1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include "internal.h" 13 #include "pnode.h" 14 15 /* return the next shared peer mount of @p */ 16 static inline struct mount *next_peer(struct mount *p) 17 { 18 return list_entry(p->mnt_share.next, struct mount, mnt_share); 19 } 20 21 static inline struct mount *first_slave(struct mount *p) 22 { 23 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 24 } 25 26 static inline struct mount *next_slave(struct mount *p) 27 { 28 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 29 } 30 31 static struct mount *get_peer_under_root(struct mount *mnt, 32 struct mnt_namespace *ns, 33 const struct path *root) 34 { 35 struct mount *m = mnt; 36 37 do { 38 /* Check the namespace first for optimization */ 39 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 40 return m; 41 42 m = next_peer(m); 43 } while (m != mnt); 44 45 return NULL; 46 } 47 48 /* 49 * Get ID of closest dominating peer group having a representative 50 * under the given root. 51 * 52 * Caller must hold namespace_sem 53 */ 54 int get_dominating_id(struct mount *mnt, const struct path *root) 55 { 56 struct mount *m; 57 58 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 59 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 60 if (d) 61 return d->mnt_group_id; 62 } 63 64 return 0; 65 } 66 67 static int do_make_slave(struct mount *mnt) 68 { 69 struct mount *peer_mnt = mnt, *master = mnt->mnt_master; 70 struct mount *slave_mnt; 71 72 /* 73 * slave 'mnt' to a peer mount that has the 74 * same root dentry. If none is available then 75 * slave it to anything that is available. 76 */ 77 while ((peer_mnt = next_peer(peer_mnt)) != mnt && 78 peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ; 79 80 if (peer_mnt == mnt) { 81 peer_mnt = next_peer(mnt); 82 if (peer_mnt == mnt) 83 peer_mnt = NULL; 84 } 85 if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share)) 86 mnt_release_group_id(mnt); 87 88 list_del_init(&mnt->mnt_share); 89 mnt->mnt_group_id = 0; 90 91 if (peer_mnt) 92 master = peer_mnt; 93 94 if (master) { 95 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 96 slave_mnt->mnt_master = master; 97 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 98 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 99 INIT_LIST_HEAD(&mnt->mnt_slave_list); 100 } else { 101 struct list_head *p = &mnt->mnt_slave_list; 102 while (!list_empty(p)) { 103 slave_mnt = list_first_entry(p, 104 struct mount, mnt_slave); 105 list_del_init(&slave_mnt->mnt_slave); 106 slave_mnt->mnt_master = NULL; 107 } 108 } 109 mnt->mnt_master = master; 110 CLEAR_MNT_SHARED(mnt); 111 return 0; 112 } 113 114 /* 115 * vfsmount lock must be held for write 116 */ 117 void change_mnt_propagation(struct mount *mnt, int type) 118 { 119 if (type == MS_SHARED) { 120 set_mnt_shared(mnt); 121 return; 122 } 123 do_make_slave(mnt); 124 if (type != MS_SLAVE) { 125 list_del_init(&mnt->mnt_slave); 126 mnt->mnt_master = NULL; 127 if (type == MS_UNBINDABLE) 128 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 129 else 130 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 131 } 132 } 133 134 /* 135 * get the next mount in the propagation tree. 136 * @m: the mount seen last 137 * @origin: the original mount from where the tree walk initiated 138 * 139 * Note that peer groups form contiguous segments of slave lists. 140 * We rely on that in get_source() to be able to find out if 141 * vfsmount found while iterating with propagation_next() is 142 * a peer of one we'd found earlier. 143 */ 144 static struct mount *propagation_next(struct mount *m, 145 struct mount *origin) 146 { 147 /* are there any slaves of this mount? */ 148 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 149 return first_slave(m); 150 151 while (1) { 152 struct mount *master = m->mnt_master; 153 154 if (master == origin->mnt_master) { 155 struct mount *next = next_peer(m); 156 return (next == origin) ? NULL : next; 157 } else if (m->mnt_slave.next != &master->mnt_slave_list) 158 return next_slave(m); 159 160 /* back at master */ 161 m = master; 162 } 163 } 164 165 /* 166 * return the source mount to be used for cloning 167 * 168 * @dest the current destination mount 169 * @last_dest the last seen destination mount 170 * @last_src the last seen source mount 171 * @type return CL_SLAVE if the new mount has to be 172 * cloned as a slave. 173 */ 174 static struct mount *get_source(struct mount *dest, 175 struct mount *last_dest, 176 struct mount *last_src, 177 int *type) 178 { 179 struct mount *p_last_src = NULL; 180 struct mount *p_last_dest = NULL; 181 182 while (last_dest != dest->mnt_master) { 183 p_last_dest = last_dest; 184 p_last_src = last_src; 185 last_dest = last_dest->mnt_master; 186 last_src = last_src->mnt_master; 187 } 188 189 if (p_last_dest) { 190 do { 191 p_last_dest = next_peer(p_last_dest); 192 } while (IS_MNT_NEW(p_last_dest)); 193 /* is that a peer of the earlier? */ 194 if (dest == p_last_dest) { 195 *type = CL_MAKE_SHARED; 196 return p_last_src; 197 } 198 } 199 /* slave of the earlier, then */ 200 *type = CL_SLAVE; 201 /* beginning of peer group among the slaves? */ 202 if (IS_MNT_SHARED(dest)) 203 *type |= CL_MAKE_SHARED; 204 return last_src; 205 } 206 207 /* 208 * mount 'source_mnt' under the destination 'dest_mnt' at 209 * dentry 'dest_dentry'. And propagate that mount to 210 * all the peer and slave mounts of 'dest_mnt'. 211 * Link all the new mounts into a propagation tree headed at 212 * source_mnt. Also link all the new mounts using ->mnt_list 213 * headed at source_mnt's ->mnt_list 214 * 215 * @dest_mnt: destination mount. 216 * @dest_dentry: destination dentry. 217 * @source_mnt: source mount. 218 * @tree_list : list of heads of trees to be attached. 219 */ 220 int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry, 221 struct mount *source_mnt, struct list_head *tree_list) 222 { 223 struct mount *m, *child; 224 int ret = 0; 225 struct mount *prev_dest_mnt = dest_mnt; 226 struct mount *prev_src_mnt = source_mnt; 227 LIST_HEAD(tmp_list); 228 LIST_HEAD(umount_list); 229 230 for (m = propagation_next(dest_mnt, dest_mnt); m; 231 m = propagation_next(m, dest_mnt)) { 232 int type; 233 struct mount *source; 234 235 if (IS_MNT_NEW(m)) 236 continue; 237 238 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type); 239 240 if (!(child = copy_tree(source, source->mnt.mnt_root, type))) { 241 ret = -ENOMEM; 242 list_splice(tree_list, tmp_list.prev); 243 goto out; 244 } 245 246 if (is_subdir(dest_dentry, m->mnt.mnt_root)) { 247 mnt_set_mountpoint(m, dest_dentry, child); 248 list_add_tail(&child->mnt_hash, tree_list); 249 } else { 250 /* 251 * This can happen if the parent mount was bind mounted 252 * on some subdirectory of a shared/slave mount. 253 */ 254 list_add_tail(&child->mnt_hash, &tmp_list); 255 } 256 prev_dest_mnt = m; 257 prev_src_mnt = child; 258 } 259 out: 260 br_write_lock(vfsmount_lock); 261 while (!list_empty(&tmp_list)) { 262 child = list_first_entry(&tmp_list, struct mount, mnt_hash); 263 umount_tree(child, 0, &umount_list); 264 } 265 br_write_unlock(vfsmount_lock); 266 release_mounts(&umount_list); 267 return ret; 268 } 269 270 /* 271 * return true if the refcount is greater than count 272 */ 273 static inline int do_refcount_check(struct mount *mnt, int count) 274 { 275 int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts; 276 return (mycount > count); 277 } 278 279 /* 280 * check if the mount 'mnt' can be unmounted successfully. 281 * @mnt: the mount to be checked for unmount 282 * NOTE: unmounting 'mnt' would naturally propagate to all 283 * other mounts its parent propagates to. 284 * Check if any of these mounts that **do not have submounts** 285 * have more references than 'refcnt'. If so return busy. 286 * 287 * vfsmount lock must be held for write 288 */ 289 int propagate_mount_busy(struct mount *mnt, int refcnt) 290 { 291 struct mount *m, *child; 292 struct mount *parent = mnt->mnt_parent; 293 int ret = 0; 294 295 if (mnt == parent) 296 return do_refcount_check(mnt, refcnt); 297 298 /* 299 * quickly check if the current mount can be unmounted. 300 * If not, we don't have to go checking for all other 301 * mounts 302 */ 303 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 304 return 1; 305 306 for (m = propagation_next(parent, parent); m; 307 m = propagation_next(m, parent)) { 308 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0); 309 if (child && list_empty(&child->mnt_mounts) && 310 (ret = do_refcount_check(child, 1))) 311 break; 312 } 313 return ret; 314 } 315 316 /* 317 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 318 * parent propagates to. 319 */ 320 static void __propagate_umount(struct mount *mnt) 321 { 322 struct mount *parent = mnt->mnt_parent; 323 struct mount *m; 324 325 BUG_ON(parent == mnt); 326 327 for (m = propagation_next(parent, parent); m; 328 m = propagation_next(m, parent)) { 329 330 struct mount *child = __lookup_mnt(&m->mnt, 331 mnt->mnt_mountpoint, 0); 332 /* 333 * umount the child only if the child has no 334 * other children 335 */ 336 if (child && list_empty(&child->mnt_mounts)) 337 list_move_tail(&child->mnt_hash, &mnt->mnt_hash); 338 } 339 } 340 341 /* 342 * collect all mounts that receive propagation from the mount in @list, 343 * and return these additional mounts in the same list. 344 * @list: the list of mounts to be unmounted. 345 * 346 * vfsmount lock must be held for write 347 */ 348 int propagate_umount(struct list_head *list) 349 { 350 struct mount *mnt; 351 352 list_for_each_entry(mnt, list, mnt_hash) 353 __propagate_umount(mnt); 354 return 0; 355 } 356