xref: /openbmc/linux/fs/pnode.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *next_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30 }
31 
32 static struct mount *get_peer_under_root(struct mount *mnt,
33 					 struct mnt_namespace *ns,
34 					 const struct path *root)
35 {
36 	struct mount *m = mnt;
37 
38 	do {
39 		/* Check the namespace first for optimization */
40 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 			return m;
42 
43 		m = next_peer(m);
44 	} while (m != mnt);
45 
46 	return NULL;
47 }
48 
49 /*
50  * Get ID of closest dominating peer group having a representative
51  * under the given root.
52  *
53  * Caller must hold namespace_sem
54  */
55 int get_dominating_id(struct mount *mnt, const struct path *root)
56 {
57 	struct mount *m;
58 
59 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 		if (d)
62 			return d->mnt_group_id;
63 	}
64 
65 	return 0;
66 }
67 
68 static int do_make_slave(struct mount *mnt)
69 {
70 	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
71 	struct mount *slave_mnt;
72 
73 	/*
74 	 * slave 'mnt' to a peer mount that has the
75 	 * same root dentry. If none is available then
76 	 * slave it to anything that is available.
77 	 */
78 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
79 	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
80 
81 	if (peer_mnt == mnt) {
82 		peer_mnt = next_peer(mnt);
83 		if (peer_mnt == mnt)
84 			peer_mnt = NULL;
85 	}
86 	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
87 		mnt_release_group_id(mnt);
88 
89 	list_del_init(&mnt->mnt_share);
90 	mnt->mnt_group_id = 0;
91 
92 	if (peer_mnt)
93 		master = peer_mnt;
94 
95 	if (master) {
96 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
97 			slave_mnt->mnt_master = master;
98 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
99 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
100 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
101 	} else {
102 		struct list_head *p = &mnt->mnt_slave_list;
103 		while (!list_empty(p)) {
104                         slave_mnt = list_first_entry(p,
105 					struct mount, mnt_slave);
106 			list_del_init(&slave_mnt->mnt_slave);
107 			slave_mnt->mnt_master = NULL;
108 		}
109 	}
110 	mnt->mnt_master = master;
111 	CLEAR_MNT_SHARED(mnt);
112 	return 0;
113 }
114 
115 /*
116  * vfsmount lock must be held for write
117  */
118 void change_mnt_propagation(struct mount *mnt, int type)
119 {
120 	if (type == MS_SHARED) {
121 		set_mnt_shared(mnt);
122 		return;
123 	}
124 	do_make_slave(mnt);
125 	if (type != MS_SLAVE) {
126 		list_del_init(&mnt->mnt_slave);
127 		mnt->mnt_master = NULL;
128 		if (type == MS_UNBINDABLE)
129 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
130 		else
131 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
132 	}
133 }
134 
135 /*
136  * get the next mount in the propagation tree.
137  * @m: the mount seen last
138  * @origin: the original mount from where the tree walk initiated
139  *
140  * Note that peer groups form contiguous segments of slave lists.
141  * We rely on that in get_source() to be able to find out if
142  * vfsmount found while iterating with propagation_next() is
143  * a peer of one we'd found earlier.
144  */
145 static struct mount *propagation_next(struct mount *m,
146 					 struct mount *origin)
147 {
148 	/* are there any slaves of this mount? */
149 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
150 		return first_slave(m);
151 
152 	while (1) {
153 		struct mount *master = m->mnt_master;
154 
155 		if (master == origin->mnt_master) {
156 			struct mount *next = next_peer(m);
157 			return (next == origin) ? NULL : next;
158 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
159 			return next_slave(m);
160 
161 		/* back at master */
162 		m = master;
163 	}
164 }
165 
166 /*
167  * return the source mount to be used for cloning
168  *
169  * @dest 	the current destination mount
170  * @last_dest  	the last seen destination mount
171  * @last_src  	the last seen source mount
172  * @type	return CL_SLAVE if the new mount has to be
173  * 		cloned as a slave.
174  */
175 static struct mount *get_source(struct mount *dest,
176 				struct mount *last_dest,
177 				struct mount *last_src,
178 				int *type)
179 {
180 	struct mount *p_last_src = NULL;
181 	struct mount *p_last_dest = NULL;
182 
183 	while (last_dest != dest->mnt_master) {
184 		p_last_dest = last_dest;
185 		p_last_src = last_src;
186 		last_dest = last_dest->mnt_master;
187 		last_src = last_src->mnt_master;
188 	}
189 
190 	if (p_last_dest) {
191 		do {
192 			p_last_dest = next_peer(p_last_dest);
193 		} while (IS_MNT_NEW(p_last_dest));
194 		/* is that a peer of the earlier? */
195 		if (dest == p_last_dest) {
196 			*type = CL_MAKE_SHARED;
197 			return p_last_src;
198 		}
199 	}
200 	/* slave of the earlier, then */
201 	*type = CL_SLAVE;
202 	/* beginning of peer group among the slaves? */
203 	if (IS_MNT_SHARED(dest))
204 		*type |= CL_MAKE_SHARED;
205 	return last_src;
206 }
207 
208 /*
209  * mount 'source_mnt' under the destination 'dest_mnt' at
210  * dentry 'dest_dentry'. And propagate that mount to
211  * all the peer and slave mounts of 'dest_mnt'.
212  * Link all the new mounts into a propagation tree headed at
213  * source_mnt. Also link all the new mounts using ->mnt_list
214  * headed at source_mnt's ->mnt_list
215  *
216  * @dest_mnt: destination mount.
217  * @dest_dentry: destination dentry.
218  * @source_mnt: source mount.
219  * @tree_list : list of heads of trees to be attached.
220  */
221 int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry,
222 		    struct mount *source_mnt, struct list_head *tree_list)
223 {
224 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
225 	struct mount *m, *child;
226 	int ret = 0;
227 	struct mount *prev_dest_mnt = dest_mnt;
228 	struct mount *prev_src_mnt  = source_mnt;
229 	LIST_HEAD(tmp_list);
230 	LIST_HEAD(umount_list);
231 
232 	for (m = propagation_next(dest_mnt, dest_mnt); m;
233 			m = propagation_next(m, dest_mnt)) {
234 		int type;
235 		struct mount *source;
236 
237 		if (IS_MNT_NEW(m))
238 			continue;
239 
240 		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
241 
242 		/* Notice when we are propagating across user namespaces */
243 		if (m->mnt_ns->user_ns != user_ns)
244 			type |= CL_UNPRIVILEGED;
245 
246 		child = copy_tree(source, source->mnt.mnt_root, type);
247 		if (IS_ERR(child)) {
248 			ret = PTR_ERR(child);
249 			list_splice(tree_list, tmp_list.prev);
250 			goto out;
251 		}
252 
253 		if (is_subdir(dest_dentry, m->mnt.mnt_root)) {
254 			mnt_set_mountpoint(m, dest_dentry, child);
255 			list_add_tail(&child->mnt_hash, tree_list);
256 		} else {
257 			/*
258 			 * This can happen if the parent mount was bind mounted
259 			 * on some subdirectory of a shared/slave mount.
260 			 */
261 			list_add_tail(&child->mnt_hash, &tmp_list);
262 		}
263 		prev_dest_mnt = m;
264 		prev_src_mnt  = child;
265 	}
266 out:
267 	br_write_lock(&vfsmount_lock);
268 	while (!list_empty(&tmp_list)) {
269 		child = list_first_entry(&tmp_list, struct mount, mnt_hash);
270 		umount_tree(child, 0, &umount_list);
271 	}
272 	br_write_unlock(&vfsmount_lock);
273 	release_mounts(&umount_list);
274 	return ret;
275 }
276 
277 /*
278  * return true if the refcount is greater than count
279  */
280 static inline int do_refcount_check(struct mount *mnt, int count)
281 {
282 	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
283 	return (mycount > count);
284 }
285 
286 /*
287  * check if the mount 'mnt' can be unmounted successfully.
288  * @mnt: the mount to be checked for unmount
289  * NOTE: unmounting 'mnt' would naturally propagate to all
290  * other mounts its parent propagates to.
291  * Check if any of these mounts that **do not have submounts**
292  * have more references than 'refcnt'. If so return busy.
293  *
294  * vfsmount lock must be held for write
295  */
296 int propagate_mount_busy(struct mount *mnt, int refcnt)
297 {
298 	struct mount *m, *child;
299 	struct mount *parent = mnt->mnt_parent;
300 	int ret = 0;
301 
302 	if (mnt == parent)
303 		return do_refcount_check(mnt, refcnt);
304 
305 	/*
306 	 * quickly check if the current mount can be unmounted.
307 	 * If not, we don't have to go checking for all other
308 	 * mounts
309 	 */
310 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
311 		return 1;
312 
313 	for (m = propagation_next(parent, parent); m;
314 	     		m = propagation_next(m, parent)) {
315 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0);
316 		if (child && list_empty(&child->mnt_mounts) &&
317 		    (ret = do_refcount_check(child, 1)))
318 			break;
319 	}
320 	return ret;
321 }
322 
323 /*
324  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
325  * parent propagates to.
326  */
327 static void __propagate_umount(struct mount *mnt)
328 {
329 	struct mount *parent = mnt->mnt_parent;
330 	struct mount *m;
331 
332 	BUG_ON(parent == mnt);
333 
334 	for (m = propagation_next(parent, parent); m;
335 			m = propagation_next(m, parent)) {
336 
337 		struct mount *child = __lookup_mnt(&m->mnt,
338 					mnt->mnt_mountpoint, 0);
339 		/*
340 		 * umount the child only if the child has no
341 		 * other children
342 		 */
343 		if (child && list_empty(&child->mnt_mounts))
344 			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
345 	}
346 }
347 
348 /*
349  * collect all mounts that receive propagation from the mount in @list,
350  * and return these additional mounts in the same list.
351  * @list: the list of mounts to be unmounted.
352  *
353  * vfsmount lock must be held for write
354  */
355 int propagate_umount(struct list_head *list)
356 {
357 	struct mount *mnt;
358 
359 	list_for_each_entry(mnt, list, mnt_hash)
360 		__propagate_umount(mnt);
361 	return 0;
362 }
363