1 /* 2 * linux/fs/pnode.c 3 * 4 * (C) Copyright IBM Corporation 2005. 5 * Released under GPL v2. 6 * Author : Ram Pai (linuxram@us.ibm.com) 7 * 8 */ 9 #include <linux/mnt_namespace.h> 10 #include <linux/mount.h> 11 #include <linux/fs.h> 12 #include <linux/nsproxy.h> 13 #include "internal.h" 14 #include "pnode.h" 15 16 /* return the next shared peer mount of @p */ 17 static inline struct mount *next_peer(struct mount *p) 18 { 19 return list_entry(p->mnt_share.next, struct mount, mnt_share); 20 } 21 22 static inline struct mount *first_slave(struct mount *p) 23 { 24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); 25 } 26 27 static inline struct mount *next_slave(struct mount *p) 28 { 29 return list_entry(p->mnt_slave.next, struct mount, mnt_slave); 30 } 31 32 static struct mount *get_peer_under_root(struct mount *mnt, 33 struct mnt_namespace *ns, 34 const struct path *root) 35 { 36 struct mount *m = mnt; 37 38 do { 39 /* Check the namespace first for optimization */ 40 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) 41 return m; 42 43 m = next_peer(m); 44 } while (m != mnt); 45 46 return NULL; 47 } 48 49 /* 50 * Get ID of closest dominating peer group having a representative 51 * under the given root. 52 * 53 * Caller must hold namespace_sem 54 */ 55 int get_dominating_id(struct mount *mnt, const struct path *root) 56 { 57 struct mount *m; 58 59 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { 60 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); 61 if (d) 62 return d->mnt_group_id; 63 } 64 65 return 0; 66 } 67 68 static int do_make_slave(struct mount *mnt) 69 { 70 struct mount *master, *slave_mnt; 71 72 if (list_empty(&mnt->mnt_share)) { 73 if (IS_MNT_SHARED(mnt)) { 74 mnt_release_group_id(mnt); 75 CLEAR_MNT_SHARED(mnt); 76 } 77 master = mnt->mnt_master; 78 if (!master) { 79 struct list_head *p = &mnt->mnt_slave_list; 80 while (!list_empty(p)) { 81 slave_mnt = list_first_entry(p, 82 struct mount, mnt_slave); 83 list_del_init(&slave_mnt->mnt_slave); 84 slave_mnt->mnt_master = NULL; 85 } 86 return 0; 87 } 88 } else { 89 struct mount *m; 90 /* 91 * slave 'mnt' to a peer mount that has the 92 * same root dentry. If none is available then 93 * slave it to anything that is available. 94 */ 95 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) { 96 if (m->mnt.mnt_root == mnt->mnt.mnt_root) { 97 master = m; 98 break; 99 } 100 } 101 list_del_init(&mnt->mnt_share); 102 mnt->mnt_group_id = 0; 103 CLEAR_MNT_SHARED(mnt); 104 } 105 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) 106 slave_mnt->mnt_master = master; 107 list_move(&mnt->mnt_slave, &master->mnt_slave_list); 108 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); 109 INIT_LIST_HEAD(&mnt->mnt_slave_list); 110 mnt->mnt_master = master; 111 return 0; 112 } 113 114 /* 115 * vfsmount lock must be held for write 116 */ 117 void change_mnt_propagation(struct mount *mnt, int type) 118 { 119 if (type == MS_SHARED) { 120 set_mnt_shared(mnt); 121 return; 122 } 123 do_make_slave(mnt); 124 if (type != MS_SLAVE) { 125 list_del_init(&mnt->mnt_slave); 126 mnt->mnt_master = NULL; 127 if (type == MS_UNBINDABLE) 128 mnt->mnt.mnt_flags |= MNT_UNBINDABLE; 129 else 130 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; 131 } 132 } 133 134 /* 135 * get the next mount in the propagation tree. 136 * @m: the mount seen last 137 * @origin: the original mount from where the tree walk initiated 138 * 139 * Note that peer groups form contiguous segments of slave lists. 140 * We rely on that in get_source() to be able to find out if 141 * vfsmount found while iterating with propagation_next() is 142 * a peer of one we'd found earlier. 143 */ 144 static struct mount *propagation_next(struct mount *m, 145 struct mount *origin) 146 { 147 /* are there any slaves of this mount? */ 148 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 149 return first_slave(m); 150 151 while (1) { 152 struct mount *master = m->mnt_master; 153 154 if (master == origin->mnt_master) { 155 struct mount *next = next_peer(m); 156 return (next == origin) ? NULL : next; 157 } else if (m->mnt_slave.next != &master->mnt_slave_list) 158 return next_slave(m); 159 160 /* back at master */ 161 m = master; 162 } 163 } 164 165 static struct mount *next_group(struct mount *m, struct mount *origin) 166 { 167 while (1) { 168 while (1) { 169 struct mount *next; 170 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) 171 return first_slave(m); 172 next = next_peer(m); 173 if (m->mnt_group_id == origin->mnt_group_id) { 174 if (next == origin) 175 return NULL; 176 } else if (m->mnt_slave.next != &next->mnt_slave) 177 break; 178 m = next; 179 } 180 /* m is the last peer */ 181 while (1) { 182 struct mount *master = m->mnt_master; 183 if (m->mnt_slave.next != &master->mnt_slave_list) 184 return next_slave(m); 185 m = next_peer(master); 186 if (master->mnt_group_id == origin->mnt_group_id) 187 break; 188 if (master->mnt_slave.next == &m->mnt_slave) 189 break; 190 m = master; 191 } 192 if (m == origin) 193 return NULL; 194 } 195 } 196 197 /* all accesses are serialized by namespace_sem */ 198 static struct user_namespace *user_ns; 199 static struct mount *last_dest, *first_source, *last_source, *dest_master; 200 static struct mountpoint *mp; 201 static struct hlist_head *list; 202 203 static inline bool peers(struct mount *m1, struct mount *m2) 204 { 205 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; 206 } 207 208 static int propagate_one(struct mount *m) 209 { 210 struct mount *child; 211 int type; 212 /* skip ones added by this propagate_mnt() */ 213 if (IS_MNT_NEW(m)) 214 return 0; 215 /* skip if mountpoint isn't covered by it */ 216 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) 217 return 0; 218 if (peers(m, last_dest)) { 219 type = CL_MAKE_SHARED; 220 } else { 221 struct mount *n, *p; 222 bool done; 223 for (n = m; ; n = p) { 224 p = n->mnt_master; 225 if (p == dest_master || IS_MNT_MARKED(p)) 226 break; 227 } 228 do { 229 struct mount *parent = last_source->mnt_parent; 230 if (last_source == first_source) 231 break; 232 done = parent->mnt_master == p; 233 if (done && peers(n, parent)) 234 break; 235 last_source = last_source->mnt_master; 236 } while (!done); 237 238 type = CL_SLAVE; 239 /* beginning of peer group among the slaves? */ 240 if (IS_MNT_SHARED(m)) 241 type |= CL_MAKE_SHARED; 242 } 243 244 /* Notice when we are propagating across user namespaces */ 245 if (m->mnt_ns->user_ns != user_ns) 246 type |= CL_UNPRIVILEGED; 247 child = copy_tree(last_source, last_source->mnt.mnt_root, type); 248 if (IS_ERR(child)) 249 return PTR_ERR(child); 250 child->mnt.mnt_flags &= ~MNT_LOCKED; 251 mnt_set_mountpoint(m, mp, child); 252 last_dest = m; 253 last_source = child; 254 if (m->mnt_master != dest_master) { 255 read_seqlock_excl(&mount_lock); 256 SET_MNT_MARK(m->mnt_master); 257 read_sequnlock_excl(&mount_lock); 258 } 259 hlist_add_head(&child->mnt_hash, list); 260 return count_mounts(m->mnt_ns, child); 261 } 262 263 /* 264 * mount 'source_mnt' under the destination 'dest_mnt' at 265 * dentry 'dest_dentry'. And propagate that mount to 266 * all the peer and slave mounts of 'dest_mnt'. 267 * Link all the new mounts into a propagation tree headed at 268 * source_mnt. Also link all the new mounts using ->mnt_list 269 * headed at source_mnt's ->mnt_list 270 * 271 * @dest_mnt: destination mount. 272 * @dest_dentry: destination dentry. 273 * @source_mnt: source mount. 274 * @tree_list : list of heads of trees to be attached. 275 */ 276 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, 277 struct mount *source_mnt, struct hlist_head *tree_list) 278 { 279 struct mount *m, *n; 280 int ret = 0; 281 282 /* 283 * we don't want to bother passing tons of arguments to 284 * propagate_one(); everything is serialized by namespace_sem, 285 * so globals will do just fine. 286 */ 287 user_ns = current->nsproxy->mnt_ns->user_ns; 288 last_dest = dest_mnt; 289 first_source = source_mnt; 290 last_source = source_mnt; 291 mp = dest_mp; 292 list = tree_list; 293 dest_master = dest_mnt->mnt_master; 294 295 /* all peers of dest_mnt, except dest_mnt itself */ 296 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { 297 ret = propagate_one(n); 298 if (ret) 299 goto out; 300 } 301 302 /* all slave groups */ 303 for (m = next_group(dest_mnt, dest_mnt); m; 304 m = next_group(m, dest_mnt)) { 305 /* everything in that slave group */ 306 n = m; 307 do { 308 ret = propagate_one(n); 309 if (ret) 310 goto out; 311 n = next_peer(n); 312 } while (n != m); 313 } 314 out: 315 read_seqlock_excl(&mount_lock); 316 hlist_for_each_entry(n, tree_list, mnt_hash) { 317 m = n->mnt_parent; 318 if (m->mnt_master != dest_mnt->mnt_master) 319 CLEAR_MNT_MARK(m->mnt_master); 320 } 321 read_sequnlock_excl(&mount_lock); 322 return ret; 323 } 324 325 static struct mount *find_topper(struct mount *mnt) 326 { 327 /* If there is exactly one mount covering mnt completely return it. */ 328 struct mount *child; 329 330 if (!list_is_singular(&mnt->mnt_mounts)) 331 return NULL; 332 333 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); 334 if (child->mnt_mountpoint != mnt->mnt.mnt_root) 335 return NULL; 336 337 return child; 338 } 339 340 /* 341 * return true if the refcount is greater than count 342 */ 343 static inline int do_refcount_check(struct mount *mnt, int count) 344 { 345 return mnt_get_count(mnt) > count; 346 } 347 348 /* 349 * check if the mount 'mnt' can be unmounted successfully. 350 * @mnt: the mount to be checked for unmount 351 * NOTE: unmounting 'mnt' would naturally propagate to all 352 * other mounts its parent propagates to. 353 * Check if any of these mounts that **do not have submounts** 354 * have more references than 'refcnt'. If so return busy. 355 * 356 * vfsmount lock must be held for write 357 */ 358 int propagate_mount_busy(struct mount *mnt, int refcnt) 359 { 360 struct mount *m, *child, *topper; 361 struct mount *parent = mnt->mnt_parent; 362 363 if (mnt == parent) 364 return do_refcount_check(mnt, refcnt); 365 366 /* 367 * quickly check if the current mount can be unmounted. 368 * If not, we don't have to go checking for all other 369 * mounts 370 */ 371 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) 372 return 1; 373 374 for (m = propagation_next(parent, parent); m; 375 m = propagation_next(m, parent)) { 376 int count = 1; 377 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 378 if (!child) 379 continue; 380 381 /* Is there exactly one mount on the child that covers 382 * it completely whose reference should be ignored? 383 */ 384 topper = find_topper(child); 385 if (topper) 386 count += 1; 387 else if (!list_empty(&child->mnt_mounts)) 388 continue; 389 390 if (do_refcount_check(child, count)) 391 return 1; 392 } 393 return 0; 394 } 395 396 /* 397 * Clear MNT_LOCKED when it can be shown to be safe. 398 * 399 * mount_lock lock must be held for write 400 */ 401 void propagate_mount_unlock(struct mount *mnt) 402 { 403 struct mount *parent = mnt->mnt_parent; 404 struct mount *m, *child; 405 406 BUG_ON(parent == mnt); 407 408 for (m = propagation_next(parent, parent); m; 409 m = propagation_next(m, parent)) { 410 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); 411 if (child) 412 child->mnt.mnt_flags &= ~MNT_LOCKED; 413 } 414 } 415 416 /* 417 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted. 418 */ 419 static void mark_umount_candidates(struct mount *mnt) 420 { 421 struct mount *parent = mnt->mnt_parent; 422 struct mount *m; 423 424 BUG_ON(parent == mnt); 425 426 for (m = propagation_next(parent, parent); m; 427 m = propagation_next(m, parent)) { 428 struct mount *child = __lookup_mnt(&m->mnt, 429 mnt->mnt_mountpoint); 430 if (!child || (child->mnt.mnt_flags & MNT_UMOUNT)) 431 continue; 432 if (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m)) { 433 SET_MNT_MARK(child); 434 } 435 } 436 } 437 438 /* 439 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its 440 * parent propagates to. 441 */ 442 static void __propagate_umount(struct mount *mnt) 443 { 444 struct mount *parent = mnt->mnt_parent; 445 struct mount *m; 446 447 BUG_ON(parent == mnt); 448 449 for (m = propagation_next(parent, parent); m; 450 m = propagation_next(m, parent)) { 451 struct mount *topper; 452 struct mount *child = __lookup_mnt(&m->mnt, 453 mnt->mnt_mountpoint); 454 /* 455 * umount the child only if the child has no children 456 * and the child is marked safe to unmount. 457 */ 458 if (!child || !IS_MNT_MARKED(child)) 459 continue; 460 CLEAR_MNT_MARK(child); 461 462 /* If there is exactly one mount covering all of child 463 * replace child with that mount. 464 */ 465 topper = find_topper(child); 466 if (topper) 467 mnt_change_mountpoint(child->mnt_parent, child->mnt_mp, 468 topper); 469 470 if (list_empty(&child->mnt_mounts)) { 471 list_del_init(&child->mnt_child); 472 child->mnt.mnt_flags |= MNT_UMOUNT; 473 list_move_tail(&child->mnt_list, &mnt->mnt_list); 474 } 475 } 476 } 477 478 /* 479 * collect all mounts that receive propagation from the mount in @list, 480 * and return these additional mounts in the same list. 481 * @list: the list of mounts to be unmounted. 482 * 483 * vfsmount lock must be held for write 484 */ 485 int propagate_umount(struct list_head *list) 486 { 487 struct mount *mnt; 488 489 list_for_each_entry_reverse(mnt, list, mnt_list) 490 mark_umount_candidates(mnt); 491 492 list_for_each_entry(mnt, list, mnt_list) 493 __propagate_umount(mnt); 494 return 0; 495 } 496