xref: /openbmc/linux/fs/pnode.c (revision 56d06fa2)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *next_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30 }
31 
32 static struct mount *get_peer_under_root(struct mount *mnt,
33 					 struct mnt_namespace *ns,
34 					 const struct path *root)
35 {
36 	struct mount *m = mnt;
37 
38 	do {
39 		/* Check the namespace first for optimization */
40 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 			return m;
42 
43 		m = next_peer(m);
44 	} while (m != mnt);
45 
46 	return NULL;
47 }
48 
49 /*
50  * Get ID of closest dominating peer group having a representative
51  * under the given root.
52  *
53  * Caller must hold namespace_sem
54  */
55 int get_dominating_id(struct mount *mnt, const struct path *root)
56 {
57 	struct mount *m;
58 
59 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 		if (d)
62 			return d->mnt_group_id;
63 	}
64 
65 	return 0;
66 }
67 
68 static int do_make_slave(struct mount *mnt)
69 {
70 	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
71 	struct mount *slave_mnt;
72 
73 	/*
74 	 * slave 'mnt' to a peer mount that has the
75 	 * same root dentry. If none is available then
76 	 * slave it to anything that is available.
77 	 */
78 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
79 	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
80 
81 	if (peer_mnt == mnt) {
82 		peer_mnt = next_peer(mnt);
83 		if (peer_mnt == mnt)
84 			peer_mnt = NULL;
85 	}
86 	if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
87 	    list_empty(&mnt->mnt_share))
88 		mnt_release_group_id(mnt);
89 
90 	list_del_init(&mnt->mnt_share);
91 	mnt->mnt_group_id = 0;
92 
93 	if (peer_mnt)
94 		master = peer_mnt;
95 
96 	if (master) {
97 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
98 			slave_mnt->mnt_master = master;
99 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
100 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
101 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
102 	} else {
103 		struct list_head *p = &mnt->mnt_slave_list;
104 		while (!list_empty(p)) {
105                         slave_mnt = list_first_entry(p,
106 					struct mount, mnt_slave);
107 			list_del_init(&slave_mnt->mnt_slave);
108 			slave_mnt->mnt_master = NULL;
109 		}
110 	}
111 	mnt->mnt_master = master;
112 	CLEAR_MNT_SHARED(mnt);
113 	return 0;
114 }
115 
116 /*
117  * vfsmount lock must be held for write
118  */
119 void change_mnt_propagation(struct mount *mnt, int type)
120 {
121 	if (type == MS_SHARED) {
122 		set_mnt_shared(mnt);
123 		return;
124 	}
125 	do_make_slave(mnt);
126 	if (type != MS_SLAVE) {
127 		list_del_init(&mnt->mnt_slave);
128 		mnt->mnt_master = NULL;
129 		if (type == MS_UNBINDABLE)
130 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
131 		else
132 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
133 	}
134 }
135 
136 /*
137  * get the next mount in the propagation tree.
138  * @m: the mount seen last
139  * @origin: the original mount from where the tree walk initiated
140  *
141  * Note that peer groups form contiguous segments of slave lists.
142  * We rely on that in get_source() to be able to find out if
143  * vfsmount found while iterating with propagation_next() is
144  * a peer of one we'd found earlier.
145  */
146 static struct mount *propagation_next(struct mount *m,
147 					 struct mount *origin)
148 {
149 	/* are there any slaves of this mount? */
150 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
151 		return first_slave(m);
152 
153 	while (1) {
154 		struct mount *master = m->mnt_master;
155 
156 		if (master == origin->mnt_master) {
157 			struct mount *next = next_peer(m);
158 			return (next == origin) ? NULL : next;
159 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
160 			return next_slave(m);
161 
162 		/* back at master */
163 		m = master;
164 	}
165 }
166 
167 static struct mount *next_group(struct mount *m, struct mount *origin)
168 {
169 	while (1) {
170 		while (1) {
171 			struct mount *next;
172 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
173 				return first_slave(m);
174 			next = next_peer(m);
175 			if (m->mnt_group_id == origin->mnt_group_id) {
176 				if (next == origin)
177 					return NULL;
178 			} else if (m->mnt_slave.next != &next->mnt_slave)
179 				break;
180 			m = next;
181 		}
182 		/* m is the last peer */
183 		while (1) {
184 			struct mount *master = m->mnt_master;
185 			if (m->mnt_slave.next != &master->mnt_slave_list)
186 				return next_slave(m);
187 			m = next_peer(master);
188 			if (master->mnt_group_id == origin->mnt_group_id)
189 				break;
190 			if (master->mnt_slave.next == &m->mnt_slave)
191 				break;
192 			m = master;
193 		}
194 		if (m == origin)
195 			return NULL;
196 	}
197 }
198 
199 /* all accesses are serialized by namespace_sem */
200 static struct user_namespace *user_ns;
201 static struct mount *last_dest, *first_source, *last_source, *dest_master;
202 static struct mountpoint *mp;
203 static struct hlist_head *list;
204 
205 static inline bool peers(struct mount *m1, struct mount *m2)
206 {
207 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
208 }
209 
210 static int propagate_one(struct mount *m)
211 {
212 	struct mount *child;
213 	int type;
214 	/* skip ones added by this propagate_mnt() */
215 	if (IS_MNT_NEW(m))
216 		return 0;
217 	/* skip if mountpoint isn't covered by it */
218 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
219 		return 0;
220 	if (peers(m, last_dest)) {
221 		type = CL_MAKE_SHARED;
222 	} else {
223 		struct mount *n, *p;
224 		bool done;
225 		for (n = m; ; n = p) {
226 			p = n->mnt_master;
227 			if (p == dest_master || IS_MNT_MARKED(p))
228 				break;
229 		}
230 		do {
231 			struct mount *parent = last_source->mnt_parent;
232 			if (last_source == first_source)
233 				break;
234 			done = parent->mnt_master == p;
235 			if (done && peers(n, parent))
236 				break;
237 			last_source = last_source->mnt_master;
238 		} while (!done);
239 
240 		type = CL_SLAVE;
241 		/* beginning of peer group among the slaves? */
242 		if (IS_MNT_SHARED(m))
243 			type |= CL_MAKE_SHARED;
244 	}
245 
246 	/* Notice when we are propagating across user namespaces */
247 	if (m->mnt_ns->user_ns != user_ns)
248 		type |= CL_UNPRIVILEGED;
249 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
250 	if (IS_ERR(child))
251 		return PTR_ERR(child);
252 	child->mnt.mnt_flags &= ~MNT_LOCKED;
253 	mnt_set_mountpoint(m, mp, child);
254 	last_dest = m;
255 	last_source = child;
256 	if (m->mnt_master != dest_master) {
257 		read_seqlock_excl(&mount_lock);
258 		SET_MNT_MARK(m->mnt_master);
259 		read_sequnlock_excl(&mount_lock);
260 	}
261 	hlist_add_head(&child->mnt_hash, list);
262 	return 0;
263 }
264 
265 /*
266  * mount 'source_mnt' under the destination 'dest_mnt' at
267  * dentry 'dest_dentry'. And propagate that mount to
268  * all the peer and slave mounts of 'dest_mnt'.
269  * Link all the new mounts into a propagation tree headed at
270  * source_mnt. Also link all the new mounts using ->mnt_list
271  * headed at source_mnt's ->mnt_list
272  *
273  * @dest_mnt: destination mount.
274  * @dest_dentry: destination dentry.
275  * @source_mnt: source mount.
276  * @tree_list : list of heads of trees to be attached.
277  */
278 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
279 		    struct mount *source_mnt, struct hlist_head *tree_list)
280 {
281 	struct mount *m, *n;
282 	int ret = 0;
283 
284 	/*
285 	 * we don't want to bother passing tons of arguments to
286 	 * propagate_one(); everything is serialized by namespace_sem,
287 	 * so globals will do just fine.
288 	 */
289 	user_ns = current->nsproxy->mnt_ns->user_ns;
290 	last_dest = dest_mnt;
291 	first_source = source_mnt;
292 	last_source = source_mnt;
293 	mp = dest_mp;
294 	list = tree_list;
295 	dest_master = dest_mnt->mnt_master;
296 
297 	/* all peers of dest_mnt, except dest_mnt itself */
298 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
299 		ret = propagate_one(n);
300 		if (ret)
301 			goto out;
302 	}
303 
304 	/* all slave groups */
305 	for (m = next_group(dest_mnt, dest_mnt); m;
306 			m = next_group(m, dest_mnt)) {
307 		/* everything in that slave group */
308 		n = m;
309 		do {
310 			ret = propagate_one(n);
311 			if (ret)
312 				goto out;
313 			n = next_peer(n);
314 		} while (n != m);
315 	}
316 out:
317 	read_seqlock_excl(&mount_lock);
318 	hlist_for_each_entry(n, tree_list, mnt_hash) {
319 		m = n->mnt_parent;
320 		if (m->mnt_master != dest_mnt->mnt_master)
321 			CLEAR_MNT_MARK(m->mnt_master);
322 	}
323 	read_sequnlock_excl(&mount_lock);
324 	return ret;
325 }
326 
327 /*
328  * return true if the refcount is greater than count
329  */
330 static inline int do_refcount_check(struct mount *mnt, int count)
331 {
332 	return mnt_get_count(mnt) > count;
333 }
334 
335 /*
336  * check if the mount 'mnt' can be unmounted successfully.
337  * @mnt: the mount to be checked for unmount
338  * NOTE: unmounting 'mnt' would naturally propagate to all
339  * other mounts its parent propagates to.
340  * Check if any of these mounts that **do not have submounts**
341  * have more references than 'refcnt'. If so return busy.
342  *
343  * vfsmount lock must be held for write
344  */
345 int propagate_mount_busy(struct mount *mnt, int refcnt)
346 {
347 	struct mount *m, *child;
348 	struct mount *parent = mnt->mnt_parent;
349 	int ret = 0;
350 
351 	if (mnt == parent)
352 		return do_refcount_check(mnt, refcnt);
353 
354 	/*
355 	 * quickly check if the current mount can be unmounted.
356 	 * If not, we don't have to go checking for all other
357 	 * mounts
358 	 */
359 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
360 		return 1;
361 
362 	for (m = propagation_next(parent, parent); m;
363 	     		m = propagation_next(m, parent)) {
364 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
365 		if (child && list_empty(&child->mnt_mounts) &&
366 		    (ret = do_refcount_check(child, 1)))
367 			break;
368 	}
369 	return ret;
370 }
371 
372 /*
373  * Clear MNT_LOCKED when it can be shown to be safe.
374  *
375  * mount_lock lock must be held for write
376  */
377 void propagate_mount_unlock(struct mount *mnt)
378 {
379 	struct mount *parent = mnt->mnt_parent;
380 	struct mount *m, *child;
381 
382 	BUG_ON(parent == mnt);
383 
384 	for (m = propagation_next(parent, parent); m;
385 			m = propagation_next(m, parent)) {
386 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
387 		if (child)
388 			child->mnt.mnt_flags &= ~MNT_LOCKED;
389 	}
390 }
391 
392 /*
393  * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
394  */
395 static void mark_umount_candidates(struct mount *mnt)
396 {
397 	struct mount *parent = mnt->mnt_parent;
398 	struct mount *m;
399 
400 	BUG_ON(parent == mnt);
401 
402 	for (m = propagation_next(parent, parent); m;
403 			m = propagation_next(m, parent)) {
404 		struct mount *child = __lookup_mnt_last(&m->mnt,
405 						mnt->mnt_mountpoint);
406 		if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
407 			SET_MNT_MARK(child);
408 		}
409 	}
410 }
411 
412 /*
413  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
414  * parent propagates to.
415  */
416 static void __propagate_umount(struct mount *mnt)
417 {
418 	struct mount *parent = mnt->mnt_parent;
419 	struct mount *m;
420 
421 	BUG_ON(parent == mnt);
422 
423 	for (m = propagation_next(parent, parent); m;
424 			m = propagation_next(m, parent)) {
425 
426 		struct mount *child = __lookup_mnt_last(&m->mnt,
427 						mnt->mnt_mountpoint);
428 		/*
429 		 * umount the child only if the child has no children
430 		 * and the child is marked safe to unmount.
431 		 */
432 		if (!child || !IS_MNT_MARKED(child))
433 			continue;
434 		CLEAR_MNT_MARK(child);
435 		if (list_empty(&child->mnt_mounts)) {
436 			list_del_init(&child->mnt_child);
437 			child->mnt.mnt_flags |= MNT_UMOUNT;
438 			list_move_tail(&child->mnt_list, &mnt->mnt_list);
439 		}
440 	}
441 }
442 
443 /*
444  * collect all mounts that receive propagation from the mount in @list,
445  * and return these additional mounts in the same list.
446  * @list: the list of mounts to be unmounted.
447  *
448  * vfsmount lock must be held for write
449  */
450 int propagate_umount(struct list_head *list)
451 {
452 	struct mount *mnt;
453 
454 	list_for_each_entry_reverse(mnt, list, mnt_list)
455 		mark_umount_candidates(mnt);
456 
457 	list_for_each_entry(mnt, list, mnt_list)
458 		__propagate_umount(mnt);
459 	return 0;
460 }
461