xref: /openbmc/linux/fs/pnode.c (revision 483eb062)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
27 static inline struct mount *next_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30 }
31 
32 static struct mount *get_peer_under_root(struct mount *mnt,
33 					 struct mnt_namespace *ns,
34 					 const struct path *root)
35 {
36 	struct mount *m = mnt;
37 
38 	do {
39 		/* Check the namespace first for optimization */
40 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 			return m;
42 
43 		m = next_peer(m);
44 	} while (m != mnt);
45 
46 	return NULL;
47 }
48 
49 /*
50  * Get ID of closest dominating peer group having a representative
51  * under the given root.
52  *
53  * Caller must hold namespace_sem
54  */
55 int get_dominating_id(struct mount *mnt, const struct path *root)
56 {
57 	struct mount *m;
58 
59 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 		if (d)
62 			return d->mnt_group_id;
63 	}
64 
65 	return 0;
66 }
67 
68 static int do_make_slave(struct mount *mnt)
69 {
70 	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
71 	struct mount *slave_mnt;
72 
73 	/*
74 	 * slave 'mnt' to a peer mount that has the
75 	 * same root dentry. If none is available then
76 	 * slave it to anything that is available.
77 	 */
78 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
79 	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
80 
81 	if (peer_mnt == mnt) {
82 		peer_mnt = next_peer(mnt);
83 		if (peer_mnt == mnt)
84 			peer_mnt = NULL;
85 	}
86 	if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
87 	    list_empty(&mnt->mnt_share))
88 		mnt_release_group_id(mnt);
89 
90 	list_del_init(&mnt->mnt_share);
91 	mnt->mnt_group_id = 0;
92 
93 	if (peer_mnt)
94 		master = peer_mnt;
95 
96 	if (master) {
97 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
98 			slave_mnt->mnt_master = master;
99 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
100 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
101 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
102 	} else {
103 		struct list_head *p = &mnt->mnt_slave_list;
104 		while (!list_empty(p)) {
105                         slave_mnt = list_first_entry(p,
106 					struct mount, mnt_slave);
107 			list_del_init(&slave_mnt->mnt_slave);
108 			slave_mnt->mnt_master = NULL;
109 		}
110 	}
111 	mnt->mnt_master = master;
112 	CLEAR_MNT_SHARED(mnt);
113 	return 0;
114 }
115 
116 /*
117  * vfsmount lock must be held for write
118  */
119 void change_mnt_propagation(struct mount *mnt, int type)
120 {
121 	if (type == MS_SHARED) {
122 		set_mnt_shared(mnt);
123 		return;
124 	}
125 	do_make_slave(mnt);
126 	if (type != MS_SLAVE) {
127 		list_del_init(&mnt->mnt_slave);
128 		mnt->mnt_master = NULL;
129 		if (type == MS_UNBINDABLE)
130 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
131 		else
132 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
133 	}
134 }
135 
136 /*
137  * get the next mount in the propagation tree.
138  * @m: the mount seen last
139  * @origin: the original mount from where the tree walk initiated
140  *
141  * Note that peer groups form contiguous segments of slave lists.
142  * We rely on that in get_source() to be able to find out if
143  * vfsmount found while iterating with propagation_next() is
144  * a peer of one we'd found earlier.
145  */
146 static struct mount *propagation_next(struct mount *m,
147 					 struct mount *origin)
148 {
149 	/* are there any slaves of this mount? */
150 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
151 		return first_slave(m);
152 
153 	while (1) {
154 		struct mount *master = m->mnt_master;
155 
156 		if (master == origin->mnt_master) {
157 			struct mount *next = next_peer(m);
158 			return (next == origin) ? NULL : next;
159 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
160 			return next_slave(m);
161 
162 		/* back at master */
163 		m = master;
164 	}
165 }
166 
167 /*
168  * return the source mount to be used for cloning
169  *
170  * @dest 	the current destination mount
171  * @last_dest  	the last seen destination mount
172  * @last_src  	the last seen source mount
173  * @type	return CL_SLAVE if the new mount has to be
174  * 		cloned as a slave.
175  */
176 static struct mount *get_source(struct mount *dest,
177 				struct mount *last_dest,
178 				struct mount *last_src,
179 				int *type)
180 {
181 	struct mount *p_last_src = NULL;
182 	struct mount *p_last_dest = NULL;
183 
184 	while (last_dest != dest->mnt_master) {
185 		p_last_dest = last_dest;
186 		p_last_src = last_src;
187 		last_dest = last_dest->mnt_master;
188 		last_src = last_src->mnt_master;
189 	}
190 
191 	if (p_last_dest) {
192 		do {
193 			p_last_dest = next_peer(p_last_dest);
194 		} while (IS_MNT_NEW(p_last_dest));
195 		/* is that a peer of the earlier? */
196 		if (dest == p_last_dest) {
197 			*type = CL_MAKE_SHARED;
198 			return p_last_src;
199 		}
200 	}
201 	/* slave of the earlier, then */
202 	*type = CL_SLAVE;
203 	/* beginning of peer group among the slaves? */
204 	if (IS_MNT_SHARED(dest))
205 		*type |= CL_MAKE_SHARED;
206 	return last_src;
207 }
208 
209 /*
210  * mount 'source_mnt' under the destination 'dest_mnt' at
211  * dentry 'dest_dentry'. And propagate that mount to
212  * all the peer and slave mounts of 'dest_mnt'.
213  * Link all the new mounts into a propagation tree headed at
214  * source_mnt. Also link all the new mounts using ->mnt_list
215  * headed at source_mnt's ->mnt_list
216  *
217  * @dest_mnt: destination mount.
218  * @dest_dentry: destination dentry.
219  * @source_mnt: source mount.
220  * @tree_list : list of heads of trees to be attached.
221  */
222 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
223 		    struct mount *source_mnt, struct list_head *tree_list)
224 {
225 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
226 	struct mount *m, *child;
227 	int ret = 0;
228 	struct mount *prev_dest_mnt = dest_mnt;
229 	struct mount *prev_src_mnt  = source_mnt;
230 	LIST_HEAD(tmp_list);
231 
232 	for (m = propagation_next(dest_mnt, dest_mnt); m;
233 			m = propagation_next(m, dest_mnt)) {
234 		int type;
235 		struct mount *source;
236 
237 		if (IS_MNT_NEW(m))
238 			continue;
239 
240 		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
241 
242 		/* Notice when we are propagating across user namespaces */
243 		if (m->mnt_ns->user_ns != user_ns)
244 			type |= CL_UNPRIVILEGED;
245 
246 		child = copy_tree(source, source->mnt.mnt_root, type);
247 		if (IS_ERR(child)) {
248 			ret = PTR_ERR(child);
249 			list_splice(tree_list, tmp_list.prev);
250 			goto out;
251 		}
252 
253 		if (is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) {
254 			mnt_set_mountpoint(m, dest_mp, child);
255 			list_add_tail(&child->mnt_hash, tree_list);
256 		} else {
257 			/*
258 			 * This can happen if the parent mount was bind mounted
259 			 * on some subdirectory of a shared/slave mount.
260 			 */
261 			list_add_tail(&child->mnt_hash, &tmp_list);
262 		}
263 		prev_dest_mnt = m;
264 		prev_src_mnt  = child;
265 	}
266 out:
267 	lock_mount_hash();
268 	while (!list_empty(&tmp_list)) {
269 		child = list_first_entry(&tmp_list, struct mount, mnt_hash);
270 		umount_tree(child, 0);
271 	}
272 	unlock_mount_hash();
273 	return ret;
274 }
275 
276 /*
277  * return true if the refcount is greater than count
278  */
279 static inline int do_refcount_check(struct mount *mnt, int count)
280 {
281 	return mnt_get_count(mnt) > count;
282 }
283 
284 /*
285  * check if the mount 'mnt' can be unmounted successfully.
286  * @mnt: the mount to be checked for unmount
287  * NOTE: unmounting 'mnt' would naturally propagate to all
288  * other mounts its parent propagates to.
289  * Check if any of these mounts that **do not have submounts**
290  * have more references than 'refcnt'. If so return busy.
291  *
292  * vfsmount lock must be held for write
293  */
294 int propagate_mount_busy(struct mount *mnt, int refcnt)
295 {
296 	struct mount *m, *child;
297 	struct mount *parent = mnt->mnt_parent;
298 	int ret = 0;
299 
300 	if (mnt == parent)
301 		return do_refcount_check(mnt, refcnt);
302 
303 	/*
304 	 * quickly check if the current mount can be unmounted.
305 	 * If not, we don't have to go checking for all other
306 	 * mounts
307 	 */
308 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
309 		return 1;
310 
311 	for (m = propagation_next(parent, parent); m;
312 	     		m = propagation_next(m, parent)) {
313 		child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
314 		if (child && list_empty(&child->mnt_mounts) &&
315 		    (ret = do_refcount_check(child, 1)))
316 			break;
317 	}
318 	return ret;
319 }
320 
321 /*
322  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
323  * parent propagates to.
324  */
325 static void __propagate_umount(struct mount *mnt)
326 {
327 	struct mount *parent = mnt->mnt_parent;
328 	struct mount *m;
329 
330 	BUG_ON(parent == mnt);
331 
332 	for (m = propagation_next(parent, parent); m;
333 			m = propagation_next(m, parent)) {
334 
335 		struct mount *child = __lookup_mnt_last(&m->mnt,
336 						mnt->mnt_mountpoint);
337 		/*
338 		 * umount the child only if the child has no
339 		 * other children
340 		 */
341 		if (child && list_empty(&child->mnt_mounts))
342 			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
343 	}
344 }
345 
346 /*
347  * collect all mounts that receive propagation from the mount in @list,
348  * and return these additional mounts in the same list.
349  * @list: the list of mounts to be unmounted.
350  *
351  * vfsmount lock must be held for write
352  */
353 int propagate_umount(struct list_head *list)
354 {
355 	struct mount *mnt;
356 
357 	list_for_each_entry(mnt, list, mnt_hash)
358 		__propagate_umount(mnt);
359 	return 0;
360 }
361