1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *last_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 30 } 31 32 static inline struct mount *next_slave(struct mount *p) 33 { 34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 35 } 36 37 static struct mount *get_peer_under_root(struct mount *mnt, 38 struct mnt_namespace *ns, 39 const struct path *root) 40 { 41 struct mount *m = mnt; 42 43 do { 44 /* Check the namespace first for optimization */ 45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 46 return m; 47 48 m = next_peer(m); 49 } while (m != mnt); 50 51 return NULL; 52 } 53 54 /* 55 * Get ID of closest dominating peer group having a representative 56 * under the given root. 57 * 58 * Caller must hold namespace_sem 59 */ 60 int get_dominating_id(struct mount *mnt, const struct path *root) 61 { 62 struct mount *m; 63 64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 66 if (d) 67 return d->mnt_group_id; 68 } 69 70 return 0; 71 } 72 73 static int do_make_slave(struct mount *mnt) 74 { 75 struct mount *master, *slave_mnt; 76 77 if (list_empty(&mnt->mnt_share)) { 78 if (IS_MNT_SHARED(mnt)) { 79 mnt_release_group_id(mnt); 80 CLEAR_MNT_SHARED(mnt); 81 } 82 master = mnt->mnt_master; 83 if (!master) { 84 struct list_head *p = &mnt->mnt_slave_list; 85 while (!list_empty(p)) { 86 slave_mnt = list_first_entry(p, 87 struct mount, mnt_slave); 88 list_del_init(&slave_mnt->mnt_slave); 89 slave_mnt->mnt_master = NULL; 90 } 91 return 0; 92 } 93 } else { 94 struct mount *m; 95 /* 96 * slave 'mnt' to a peer mount that has the 97 * same root dentry. If none is available then 98 * slave it to anything that is available. 99 */ 100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 102 master = m; 103 break; 104 } 105 } 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 CLEAR_MNT_SHARED(mnt); 109 } 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 mnt->mnt_master = master; 116 return 0; 117 } 118 119 /* 120 * vfsmount lock must be held for write 121 */ 122 void change_mnt_propagation(struct mount *mnt, int type) 123 { 124 if (type == MS_SHARED) { 125 set_mnt_shared(mnt); 126 return; 127 } 128 do_make_slave(mnt); 129 if (type != MS_SLAVE) { 130 list_del_init(&mnt->mnt_slave); 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 134 else 135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 136 } 137 } 138 139 /* 140 * get the next mount in the propagation tree. 141 * @m: the mount seen last 142 * @origin: the original mount from where the tree walk initiated 143 * 144 * Note that peer groups form contiguous segments of slave lists. 145 * We rely on that in get_source() to be able to find out if 146 * vfsmount found while iterating with propagation_next() is 147 * a peer of one we'd found earlier. 148 */ 149 static struct mount *propagation_next(struct mount *m, 150 struct mount *origin) 151 { 152 /* are there any slaves of this mount? */ 153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 154 return first_slave(m); 155 156 while (1) { 157 struct mount *master = m->mnt_master; 158 159 if (master == origin->mnt_master) { 160 struct mount *next = next_peer(m); 161 return (next == origin) ? NULL : next; 162 } else if (m->mnt_slave.next != &master->mnt_slave_list) 163 return next_slave(m); 164 165 /* back at master */ 166 m = master; 167 } 168 } 169 170 static struct mount *skip_propagation_subtree(struct mount *m, 171 struct mount *origin) 172 { 173 /* 174 * Advance m such that propagation_next will not return 175 * the slaves of m. 176 */ 177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 178 m = last_slave(m); 179 180 return m; 181 } 182 183 static struct mount *next_group(struct mount *m, struct mount *origin) 184 { 185 while (1) { 186 while (1) { 187 struct mount *next; 188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 189 return first_slave(m); 190 next = next_peer(m); 191 if (m->mnt_group_id == origin->mnt_group_id) { 192 if (next == origin) 193 return NULL; 194 } else if (m->mnt_slave.next != &next->mnt_slave) 195 break; 196 m = next; 197 } 198 /* m is the last peer */ 199 while (1) { 200 struct mount *master = m->mnt_master; 201 if (m->mnt_slave.next != &master->mnt_slave_list) 202 return next_slave(m); 203 m = next_peer(master); 204 if (master->mnt_group_id == origin->mnt_group_id) 205 break; 206 if (master->mnt_slave.next == &m->mnt_slave) 207 break; 208 m = master; 209 } 210 if (m == origin) 211 return NULL; 212 } 213 } 214 215 /* all accesses are serialized by namespace_sem */ 216 static struct mount *last_dest, *first_source, *last_source, *dest_master; 217 static struct mountpoint *mp; 218 static struct hlist_head *list; 219 220 static inline bool peers(struct mount *m1, struct mount *m2) 221 { 222 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 223 } 224 225 static int propagate_one(struct mount *m) 226 { 227 struct mount *child; 228 int type; 229 /* skip ones added by this propagate_mnt() */ 230 if (IS_MNT_NEW(m)) 231 return 0; 232 /* skip if mountpoint isn't covered by it */ 233 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) 234 return 0; 235 if (peers(m, last_dest)) { 236 type = CL_MAKE_SHARED; 237 } else { 238 struct mount *n, *p; 239 bool done; 240 for (n = m; ; n = p) { 241 p = n->mnt_master; 242 if (p == dest_master || IS_MNT_MARKED(p)) 243 break; 244 } 245 do { 246 struct mount *parent = last_source->mnt_parent; 247 if (last_source == first_source) 248 break; 249 done = parent->mnt_master == p; 250 if (done && peers(n, parent)) 251 break; 252 last_source = last_source->mnt_master; 253 } while (!done); 254 255 type = CL_SLAVE; 256 /* beginning of peer group among the slaves? */ 257 if (IS_MNT_SHARED(m)) 258 type |= CL_MAKE_SHARED; 259 } 260 261 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 262 if (IS_ERR(child)) 263 return PTR_ERR(child); 264 read_seqlock_excl(&mount_lock); 265 mnt_set_mountpoint(m, mp, child); 266 if (m->mnt_master != dest_master) 267 SET_MNT_MARK(m->mnt_master); 268 read_sequnlock_excl(&mount_lock); 269 last_dest = m; 270 last_source = child; 271 hlist_add_head(&child->mnt_hash, list); 272 return count_mounts(m->mnt_ns, child); 273 } 274 275 /* 276 * mount 'source_mnt' under the destination 'dest_mnt' at 277 * dentry 'dest_dentry'. And propagate that mount to 278 * all the peer and slave mounts of 'dest_mnt'. 279 * Link all the new mounts into a propagation tree headed at 280 * source_mnt. Also link all the new mounts using ->mnt_list 281 * headed at source_mnt's ->mnt_list 282 * 283 * @dest_mnt: destination mount. 284 * @dest_dentry: destination dentry. 285 * @source_mnt: source mount. 286 * @tree_list : list of heads of trees to be attached. 287 */ 288 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 289 struct mount *source_mnt, struct hlist_head *tree_list) 290 { 291 struct mount *m, *n; 292 int ret = 0; 293 294 /* 295 * we don't want to bother passing tons of arguments to 296 * propagate_one(); everything is serialized by namespace_sem, 297 * so globals will do just fine. 298 */ 299 last_dest = dest_mnt; 300 first_source = source_mnt; 301 last_source = source_mnt; 302 mp = dest_mp; 303 list = tree_list; 304 dest_master = dest_mnt->mnt_master; 305 306 /* all peers of dest_mnt, except dest_mnt itself */ 307 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 308 ret = propagate_one(n); 309 if (ret) 310 goto out; 311 } 312 313 /* all slave groups */ 314 for (m = next_group(dest_mnt, dest_mnt); m; 315 m = next_group(m, dest_mnt)) { 316 /* everything in that slave group */ 317 n = m; 318 do { 319 ret = propagate_one(n); 320 if (ret) 321 goto out; 322 n = next_peer(n); 323 } while (n != m); 324 } 325 out: 326 read_seqlock_excl(&mount_lock); 327 hlist_for_each_entry(n, tree_list, mnt_hash) { 328 m = n->mnt_parent; 329 if (m->mnt_master != dest_mnt->mnt_master) 330 CLEAR_MNT_MARK(m->mnt_master); 331 } 332 read_sequnlock_excl(&mount_lock); 333 return ret; 334 } 335 336 static struct mount *find_topper(struct mount *mnt) 337 { 338 /* If there is exactly one mount covering mnt completely return it. */ 339 struct mount *child; 340 341 if (!list_is_singular(&mnt->mnt_mounts)) 342 return NULL; 343 344 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 345 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 346 return NULL; 347 348 return child; 349 } 350 351 /* 352 * return true if the refcount is greater than count 353 */ 354 static inline int do_refcount_check(struct mount *mnt, int count) 355 { 356 return mnt_get_count(mnt) > count; 357 } 358 359 /* 360 * check if the mount 'mnt' can be unmounted successfully. 361 * @mnt: the mount to be checked for unmount 362 * NOTE: unmounting 'mnt' would naturally propagate to all 363 * other mounts its parent propagates to. 364 * Check if any of these mounts that **do not have submounts** 365 * have more references than 'refcnt'. If so return busy. 366 * 367 * vfsmount lock must be held for write 368 */ 369 int propagate_mount_busy(struct mount *mnt, int refcnt) 370 { 371 struct mount *m, *child, *topper; 372 struct mount *parent = mnt->mnt_parent; 373 374 if (mnt == parent) 375 return do_refcount_check(mnt, refcnt); 376 377 /* 378 * quickly check if the current mount can be unmounted. 379 * If not, we don't have to go checking for all other 380 * mounts 381 */ 382 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 383 return 1; 384 385 for (m = propagation_next(parent, parent); m; 386 m = propagation_next(m, parent)) { 387 int count = 1; 388 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 389 if (!child) 390 continue; 391 392 /* Is there exactly one mount on the child that covers 393 * it completely whose reference should be ignored? 394 */ 395 topper = find_topper(child); 396 if (topper) 397 count += 1; 398 else if (!list_empty(&child->mnt_mounts)) 399 continue; 400 401 if (do_refcount_check(child, count)) 402 return 1; 403 } 404 return 0; 405 } 406 407 /* 408 * Clear MNT_LOCKED when it can be shown to be safe. 409 * 410 * mount_lock lock must be held for write 411 */ 412 void propagate_mount_unlock(struct mount *mnt) 413 { 414 struct mount *parent = mnt->mnt_parent; 415 struct mount *m, *child; 416 417 BUG_ON(parent == mnt); 418 419 for (m = propagation_next(parent, parent); m; 420 m = propagation_next(m, parent)) { 421 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 422 if (child) 423 child->mnt.mnt_flags &= ~MNT_LOCKED; 424 } 425 } 426 427 static void umount_one(struct mount *mnt, struct list_head *to_umount) 428 { 429 CLEAR_MNT_MARK(mnt); 430 mnt->mnt.mnt_flags |= MNT_UMOUNT; 431 list_del_init(&mnt->mnt_child); 432 list_del_init(&mnt->mnt_umounting); 433 list_move_tail(&mnt->mnt_list, to_umount); 434 } 435 436 /* 437 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 438 * parent propagates to. 439 */ 440 static bool __propagate_umount(struct mount *mnt, 441 struct list_head *to_umount, 442 struct list_head *to_restore) 443 { 444 bool progress = false; 445 struct mount *child; 446 447 /* 448 * The state of the parent won't change if this mount is 449 * already unmounted or marked as without children. 450 */ 451 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 452 goto out; 453 454 /* Verify topper is the only grandchild that has not been 455 * speculatively unmounted. 456 */ 457 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 458 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 459 continue; 460 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 461 continue; 462 /* Found a mounted child */ 463 goto children; 464 } 465 466 /* Mark mounts that can be unmounted if not locked */ 467 SET_MNT_MARK(mnt); 468 progress = true; 469 470 /* If a mount is without children and not locked umount it. */ 471 if (!IS_MNT_LOCKED(mnt)) { 472 umount_one(mnt, to_umount); 473 } else { 474 children: 475 list_move_tail(&mnt->mnt_umounting, to_restore); 476 } 477 out: 478 return progress; 479 } 480 481 static void umount_list(struct list_head *to_umount, 482 struct list_head *to_restore) 483 { 484 struct mount *mnt, *child, *tmp; 485 list_for_each_entry(mnt, to_umount, mnt_list) { 486 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 487 /* topper? */ 488 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 489 list_move_tail(&child->mnt_umounting, to_restore); 490 else 491 umount_one(child, to_umount); 492 } 493 } 494 } 495 496 static void restore_mounts(struct list_head *to_restore) 497 { 498 /* Restore mounts to a clean working state */ 499 while (!list_empty(to_restore)) { 500 struct mount *mnt, *parent; 501 struct mountpoint *mp; 502 503 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 504 CLEAR_MNT_MARK(mnt); 505 list_del_init(&mnt->mnt_umounting); 506 507 /* Should this mount be reparented? */ 508 mp = mnt->mnt_mp; 509 parent = mnt->mnt_parent; 510 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 511 mp = parent->mnt_mp; 512 parent = parent->mnt_parent; 513 } 514 if (parent != mnt->mnt_parent) 515 mnt_change_mountpoint(parent, mp, mnt); 516 } 517 } 518 519 static void cleanup_umount_visitations(struct list_head *visited) 520 { 521 while (!list_empty(visited)) { 522 struct mount *mnt = 523 list_first_entry(visited, struct mount, mnt_umounting); 524 list_del_init(&mnt->mnt_umounting); 525 } 526 } 527 528 /* 529 * collect all mounts that receive propagation from the mount in @list, 530 * and return these additional mounts in the same list. 531 * @list: the list of mounts to be unmounted. 532 * 533 * vfsmount lock must be held for write 534 */ 535 int propagate_umount(struct list_head *list) 536 { 537 struct mount *mnt; 538 LIST_HEAD(to_restore); 539 LIST_HEAD(to_umount); 540 LIST_HEAD(visited); 541 542 /* Find candidates for unmounting */ 543 list_for_each_entry_reverse(mnt, list, mnt_list) { 544 struct mount *parent = mnt->mnt_parent; 545 struct mount *m; 546 547 /* 548 * If this mount has already been visited it is known that it's 549 * entire peer group and all of their slaves in the propagation 550 * tree for the mountpoint has already been visited and there is 551 * no need to visit them again. 552 */ 553 if (!list_empty(&mnt->mnt_umounting)) 554 continue; 555 556 list_add_tail(&mnt->mnt_umounting, &visited); 557 for (m = propagation_next(parent, parent); m; 558 m = propagation_next(m, parent)) { 559 struct mount *child = __lookup_mnt(&m->mnt, 560 mnt->mnt_mountpoint); 561 if (!child) 562 continue; 563 564 if (!list_empty(&child->mnt_umounting)) { 565 /* 566 * If the child has already been visited it is 567 * know that it's entire peer group and all of 568 * their slaves in the propgation tree for the 569 * mountpoint has already been visited and there 570 * is no need to visit this subtree again. 571 */ 572 m = skip_propagation_subtree(m, parent); 573 continue; 574 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 575 /* 576 * We have come accross an partially unmounted 577 * mount in list that has not been visited yet. 578 * Remember it has been visited and continue 579 * about our merry way. 580 */ 581 list_add_tail(&child->mnt_umounting, &visited); 582 continue; 583 } 584 585 /* Check the child and parents while progress is made */ 586 while (__propagate_umount(child, 587 &to_umount, &to_restore)) { 588 /* Is the parent a umount candidate? */ 589 child = child->mnt_parent; 590 if (list_empty(&child->mnt_umounting)) 591 break; 592 } 593 } 594 } 595 596 umount_list(&to_umount, &to_restore); 597 restore_mounts(&to_restore); 598 cleanup_umount_visitations(&visited); 599 list_splice_tail(&to_umount, list); 600 601 return 0; 602 } 603