1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include <linux/nsproxy.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *next_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 30 } 31 32 static struct mount *get_peer_under_root(struct mount *mnt, 33 struct mnt_namespace *ns, 34 const struct path *root) 35 { 36 struct mount *m = mnt; 37 38 do { 39 /* Check the namespace first for optimization */ 40 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 41 return m; 42 43 m = next_peer(m); 44 } while (m != mnt); 45 46 return NULL; 47 } 48 49 /* 50 * Get ID of closest dominating peer group having a representative 51 * under the given root. 52 * 53 * Caller must hold namespace_sem 54 */ 55 int get_dominating_id(struct mount *mnt, const struct path *root) 56 { 57 struct mount *m; 58 59 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 60 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 61 if (d) 62 return d->mnt_group_id; 63 } 64 65 return 0; 66 } 67 68 static int do_make_slave(struct mount *mnt) 69 { 70 struct mount *peer_mnt = mnt, *master = mnt->mnt_master; 71 struct mount *slave_mnt; 72 73 /* 74 * slave 'mnt' to a peer mount that has the 75 * same root dentry. If none is available then 76 * slave it to anything that is available. 77 */ 78 while ((peer_mnt = next_peer(peer_mnt)) != mnt && 79 peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ; 80 81 if (peer_mnt == mnt) { 82 peer_mnt = next_peer(mnt); 83 if (peer_mnt == mnt) 84 peer_mnt = NULL; 85 } 86 if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) && 87 list_empty(&mnt->mnt_share)) 88 mnt_release_group_id(mnt); 89 90 list_del_init(&mnt->mnt_share); 91 mnt->mnt_group_id = 0; 92 93 if (peer_mnt) 94 master = peer_mnt; 95 96 if (master) { 97 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 98 slave_mnt->mnt_master = master; 99 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 100 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 101 INIT_LIST_HEAD(&mnt->mnt_slave_list); 102 } else { 103 struct list_head *p = &mnt->mnt_slave_list; 104 while (!list_empty(p)) { 105 slave_mnt = list_first_entry(p, 106 struct mount, mnt_slave); 107 list_del_init(&slave_mnt->mnt_slave); 108 slave_mnt->mnt_master = NULL; 109 } 110 } 111 mnt->mnt_master = master; 112 CLEAR_MNT_SHARED(mnt); 113 return 0; 114 } 115 116 /* 117 * vfsmount lock must be held for write 118 */ 119 void change_mnt_propagation(struct mount *mnt, int type) 120 { 121 if (type == MS_SHARED) { 122 set_mnt_shared(mnt); 123 return; 124 } 125 do_make_slave(mnt); 126 if (type != MS_SLAVE) { 127 list_del_init(&mnt->mnt_slave); 128 mnt->mnt_master = NULL; 129 if (type == MS_UNBINDABLE) 130 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 131 else 132 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 133 } 134 } 135 136 /* 137 * get the next mount in the propagation tree. 138 * @m: the mount seen last 139 * @origin: the original mount from where the tree walk initiated 140 * 141 * Note that peer groups form contiguous segments of slave lists. 142 * We rely on that in get_source() to be able to find out if 143 * vfsmount found while iterating with propagation_next() is 144 * a peer of one we'd found earlier. 145 */ 146 static struct mount *propagation_next(struct mount *m, 147 struct mount *origin) 148 { 149 /* are there any slaves of this mount? */ 150 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 151 return first_slave(m); 152 153 while (1) { 154 struct mount *master = m->mnt_master; 155 156 if (master == origin->mnt_master) { 157 struct mount *next = next_peer(m); 158 return (next == origin) ? NULL : next; 159 } else if (m->mnt_slave.next != &master->mnt_slave_list) 160 return next_slave(m); 161 162 /* back at master */ 163 m = master; 164 } 165 } 166 167 /* 168 * return the source mount to be used for cloning 169 * 170 * @dest the current destination mount 171 * @last_dest the last seen destination mount 172 * @last_src the last seen source mount 173 * @type return CL_SLAVE if the new mount has to be 174 * cloned as a slave. 175 */ 176 static struct mount *get_source(struct mount *dest, 177 struct mount *last_dest, 178 struct mount *last_src, 179 int *type) 180 { 181 struct mount *p_last_src = NULL; 182 struct mount *p_last_dest = NULL; 183 184 while (last_dest != dest->mnt_master) { 185 p_last_dest = last_dest; 186 p_last_src = last_src; 187 last_dest = last_dest->mnt_master; 188 last_src = last_src->mnt_master; 189 } 190 191 if (p_last_dest) { 192 do { 193 p_last_dest = next_peer(p_last_dest); 194 } while (IS_MNT_NEW(p_last_dest)); 195 /* is that a peer of the earlier? */ 196 if (dest == p_last_dest) { 197 *type = CL_MAKE_SHARED; 198 return p_last_src; 199 } 200 } 201 /* slave of the earlier, then */ 202 *type = CL_SLAVE; 203 /* beginning of peer group among the slaves? */ 204 if (IS_MNT_SHARED(dest)) 205 *type |= CL_MAKE_SHARED; 206 return last_src; 207 } 208 209 /* 210 * mount 'source_mnt' under the destination 'dest_mnt' at 211 * dentry 'dest_dentry'. And propagate that mount to 212 * all the peer and slave mounts of 'dest_mnt'. 213 * Link all the new mounts into a propagation tree headed at 214 * source_mnt. Also link all the new mounts using ->mnt_list 215 * headed at source_mnt's ->mnt_list 216 * 217 * @dest_mnt: destination mount. 218 * @dest_dentry: destination dentry. 219 * @source_mnt: source mount. 220 * @tree_list : list of heads of trees to be attached. 221 */ 222 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 223 struct mount *source_mnt, struct list_head *tree_list) 224 { 225 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 226 struct mount *m, *child; 227 int ret = 0; 228 struct mount *prev_dest_mnt = dest_mnt; 229 struct mount *prev_src_mnt = source_mnt; 230 LIST_HEAD(tmp_list); 231 232 for (m = propagation_next(dest_mnt, dest_mnt); m; 233 m = propagation_next(m, dest_mnt)) { 234 int type; 235 struct mount *source; 236 237 if (IS_MNT_NEW(m)) 238 continue; 239 240 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type); 241 242 /* Notice when we are propagating across user namespaces */ 243 if (m->mnt_ns->user_ns != user_ns) 244 type |= CL_UNPRIVILEGED; 245 246 child = copy_tree(source, source->mnt.mnt_root, type); 247 if (IS_ERR(child)) { 248 ret = PTR_ERR(child); 249 list_splice(tree_list, tmp_list.prev); 250 goto out; 251 } 252 253 if (is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) { 254 mnt_set_mountpoint(m, dest_mp, child); 255 list_add_tail(&child->mnt_hash, tree_list); 256 } else { 257 /* 258 * This can happen if the parent mount was bind mounted 259 * on some subdirectory of a shared/slave mount. 260 */ 261 list_add_tail(&child->mnt_hash, &tmp_list); 262 } 263 prev_dest_mnt = m; 264 prev_src_mnt = child; 265 } 266 out: 267 lock_mount_hash(); 268 while (!list_empty(&tmp_list)) { 269 child = list_first_entry(&tmp_list, struct mount, mnt_hash); 270 umount_tree(child, 0); 271 } 272 unlock_mount_hash(); 273 return ret; 274 } 275 276 /* 277 * return true if the refcount is greater than count 278 */ 279 static inline int do_refcount_check(struct mount *mnt, int count) 280 { 281 return mnt_get_count(mnt) > count; 282 } 283 284 /* 285 * check if the mount 'mnt' can be unmounted successfully. 286 * @mnt: the mount to be checked for unmount 287 * NOTE: unmounting 'mnt' would naturally propagate to all 288 * other mounts its parent propagates to. 289 * Check if any of these mounts that **do not have submounts** 290 * have more references than 'refcnt'. If so return busy. 291 * 292 * vfsmount lock must be held for write 293 */ 294 int propagate_mount_busy(struct mount *mnt, int refcnt) 295 { 296 struct mount *m, *child; 297 struct mount *parent = mnt->mnt_parent; 298 int ret = 0; 299 300 if (mnt == parent) 301 return do_refcount_check(mnt, refcnt); 302 303 /* 304 * quickly check if the current mount can be unmounted. 305 * If not, we don't have to go checking for all other 306 * mounts 307 */ 308 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 309 return 1; 310 311 for (m = propagation_next(parent, parent); m; 312 m = propagation_next(m, parent)) { 313 child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint); 314 if (child && list_empty(&child->mnt_mounts) && 315 (ret = do_refcount_check(child, 1))) 316 break; 317 } 318 return ret; 319 } 320 321 /* 322 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 323 * parent propagates to. 324 */ 325 static void __propagate_umount(struct mount *mnt) 326 { 327 struct mount *parent = mnt->mnt_parent; 328 struct mount *m; 329 330 BUG_ON(parent == mnt); 331 332 for (m = propagation_next(parent, parent); m; 333 m = propagation_next(m, parent)) { 334 335 struct mount *child = __lookup_mnt_last(&m->mnt, 336 mnt->mnt_mountpoint); 337 /* 338 * umount the child only if the child has no 339 * other children 340 */ 341 if (child && list_empty(&child->mnt_mounts)) 342 list_move_tail(&child->mnt_hash, &mnt->mnt_hash); 343 } 344 } 345 346 /* 347 * collect all mounts that receive propagation from the mount in @list, 348 * and return these additional mounts in the same list. 349 * @list: the list of mounts to be unmounted. 350 * 351 * vfsmount lock must be held for write 352 */ 353 int propagate_umount(struct list_head *list) 354 { 355 struct mount *mnt; 356 357 list_for_each_entry(mnt, list, mnt_hash) 358 __propagate_umount(mnt); 359 return 0; 360 } 361