1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include <linux/nsproxy.h> 13 #include <uapi/linux/mount.h> 14 #include "internal.h" 15 #include "pnode.h" 16 17 /* return the next shared peer mount of @p */ 18 static inline struct mount *next_peer(struct mount *p) 19 { 20 return list_entry(p->mnt_share.next, struct mount, mnt_share); 21 } 22 23 static inline struct mount *first_slave(struct mount *p) 24 { 25 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 26 } 27 28 static inline struct mount *last_slave(struct mount *p) 29 { 30 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 31 } 32 33 static inline struct mount *next_slave(struct mount *p) 34 { 35 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 36 } 37 38 static struct mount *get_peer_under_root(struct mount *mnt, 39 struct mnt_namespace *ns, 40 const struct path *root) 41 { 42 struct mount *m = mnt; 43 44 do { 45 /* Check the namespace first for optimization */ 46 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 47 return m; 48 49 m = next_peer(m); 50 } while (m != mnt); 51 52 return NULL; 53 } 54 55 /* 56 * Get ID of closest dominating peer group having a representative 57 * under the given root. 58 * 59 * Caller must hold namespace_sem 60 */ 61 int get_dominating_id(struct mount *mnt, const struct path *root) 62 { 63 struct mount *m; 64 65 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 66 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 67 if (d) 68 return d->mnt_group_id; 69 } 70 71 return 0; 72 } 73 74 static int do_make_slave(struct mount *mnt) 75 { 76 struct mount *master, *slave_mnt; 77 78 if (list_empty(&mnt->mnt_share)) { 79 if (IS_MNT_SHARED(mnt)) { 80 mnt_release_group_id(mnt); 81 CLEAR_MNT_SHARED(mnt); 82 } 83 master = mnt->mnt_master; 84 if (!master) { 85 struct list_head *p = &mnt->mnt_slave_list; 86 while (!list_empty(p)) { 87 slave_mnt = list_first_entry(p, 88 struct mount, mnt_slave); 89 list_del_init(&slave_mnt->mnt_slave); 90 slave_mnt->mnt_master = NULL; 91 } 92 return 0; 93 } 94 } else { 95 struct mount *m; 96 /* 97 * slave 'mnt' to a peer mount that has the 98 * same root dentry. If none is available then 99 * slave it to anything that is available. 100 */ 101 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 102 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 103 master = m; 104 break; 105 } 106 } 107 list_del_init(&mnt->mnt_share); 108 mnt->mnt_group_id = 0; 109 CLEAR_MNT_SHARED(mnt); 110 } 111 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 112 slave_mnt->mnt_master = master; 113 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 114 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 115 INIT_LIST_HEAD(&mnt->mnt_slave_list); 116 mnt->mnt_master = master; 117 return 0; 118 } 119 120 /* 121 * vfsmount lock must be held for write 122 */ 123 void change_mnt_propagation(struct mount *mnt, int type) 124 { 125 if (type == MS_SHARED) { 126 set_mnt_shared(mnt); 127 return; 128 } 129 do_make_slave(mnt); 130 if (type != MS_SLAVE) { 131 list_del_init(&mnt->mnt_slave); 132 mnt->mnt_master = NULL; 133 if (type == MS_UNBINDABLE) 134 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 135 else 136 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 137 } 138 } 139 140 /* 141 * get the next mount in the propagation tree. 142 * @m: the mount seen last 143 * @origin: the original mount from where the tree walk initiated 144 * 145 * Note that peer groups form contiguous segments of slave lists. 146 * We rely on that in get_source() to be able to find out if 147 * vfsmount found while iterating with propagation_next() is 148 * a peer of one we'd found earlier. 149 */ 150 static struct mount *propagation_next(struct mount *m, 151 struct mount *origin) 152 { 153 /* are there any slaves of this mount? */ 154 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 155 return first_slave(m); 156 157 while (1) { 158 struct mount *master = m->mnt_master; 159 160 if (master == origin->mnt_master) { 161 struct mount *next = next_peer(m); 162 return (next == origin) ? NULL : next; 163 } else if (m->mnt_slave.next != &master->mnt_slave_list) 164 return next_slave(m); 165 166 /* back at master */ 167 m = master; 168 } 169 } 170 171 static struct mount *skip_propagation_subtree(struct mount *m, 172 struct mount *origin) 173 { 174 /* 175 * Advance m such that propagation_next will not return 176 * the slaves of m. 177 */ 178 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 179 m = last_slave(m); 180 181 return m; 182 } 183 184 static struct mount *next_group(struct mount *m, struct mount *origin) 185 { 186 while (1) { 187 while (1) { 188 struct mount *next; 189 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 190 return first_slave(m); 191 next = next_peer(m); 192 if (m->mnt_group_id == origin->mnt_group_id) { 193 if (next == origin) 194 return NULL; 195 } else if (m->mnt_slave.next != &next->mnt_slave) 196 break; 197 m = next; 198 } 199 /* m is the last peer */ 200 while (1) { 201 struct mount *master = m->mnt_master; 202 if (m->mnt_slave.next != &master->mnt_slave_list) 203 return next_slave(m); 204 m = next_peer(master); 205 if (master->mnt_group_id == origin->mnt_group_id) 206 break; 207 if (master->mnt_slave.next == &m->mnt_slave) 208 break; 209 m = master; 210 } 211 if (m == origin) 212 return NULL; 213 } 214 } 215 216 /* all accesses are serialized by namespace_sem */ 217 static struct mount *last_dest, *first_source, *last_source, *dest_master; 218 static struct mountpoint *mp; 219 static struct hlist_head *list; 220 221 static inline bool peers(struct mount *m1, struct mount *m2) 222 { 223 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 224 } 225 226 static int propagate_one(struct mount *m) 227 { 228 struct mount *child; 229 int type; 230 /* skip ones added by this propagate_mnt() */ 231 if (IS_MNT_NEW(m)) 232 return 0; 233 /* skip if mountpoint isn't covered by it */ 234 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) 235 return 0; 236 if (peers(m, last_dest)) { 237 type = CL_MAKE_SHARED; 238 } else { 239 struct mount *n, *p; 240 bool done; 241 for (n = m; ; n = p) { 242 p = n->mnt_master; 243 if (p == dest_master || IS_MNT_MARKED(p)) 244 break; 245 } 246 do { 247 struct mount *parent = last_source->mnt_parent; 248 if (last_source == first_source) 249 break; 250 done = parent->mnt_master == p; 251 if (done && peers(n, parent)) 252 break; 253 last_source = last_source->mnt_master; 254 } while (!done); 255 256 type = CL_SLAVE; 257 /* beginning of peer group among the slaves? */ 258 if (IS_MNT_SHARED(m)) 259 type |= CL_MAKE_SHARED; 260 } 261 262 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 263 if (IS_ERR(child)) 264 return PTR_ERR(child); 265 child->mnt.mnt_flags &= ~MNT_LOCKED; 266 mnt_set_mountpoint(m, mp, child); 267 last_dest = m; 268 last_source = child; 269 if (m->mnt_master != dest_master) { 270 read_seqlock_excl(&mount_lock); 271 SET_MNT_MARK(m->mnt_master); 272 read_sequnlock_excl(&mount_lock); 273 } 274 hlist_add_head(&child->mnt_hash, list); 275 return count_mounts(m->mnt_ns, child); 276 } 277 278 /* 279 * mount 'source_mnt' under the destination 'dest_mnt' at 280 * dentry 'dest_dentry'. And propagate that mount to 281 * all the peer and slave mounts of 'dest_mnt'. 282 * Link all the new mounts into a propagation tree headed at 283 * source_mnt. Also link all the new mounts using ->mnt_list 284 * headed at source_mnt's ->mnt_list 285 * 286 * @dest_mnt: destination mount. 287 * @dest_dentry: destination dentry. 288 * @source_mnt: source mount. 289 * @tree_list : list of heads of trees to be attached. 290 */ 291 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 292 struct mount *source_mnt, struct hlist_head *tree_list) 293 { 294 struct mount *m, *n; 295 int ret = 0; 296 297 /* 298 * we don't want to bother passing tons of arguments to 299 * propagate_one(); everything is serialized by namespace_sem, 300 * so globals will do just fine. 301 */ 302 last_dest = dest_mnt; 303 first_source = source_mnt; 304 last_source = source_mnt; 305 mp = dest_mp; 306 list = tree_list; 307 dest_master = dest_mnt->mnt_master; 308 309 /* all peers of dest_mnt, except dest_mnt itself */ 310 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 311 ret = propagate_one(n); 312 if (ret) 313 goto out; 314 } 315 316 /* all slave groups */ 317 for (m = next_group(dest_mnt, dest_mnt); m; 318 m = next_group(m, dest_mnt)) { 319 /* everything in that slave group */ 320 n = m; 321 do { 322 ret = propagate_one(n); 323 if (ret) 324 goto out; 325 n = next_peer(n); 326 } while (n != m); 327 } 328 out: 329 read_seqlock_excl(&mount_lock); 330 hlist_for_each_entry(n, tree_list, mnt_hash) { 331 m = n->mnt_parent; 332 if (m->mnt_master != dest_mnt->mnt_master) 333 CLEAR_MNT_MARK(m->mnt_master); 334 } 335 read_sequnlock_excl(&mount_lock); 336 return ret; 337 } 338 339 static struct mount *find_topper(struct mount *mnt) 340 { 341 /* If there is exactly one mount covering mnt completely return it. */ 342 struct mount *child; 343 344 if (!list_is_singular(&mnt->mnt_mounts)) 345 return NULL; 346 347 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 348 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 349 return NULL; 350 351 return child; 352 } 353 354 /* 355 * return true if the refcount is greater than count 356 */ 357 static inline int do_refcount_check(struct mount *mnt, int count) 358 { 359 return mnt_get_count(mnt) > count; 360 } 361 362 /* 363 * check if the mount 'mnt' can be unmounted successfully. 364 * @mnt: the mount to be checked for unmount 365 * NOTE: unmounting 'mnt' would naturally propagate to all 366 * other mounts its parent propagates to. 367 * Check if any of these mounts that **do not have submounts** 368 * have more references than 'refcnt'. If so return busy. 369 * 370 * vfsmount lock must be held for write 371 */ 372 int propagate_mount_busy(struct mount *mnt, int refcnt) 373 { 374 struct mount *m, *child, *topper; 375 struct mount *parent = mnt->mnt_parent; 376 377 if (mnt == parent) 378 return do_refcount_check(mnt, refcnt); 379 380 /* 381 * quickly check if the current mount can be unmounted. 382 * If not, we don't have to go checking for all other 383 * mounts 384 */ 385 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 386 return 1; 387 388 for (m = propagation_next(parent, parent); m; 389 m = propagation_next(m, parent)) { 390 int count = 1; 391 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 392 if (!child) 393 continue; 394 395 /* Is there exactly one mount on the child that covers 396 * it completely whose reference should be ignored? 397 */ 398 topper = find_topper(child); 399 if (topper) 400 count += 1; 401 else if (!list_empty(&child->mnt_mounts)) 402 continue; 403 404 if (do_refcount_check(child, count)) 405 return 1; 406 } 407 return 0; 408 } 409 410 /* 411 * Clear MNT_LOCKED when it can be shown to be safe. 412 * 413 * mount_lock lock must be held for write 414 */ 415 void propagate_mount_unlock(struct mount *mnt) 416 { 417 struct mount *parent = mnt->mnt_parent; 418 struct mount *m, *child; 419 420 BUG_ON(parent == mnt); 421 422 for (m = propagation_next(parent, parent); m; 423 m = propagation_next(m, parent)) { 424 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 425 if (child) 426 child->mnt.mnt_flags &= ~MNT_LOCKED; 427 } 428 } 429 430 static void umount_one(struct mount *mnt, struct list_head *to_umount) 431 { 432 CLEAR_MNT_MARK(mnt); 433 mnt->mnt.mnt_flags |= MNT_UMOUNT; 434 list_del_init(&mnt->mnt_child); 435 list_del_init(&mnt->mnt_umounting); 436 list_move_tail(&mnt->mnt_list, to_umount); 437 } 438 439 /* 440 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 441 * parent propagates to. 442 */ 443 static bool __propagate_umount(struct mount *mnt, 444 struct list_head *to_umount, 445 struct list_head *to_restore) 446 { 447 bool progress = false; 448 struct mount *child; 449 450 /* 451 * The state of the parent won't change if this mount is 452 * already unmounted or marked as without children. 453 */ 454 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 455 goto out; 456 457 /* Verify topper is the only grandchild that has not been 458 * speculatively unmounted. 459 */ 460 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 461 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 462 continue; 463 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 464 continue; 465 /* Found a mounted child */ 466 goto children; 467 } 468 469 /* Mark mounts that can be unmounted if not locked */ 470 SET_MNT_MARK(mnt); 471 progress = true; 472 473 /* If a mount is without children and not locked umount it. */ 474 if (!IS_MNT_LOCKED(mnt)) { 475 umount_one(mnt, to_umount); 476 } else { 477 children: 478 list_move_tail(&mnt->mnt_umounting, to_restore); 479 } 480 out: 481 return progress; 482 } 483 484 static void umount_list(struct list_head *to_umount, 485 struct list_head *to_restore) 486 { 487 struct mount *mnt, *child, *tmp; 488 list_for_each_entry(mnt, to_umount, mnt_list) { 489 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 490 /* topper? */ 491 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 492 list_move_tail(&child->mnt_umounting, to_restore); 493 else 494 umount_one(child, to_umount); 495 } 496 } 497 } 498 499 static void restore_mounts(struct list_head *to_restore) 500 { 501 /* Restore mounts to a clean working state */ 502 while (!list_empty(to_restore)) { 503 struct mount *mnt, *parent; 504 struct mountpoint *mp; 505 506 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 507 CLEAR_MNT_MARK(mnt); 508 list_del_init(&mnt->mnt_umounting); 509 510 /* Should this mount be reparented? */ 511 mp = mnt->mnt_mp; 512 parent = mnt->mnt_parent; 513 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 514 mp = parent->mnt_mp; 515 parent = parent->mnt_parent; 516 } 517 if (parent != mnt->mnt_parent) 518 mnt_change_mountpoint(parent, mp, mnt); 519 } 520 } 521 522 static void cleanup_umount_visitations(struct list_head *visited) 523 { 524 while (!list_empty(visited)) { 525 struct mount *mnt = 526 list_first_entry(visited, struct mount, mnt_umounting); 527 list_del_init(&mnt->mnt_umounting); 528 } 529 } 530 531 /* 532 * collect all mounts that receive propagation from the mount in @list, 533 * and return these additional mounts in the same list. 534 * @list: the list of mounts to be unmounted. 535 * 536 * vfsmount lock must be held for write 537 */ 538 int propagate_umount(struct list_head *list) 539 { 540 struct mount *mnt; 541 LIST_HEAD(to_restore); 542 LIST_HEAD(to_umount); 543 LIST_HEAD(visited); 544 545 /* Find candidates for unmounting */ 546 list_for_each_entry_reverse(mnt, list, mnt_list) { 547 struct mount *parent = mnt->mnt_parent; 548 struct mount *m; 549 550 /* 551 * If this mount has already been visited it is known that it's 552 * entire peer group and all of their slaves in the propagation 553 * tree for the mountpoint has already been visited and there is 554 * no need to visit them again. 555 */ 556 if (!list_empty(&mnt->mnt_umounting)) 557 continue; 558 559 list_add_tail(&mnt->mnt_umounting, &visited); 560 for (m = propagation_next(parent, parent); m; 561 m = propagation_next(m, parent)) { 562 struct mount *child = __lookup_mnt(&m->mnt, 563 mnt->mnt_mountpoint); 564 if (!child) 565 continue; 566 567 if (!list_empty(&child->mnt_umounting)) { 568 /* 569 * If the child has already been visited it is 570 * know that it's entire peer group and all of 571 * their slaves in the propgation tree for the 572 * mountpoint has already been visited and there 573 * is no need to visit this subtree again. 574 */ 575 m = skip_propagation_subtree(m, parent); 576 continue; 577 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 578 /* 579 * We have come accross an partially unmounted 580 * mount in list that has not been visited yet. 581 * Remember it has been visited and continue 582 * about our merry way. 583 */ 584 list_add_tail(&child->mnt_umounting, &visited); 585 continue; 586 } 587 588 /* Check the child and parents while progress is made */ 589 while (__propagate_umount(child, 590 &to_umount, &to_restore)) { 591 /* Is the parent a umount candidate? */ 592 child = child->mnt_parent; 593 if (list_empty(&child->mnt_umounting)) 594 break; 595 } 596 } 597 } 598 599 umount_list(&to_umount, &to_restore); 600 restore_mounts(&to_restore); 601 cleanup_umount_visitations(&visited); 602 list_splice_tail(&to_umount, list); 603 604 return 0; 605 } 606