1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/pnode.c 4 * 5 * (C) Copyright IBM Corporation 2005. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 */ 8 #include <linux/mnt_namespace.h> 9 #include <linux/mount.h> 10 #include <linux/fs.h> 11 #include <linux/nsproxy.h> 12 #include <uapi/linux/mount.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *last_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); 30 } 31 32 static inline struct mount *next_slave(struct mount *p) 33 { 34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 35 } 36 37 static struct mount *get_peer_under_root(struct mount *mnt, 38 struct mnt_namespace *ns, 39 const struct path *root) 40 { 41 struct mount *m = mnt; 42 43 do { 44 /* Check the namespace first for optimization */ 45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 46 return m; 47 48 m = next_peer(m); 49 } while (m != mnt); 50 51 return NULL; 52 } 53 54 /* 55 * Get ID of closest dominating peer group having a representative 56 * under the given root. 57 * 58 * Caller must hold namespace_sem 59 */ 60 int get_dominating_id(struct mount *mnt, const struct path *root) 61 { 62 struct mount *m; 63 64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 66 if (d) 67 return d->mnt_group_id; 68 } 69 70 return 0; 71 } 72 73 static int do_make_slave(struct mount *mnt) 74 { 75 struct mount *master, *slave_mnt; 76 77 if (list_empty(&mnt->mnt_share)) { 78 if (IS_MNT_SHARED(mnt)) { 79 mnt_release_group_id(mnt); 80 CLEAR_MNT_SHARED(mnt); 81 } 82 master = mnt->mnt_master; 83 if (!master) { 84 struct list_head *p = &mnt->mnt_slave_list; 85 while (!list_empty(p)) { 86 slave_mnt = list_first_entry(p, 87 struct mount, mnt_slave); 88 list_del_init(&slave_mnt->mnt_slave); 89 slave_mnt->mnt_master = NULL; 90 } 91 return 0; 92 } 93 } else { 94 struct mount *m; 95 /* 96 * slave 'mnt' to a peer mount that has the 97 * same root dentry. If none is available then 98 * slave it to anything that is available. 99 */ 100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 102 master = m; 103 break; 104 } 105 } 106 list_del_init(&mnt->mnt_share); 107 mnt->mnt_group_id = 0; 108 CLEAR_MNT_SHARED(mnt); 109 } 110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 111 slave_mnt->mnt_master = master; 112 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 114 INIT_LIST_HEAD(&mnt->mnt_slave_list); 115 mnt->mnt_master = master; 116 return 0; 117 } 118 119 /* 120 * vfsmount lock must be held for write 121 */ 122 void change_mnt_propagation(struct mount *mnt, int type) 123 { 124 if (type == MS_SHARED) { 125 set_mnt_shared(mnt); 126 return; 127 } 128 do_make_slave(mnt); 129 if (type != MS_SLAVE) { 130 list_del_init(&mnt->mnt_slave); 131 mnt->mnt_master = NULL; 132 if (type == MS_UNBINDABLE) 133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 134 else 135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 136 } 137 } 138 139 /* 140 * get the next mount in the propagation tree. 141 * @m: the mount seen last 142 * @origin: the original mount from where the tree walk initiated 143 * 144 * Note that peer groups form contiguous segments of slave lists. 145 * We rely on that in get_source() to be able to find out if 146 * vfsmount found while iterating with propagation_next() is 147 * a peer of one we'd found earlier. 148 */ 149 static struct mount *propagation_next(struct mount *m, 150 struct mount *origin) 151 { 152 /* are there any slaves of this mount? */ 153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 154 return first_slave(m); 155 156 while (1) { 157 struct mount *master = m->mnt_master; 158 159 if (master == origin->mnt_master) { 160 struct mount *next = next_peer(m); 161 return (next == origin) ? NULL : next; 162 } else if (m->mnt_slave.next != &master->mnt_slave_list) 163 return next_slave(m); 164 165 /* back at master */ 166 m = master; 167 } 168 } 169 170 static struct mount *skip_propagation_subtree(struct mount *m, 171 struct mount *origin) 172 { 173 /* 174 * Advance m such that propagation_next will not return 175 * the slaves of m. 176 */ 177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 178 m = last_slave(m); 179 180 return m; 181 } 182 183 static struct mount *next_group(struct mount *m, struct mount *origin) 184 { 185 while (1) { 186 while (1) { 187 struct mount *next; 188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 189 return first_slave(m); 190 next = next_peer(m); 191 if (m->mnt_group_id == origin->mnt_group_id) { 192 if (next == origin) 193 return NULL; 194 } else if (m->mnt_slave.next != &next->mnt_slave) 195 break; 196 m = next; 197 } 198 /* m is the last peer */ 199 while (1) { 200 struct mount *master = m->mnt_master; 201 if (m->mnt_slave.next != &master->mnt_slave_list) 202 return next_slave(m); 203 m = next_peer(master); 204 if (master->mnt_group_id == origin->mnt_group_id) 205 break; 206 if (master->mnt_slave.next == &m->mnt_slave) 207 break; 208 m = master; 209 } 210 if (m == origin) 211 return NULL; 212 } 213 } 214 215 /* all accesses are serialized by namespace_sem */ 216 static struct mount *last_dest, *first_source, *last_source, *dest_master; 217 static struct hlist_head *list; 218 219 static inline bool peers(struct mount *m1, struct mount *m2) 220 { 221 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 222 } 223 224 static int propagate_one(struct mount *m, struct mountpoint *dest_mp) 225 { 226 struct mount *child; 227 int type; 228 /* skip ones added by this propagate_mnt() */ 229 if (IS_MNT_NEW(m)) 230 return 0; 231 /* skip if mountpoint isn't covered by it */ 232 if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) 233 return 0; 234 if (peers(m, last_dest)) { 235 type = CL_MAKE_SHARED; 236 } else { 237 struct mount *n, *p; 238 bool done; 239 for (n = m; ; n = p) { 240 p = n->mnt_master; 241 if (p == dest_master || IS_MNT_MARKED(p)) 242 break; 243 } 244 do { 245 struct mount *parent = last_source->mnt_parent; 246 if (peers(last_source, first_source)) 247 break; 248 done = parent->mnt_master == p; 249 if (done && peers(n, parent)) 250 break; 251 last_source = last_source->mnt_master; 252 } while (!done); 253 254 type = CL_SLAVE; 255 /* beginning of peer group among the slaves? */ 256 if (IS_MNT_SHARED(m)) 257 type |= CL_MAKE_SHARED; 258 } 259 260 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 261 if (IS_ERR(child)) 262 return PTR_ERR(child); 263 read_seqlock_excl(&mount_lock); 264 mnt_set_mountpoint(m, dest_mp, child); 265 if (m->mnt_master != dest_master) 266 SET_MNT_MARK(m->mnt_master); 267 read_sequnlock_excl(&mount_lock); 268 last_dest = m; 269 last_source = child; 270 hlist_add_head(&child->mnt_hash, list); 271 return count_mounts(m->mnt_ns, child); 272 } 273 274 /* 275 * mount 'source_mnt' under the destination 'dest_mnt' at 276 * dentry 'dest_dentry'. And propagate that mount to 277 * all the peer and slave mounts of 'dest_mnt'. 278 * Link all the new mounts into a propagation tree headed at 279 * source_mnt. Also link all the new mounts using ->mnt_list 280 * headed at source_mnt's ->mnt_list 281 * 282 * @dest_mnt: destination mount. 283 * @dest_dentry: destination dentry. 284 * @source_mnt: source mount. 285 * @tree_list : list of heads of trees to be attached. 286 */ 287 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 288 struct mount *source_mnt, struct hlist_head *tree_list) 289 { 290 struct mount *m, *n; 291 int ret = 0; 292 293 /* 294 * we don't want to bother passing tons of arguments to 295 * propagate_one(); everything is serialized by namespace_sem, 296 * so globals will do just fine. 297 */ 298 last_dest = dest_mnt; 299 first_source = source_mnt; 300 last_source = source_mnt; 301 list = tree_list; 302 dest_master = dest_mnt->mnt_master; 303 304 /* all peers of dest_mnt, except dest_mnt itself */ 305 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 306 ret = propagate_one(n, dest_mp); 307 if (ret) 308 goto out; 309 } 310 311 /* all slave groups */ 312 for (m = next_group(dest_mnt, dest_mnt); m; 313 m = next_group(m, dest_mnt)) { 314 /* everything in that slave group */ 315 n = m; 316 do { 317 ret = propagate_one(n, dest_mp); 318 if (ret) 319 goto out; 320 n = next_peer(n); 321 } while (n != m); 322 } 323 out: 324 read_seqlock_excl(&mount_lock); 325 hlist_for_each_entry(n, tree_list, mnt_hash) { 326 m = n->mnt_parent; 327 if (m->mnt_master != dest_mnt->mnt_master) 328 CLEAR_MNT_MARK(m->mnt_master); 329 } 330 read_sequnlock_excl(&mount_lock); 331 return ret; 332 } 333 334 static struct mount *find_topper(struct mount *mnt) 335 { 336 /* If there is exactly one mount covering mnt completely return it. */ 337 struct mount *child; 338 339 if (!list_is_singular(&mnt->mnt_mounts)) 340 return NULL; 341 342 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 343 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 344 return NULL; 345 346 return child; 347 } 348 349 /* 350 * return true if the refcount is greater than count 351 */ 352 static inline int do_refcount_check(struct mount *mnt, int count) 353 { 354 return mnt_get_count(mnt) > count; 355 } 356 357 /* 358 * check if the mount 'mnt' can be unmounted successfully. 359 * @mnt: the mount to be checked for unmount 360 * NOTE: unmounting 'mnt' would naturally propagate to all 361 * other mounts its parent propagates to. 362 * Check if any of these mounts that **do not have submounts** 363 * have more references than 'refcnt'. If so return busy. 364 * 365 * vfsmount lock must be held for write 366 */ 367 int propagate_mount_busy(struct mount *mnt, int refcnt) 368 { 369 struct mount *m, *child, *topper; 370 struct mount *parent = mnt->mnt_parent; 371 372 if (mnt == parent) 373 return do_refcount_check(mnt, refcnt); 374 375 /* 376 * quickly check if the current mount can be unmounted. 377 * If not, we don't have to go checking for all other 378 * mounts 379 */ 380 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 381 return 1; 382 383 for (m = propagation_next(parent, parent); m; 384 m = propagation_next(m, parent)) { 385 int count = 1; 386 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 387 if (!child) 388 continue; 389 390 /* Is there exactly one mount on the child that covers 391 * it completely whose reference should be ignored? 392 */ 393 topper = find_topper(child); 394 if (topper) 395 count += 1; 396 else if (!list_empty(&child->mnt_mounts)) 397 continue; 398 399 if (do_refcount_check(child, count)) 400 return 1; 401 } 402 return 0; 403 } 404 405 /* 406 * Clear MNT_LOCKED when it can be shown to be safe. 407 * 408 * mount_lock lock must be held for write 409 */ 410 void propagate_mount_unlock(struct mount *mnt) 411 { 412 struct mount *parent = mnt->mnt_parent; 413 struct mount *m, *child; 414 415 BUG_ON(parent == mnt); 416 417 for (m = propagation_next(parent, parent); m; 418 m = propagation_next(m, parent)) { 419 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 420 if (child) 421 child->mnt.mnt_flags &= ~MNT_LOCKED; 422 } 423 } 424 425 static void umount_one(struct mount *mnt, struct list_head *to_umount) 426 { 427 CLEAR_MNT_MARK(mnt); 428 mnt->mnt.mnt_flags |= MNT_UMOUNT; 429 list_del_init(&mnt->mnt_child); 430 list_del_init(&mnt->mnt_umounting); 431 list_move_tail(&mnt->mnt_list, to_umount); 432 } 433 434 /* 435 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 436 * parent propagates to. 437 */ 438 static bool __propagate_umount(struct mount *mnt, 439 struct list_head *to_umount, 440 struct list_head *to_restore) 441 { 442 bool progress = false; 443 struct mount *child; 444 445 /* 446 * The state of the parent won't change if this mount is 447 * already unmounted or marked as without children. 448 */ 449 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) 450 goto out; 451 452 /* Verify topper is the only grandchild that has not been 453 * speculatively unmounted. 454 */ 455 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 456 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 457 continue; 458 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child)) 459 continue; 460 /* Found a mounted child */ 461 goto children; 462 } 463 464 /* Mark mounts that can be unmounted if not locked */ 465 SET_MNT_MARK(mnt); 466 progress = true; 467 468 /* If a mount is without children and not locked umount it. */ 469 if (!IS_MNT_LOCKED(mnt)) { 470 umount_one(mnt, to_umount); 471 } else { 472 children: 473 list_move_tail(&mnt->mnt_umounting, to_restore); 474 } 475 out: 476 return progress; 477 } 478 479 static void umount_list(struct list_head *to_umount, 480 struct list_head *to_restore) 481 { 482 struct mount *mnt, *child, *tmp; 483 list_for_each_entry(mnt, to_umount, mnt_list) { 484 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { 485 /* topper? */ 486 if (child->mnt_mountpoint == mnt->mnt.mnt_root) 487 list_move_tail(&child->mnt_umounting, to_restore); 488 else 489 umount_one(child, to_umount); 490 } 491 } 492 } 493 494 static void restore_mounts(struct list_head *to_restore) 495 { 496 /* Restore mounts to a clean working state */ 497 while (!list_empty(to_restore)) { 498 struct mount *mnt, *parent; 499 struct mountpoint *mp; 500 501 mnt = list_first_entry(to_restore, struct mount, mnt_umounting); 502 CLEAR_MNT_MARK(mnt); 503 list_del_init(&mnt->mnt_umounting); 504 505 /* Should this mount be reparented? */ 506 mp = mnt->mnt_mp; 507 parent = mnt->mnt_parent; 508 while (parent->mnt.mnt_flags & MNT_UMOUNT) { 509 mp = parent->mnt_mp; 510 parent = parent->mnt_parent; 511 } 512 if (parent != mnt->mnt_parent) 513 mnt_change_mountpoint(parent, mp, mnt); 514 } 515 } 516 517 static void cleanup_umount_visitations(struct list_head *visited) 518 { 519 while (!list_empty(visited)) { 520 struct mount *mnt = 521 list_first_entry(visited, struct mount, mnt_umounting); 522 list_del_init(&mnt->mnt_umounting); 523 } 524 } 525 526 /* 527 * collect all mounts that receive propagation from the mount in @list, 528 * and return these additional mounts in the same list. 529 * @list: the list of mounts to be unmounted. 530 * 531 * vfsmount lock must be held for write 532 */ 533 int propagate_umount(struct list_head *list) 534 { 535 struct mount *mnt; 536 LIST_HEAD(to_restore); 537 LIST_HEAD(to_umount); 538 LIST_HEAD(visited); 539 540 /* Find candidates for unmounting */ 541 list_for_each_entry_reverse(mnt, list, mnt_list) { 542 struct mount *parent = mnt->mnt_parent; 543 struct mount *m; 544 545 /* 546 * If this mount has already been visited it is known that it's 547 * entire peer group and all of their slaves in the propagation 548 * tree for the mountpoint has already been visited and there is 549 * no need to visit them again. 550 */ 551 if (!list_empty(&mnt->mnt_umounting)) 552 continue; 553 554 list_add_tail(&mnt->mnt_umounting, &visited); 555 for (m = propagation_next(parent, parent); m; 556 m = propagation_next(m, parent)) { 557 struct mount *child = __lookup_mnt(&m->mnt, 558 mnt->mnt_mountpoint); 559 if (!child) 560 continue; 561 562 if (!list_empty(&child->mnt_umounting)) { 563 /* 564 * If the child has already been visited it is 565 * know that it's entire peer group and all of 566 * their slaves in the propgation tree for the 567 * mountpoint has already been visited and there 568 * is no need to visit this subtree again. 569 */ 570 m = skip_propagation_subtree(m, parent); 571 continue; 572 } else if (child->mnt.mnt_flags & MNT_UMOUNT) { 573 /* 574 * We have come accross an partially unmounted 575 * mount in list that has not been visited yet. 576 * Remember it has been visited and continue 577 * about our merry way. 578 */ 579 list_add_tail(&child->mnt_umounting, &visited); 580 continue; 581 } 582 583 /* Check the child and parents while progress is made */ 584 while (__propagate_umount(child, 585 &to_umount, &to_restore)) { 586 /* Is the parent a umount candidate? */ 587 child = child->mnt_parent; 588 if (list_empty(&child->mnt_umounting)) 589 break; 590 } 591 } 592 } 593 594 umount_list(&to_umount, &to_restore); 595 restore_mounts(&to_restore); 596 cleanup_umount_visitations(&visited); 597 list_splice_tail(&to_umount, list); 598 599 return 0; 600 } 601