes. 43 * <alan@lxorguk.ukuu.org.uk> 44 * 45 * Al Viro : safe handling of mm_struct 46 * 47 * Gerhard Wichert : added BIGMEM support 48 * Siemens AG <Gerhard.Wichert@pdb.siemens.de> 49 * 50 * Al Viro & Jeff Garzik : moved most of the thing into base.c and 51 * : proc_misc.c. The rest may eventually go into 52 * : base.c too. 53 */ 54 55 #include <linux/types.h> 56 #include <linux/errno.h> 57 #include <linux/time.h> 58 #include <linux/kernel.h> 59 #include <linux/kernel_stat.h> 60 #include <linux/tty.h> 61 #include <linux/string.h> 62 #include <linux/mman.h> 63 #include <linux/proc_fs.h> 64 #include <linux/ioport.h> 65 #include <linux/uaccess.h> 66 #include <linux/io.h> 67 #include <linux/mm.h> 68 #include <linux/hugetlb.h> 69 #include <linux/pagemap.h> 70 #include <linux/swap.h> 71 #include <linux/smp.h> 72 #include <linux/signal.h> 73 #include <linux/highmem.h> 74 #include <linux/file.h> 75 #include <linux/fdtable.h> 76 #include <linux/times.h> 77 #include <linux/cpuset.h> 78 #include <linux/rcupdate.h> 79 #include <linux/delayacct.h> 80 #include <linux/seq_file.h> 81 #include <linux/pid_namespace.h> 82 #include <linux/ptrace.h> 83 #include <linux/tracehook.h> 84 #include <linux/user_namespace.h> 85 86 #include <asm/pgtable.h> 87 #include <asm/processor.h> 88 #include "internal.h" 89 90 static inline void task_name(struct seq_file *m, struct task_struct *p) 91 { 92 int i; 93 char *buf, *end; 94 char *name; 95 char tcomm[sizeof(p->comm)]; 96 97 get_task_comm(tcomm, p); 98 99 seq_puts(m, "Name:\t"); 100 end = m->buf + m->size; 101 buf = m->buf + m->count; 102 name = tcomm; 103 i = sizeof(tcomm); 104 while (i && (buf < end)) { 105 unsigned char c = *name; 106 name++; 107 i--; 108 *buf = c; 109 if (!c) 110 break; 111 if (c == '\\') { 112 buf++; 113 if (buf < end) 114 *buf++ = c; 115 continue; 116 } 117 if (c == '\n') { 118 *buf++ = '\\'; 119 if (buf < end) 120 *buf++ = 'n'; 121 continue; 122 } 123 buf++; 124 } 125 m->count = buf - m->buf; 126 seq_putc(m, '\n'); 127 } 128 129 /* 130 * The task state array is a strange "bitmap" of 131 * reasons to sleep. Thus "running" is zero, and 132 * you can test for combinations of others with 133 * simple bit tests. 134 */ 135 static const char * const task_state_array[] = { 136 "R (running)", /* 0 */ 137 "S (sleeping)", /* 1 */ 138 "D (disk sleep)", /* 2 */ 139 "T (stopped)", /* 4 */ 140 "t (tracing stop)", /* 8 */ 141 "Z (zombie)", /* 16 */ 142 "X (dead)", /* 32 */ 143 "x (dead)", /* 64 */ 144 "K (wakekill)", /* 128 */ 145 "W (waking)", /* 256 */ 146 }; 147 148 static inline const char *get_task_state(struct task_struct *tsk) 149 { 150 unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state; 151 const char * const *p = &task_state_array[0]; 152 153 BUILD_BUG_ON(1 + ilog2(TASK_STATE_MAX) != ARRAY_SIZE(task_state_array)); 154 155 while (state) { 156 p++; 157 state >>= 1; 158 } 159 return *p; 160 } 161 162 static inline void task_state(struct seq_file *m, struct pid_namespace *ns, 163 struct pid *pid, struct task_struct *p) 164 { 165 struct user_namespace *user_ns = current_user_ns(); 166 struct group_info *group_info; 167 int g; 168 struct fdtable *fdt = NULL; 169 const struct cred *cred; 170 pid_t ppid, tpid; 171 172 rcu_read_lock(); 173 ppid = pid_alive(p) ? 174 task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0; 175 tpid = 0; 176 if (pid_alive(p)) { 177 struct task_struct *tracer = ptrace_parent(p); 178 if (tracer) 179 tpid = task_pid_nr_ns(tracer, ns); 180 } 181 cred = get_task_cred(p); 182 seq_printf(m, 183 "State:\t%s\n" 184 "Tgid:\t%d\n" 185 "Pid:\t%d\n" 186 "PPid:\t%d\n" 187 "TracerPid:\t%d\n" 188 "Uid:\t%d\t%d\t%d\t%d\n" 189 "Gid:\t%d\t%d\t%d\t%d\n", 190 get_task_state(p), 191 task_tgid_nr_ns(p, ns), 192 pid_nr_ns(pid, ns), 193 ppid, tpid, 194 from_kuid_munged(user_ns, cred->uid), 195 from_kuid_munged(user_ns, cred->euid), 196 from_kuid_munged(user_ns, cred->suid), 197 from_kuid_munged(user_ns, cred->fsuid), 198 from_kgid_munged(user_ns, cred->gid), 199 from_kgid_munged(user_ns, cred->egid), 200 from_kgid_munged(user_ns, cred->sgid), 201 from_kgid_munged(user_ns, cred->fsgid)); 202 203 task_lock(p); 204 if (p->files) 205 fdt = files_fdtable(p->files); 206 seq_printf(m, 207 "FDSize:\t%d\n" 208 "Groups:\t", 209 fdt ? fdt->max_fds : 0); 210 rcu_read_unlock(); 211 212 group_info = cred->group_info; 213 task_unlock(p); 214 215 for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++) 216 seq_printf(m, "%d ", 217 from_kgid_munged(user_ns, GROUP_AT(group_info, g))); 218 put_cred(cred); 219 220 seq_putc(m, '\n'); 221 } 222 223 static void render_sigset_t(struct seq_file *m, const char *header, 224 sigset_t *set) 225 { 226 int i; 227 228 seq_puts(m, header); 229 230 i = _NSIG; 231 do { 232 int x = 0; 233 234 i -= 4; 235 if (sigismember(set, i+1)) x |= 1; 236 if (sigismember(set, i+2)) x |= 2; 237 if (sigismember(set, i+3)) x |= 4; 238 if (sigismember(set, i+4)) x |= 8; 239 seq_printf(m, "%x", x); 240 } while (i >= 4); 241 242 seq_putc(m, '\n'); 243 } 244 245 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign, 246 sigset_t *catch) 247 { 248 struct k_sigaction *k; 249 int i; 250 251 k = p->sighand->action; 252 for (i = 1; i <= _NSIG; ++i, ++k) { 253 if (k->sa.sa_handler == SIG_IGN) 254 sigaddset(ign, i); 255 else if (k->sa.sa_handler != SIG_DFL) 256 sigaddset(catch, i); 257 } 258 } 259 260 static inline void task_sig(struct seq_file *m, struct task_struct *p) 261 { 262 unsigned long flags; 263 sigset_t pending, shpending, blocked, ignored, caught; 264 int num_threads = 0; 265 unsigned long qsize = 0; 266 unsigned long qlim = 0; 267 268 sigemptyset(&pending); 269 sigemptyset(&shpending); 270 sigemptyset(&blocked); 271 sigemptyset(&ignored); 272 sigemptyset(&caught); 273 274 if (lock_task_sighand(p, &flags)) { 275 pending = p->pending.signal; 276 shpending = p->signal->shared_pending.signal; 277 blocked = p->blocked; 278 collect_sigign_sigcatch(p, &ignored, &caught); 279 num_threads = get_nr_threads(p); 280 rcu_read_lock(); /* FIXME: is this correct? */ 281 qsize = atomic_read(&__task_cred(p)->user->sigpending); 282 rcu_read_unlock(); 283 qlim = task_rlimit(p, RLIMIT_SIGPENDING); 284 unlock_task_sighand(p, &flags); 285 } 286 287 seq_printf(m, "Threads:\t%d\n", num_threads); 288 seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim); 289 290 /* render them all */ 291 render_sigset_t(m, "SigPnd:\t", &pending); 292 render_sigset_t(m, "ShdPnd:\t", &shpending); 293 render_sigset_t(m, "SigBlk:\t", &blocked); 294 render_sigset_t(m, "SigIgn:\t", &ignored); 295 render_sigset_t(m, "SigCgt:\t", &caught); 296 } 297 298 static void render_cap_t(struct seq_file *m, const char *header, 299 kernel_cap_t *a) 300 { 301 unsigned __capi; 302 303 seq_puts(m, header); 304 CAP_FOR_EACH_U32(__capi) { 305 seq_printf(m, "%08x", 306 a->cap[(_KERNEL_CAPABILITY_U32S-1) - __capi]); 307 } 308 seq_putc(m, '\n'); 309 } 310 311 static inline void task_cap(struct seq_file *m, struct task_struct *p) 312 { 313 const struct cred *cred; 314 kernel_cap_t cap_inheritable, cap_permitted, cap_effective, cap_bset; 315 316 rcu_read_lock(); 317 cred = __task_cred(p); 318 cap_inheritable = cred->cap_inheritable; 319 cap_permitted = cred->cap_permitted; 320 cap_effective = cred->cap_effective; 321 cap_bset = cred->cap_bset; 322 rcu_read_unlock(); 323 324 render_cap_t(m, "CapInh:\t", &cap_inheritable); 325 render_cap_t(m, "CapPrm:\t", &cap_permitted); 326 render_cap_t(m, "CapEff:\t", &cap_effective); 327 render_cap_t(m, "CapBnd:\t", &cap_bset); 328 } 329 330 static inline void task_context_switch_counts(struct seq_file *m, 331 struct task_struct *p) 332 { 333 seq_printf(m, "voluntary_ctxt_switches:\t%lu\n" 334 "nonvoluntary_ctxt_switches:\t%lu\n", 335 p->nvcsw, 336 p->nivcsw); 337 } 338 339 static void task_cpus_allowed(struct seq_file *m, struct task_struct *task) 340 { 341 seq_puts(m, "Cpus_allowed:\t"); 342 seq_cpumask(m, &task->cpus_allowed); 343 seq_putc(m, '\n'); 344 seq_puts(m, "Cpus_allowed_list:\t"); 345 seq_cpumask_list(m, &task->cpus_allowed); 346 seq_putc(m, '\n'); 347 } 348 349 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns, 350 struct pid *pid, struct task_struct *task) 351 { 352 struct mm_struct *mm = get_task_mm(task); 353 354 task_name(m, task); 355 task_state(m, ns, pid, task); 356 357 if (mm) { 358 task_mem(m, mm); 359 mmput(mm); 360 } 361 task_sig(m, task); 362 task_cap(m, task); 363 task_cpus_allowed(m, task); 364 cpuset_task_status_allowed(m, task); 365 task_context_switch_counts(m, task); 366 return 0; 367 } 368 369 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns, 370 struct pid *pid, struct task_struct *task, int whole) 371 { 372 unsigned long vsize, eip, esp, wchan = ~0UL; 373 int priority, nice; 374 int tty_pgrp = -1, tty_nr = 0; 375 sigset_t sigign, sigcatch; 376 char state; 377 pid_t ppid = 0, pgid = -1, sid = -1; 378 int num_threads = 0; 379 int permitted; 380 struct mm_struct *mm; 381 unsigned long long start_time; 382 unsigned long cmin_flt = 0, cmaj_flt = 0; 383 unsigned long min_flt = 0, maj_flt = 0; 384 cputime_t cutime, cstime, utime, stime; 385 cputime_t cgtime, gtime; 386 unsigned long rsslim = 0; 387 char tcomm[sizeof(task->comm)]; 388 unsigned long flags; 389 390 state = *get_task_state(task); 391 vsize = eip = esp = 0; 392 permitted = ptrace_may_access(task, PTRACE_MODE_READ | PTRACE_MODE_NOAUDIT); 393 mm = get_task_mm(task); 394 if (mm) { 395 vsize = task_vsize(mm); 396 if (permitted) { 397 eip = KSTK_EIP(task); 398 esp = KSTK_ESP(task); 399 } 400 } 401 402 get_task_comm(tcomm, task); 403 404 sigemptyset(&sigign); 405 sigemptyset(&sigcatch); 406 cutime = cstime = utime = stime = 0; 407 cgtime = gtime = 0; 408 409 if (lock_task_sighand(task, &flags)) { 410 struct signal_struct *sig = task->signal; 411 412 if (sig->tty) { 413 struct pid *pgrp = tty_get_pgrp(sig->tty); 414 tty_pgrp = pid_nr_ns(pgrp, ns); 415 put_pid(pgrp); 416 tty_nr = new_encode_dev(tty_devnum(sig->tty)); 417 } 418 419 num_threads = get_nr_threads(task); 420 collect_sigign_sigcatch(task, &sigign, &sigcatch); 421 422 cmin_flt = sig->cmin_flt; 423 cmaj_flt = sig->cmaj_flt; 424 cutime = sig->cutime; 425 cstime = sig->cstime; 426 cgtime = sig->cgtime; 427 rsslim = ACCESS_ONCE(sig->rlim[RLIMIT_RSS].rlim_cur); 428 429 /* add up live thread stats at the group level */ 430 if (whole) { 431 struct task_struct *t = task; 432 do { 433 min_flt += t->min_flt; 434 maj_flt += t->maj_flt; 435 gtime += t->gtime; 436 t = next_thread(t); 437 } while (t != task); 438 439 min_flt += sig->min_flt; 440 maj_flt += sig->maj_flt; 441 thread_group_times(task, &utime, &stime); 442 gtime += sig->gtime; 443 } 444 445 sid = task_session_nr_ns(task, ns); 446 ppid = task_tgid_nr_ns(task->real_parent, ns); 447 pgid = task_pgrp_nr_ns(task, ns); 448 449 unlock_task_sighand(task, &flags); 450 } 451 452 if (permitted && (!whole || num_threads < 2)) 453 wchan = get_wchan(task); 454 if (!whole) { 455 min_flt = task->min_flt; 456 maj_flt = task->maj_flt; 457 task_times(task, &utime, &stime); 458 gtime = task->gtime; 459 } 460 461 /* scale priority and nice values from timeslices to -20..20 */ 462 /* to make it look like a "normal" Unix priority/nice value */ 463 priority = task_prio(task); 464 nice = task_nice(task); 465 466 /* Temporary variable needed for gcc-2.96 */ 467 /* convert timespec -> nsec*/ 468 start_time = 469 (unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC 470 + task->real_start_time.tv_nsec; 471 /* convert nsec -> ticks */ 472 start_time = nsec_to_clock_t(start_time); 473 474 seq_printf(m, "%d (%s) %c", pid_nr_ns(pid, ns), tcomm, state); 475 seq_put_decimal_ll(m, ' ', ppid); 476 seq_put_decimal_ll(m, ' ', pgid); 477 seq_put_decimal_ll(m, ' ', sid); 478 seq_put_decimal_ll(m, ' ', tty_nr); 479 seq_put_decimal_ll(m, ' ', tty_pgrp); 480 seq_put_decimal_ull(m, ' ', task->flags); 481 seq_put_decimal_ull(m, ' ', min_flt); 482 seq_put_decimal_ull(m, ' ', cmin_flt); 483 seq_put_decimal_ull(m, ' ', maj_flt); 484 seq_put_decimal_ull(m, ' ', cmaj_flt); 485 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(utime)); 486 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(stime)); 487 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cutime)); 488 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cstime)); 489 seq_put_decimal_ll(m, ' ', priority); 490 seq_put_decimal_ll(m, ' ', nice); 491 seq_put_decimal_ll(m, ' ', num_threads); 492 seq_put_decimal_ull(m, ' ', 0); 493 seq_put_decimal_ull(m, ' ', start_time); 494 seq_put_decimal_ull(m, ' ', vsize); 495 seq_put_decimal_ull(m, ' ', mm ? get_mm_rss(mm) : 0); 496 seq_put_decimal_ull(m, ' ', rsslim); 497 seq_put_decimal_ull(m, ' ', mm ? (permitted ? mm->start_code : 1) : 0); 498 seq_put_decimal_ull(m, ' ', mm ? (permitted ? mm->end_code : 1) : 0); 499 seq_put_decimal_ull(m, ' ', (permitted && mm) ? mm->start_stack : 0); 500 seq_put_decimal_ull(m, ' ', esp); 501 seq_put_decimal_ull(m, ' ', eip); 502 /* The signal information here is obsolete. 503 * It must be decimal for Linux 2.0 compatibility. 504 * Use /proc/#/status for real-time signals. 505 */ 506 seq_put_decimal_ull(m, ' ', task->pending.signal.sig[0] & 0x7fffffffUL); 507 seq_put_decimal_ull(m, ' ', task->blocked.sig[0] & 0x7fffffffUL); 508 seq_put_decimal_ull(m, ' ', sigign.sig[0] & 0x7fffffffUL); 509 seq_put_decimal_ull(m, ' ', sigcatch.sig[0] & 0x7fffffffUL); 510 seq_put_decimal_ull(m, ' ', wchan); 511 seq_put_decimal_ull(m, ' ', 0); 512 seq_put_decimal_ull(m, ' ', 0); 513 seq_put_decimal_ll(m, ' ', task->exit_signal); 514 seq_put_decimal_ll(m, ' ', task_cpu(task)); 515 seq_put_decimal_ull(m, ' ', task->rt_priority); 516 seq_put_decimal_ull(m, ' ', task->policy); 517 seq_put_decimal_ull(m, ' ', delayacct_blkio_ticks(task)); 518 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(gtime)); 519 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cgtime)); 520 521 if (mm && permitted) { 522 seq_put_decimal_ull(m, ' ', mm->start_data); 523 seq_put_decimal_ull(m, ' ', mm->end_data); 524 seq_put_decimal_ull(m, ' ', mm->start_brk); 525 seq_put_decimal_ull(m, ' ', mm->arg_start); 526 seq_put_decimal_ull(m, ' ', mm->arg_end); 527 seq_put_decimal_ull(m, ' ', mm->env_start); 528 seq_put_decimal_ull(m, ' ', mm->env_end); 529 } else 530 seq_printf(m, " 0 0 0 0 0 0 0"); 531 532 if (permitted) 533 seq_put_decimal_ll(m, ' ', task->exit_code); 534 else 535 seq_put_decimal_ll(m, ' ', 0); 536 537 seq_putc(m, '\n'); 538 if (mm) 539 mmput(mm); 540 return 0; 541 } 542 543 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns, 544 struct pid *pid, struct task_struct *task) 545 { 546 return do_task_stat(m, ns, pid, task, 0); 547 } 548 549 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 return do_task_stat(m, ns, pid, task, 1); 553 } 554 555 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns, 556 struct pid *pid, struct task_struct *task) 557 { 558 unsigned long size = 0, resident = 0, shared = 0, text = 0, data = 0; 559 struct mm_struct *mm = get_task_mm(task); 560 561 if (mm) { 562 size = task_statm(mm, &shared, &text, &data, &resident); 563 mmput(mm); 564 } 565 /* 566 * For quick read, open code by putting numbers directly 567 * expected format is 568 * seq_printf(m, "%lu %lu %lu %lu 0 %lu 0\n", 569 * size, resident, shared, text, data); 570 */ 571 seq_put_decimal_ull(m, 0, size); 572 seq_put_decimal_ull(m, ' ', resident); 573 seq_put_decimal_ull(m, ' ', shared); 574 seq_put_decimal_ull(m, ' ', text); 575 seq_put_decimal_ull(m, ' ', 0); 576 seq_put_decimal_ull(m, ' ', data); 577 seq_put_decimal_ull(m, ' ', 0); 578 seq_putc(m, '\n'); 579 580 return 0; 581 } 582 583 #ifdef CONFIG_CHECKPOINT_RESTORE 584 static struct pid * 585 get_children_pid(struct inode *inode, struct pid *pid_prev, loff_t pos) 586 { 587 struct task_struct *start, *task; 588 struct pid *pid = NULL; 589 590 read_lock(&tasklist_lock); 591 592 start = pid_task(proc_pid(inode), PIDTYPE_PID); 593 if (!start) 594 goto out; 595 596 /* 597 * Lets try to continue searching first, this gives 598 * us significant speedup on children-rich processes. 599 */ 600 if (pid_prev) { 601 task = pid_task(pid_prev, PIDTYPE_PID); 602 if (task && task->real_parent == start && 603 !(list_empty(&task->sibling))) { 604 if (list_is_last(&task->sibling, &start->children)) 605 goto out; 606 task = list_first_entry(&task->sibling, 607 struct task_struct, sibling); 608 pid = get_pid(task_pid(task)); 609 goto out; 610 } 611 } 612 613 /* 614 * Slow search case. 615 * 616 * We might miss some children here if children 617 * are exited while we were not holding the lock, 618 * but it was never promised to be accurate that 619 * much. 620 * 621 * "Just suppose that the parent sleeps, but N children 622 * exit after we printed their tids. Now the slow paths 623 * skips N extra children, we miss N tasks." (c) 624 * 625 * So one need to stop or freeze the leader and all 626 * its children to get a precise result. 627 */ 628 list_for_each_entry(task, &start->children, sibling) { 629 if (pos-- == 0) { 630 pid = get_pid(task_pid(task)); 631 break; 632 } 633 } 634 635 out: 636 read_unlock(&tasklist_lock); 637 return pid; 638 } 639 640 static int children_seq_show(struct seq_file *seq, void *v) 641 { 642 struct inode *inode = seq->private; 643 pid_t pid; 644 645 pid = pid_nr_ns(v, inode->i_sb->s_fs_info); 646 return seq_printf(seq, "%d ", pid); 647 } 648 649 static void *children_seq_start(struct seq_file *seq, loff_t *pos) 650 { 651 return get_children_pid(seq->private, NULL, *pos); 652 } 653 654 static void *children_seq_next(struct seq_file *seq, void *v, loff_t *pos) 655 { 656 struct pid *pid; 657 658 pid = get_children_pid(seq->private, v, *pos + 1); 659 put_pid(v); 660 661 ++*pos; 662 return pid; 663 } 664 665 static void children_seq_stop(struct seq_file *seq, void *v) 666 { 667 put_pid(v); 668 } 669 670 static const struct seq_operations children_seq_ops = { 671 .start = children_seq_start, 672 .next = children_seq_next, 673 .stop = children_seq_stop, 674 .show = children_seq_show, 675 }; 676 677 static int children_seq_open(struct inode *inode, struct file *file) 678 { 679 struct seq_file *m; 680 int ret; 681 682 ret = seq_open(file, &children_seq_ops); 683 if (ret) 684 return ret; 685 686 m = file->private_data; 687 m->private = inode; 688 689 return ret; 690 } 691 692 int children_seq_release(struct inode *inode, struct file *file) 693 { 694 seq_release(inode, file); 695 return 0; 696 } 697 698 const struct file_operations proc_tid_children_operations = { 699 .open = children_seq_open, 700 .read = seq_read, 701 .llseek = seq_lseek, 702 .release = children_seq_release, 703 }; 704 #endif /* CONFIG_CHECKPOINT_RESTORE */ 705