1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include <linux/nsproxy.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *last_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 30 } 31 32 static inline struct mount *next_slave(struct mount *p) 33 { 34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 35 } 36 37 static struct mount *get_peer_under_root(struct mount *mnt, 38 struct mnt_namespace *ns, 39 const struct path *root) 40 { 41 struct mount *m = mnt; 42 43 do { 44 /* Check the namespace first for optimization */ 45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 46 return m; 47 48 m = next_peer(m); 49 } while (m != mnt); 50 51 return NULL; 52 } 53 54 /* 55 * Get ID of closest dominating peer group having a representative 56 * under the given root. 57 * 58 * Caller must hold namespace_sem 59 */ 60 int get_dominating_id(struct mount *mnt, const struct path *root) 61 { 62 struct mount *m; 63 64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 66 if (d) 67 return d->mnt_group_id; 68 } 69 70 return 0; 71 } 72 73 static int do_make_slave(struct mount *mnt) 74 { 75 struct mount *master, *slave_mnt; 76 77 if (list_empty(&mnt->mnt_share)) { 78 if (IS_MNT_SHARED(mnt)) { 79 mnt_release_group_id(mnt); 80 CLEAR_MNT_SHARED(mnt); 81 } 82 master = mnt->mnt_master; 83 if (!master) { 84 struct list_head *p = &mnt->mnt_slave_list; 85 while (!list_empty(p)) { 86 slave_mnt = list_first_entry(p, 87 struct mount, mnt_slave); 88 list_del_init(&slave_mnt->mnt_slave); 89 slave_mnt->mnt_master = NULL; 90 } 91 return 0; 92 } 93 } else { 94 struct mount *m; 95 /* 96 * slave 'mnt' to a peer mount that has the 97 * same root dentry. If none is available then 98 * slave it to anything that is available. 99 */ 100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 102 master = m; 103 break; 104 } 105 } 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 CLEAR_MNT_SHARED(mnt); 109 } 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 mnt->mnt_master = master; 116 return 0; 117 } 118 119 /* 120 * vfsmount lock must be held for write 121 */ 122 void change_mnt_propagation(struct mount *mnt, int type) 123 { 124 if (type == MS_SHARED) { 125 set_mnt_shared(mnt); 126 return; 127 } 128 do_make_slave(mnt); 129 if (type != MS_SLAVE) { 130 list_del_init(&mnt->mnt_slave); 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 134 else 135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 136 } 137 } 138 139 /* 140 * get the next mount in the propagation tree. 141 * @m: the mount seen last 142 * @origin: the original mount from where the tree walk initiated 143 * 144 * Note that peer groups form contiguous segments of slave lists. 145 * We rely on that in get_source() to be able to find out if 146 * vfsmount found while iterating with propagation_next() is 147 * a peer of one we'd found earlier. 148 */ 149 static struct mount *propagation_next(struct mount *m, 150 struct mount *origin) 151 { 152 /* are there any slaves of this mount? */ 153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 154 return first_slave(m); 155 156 while (1) { 157 struct mount *master = m->mnt_master; 158 159 if (master == origin->mnt_master) { 160 struct mount *next = next_peer(m); 161 return (next == origin) ? NULL : next; 162 } else if (m->mnt_slave.next != &master->mnt_slave_list) 163 return next_slave(m); 164 165 /* back at master */ 166 m = master; 167 } 168 } 169 170 static struct mount *skip_propagation_subtree(struct mount *m, 171 struct mount *origin) 172 { 173 /* 174 * Advance m such that propagation_next will not return 175 * the slaves of m. 176 */ 177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 178 m = last_slave(m); 179 180 return m; 181 } 182 183 static struct mount *next_group(struct mount *m, struct mount *origin) 184 { 185 while (1) { 186 while (1) { 187 struct mount *next; 188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 189 return first_slave(m); 190 next = next_peer(m); 191 if (m->mnt_group_id == origin->mnt_group_id) { 192 if (next == origin) 193 return NULL; 194 } else if (m->mnt_slave.next != &next->mnt_slave) 195 break; 196 m = next; 197 } 198 /* m is the last peer */ 199 while (1) { 200 struct mount *master = m->mnt_master; 201 if (m->mnt_slave.next != &master->mnt_slave_list) 202 return next_slave(m); 203 m = next_peer(master); 204 if (master->mnt_group_id == origin->mnt_group_id) 205 break; 206 if (master->mnt_slave.next == &m->mnt_slave) 207 break; 208 m = master; 209 } 210 if (m == origin) 211 return NULL; 212 } 213 } 214 215 /* all accesses are serialized by namespace_sem */ 216 static struct user_namespace *user_ns; 217 static struct mount *last_dest, *first_source, *last_source, *dest_master; 218 static struct mountpoint *mp; 219 static struct hlist_head *list; 220 221 static inline bool peers(struct mount *m1, struct mount *m2) 222 { 223 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 224 } 225 226 static int propagate_one(struct mount *m) 227 { 228 struct mount *child; 229 int type; 230 /* skip ones added by this propagate_mnt() */ 231 if (IS_MNT_NEW(m)) 232 return 0; 233 /* skip if mountpoint isn't covered by it */ 234 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) 235 return 0; 236 if (peers(m, last_dest)) { 237 type = CL_MAKE_SHARED; 238 } else { 239 struct mount *n, *p; 240 bool done; 241 for (n = m; ; n = p) { 242 p = n->mnt_master; 243 if (p == dest_master || IS_MNT_MARKED(p)) 244 break; 245 } 246 do { 247 struct mount *parent = last_source->mnt_parent; 248 if (last_source == first_source) 249 break; 250 done = parent->mnt_master == p; 251 if (done && peers(n, parent)) 252 break; 253 last_source = last_source->mnt_master; 254 } while (!done); 255 256 type = CL_SLAVE; 257 /* beginning of peer group among the slaves? */ 258 if (IS_MNT_SHARED(m)) 259 type |= CL_MAKE_SHARED; 260 } 261 262 /* Notice when we are propagating across user namespaces */ 263 if (m->mnt_ns->user_ns != user_ns) 264 type |= CL_UNPRIVILEGED; 265 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 266 if (IS_ERR(child)) 267 return PTR_ERR(child); 268 child->mnt.mnt_flags &= ~MNT_LOCKED; 269 mnt_set_mountpoint(m, mp, child); 270 last_dest = m; 271 last_source = child; 272 if (m->mnt_master != dest_master) { 273 read_seqlock_excl(&mount_lock); 274 SET_MNT_MARK(m->mnt_master); 275 read_sequnlock_excl(&mount_lock); 276 } 277 hlist_add_head(&child->mnt_hash, list); 278 return count_mounts(m->mnt_ns, child); 279 } 280 281 /* 282 * mount 'source_mnt' under the destination 'dest_mnt' at 283 * dentry 'dest_dentry'. And propagate that mount to 284 * all the peer and slave mounts of 'dest_mnt'. 285 * Link all the new mounts into a propagation tree headed at 286 * source_mnt. Also link all the new mounts using ->mnt_list 287 * headed at source_mnt's ->mnt_list 288 * 289 * @dest_mnt: destination mount. 290 * @dest_dentry: destination dentry. 291 * @source_mnt: source mount. 292 * @tree_list : list of heads of trees to be attached. 293 */ 294 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 295 struct mount *source_mnt, struct hlist_head *tree_list) 296 { 297 struct mount *m, *n; 298 int ret = 0; 299 300 /* 301 * we don't want to bother passing tons of arguments to 302 * propagate_one(); everything is serialized by namespace_sem, 303 * so globals will do just fine. 304 */ 305 user_ns = current->nsproxy->mnt_ns->user_ns; 306 last_dest = dest_mnt; 307 first_source = source_mnt; 308 last_source = source_mnt; 309 mp = dest_mp; 310 list = tree_list; 311 dest_master = dest_mnt->mnt_master; 312 313 /* all peers of dest_mnt, except dest_mnt itself */ 314 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 315 ret = propagate_one(n); 316 if (ret) 317 goto out; 318 } 319 320 /* all slave groups */ 321 for (m = next_group(dest_mnt, dest_mnt); m; 322 m = next_group(m, dest_mnt)) { 323 /* everything in that slave group */ 324 n = m; 325 do { 326 ret = propagate_one(n); 327 if (ret) 328 goto out; 329 n = next_peer(n); 330 } while (n != m); 331 } 332 out: 333 read_seqlock_excl(&mount_lock); 334 hlist_for_each_entry(n, tree_list, mnt_hash) { 335 m = n->mnt_parent; 336 if (m->mnt_master != dest_mnt->mnt_master) 337 CLEAR_MNT_MARK(m->mnt_master); 338 } 339 read_sequnlock_excl(&mount_lock); 340 return ret; 341 } 342 343 static struct mount *find_topper(struct mount *mnt) 344 { 345 /* If there is exactly one mount covering mnt completely return it. */ 346 struct mount *child; 347 348 if (!list_is_singular(&mnt->mnt_mounts)) 349 return NULL; 350 351 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 352 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 353 return NULL; 354 355 return child; 356 } 357 358 /* 359 * return true if the refcount is greater than count 360 */ 361 static inline int do_refcount_check(struct mount *mnt, int count) 362 { 363 return mnt_get_count(mnt) > count; 364 } 365 366 /* 367 * check if the mount 'mnt' can be unmounted successfully. 368 * @mnt: the mount to be checked for unmount 369 * NOTE: unmounting 'mnt' would naturally propagate to all 370 * other mounts its parent propagates to. 371 * Check if any of these mounts that **do not have submounts** 372 * have more references than 'refcnt'. If so return busy. 373 * 374 * vfsmount lock must be held for write 375 */ 376 int propagate_mount_busy(struct mount *mnt, int refcnt) 377 { 378 struct mount *m, *child, *topper; 379 struct mount *parent = mnt->mnt_parent; 380 381 if (mnt == parent) 382 return do_refcount_check(mnt, refcnt); 383 384 /* 385 * quickly check if the current mount can be unmounted. 386 * If not, we don't have to go checking for all other 387 * mounts 388 */ 389 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 390 return 1; 391 392 for (m = propagation_next(parent, parent); m; 393 m = propagation_next(m, parent)) { 394 int count = 1; 395 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 396 if (!child) 397 continue; 398 399 /* Is there exactly one mount on the child that covers 400 * it completely whose reference should be ignored? 401 */ 402 topper = find_topper(child); 403 if (topper) 404 count += 1; 405 else if (!list_empty(&child->mnt_mounts)) 406 continue; 407 408 if (do_refcount_check(child, count)) 409 return 1; 410 } 411 return 0; 412 } 413 414 /* 415 * Clear MNT_LOCKED when it can be shown to be safe. 416 * 417 * mount_lock lock must be held for write 418 */ 419 void propagate_mount_unlock(struct mount *mnt) 420 { 421 struct mount *parent = mnt->mnt_parent; 422 struct mount *m, *child; 423 424 BUG_ON(parent == mnt); 425 426 for (m = propagation_next(parent, parent); m; 427 m = propagation_next(m, parent)) { 428 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 429 if (child) 430 child->mnt.mnt_flags &= ~MNT_LOCKED; 431 } 432 } 433 434 static void umount_one(struct mount *mnt, struct list_head *to_umount) 435 { 436 CLEAR_MNT_MARK(mnt); 437 mnt->mnt.mnt_flags |= MNT_UMOUNT; 438 list_del_init(&mnt->mnt_child); 439 list_del_init(&mnt->mnt_umounting); 440 list_move_tail(&mnt->mnt_list, to_umount); 441 } 442 443 /* 444 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 445 * parent propagates to. 446 */ 447 static bool __propagate_umount(struct mount *mnt, 448 struct list_head *to_umount, 449 struct list_head *to_restore) 450 { 451 bool progress = false; 452 struct mount *child; 453 454 /* 455 * The state of the parent won't change if this mount is 456 * already unmounted or marked as without children. 457 */ 458 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 459 goto out; 460 461 /* Verify topper is the only grandchild that has not been 462 * speculatively unmounted. 463 */ 464 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 465 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 466 continue; 467 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 468 continue; 469 /* Found a mounted child */ 470 goto children; 471 } 472 473 /* Mark mounts that can be unmounted if not locked */ 474 SET_MNT_MARK(mnt); 475 progress = true; 476 477 /* If a mount is without children and not locked umount it. */ 478 if (!IS_MNT_LOCKED(mnt)) { 479 umount_one(mnt, to_umount); 480 } else { 481 children: 482 list_move_tail(&mnt->mnt_umounting, to_restore); 483 } 484 out: 485 return progress; 486 } 487 488 static void umount_list(struct list_head *to_umount, 489 struct list_head *to_restore) 490 { 491 struct mount *mnt, *child, *tmp; 492 list_for_each_entry(mnt, to_umount, mnt_list) { 493 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 494 /* topper? */ 495 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 496 list_move_tail(&child->mnt_umounting, to_restore); 497 else 498 umount_one(child, to_umount); 499 } 500 } 501 } 502 503 static void restore_mounts(struct list_head *to_restore) 504 { 505 /* Restore mounts to a clean working state */ 506 while (!list_empty(to_restore)) { 507 struct mount *mnt, *parent; 508 struct mountpoint *mp; 509 510 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 511 CLEAR_MNT_MARK(mnt); 512 list_del_init(&mnt->mnt_umounting); 513 514 /* Should this mount be reparented? */ 515 mp = mnt->mnt_mp; 516 parent = mnt->mnt_parent; 517 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 518 mp = parent->mnt_mp; 519 parent = parent->mnt_parent; 520 } 521 if (parent != mnt->mnt_parent) 522 mnt_change_mountpoint(parent, mp, mnt); 523 } 524 } 525 526 static void cleanup_umount_visitations(struct list_head *visited) 527 { 528 while (!list_empty(visited)) { 529 struct mount *mnt = 530 list_first_entry(visited, struct mount, mnt_umounting); 531 list_del_init(&mnt->mnt_umounting); 532 } 533 } 534 535 /* 536 * collect all mounts that receive propagation from the mount in @list, 537 * and return these additional mounts in the same list. 538 * @list: the list of mounts to be unmounted. 539 * 540 * vfsmount lock must be held for write 541 */ 542 int propagate_umount(struct list_head *list) 543 { 544 struct mount *mnt; 545 LIST_HEAD(to_restore); 546 LIST_HEAD(to_umount); 547 LIST_HEAD(visited); 548 549 /* Find candidates for unmounting */ 550 list_for_each_entry_reverse(mnt, list, mnt_list) { 551 struct mount *parent = mnt->mnt_parent; 552 struct mount *m; 553 554 /* 555 * If this mount has already been visited it is known that it's 556 * entire peer group and all of their slaves in the propagation 557 * tree for the mountpoint has already been visited and there is 558 * no need to visit them again. 559 */ 560 if (!list_empty(&mnt->mnt_umounting)) 561 continue; 562 563 list_add_tail(&mnt->mnt_umounting, &visited); 564 for (m = propagation_next(parent, parent); m; 565 m = propagation_next(m, parent)) { 566 struct mount *child = __lookup_mnt(&m->mnt, 567 mnt->mnt_mountpoint); 568 if (!child) 569 continue; 570 571 if (!list_empty(&child->mnt_umounting)) { 572 /* 573 * If the child has already been visited it is 574 * know that it's entire peer group and all of 575 * their slaves in the propgation tree for the 576 * mountpoint has already been visited and there 577 * is no need to visit this subtree again. 578 */ 579 m = skip_propagation_subtree(m, parent); 580 continue; 581 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 582 /* 583 * We have come accross an partially unmounted 584 * mount in list that has not been visited yet. 585 * Remember it has been visited and continue 586 * about our merry way. 587 */ 588 list_add_tail(&child->mnt_umounting, &visited); 589 continue; 590 } 591 592 /* Check the child and parents while progress is made */ 593 while (__propagate_umount(child, 594 &to_umount, &to_restore)) { 595 /* Is the parent a umount candidate? */ 596 child = child->mnt_parent; 597 if (list_empty(&child->mnt_umounting)) 598 break; 599 } 600 } 601 } 602 603 umount_list(&to_umount, &to_restore); 604 restore_mounts(&to_restore); 605 cleanup_umount_visitations(&visited); 606 list_splice_tail(&to_umount, list); 607 608 return 0; 609 } 610