xref: /openbmc/linux/fs/proc/array.c (revision 545e4006)
1 /*
2  *  linux/fs/proc/array.c
3  *
4  *  Copyright (C) 1992  by Linus Torvalds
5  *  based on ideas by Darren Senn
6  *
7  * Fixes:
8  * Michael. K. Johnson: stat,statm extensions.
9  *                      <johnsonm@stolaf.edu>
10  *
11  * Pauline Middelink :  Made cmdline,envline only break at '\0's, to
12  *                      make sure SET_PROCTITLE works. Also removed
13  *                      bad '!' which forced address recalculation for
14  *                      EVERY character on the current page.
15  *                      <middelin@polyware.iaf.nl>
16  *
17  * Danny ter Haar    :	added cpuinfo
18  *			<dth@cistron.nl>
19  *
20  * Alessandro Rubini :  profile extension.
21  *                      <rubini@ipvvis.unipv.it>
22  *
23  * Jeff Tranter      :  added BogoMips field to cpuinfo
24  *                      <Jeff_Tranter@Mitel.COM>
25  *
26  * Bruno Haible      :  remove 4K limit for the maps file
27  *			<haible@ma2s2.mathematik.uni-karlsruhe.de>
28  *
29  * Yves Arrouye      :  remove removal of trailing spaces in get_array.
30  *			<Yves.Arrouye@marin.fdn.fr>
31  *
32  * Jerome Forissier  :  added per-CPU time information to /proc/stat
33  *                      and /proc/<pid>/cpu extension
34  *                      <forissier@isia.cma.fr>
35  *			- Incorporation and non-SMP safe operation
36  *			of forissier patch in 2.1.78 by
37  *			Hans Marcus <crowbar@concepts.nl>
38  *
39  * aeb@cwi.nl        :  /proc/partitions
40  *
41  *
42  * Alan Cox	     :  security fixes.
43  *			<Alan.Cox@linux.org>
44  *
45  * Al Viro           :  safe handling of mm_struct
46  *
47  * Gerhard Wichert   :  added BIGMEM support
48  * Siemens AG           <Gerhard.Wichert@pdb.siemens.de>
49  *
50  * Al Viro & Jeff Garzik :  moved most of the thing into base.c and
51  *			 :  proc_misc.c. The rest may eventually go into
52  *			 :  base.c too.
53  */
54 
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/time.h>
58 #include <linux/kernel.h>
59 #include <linux/kernel_stat.h>
60 #include <linux/tty.h>
61 #include <linux/string.h>
62 #include <linux/mman.h>
63 #include <linux/proc_fs.h>
64 #include <linux/ioport.h>
65 #include <linux/uaccess.h>
66 #include <linux/io.h>
67 #include <linux/mm.h>
68 #include <linux/hugetlb.h>
69 #include <linux/pagemap.h>
70 #include <linux/swap.h>
71 #include <linux/slab.h>
72 #include <linux/smp.h>
73 #include <linux/signal.h>
74 #include <linux/highmem.h>
75 #include <linux/file.h>
76 #include <linux/fdtable.h>
77 #include <linux/times.h>
78 #include <linux/cpuset.h>
79 #include <linux/rcupdate.h>
80 #include <linux/delayacct.h>
81 #include <linux/seq_file.h>
82 #include <linux/pid_namespace.h>
83 
84 #include <asm/pgtable.h>
85 #include <asm/processor.h>
86 #include "internal.h"
87 
88 /* Gcc optimizes away "strlen(x)" for constant x */
89 #define ADDBUF(buffer, string) \
90 do { memcpy(buffer, string, strlen(string)); \
91      buffer += strlen(string); } while (0)
92 
93 static inline void task_name(struct seq_file *m, struct task_struct *p)
94 {
95 	int i;
96 	char *buf, *end;
97 	char *name;
98 	char tcomm[sizeof(p->comm)];
99 
100 	get_task_comm(tcomm, p);
101 
102 	seq_printf(m, "Name:\t");
103 	end = m->buf + m->size;
104 	buf = m->buf + m->count;
105 	name = tcomm;
106 	i = sizeof(tcomm);
107 	while (i && (buf < end)) {
108 		unsigned char c = *name;
109 		name++;
110 		i--;
111 		*buf = c;
112 		if (!c)
113 			break;
114 		if (c == '\\') {
115 			buf++;
116 			if (buf < end)
117 				*buf++ = c;
118 			continue;
119 		}
120 		if (c == '\n') {
121 			*buf++ = '\\';
122 			if (buf < end)
123 				*buf++ = 'n';
124 			continue;
125 		}
126 		buf++;
127 	}
128 	m->count = buf - m->buf;
129 	seq_printf(m, "\n");
130 }
131 
132 /*
133  * The task state array is a strange "bitmap" of
134  * reasons to sleep. Thus "running" is zero, and
135  * you can test for combinations of others with
136  * simple bit tests.
137  */
138 static const char *task_state_array[] = {
139 	"R (running)",		/*  0 */
140 	"S (sleeping)",		/*  1 */
141 	"D (disk sleep)",	/*  2 */
142 	"T (stopped)",		/*  4 */
143 	"T (tracing stop)",	/*  8 */
144 	"Z (zombie)",		/* 16 */
145 	"X (dead)"		/* 32 */
146 };
147 
148 static inline const char *get_task_state(struct task_struct *tsk)
149 {
150 	unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state;
151 	const char **p = &task_state_array[0];
152 
153 	while (state) {
154 		p++;
155 		state >>= 1;
156 	}
157 	return *p;
158 }
159 
160 static inline void task_state(struct seq_file *m, struct pid_namespace *ns,
161 				struct pid *pid, struct task_struct *p)
162 {
163 	struct group_info *group_info;
164 	int g;
165 	struct fdtable *fdt = NULL;
166 	pid_t ppid, tpid;
167 
168 	rcu_read_lock();
169 	ppid = pid_alive(p) ?
170 		task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0;
171 	tpid = pid_alive(p) && p->ptrace ?
172 		task_pid_nr_ns(rcu_dereference(p->parent), ns) : 0;
173 	seq_printf(m,
174 		"State:\t%s\n"
175 		"Tgid:\t%d\n"
176 		"Pid:\t%d\n"
177 		"PPid:\t%d\n"
178 		"TracerPid:\t%d\n"
179 		"Uid:\t%d\t%d\t%d\t%d\n"
180 		"Gid:\t%d\t%d\t%d\t%d\n",
181 		get_task_state(p),
182 		task_tgid_nr_ns(p, ns),
183 		pid_nr_ns(pid, ns),
184 		ppid, tpid,
185 		p->uid, p->euid, p->suid, p->fsuid,
186 		p->gid, p->egid, p->sgid, p->fsgid);
187 
188 	task_lock(p);
189 	if (p->files)
190 		fdt = files_fdtable(p->files);
191 	seq_printf(m,
192 		"FDSize:\t%d\n"
193 		"Groups:\t",
194 		fdt ? fdt->max_fds : 0);
195 	rcu_read_unlock();
196 
197 	group_info = p->group_info;
198 	get_group_info(group_info);
199 	task_unlock(p);
200 
201 	for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++)
202 		seq_printf(m, "%d ", GROUP_AT(group_info, g));
203 	put_group_info(group_info);
204 
205 	seq_printf(m, "\n");
206 }
207 
208 static void render_sigset_t(struct seq_file *m, const char *header,
209 				sigset_t *set)
210 {
211 	int i;
212 
213 	seq_printf(m, "%s", header);
214 
215 	i = _NSIG;
216 	do {
217 		int x = 0;
218 
219 		i -= 4;
220 		if (sigismember(set, i+1)) x |= 1;
221 		if (sigismember(set, i+2)) x |= 2;
222 		if (sigismember(set, i+3)) x |= 4;
223 		if (sigismember(set, i+4)) x |= 8;
224 		seq_printf(m, "%x", x);
225 	} while (i >= 4);
226 
227 	seq_printf(m, "\n");
228 }
229 
230 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign,
231 				    sigset_t *catch)
232 {
233 	struct k_sigaction *k;
234 	int i;
235 
236 	k = p->sighand->action;
237 	for (i = 1; i <= _NSIG; ++i, ++k) {
238 		if (k->sa.sa_handler == SIG_IGN)
239 			sigaddset(ign, i);
240 		else if (k->sa.sa_handler != SIG_DFL)
241 			sigaddset(catch, i);
242 	}
243 }
244 
245 static inline void task_sig(struct seq_file *m, struct task_struct *p)
246 {
247 	unsigned long flags;
248 	sigset_t pending, shpending, blocked, ignored, caught;
249 	int num_threads = 0;
250 	unsigned long qsize = 0;
251 	unsigned long qlim = 0;
252 
253 	sigemptyset(&pending);
254 	sigemptyset(&shpending);
255 	sigemptyset(&blocked);
256 	sigemptyset(&ignored);
257 	sigemptyset(&caught);
258 
259 	rcu_read_lock();
260 	if (lock_task_sighand(p, &flags)) {
261 		pending = p->pending.signal;
262 		shpending = p->signal->shared_pending.signal;
263 		blocked = p->blocked;
264 		collect_sigign_sigcatch(p, &ignored, &caught);
265 		num_threads = atomic_read(&p->signal->count);
266 		qsize = atomic_read(&p->user->sigpending);
267 		qlim = p->signal->rlim[RLIMIT_SIGPENDING].rlim_cur;
268 		unlock_task_sighand(p, &flags);
269 	}
270 	rcu_read_unlock();
271 
272 	seq_printf(m, "Threads:\t%d\n", num_threads);
273 	seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim);
274 
275 	/* render them all */
276 	render_sigset_t(m, "SigPnd:\t", &pending);
277 	render_sigset_t(m, "ShdPnd:\t", &shpending);
278 	render_sigset_t(m, "SigBlk:\t", &blocked);
279 	render_sigset_t(m, "SigIgn:\t", &ignored);
280 	render_sigset_t(m, "SigCgt:\t", &caught);
281 }
282 
283 static void render_cap_t(struct seq_file *m, const char *header,
284 			kernel_cap_t *a)
285 {
286 	unsigned __capi;
287 
288 	seq_printf(m, "%s", header);
289 	CAP_FOR_EACH_U32(__capi) {
290 		seq_printf(m, "%08x",
291 			   a->cap[(_KERNEL_CAPABILITY_U32S-1) - __capi]);
292 	}
293 	seq_printf(m, "\n");
294 }
295 
296 static inline void task_cap(struct seq_file *m, struct task_struct *p)
297 {
298 	render_cap_t(m, "CapInh:\t", &p->cap_inheritable);
299 	render_cap_t(m, "CapPrm:\t", &p->cap_permitted);
300 	render_cap_t(m, "CapEff:\t", &p->cap_effective);
301 	render_cap_t(m, "CapBnd:\t", &p->cap_bset);
302 }
303 
304 static inline void task_context_switch_counts(struct seq_file *m,
305 						struct task_struct *p)
306 {
307 	seq_printf(m,	"voluntary_ctxt_switches:\t%lu\n"
308 			"nonvoluntary_ctxt_switches:\t%lu\n",
309 			p->nvcsw,
310 			p->nivcsw);
311 }
312 
313 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns,
314 			struct pid *pid, struct task_struct *task)
315 {
316 	struct mm_struct *mm = get_task_mm(task);
317 
318 	task_name(m, task);
319 	task_state(m, ns, pid, task);
320 
321 	if (mm) {
322 		task_mem(m, mm);
323 		mmput(mm);
324 	}
325 	task_sig(m, task);
326 	task_cap(m, task);
327 	cpuset_task_status_allowed(m, task);
328 #if defined(CONFIG_S390)
329 	task_show_regs(m, task);
330 #endif
331 	task_context_switch_counts(m, task);
332 	return 0;
333 }
334 
335 /*
336  * Use precise platform statistics if available:
337  */
338 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
339 static cputime_t task_utime(struct task_struct *p)
340 {
341 	return p->utime;
342 }
343 
344 static cputime_t task_stime(struct task_struct *p)
345 {
346 	return p->stime;
347 }
348 #else
349 static cputime_t task_utime(struct task_struct *p)
350 {
351 	clock_t utime = cputime_to_clock_t(p->utime),
352 		total = utime + cputime_to_clock_t(p->stime);
353 	u64 temp;
354 
355 	/*
356 	 * Use CFS's precise accounting:
357 	 */
358 	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
359 
360 	if (total) {
361 		temp *= utime;
362 		do_div(temp, total);
363 	}
364 	utime = (clock_t)temp;
365 
366 	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
367 	return p->prev_utime;
368 }
369 
370 static cputime_t task_stime(struct task_struct *p)
371 {
372 	clock_t stime;
373 
374 	/*
375 	 * Use CFS's precise accounting. (we subtract utime from
376 	 * the total, to make sure the total observed by userspace
377 	 * grows monotonically - apps rely on that):
378 	 */
379 	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
380 			cputime_to_clock_t(task_utime(p));
381 
382 	if (stime >= 0)
383 		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
384 
385 	return p->prev_stime;
386 }
387 #endif
388 
389 static cputime_t task_gtime(struct task_struct *p)
390 {
391 	return p->gtime;
392 }
393 
394 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
395 			struct pid *pid, struct task_struct *task, int whole)
396 {
397 	unsigned long vsize, eip, esp, wchan = ~0UL;
398 	long priority, nice;
399 	int tty_pgrp = -1, tty_nr = 0;
400 	sigset_t sigign, sigcatch;
401 	char state;
402 	pid_t ppid = 0, pgid = -1, sid = -1;
403 	int num_threads = 0;
404 	struct mm_struct *mm;
405 	unsigned long long start_time;
406 	unsigned long cmin_flt = 0, cmaj_flt = 0;
407 	unsigned long  min_flt = 0,  maj_flt = 0;
408 	cputime_t cutime, cstime, utime, stime;
409 	cputime_t cgtime, gtime;
410 	unsigned long rsslim = 0;
411 	char tcomm[sizeof(task->comm)];
412 	unsigned long flags;
413 
414 	state = *get_task_state(task);
415 	vsize = eip = esp = 0;
416 	mm = get_task_mm(task);
417 	if (mm) {
418 		vsize = task_vsize(mm);
419 		eip = KSTK_EIP(task);
420 		esp = KSTK_ESP(task);
421 	}
422 
423 	get_task_comm(tcomm, task);
424 
425 	sigemptyset(&sigign);
426 	sigemptyset(&sigcatch);
427 	cutime = cstime = utime = stime = cputime_zero;
428 	cgtime = gtime = cputime_zero;
429 
430 	if (lock_task_sighand(task, &flags)) {
431 		struct signal_struct *sig = task->signal;
432 
433 		if (sig->tty) {
434 			struct pid *pgrp = tty_get_pgrp(sig->tty);
435 			tty_pgrp = pid_nr_ns(pgrp, ns);
436 			put_pid(pgrp);
437 			tty_nr = new_encode_dev(tty_devnum(sig->tty));
438 		}
439 
440 		num_threads = atomic_read(&sig->count);
441 		collect_sigign_sigcatch(task, &sigign, &sigcatch);
442 
443 		cmin_flt = sig->cmin_flt;
444 		cmaj_flt = sig->cmaj_flt;
445 		cutime = sig->cutime;
446 		cstime = sig->cstime;
447 		cgtime = sig->cgtime;
448 		rsslim = sig->rlim[RLIMIT_RSS].rlim_cur;
449 
450 		/* add up live thread stats at the group level */
451 		if (whole) {
452 			struct task_struct *t = task;
453 			do {
454 				min_flt += t->min_flt;
455 				maj_flt += t->maj_flt;
456 				utime = cputime_add(utime, task_utime(t));
457 				stime = cputime_add(stime, task_stime(t));
458 				gtime = cputime_add(gtime, task_gtime(t));
459 				t = next_thread(t);
460 			} while (t != task);
461 
462 			min_flt += sig->min_flt;
463 			maj_flt += sig->maj_flt;
464 			utime = cputime_add(utime, sig->utime);
465 			stime = cputime_add(stime, sig->stime);
466 			gtime = cputime_add(gtime, sig->gtime);
467 		}
468 
469 		sid = task_session_nr_ns(task, ns);
470 		ppid = task_tgid_nr_ns(task->real_parent, ns);
471 		pgid = task_pgrp_nr_ns(task, ns);
472 
473 		unlock_task_sighand(task, &flags);
474 	}
475 
476 	if (!whole || num_threads < 2)
477 		wchan = get_wchan(task);
478 	if (!whole) {
479 		min_flt = task->min_flt;
480 		maj_flt = task->maj_flt;
481 		utime = task_utime(task);
482 		stime = task_stime(task);
483 		gtime = task_gtime(task);
484 	}
485 
486 	/* scale priority and nice values from timeslices to -20..20 */
487 	/* to make it look like a "normal" Unix priority/nice value  */
488 	priority = task_prio(task);
489 	nice = task_nice(task);
490 
491 	/* Temporary variable needed for gcc-2.96 */
492 	/* convert timespec -> nsec*/
493 	start_time =
494 		(unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC
495 				+ task->real_start_time.tv_nsec;
496 	/* convert nsec -> ticks */
497 	start_time = nsec_to_clock_t(start_time);
498 
499 	seq_printf(m, "%d (%s) %c %d %d %d %d %d %u %lu \
500 %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \
501 %lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n",
502 		pid_nr_ns(pid, ns),
503 		tcomm,
504 		state,
505 		ppid,
506 		pgid,
507 		sid,
508 		tty_nr,
509 		tty_pgrp,
510 		task->flags,
511 		min_flt,
512 		cmin_flt,
513 		maj_flt,
514 		cmaj_flt,
515 		cputime_to_clock_t(utime),
516 		cputime_to_clock_t(stime),
517 		cputime_to_clock_t(cutime),
518 		cputime_to_clock_t(cstime),
519 		priority,
520 		nice,
521 		num_threads,
522 		start_time,
523 		vsize,
524 		mm ? get_mm_rss(mm) : 0,
525 		rsslim,
526 		mm ? mm->start_code : 0,
527 		mm ? mm->end_code : 0,
528 		mm ? mm->start_stack : 0,
529 		esp,
530 		eip,
531 		/* The signal information here is obsolete.
532 		 * It must be decimal for Linux 2.0 compatibility.
533 		 * Use /proc/#/status for real-time signals.
534 		 */
535 		task->pending.signal.sig[0] & 0x7fffffffUL,
536 		task->blocked.sig[0] & 0x7fffffffUL,
537 		sigign      .sig[0] & 0x7fffffffUL,
538 		sigcatch    .sig[0] & 0x7fffffffUL,
539 		wchan,
540 		0UL,
541 		0UL,
542 		task->exit_signal,
543 		task_cpu(task),
544 		task->rt_priority,
545 		task->policy,
546 		(unsigned long long)delayacct_blkio_ticks(task),
547 		cputime_to_clock_t(gtime),
548 		cputime_to_clock_t(cgtime));
549 	if (mm)
550 		mmput(mm);
551 	return 0;
552 }
553 
554 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns,
555 			struct pid *pid, struct task_struct *task)
556 {
557 	return do_task_stat(m, ns, pid, task, 0);
558 }
559 
560 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns,
561 			struct pid *pid, struct task_struct *task)
562 {
563 	return do_task_stat(m, ns, pid, task, 1);
564 }
565 
566 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns,
567 			struct pid *pid, struct task_struct *task)
568 {
569 	int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0;
570 	struct mm_struct *mm = get_task_mm(task);
571 
572 	if (mm) {
573 		size = task_statm(mm, &shared, &text, &data, &resident);
574 		mmput(mm);
575 	}
576 	seq_printf(m, "%d %d %d %d %d %d %d\n",
577 			size, resident, shared, text, lib, data, 0);
578 
579 	return 0;
580 }
581