xref: /openbmc/linux/fs/pnode.c (revision 8730046c)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *next_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30 }
31 
32 static struct mount *get_peer_under_root(struct mount *mnt,
33 					 struct mnt_namespace *ns,
34 					 const struct path *root)
35 {
36 	struct mount *m = mnt;
37 
38 	do {
39 		/* Check the namespace first for optimization */
40 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 			return m;
42 
43 		m = next_peer(m);
44 	} while (m != mnt);
45 
46 	return NULL;
47 }
48 
49 /*
50  * Get ID of closest dominating peer group having a representative
51  * under the given root.
52  *
53  * Caller must hold namespace_sem
54  */
55 int get_dominating_id(struct mount *mnt, const struct path *root)
56 {
57 	struct mount *m;
58 
59 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 		if (d)
62 			return d->mnt_group_id;
63 	}
64 
65 	return 0;
66 }
67 
68 static int do_make_slave(struct mount *mnt)
69 {
70 	struct mount *master, *slave_mnt;
71 
72 	if (list_empty(&mnt->mnt_share)) {
73 		if (IS_MNT_SHARED(mnt)) {
74 			mnt_release_group_id(mnt);
75 			CLEAR_MNT_SHARED(mnt);
76 		}
77 		master = mnt->mnt_master;
78 		if (!master) {
79 			struct list_head *p = &mnt->mnt_slave_list;
80 			while (!list_empty(p)) {
81 				slave_mnt = list_first_entry(p,
82 						struct mount, mnt_slave);
83 				list_del_init(&slave_mnt->mnt_slave);
84 				slave_mnt->mnt_master = NULL;
85 			}
86 			return 0;
87 		}
88 	} else {
89 		struct mount *m;
90 		/*
91 		 * slave 'mnt' to a peer mount that has the
92 		 * same root dentry. If none is available then
93 		 * slave it to anything that is available.
94 		 */
95 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
96 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
97 				master = m;
98 				break;
99 			}
100 		}
101 		list_del_init(&mnt->mnt_share);
102 		mnt->mnt_group_id = 0;
103 		CLEAR_MNT_SHARED(mnt);
104 	}
105 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
106 		slave_mnt->mnt_master = master;
107 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
108 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
109 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
110 	mnt->mnt_master = master;
111 	return 0;
112 }
113 
114 /*
115  * vfsmount lock must be held for write
116  */
117 void change_mnt_propagation(struct mount *mnt, int type)
118 {
119 	if (type == MS_SHARED) {
120 		set_mnt_shared(mnt);
121 		return;
122 	}
123 	do_make_slave(mnt);
124 	if (type != MS_SLAVE) {
125 		list_del_init(&mnt->mnt_slave);
126 		mnt->mnt_master = NULL;
127 		if (type == MS_UNBINDABLE)
128 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129 		else
130 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
131 	}
132 }
133 
134 /*
135  * get the next mount in the propagation tree.
136  * @m: the mount seen last
137  * @origin: the original mount from where the tree walk initiated
138  *
139  * Note that peer groups form contiguous segments of slave lists.
140  * We rely on that in get_source() to be able to find out if
141  * vfsmount found while iterating with propagation_next() is
142  * a peer of one we'd found earlier.
143  */
144 static struct mount *propagation_next(struct mount *m,
145 					 struct mount *origin)
146 {
147 	/* are there any slaves of this mount? */
148 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149 		return first_slave(m);
150 
151 	while (1) {
152 		struct mount *master = m->mnt_master;
153 
154 		if (master == origin->mnt_master) {
155 			struct mount *next = next_peer(m);
156 			return (next == origin) ? NULL : next;
157 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
158 			return next_slave(m);
159 
160 		/* back at master */
161 		m = master;
162 	}
163 }
164 
165 static struct mount *next_group(struct mount *m, struct mount *origin)
166 {
167 	while (1) {
168 		while (1) {
169 			struct mount *next;
170 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
171 				return first_slave(m);
172 			next = next_peer(m);
173 			if (m->mnt_group_id == origin->mnt_group_id) {
174 				if (next == origin)
175 					return NULL;
176 			} else if (m->mnt_slave.next != &next->mnt_slave)
177 				break;
178 			m = next;
179 		}
180 		/* m is the last peer */
181 		while (1) {
182 			struct mount *master = m->mnt_master;
183 			if (m->mnt_slave.next != &master->mnt_slave_list)
184 				return next_slave(m);
185 			m = next_peer(master);
186 			if (master->mnt_group_id == origin->mnt_group_id)
187 				break;
188 			if (master->mnt_slave.next == &m->mnt_slave)
189 				break;
190 			m = master;
191 		}
192 		if (m == origin)
193 			return NULL;
194 	}
195 }
196 
197 /* all accesses are serialized by namespace_sem */
198 static struct user_namespace *user_ns;
199 static struct mount *last_dest, *first_source, *last_source, *dest_master;
200 static struct mountpoint *mp;
201 static struct hlist_head *list;
202 
203 static inline bool peers(struct mount *m1, struct mount *m2)
204 {
205 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
206 }
207 
208 static int propagate_one(struct mount *m)
209 {
210 	struct mount *child;
211 	int type;
212 	/* skip ones added by this propagate_mnt() */
213 	if (IS_MNT_NEW(m))
214 		return 0;
215 	/* skip if mountpoint isn't covered by it */
216 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
217 		return 0;
218 	if (peers(m, last_dest)) {
219 		type = CL_MAKE_SHARED;
220 	} else {
221 		struct mount *n, *p;
222 		bool done;
223 		for (n = m; ; n = p) {
224 			p = n->mnt_master;
225 			if (p == dest_master || IS_MNT_MARKED(p))
226 				break;
227 		}
228 		do {
229 			struct mount *parent = last_source->mnt_parent;
230 			if (last_source == first_source)
231 				break;
232 			done = parent->mnt_master == p;
233 			if (done && peers(n, parent))
234 				break;
235 			last_source = last_source->mnt_master;
236 		} while (!done);
237 
238 		type = CL_SLAVE;
239 		/* beginning of peer group among the slaves? */
240 		if (IS_MNT_SHARED(m))
241 			type |= CL_MAKE_SHARED;
242 	}
243 
244 	/* Notice when we are propagating across user namespaces */
245 	if (m->mnt_ns->user_ns != user_ns)
246 		type |= CL_UNPRIVILEGED;
247 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
248 	if (IS_ERR(child))
249 		return PTR_ERR(child);
250 	child->mnt.mnt_flags &= ~MNT_LOCKED;
251 	mnt_set_mountpoint(m, mp, child);
252 	last_dest = m;
253 	last_source = child;
254 	if (m->mnt_master != dest_master) {
255 		read_seqlock_excl(&mount_lock);
256 		SET_MNT_MARK(m->mnt_master);
257 		read_sequnlock_excl(&mount_lock);
258 	}
259 	hlist_add_head(&child->mnt_hash, list);
260 	return count_mounts(m->mnt_ns, child);
261 }
262 
263 /*
264  * mount 'source_mnt' under the destination 'dest_mnt' at
265  * dentry 'dest_dentry'. And propagate that mount to
266  * all the peer and slave mounts of 'dest_mnt'.
267  * Link all the new mounts into a propagation tree headed at
268  * source_mnt. Also link all the new mounts using ->mnt_list
269  * headed at source_mnt's ->mnt_list
270  *
271  * @dest_mnt: destination mount.
272  * @dest_dentry: destination dentry.
273  * @source_mnt: source mount.
274  * @tree_list : list of heads of trees to be attached.
275  */
276 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
277 		    struct mount *source_mnt, struct hlist_head *tree_list)
278 {
279 	struct mount *m, *n;
280 	int ret = 0;
281 
282 	/*
283 	 * we don't want to bother passing tons of arguments to
284 	 * propagate_one(); everything is serialized by namespace_sem,
285 	 * so globals will do just fine.
286 	 */
287 	user_ns = current->nsproxy->mnt_ns->user_ns;
288 	last_dest = dest_mnt;
289 	first_source = source_mnt;
290 	last_source = source_mnt;
291 	mp = dest_mp;
292 	list = tree_list;
293 	dest_master = dest_mnt->mnt_master;
294 
295 	/* all peers of dest_mnt, except dest_mnt itself */
296 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
297 		ret = propagate_one(n);
298 		if (ret)
299 			goto out;
300 	}
301 
302 	/* all slave groups */
303 	for (m = next_group(dest_mnt, dest_mnt); m;
304 			m = next_group(m, dest_mnt)) {
305 		/* everything in that slave group */
306 		n = m;
307 		do {
308 			ret = propagate_one(n);
309 			if (ret)
310 				goto out;
311 			n = next_peer(n);
312 		} while (n != m);
313 	}
314 out:
315 	read_seqlock_excl(&mount_lock);
316 	hlist_for_each_entry(n, tree_list, mnt_hash) {
317 		m = n->mnt_parent;
318 		if (m->mnt_master != dest_mnt->mnt_master)
319 			CLEAR_MNT_MARK(m->mnt_master);
320 	}
321 	read_sequnlock_excl(&mount_lock);
322 	return ret;
323 }
324 
325 /*
326  * return true if the refcount is greater than count
327  */
328 static inline int do_refcount_check(struct mount *mnt, int count)
329 {
330 	return mnt_get_count(mnt) > count;
331 }
332 
333 /*
334  * check if the mount 'mnt' can be unmounted successfully.
335  * @mnt: the mount to be checked for unmount
336  * NOTE: unmounting 'mnt' would naturally propagate to all
337  * other mounts its parent propagates to.
338  * Check if any of these mounts that **do not have submounts**
339  * have more references than 'refcnt'. If so return busy.
340  *
341  * vfsmount lock must be held for write
342  */
343 int propagate_mount_busy(struct mount *mnt, int refcnt)
344 {
345 	struct mount *m, *child;
346 	struct mount *parent = mnt->mnt_parent;
347 	int ret = 0;
348 
349 	if (mnt == parent)
350 		return do_refcount_check(mnt, refcnt);
351 
352 	/*
353 	 * quickly check if the current mount can be unmounted.
354 	 * If not, we don't have to go checking for all other
355 	 * mounts
356 	 */
357 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
358 		return 1;
359 
360 	for (m = propagation_next(parent, parent); m;
361 	     		m = propagation_next(m, parent)) {
362 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
363 		if (child && list_empty(&child->mnt_mounts) &&
364 		    (ret = do_refcount_check(child, 1)))
365 			break;
366 	}
367 	return ret;
368 }
369 
370 /*
371  * Clear MNT_LOCKED when it can be shown to be safe.
372  *
373  * mount_lock lock must be held for write
374  */
375 void propagate_mount_unlock(struct mount *mnt)
376 {
377 	struct mount *parent = mnt->mnt_parent;
378 	struct mount *m, *child;
379 
380 	BUG_ON(parent == mnt);
381 
382 	for (m = propagation_next(parent, parent); m;
383 			m = propagation_next(m, parent)) {
384 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
385 		if (child)
386 			child->mnt.mnt_flags &= ~MNT_LOCKED;
387 	}
388 }
389 
390 /*
391  * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
392  */
393 static void mark_umount_candidates(struct mount *mnt)
394 {
395 	struct mount *parent = mnt->mnt_parent;
396 	struct mount *m;
397 
398 	BUG_ON(parent == mnt);
399 
400 	for (m = propagation_next(parent, parent); m;
401 			m = propagation_next(m, parent)) {
402 		struct mount *child = __lookup_mnt_last(&m->mnt,
403 						mnt->mnt_mountpoint);
404 		if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
405 			SET_MNT_MARK(child);
406 		}
407 	}
408 }
409 
410 /*
411  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
412  * parent propagates to.
413  */
414 static void __propagate_umount(struct mount *mnt)
415 {
416 	struct mount *parent = mnt->mnt_parent;
417 	struct mount *m;
418 
419 	BUG_ON(parent == mnt);
420 
421 	for (m = propagation_next(parent, parent); m;
422 			m = propagation_next(m, parent)) {
423 
424 		struct mount *child = __lookup_mnt_last(&m->mnt,
425 						mnt->mnt_mountpoint);
426 		/*
427 		 * umount the child only if the child has no children
428 		 * and the child is marked safe to unmount.
429 		 */
430 		if (!child || !IS_MNT_MARKED(child))
431 			continue;
432 		CLEAR_MNT_MARK(child);
433 		if (list_empty(&child->mnt_mounts)) {
434 			list_del_init(&child->mnt_child);
435 			child->mnt.mnt_flags |= MNT_UMOUNT;
436 			list_move_tail(&child->mnt_list, &mnt->mnt_list);
437 		}
438 	}
439 }
440 
441 /*
442  * collect all mounts that receive propagation from the mount in @list,
443  * and return these additional mounts in the same list.
444  * @list: the list of mounts to be unmounted.
445  *
446  * vfsmount lock must be held for write
447  */
448 int propagate_umount(struct list_head *list)
449 {
450 	struct mount *mnt;
451 
452 	list_for_each_entry_reverse(mnt, list, mnt_list)
453 		mark_umount_candidates(mnt);
454 
455 	list_for_each_entry(mnt, list, mnt_list)
456 		__propagate_umount(mnt);
457 	return 0;
458 }
459