xref: /openbmc/linux/fs/pnode.c (revision 64d85cc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/pnode.c
4  *
5  * (C) Copyright IBM Corporation 2005.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  */
8 #include <linux/mnt_namespace.h>
9 #include <linux/mount.h>
10 #include <linux/fs.h>
11 #include <linux/nsproxy.h>
12 #include <uapi/linux/mount.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *last_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31 
32 static inline struct mount *next_slave(struct mount *p)
33 {
34 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36 
37 static struct mount *get_peer_under_root(struct mount *mnt,
38 					 struct mnt_namespace *ns,
39 					 const struct path *root)
40 {
41 	struct mount *m = mnt;
42 
43 	do {
44 		/* Check the namespace first for optimization */
45 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 			return m;
47 
48 		m = next_peer(m);
49 	} while (m != mnt);
50 
51 	return NULL;
52 }
53 
54 /*
55  * Get ID of closest dominating peer group having a representative
56  * under the given root.
57  *
58  * Caller must hold namespace_sem
59  */
60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 	struct mount *m;
63 
64 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 		if (d)
67 			return d->mnt_group_id;
68 	}
69 
70 	return 0;
71 }
72 
73 static int do_make_slave(struct mount *mnt)
74 {
75 	struct mount *master, *slave_mnt;
76 
77 	if (list_empty(&mnt->mnt_share)) {
78 		if (IS_MNT_SHARED(mnt)) {
79 			mnt_release_group_id(mnt);
80 			CLEAR_MNT_SHARED(mnt);
81 		}
82 		master = mnt->mnt_master;
83 		if (!master) {
84 			struct list_head *p = &mnt->mnt_slave_list;
85 			while (!list_empty(p)) {
86 				slave_mnt = list_first_entry(p,
87 						struct mount, mnt_slave);
88 				list_del_init(&slave_mnt->mnt_slave);
89 				slave_mnt->mnt_master = NULL;
90 			}
91 			return 0;
92 		}
93 	} else {
94 		struct mount *m;
95 		/*
96 		 * slave 'mnt' to a peer mount that has the
97 		 * same root dentry. If none is available then
98 		 * slave it to anything that is available.
99 		 */
100 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 				master = m;
103 				break;
104 			}
105 		}
106 		list_del_init(&mnt->mnt_share);
107 		mnt->mnt_group_id = 0;
108 		CLEAR_MNT_SHARED(mnt);
109 	}
110 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 		slave_mnt->mnt_master = master;
112 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	mnt->mnt_master = master;
116 	return 0;
117 }
118 
119 /*
120  * vfsmount lock must be held for write
121  */
122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 	if (type == MS_SHARED) {
125 		set_mnt_shared(mnt);
126 		return;
127 	}
128 	do_make_slave(mnt);
129 	if (type != MS_SLAVE) {
130 		list_del_init(&mnt->mnt_slave);
131 		mnt->mnt_master = NULL;
132 		if (type == MS_UNBINDABLE)
133 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 		else
135 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 	}
137 }
138 
139 /*
140  * get the next mount in the propagation tree.
141  * @m: the mount seen last
142  * @origin: the original mount from where the tree walk initiated
143  *
144  * Note that peer groups form contiguous segments of slave lists.
145  * We rely on that in get_source() to be able to find out if
146  * vfsmount found while iterating with propagation_next() is
147  * a peer of one we'd found earlier.
148  */
149 static struct mount *propagation_next(struct mount *m,
150 					 struct mount *origin)
151 {
152 	/* are there any slaves of this mount? */
153 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 		return first_slave(m);
155 
156 	while (1) {
157 		struct mount *master = m->mnt_master;
158 
159 		if (master == origin->mnt_master) {
160 			struct mount *next = next_peer(m);
161 			return (next == origin) ? NULL : next;
162 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163 			return next_slave(m);
164 
165 		/* back at master */
166 		m = master;
167 	}
168 }
169 
170 static struct mount *skip_propagation_subtree(struct mount *m,
171 						struct mount *origin)
172 {
173 	/*
174 	 * Advance m such that propagation_next will not return
175 	 * the slaves of m.
176 	 */
177 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 		m = last_slave(m);
179 
180 	return m;
181 }
182 
183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 	while (1) {
186 		while (1) {
187 			struct mount *next;
188 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 				return first_slave(m);
190 			next = next_peer(m);
191 			if (m->mnt_group_id == origin->mnt_group_id) {
192 				if (next == origin)
193 					return NULL;
194 			} else if (m->mnt_slave.next != &next->mnt_slave)
195 				break;
196 			m = next;
197 		}
198 		/* m is the last peer */
199 		while (1) {
200 			struct mount *master = m->mnt_master;
201 			if (m->mnt_slave.next != &master->mnt_slave_list)
202 				return next_slave(m);
203 			m = next_peer(master);
204 			if (master->mnt_group_id == origin->mnt_group_id)
205 				break;
206 			if (master->mnt_slave.next == &m->mnt_slave)
207 				break;
208 			m = master;
209 		}
210 		if (m == origin)
211 			return NULL;
212 	}
213 }
214 
215 /* all accesses are serialized by namespace_sem */
216 static struct mount *last_dest, *first_source, *last_source, *dest_master;
217 static struct mountpoint *mp;
218 static struct hlist_head *list;
219 
220 static inline bool peers(struct mount *m1, struct mount *m2)
221 {
222 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
223 }
224 
225 static int propagate_one(struct mount *m)
226 {
227 	struct mount *child;
228 	int type;
229 	/* skip ones added by this propagate_mnt() */
230 	if (IS_MNT_NEW(m))
231 		return 0;
232 	/* skip if mountpoint isn't covered by it */
233 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
234 		return 0;
235 	if (peers(m, last_dest)) {
236 		type = CL_MAKE_SHARED;
237 	} else {
238 		struct mount *n, *p;
239 		bool done;
240 		for (n = m; ; n = p) {
241 			p = n->mnt_master;
242 			if (p == dest_master || IS_MNT_MARKED(p))
243 				break;
244 		}
245 		do {
246 			struct mount *parent = last_source->mnt_parent;
247 			if (last_source == first_source)
248 				break;
249 			done = parent->mnt_master == p;
250 			if (done && peers(n, parent))
251 				break;
252 			last_source = last_source->mnt_master;
253 		} while (!done);
254 
255 		type = CL_SLAVE;
256 		/* beginning of peer group among the slaves? */
257 		if (IS_MNT_SHARED(m))
258 			type |= CL_MAKE_SHARED;
259 	}
260 
261 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
262 	if (IS_ERR(child))
263 		return PTR_ERR(child);
264 	child->mnt.mnt_flags &= ~MNT_LOCKED;
265 	mnt_set_mountpoint(m, mp, child);
266 	last_dest = m;
267 	last_source = child;
268 	if (m->mnt_master != dest_master) {
269 		read_seqlock_excl(&mount_lock);
270 		SET_MNT_MARK(m->mnt_master);
271 		read_sequnlock_excl(&mount_lock);
272 	}
273 	hlist_add_head(&child->mnt_hash, list);
274 	return count_mounts(m->mnt_ns, child);
275 }
276 
277 /*
278  * mount 'source_mnt' under the destination 'dest_mnt' at
279  * dentry 'dest_dentry'. And propagate that mount to
280  * all the peer and slave mounts of 'dest_mnt'.
281  * Link all the new mounts into a propagation tree headed at
282  * source_mnt. Also link all the new mounts using ->mnt_list
283  * headed at source_mnt's ->mnt_list
284  *
285  * @dest_mnt: destination mount.
286  * @dest_dentry: destination dentry.
287  * @source_mnt: source mount.
288  * @tree_list : list of heads of trees to be attached.
289  */
290 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
291 		    struct mount *source_mnt, struct hlist_head *tree_list)
292 {
293 	struct mount *m, *n;
294 	int ret = 0;
295 
296 	/*
297 	 * we don't want to bother passing tons of arguments to
298 	 * propagate_one(); everything is serialized by namespace_sem,
299 	 * so globals will do just fine.
300 	 */
301 	last_dest = dest_mnt;
302 	first_source = source_mnt;
303 	last_source = source_mnt;
304 	mp = dest_mp;
305 	list = tree_list;
306 	dest_master = dest_mnt->mnt_master;
307 
308 	/* all peers of dest_mnt, except dest_mnt itself */
309 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
310 		ret = propagate_one(n);
311 		if (ret)
312 			goto out;
313 	}
314 
315 	/* all slave groups */
316 	for (m = next_group(dest_mnt, dest_mnt); m;
317 			m = next_group(m, dest_mnt)) {
318 		/* everything in that slave group */
319 		n = m;
320 		do {
321 			ret = propagate_one(n);
322 			if (ret)
323 				goto out;
324 			n = next_peer(n);
325 		} while (n != m);
326 	}
327 out:
328 	read_seqlock_excl(&mount_lock);
329 	hlist_for_each_entry(n, tree_list, mnt_hash) {
330 		m = n->mnt_parent;
331 		if (m->mnt_master != dest_mnt->mnt_master)
332 			CLEAR_MNT_MARK(m->mnt_master);
333 	}
334 	read_sequnlock_excl(&mount_lock);
335 	return ret;
336 }
337 
338 static struct mount *find_topper(struct mount *mnt)
339 {
340 	/* If there is exactly one mount covering mnt completely return it. */
341 	struct mount *child;
342 
343 	if (!list_is_singular(&mnt->mnt_mounts))
344 		return NULL;
345 
346 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
347 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
348 		return NULL;
349 
350 	return child;
351 }
352 
353 /*
354  * return true if the refcount is greater than count
355  */
356 static inline int do_refcount_check(struct mount *mnt, int count)
357 {
358 	return mnt_get_count(mnt) > count;
359 }
360 
361 /*
362  * check if the mount 'mnt' can be unmounted successfully.
363  * @mnt: the mount to be checked for unmount
364  * NOTE: unmounting 'mnt' would naturally propagate to all
365  * other mounts its parent propagates to.
366  * Check if any of these mounts that **do not have submounts**
367  * have more references than 'refcnt'. If so return busy.
368  *
369  * vfsmount lock must be held for write
370  */
371 int propagate_mount_busy(struct mount *mnt, int refcnt)
372 {
373 	struct mount *m, *child, *topper;
374 	struct mount *parent = mnt->mnt_parent;
375 
376 	if (mnt == parent)
377 		return do_refcount_check(mnt, refcnt);
378 
379 	/*
380 	 * quickly check if the current mount can be unmounted.
381 	 * If not, we don't have to go checking for all other
382 	 * mounts
383 	 */
384 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
385 		return 1;
386 
387 	for (m = propagation_next(parent, parent); m;
388 	     		m = propagation_next(m, parent)) {
389 		int count = 1;
390 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
391 		if (!child)
392 			continue;
393 
394 		/* Is there exactly one mount on the child that covers
395 		 * it completely whose reference should be ignored?
396 		 */
397 		topper = find_topper(child);
398 		if (topper)
399 			count += 1;
400 		else if (!list_empty(&child->mnt_mounts))
401 			continue;
402 
403 		if (do_refcount_check(child, count))
404 			return 1;
405 	}
406 	return 0;
407 }
408 
409 /*
410  * Clear MNT_LOCKED when it can be shown to be safe.
411  *
412  * mount_lock lock must be held for write
413  */
414 void propagate_mount_unlock(struct mount *mnt)
415 {
416 	struct mount *parent = mnt->mnt_parent;
417 	struct mount *m, *child;
418 
419 	BUG_ON(parent == mnt);
420 
421 	for (m = propagation_next(parent, parent); m;
422 			m = propagation_next(m, parent)) {
423 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
424 		if (child)
425 			child->mnt.mnt_flags &= ~MNT_LOCKED;
426 	}
427 }
428 
429 static void umount_one(struct mount *mnt, struct list_head *to_umount)
430 {
431 	CLEAR_MNT_MARK(mnt);
432 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
433 	list_del_init(&mnt->mnt_child);
434 	list_del_init(&mnt->mnt_umounting);
435 	list_move_tail(&mnt->mnt_list, to_umount);
436 }
437 
438 /*
439  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
440  * parent propagates to.
441  */
442 static bool __propagate_umount(struct mount *mnt,
443 			       struct list_head *to_umount,
444 			       struct list_head *to_restore)
445 {
446 	bool progress = false;
447 	struct mount *child;
448 
449 	/*
450 	 * The state of the parent won't change if this mount is
451 	 * already unmounted or marked as without children.
452 	 */
453 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
454 		goto out;
455 
456 	/* Verify topper is the only grandchild that has not been
457 	 * speculatively unmounted.
458 	 */
459 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
460 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
461 			continue;
462 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
463 			continue;
464 		/* Found a mounted child */
465 		goto children;
466 	}
467 
468 	/* Mark mounts that can be unmounted if not locked */
469 	SET_MNT_MARK(mnt);
470 	progress = true;
471 
472 	/* If a mount is without children and not locked umount it. */
473 	if (!IS_MNT_LOCKED(mnt)) {
474 		umount_one(mnt, to_umount);
475 	} else {
476 children:
477 		list_move_tail(&mnt->mnt_umounting, to_restore);
478 	}
479 out:
480 	return progress;
481 }
482 
483 static void umount_list(struct list_head *to_umount,
484 			struct list_head *to_restore)
485 {
486 	struct mount *mnt, *child, *tmp;
487 	list_for_each_entry(mnt, to_umount, mnt_list) {
488 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
489 			/* topper? */
490 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
491 				list_move_tail(&child->mnt_umounting, to_restore);
492 			else
493 				umount_one(child, to_umount);
494 		}
495 	}
496 }
497 
498 static void restore_mounts(struct list_head *to_restore)
499 {
500 	/* Restore mounts to a clean working state */
501 	while (!list_empty(to_restore)) {
502 		struct mount *mnt, *parent;
503 		struct mountpoint *mp;
504 
505 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
506 		CLEAR_MNT_MARK(mnt);
507 		list_del_init(&mnt->mnt_umounting);
508 
509 		/* Should this mount be reparented? */
510 		mp = mnt->mnt_mp;
511 		parent = mnt->mnt_parent;
512 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
513 			mp = parent->mnt_mp;
514 			parent = parent->mnt_parent;
515 		}
516 		if (parent != mnt->mnt_parent)
517 			mnt_change_mountpoint(parent, mp, mnt);
518 	}
519 }
520 
521 static void cleanup_umount_visitations(struct list_head *visited)
522 {
523 	while (!list_empty(visited)) {
524 		struct mount *mnt =
525 			list_first_entry(visited, struct mount, mnt_umounting);
526 		list_del_init(&mnt->mnt_umounting);
527 	}
528 }
529 
530 /*
531  * collect all mounts that receive propagation from the mount in @list,
532  * and return these additional mounts in the same list.
533  * @list: the list of mounts to be unmounted.
534  *
535  * vfsmount lock must be held for write
536  */
537 int propagate_umount(struct list_head *list)
538 {
539 	struct mount *mnt;
540 	LIST_HEAD(to_restore);
541 	LIST_HEAD(to_umount);
542 	LIST_HEAD(visited);
543 
544 	/* Find candidates for unmounting */
545 	list_for_each_entry_reverse(mnt, list, mnt_list) {
546 		struct mount *parent = mnt->mnt_parent;
547 		struct mount *m;
548 
549 		/*
550 		 * If this mount has already been visited it is known that it's
551 		 * entire peer group and all of their slaves in the propagation
552 		 * tree for the mountpoint has already been visited and there is
553 		 * no need to visit them again.
554 		 */
555 		if (!list_empty(&mnt->mnt_umounting))
556 			continue;
557 
558 		list_add_tail(&mnt->mnt_umounting, &visited);
559 		for (m = propagation_next(parent, parent); m;
560 		     m = propagation_next(m, parent)) {
561 			struct mount *child = __lookup_mnt(&m->mnt,
562 							   mnt->mnt_mountpoint);
563 			if (!child)
564 				continue;
565 
566 			if (!list_empty(&child->mnt_umounting)) {
567 				/*
568 				 * If the child has already been visited it is
569 				 * know that it's entire peer group and all of
570 				 * their slaves in the propgation tree for the
571 				 * mountpoint has already been visited and there
572 				 * is no need to visit this subtree again.
573 				 */
574 				m = skip_propagation_subtree(m, parent);
575 				continue;
576 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
577 				/*
578 				 * We have come accross an partially unmounted
579 				 * mount in list that has not been visited yet.
580 				 * Remember it has been visited and continue
581 				 * about our merry way.
582 				 */
583 				list_add_tail(&child->mnt_umounting, &visited);
584 				continue;
585 			}
586 
587 			/* Check the child and parents while progress is made */
588 			while (__propagate_umount(child,
589 						  &to_umount, &to_restore)) {
590 				/* Is the parent a umount candidate? */
591 				child = child->mnt_parent;
592 				if (list_empty(&child->mnt_umounting))
593 					break;
594 			}
595 		}
596 	}
597 
598 	umount_list(&to_umount, &to_restore);
599 	restore_mounts(&to_restore);
600 	cleanup_umount_visitations(&visited);
601 	list_splice_tail(&to_umount, list);
602 
603 	return 0;
604 }
605