xref: /openbmc/linux/fs/pnode.c (revision 1cac4f26)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include <uapi/linux/mount.h>
14 #include "internal.h"
15 #include "pnode.h"
16 
17 /* return the next shared peer mount of @p */
18 static inline struct mount *next_peer(struct mount *p)
19 {
20 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
21 }
22 
23 static inline struct mount *first_slave(struct mount *p)
24 {
25 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
26 }
27 
28 static inline struct mount *last_slave(struct mount *p)
29 {
30 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
31 }
32 
33 static inline struct mount *next_slave(struct mount *p)
34 {
35 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
36 }
37 
38 static struct mount *get_peer_under_root(struct mount *mnt,
39 					 struct mnt_namespace *ns,
40 					 const struct path *root)
41 {
42 	struct mount *m = mnt;
43 
44 	do {
45 		/* Check the namespace first for optimization */
46 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
47 			return m;
48 
49 		m = next_peer(m);
50 	} while (m != mnt);
51 
52 	return NULL;
53 }
54 
55 /*
56  * Get ID of closest dominating peer group having a representative
57  * under the given root.
58  *
59  * Caller must hold namespace_sem
60  */
61 int get_dominating_id(struct mount *mnt, const struct path *root)
62 {
63 	struct mount *m;
64 
65 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
66 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
67 		if (d)
68 			return d->mnt_group_id;
69 	}
70 
71 	return 0;
72 }
73 
74 static int do_make_slave(struct mount *mnt)
75 {
76 	struct mount *master, *slave_mnt;
77 
78 	if (list_empty(&mnt->mnt_share)) {
79 		if (IS_MNT_SHARED(mnt)) {
80 			mnt_release_group_id(mnt);
81 			CLEAR_MNT_SHARED(mnt);
82 		}
83 		master = mnt->mnt_master;
84 		if (!master) {
85 			struct list_head *p = &mnt->mnt_slave_list;
86 			while (!list_empty(p)) {
87 				slave_mnt = list_first_entry(p,
88 						struct mount, mnt_slave);
89 				list_del_init(&slave_mnt->mnt_slave);
90 				slave_mnt->mnt_master = NULL;
91 			}
92 			return 0;
93 		}
94 	} else {
95 		struct mount *m;
96 		/*
97 		 * slave 'mnt' to a peer mount that has the
98 		 * same root dentry. If none is available then
99 		 * slave it to anything that is available.
100 		 */
101 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
102 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
103 				master = m;
104 				break;
105 			}
106 		}
107 		list_del_init(&mnt->mnt_share);
108 		mnt->mnt_group_id = 0;
109 		CLEAR_MNT_SHARED(mnt);
110 	}
111 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
112 		slave_mnt->mnt_master = master;
113 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
114 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
115 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
116 	mnt->mnt_master = master;
117 	return 0;
118 }
119 
120 /*
121  * vfsmount lock must be held for write
122  */
123 void change_mnt_propagation(struct mount *mnt, int type)
124 {
125 	if (type == MS_SHARED) {
126 		set_mnt_shared(mnt);
127 		return;
128 	}
129 	do_make_slave(mnt);
130 	if (type != MS_SLAVE) {
131 		list_del_init(&mnt->mnt_slave);
132 		mnt->mnt_master = NULL;
133 		if (type == MS_UNBINDABLE)
134 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
135 		else
136 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
137 	}
138 }
139 
140 /*
141  * get the next mount in the propagation tree.
142  * @m: the mount seen last
143  * @origin: the original mount from where the tree walk initiated
144  *
145  * Note that peer groups form contiguous segments of slave lists.
146  * We rely on that in get_source() to be able to find out if
147  * vfsmount found while iterating with propagation_next() is
148  * a peer of one we'd found earlier.
149  */
150 static struct mount *propagation_next(struct mount *m,
151 					 struct mount *origin)
152 {
153 	/* are there any slaves of this mount? */
154 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
155 		return first_slave(m);
156 
157 	while (1) {
158 		struct mount *master = m->mnt_master;
159 
160 		if (master == origin->mnt_master) {
161 			struct mount *next = next_peer(m);
162 			return (next == origin) ? NULL : next;
163 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
164 			return next_slave(m);
165 
166 		/* back at master */
167 		m = master;
168 	}
169 }
170 
171 static struct mount *skip_propagation_subtree(struct mount *m,
172 						struct mount *origin)
173 {
174 	/*
175 	 * Advance m such that propagation_next will not return
176 	 * the slaves of m.
177 	 */
178 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
179 		m = last_slave(m);
180 
181 	return m;
182 }
183 
184 static struct mount *next_group(struct mount *m, struct mount *origin)
185 {
186 	while (1) {
187 		while (1) {
188 			struct mount *next;
189 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
190 				return first_slave(m);
191 			next = next_peer(m);
192 			if (m->mnt_group_id == origin->mnt_group_id) {
193 				if (next == origin)
194 					return NULL;
195 			} else if (m->mnt_slave.next != &next->mnt_slave)
196 				break;
197 			m = next;
198 		}
199 		/* m is the last peer */
200 		while (1) {
201 			struct mount *master = m->mnt_master;
202 			if (m->mnt_slave.next != &master->mnt_slave_list)
203 				return next_slave(m);
204 			m = next_peer(master);
205 			if (master->mnt_group_id == origin->mnt_group_id)
206 				break;
207 			if (master->mnt_slave.next == &m->mnt_slave)
208 				break;
209 			m = master;
210 		}
211 		if (m == origin)
212 			return NULL;
213 	}
214 }
215 
216 /* all accesses are serialized by namespace_sem */
217 static struct user_namespace *user_ns;
218 static struct mount *last_dest, *first_source, *last_source, *dest_master;
219 static struct mountpoint *mp;
220 static struct hlist_head *list;
221 
222 static inline bool peers(struct mount *m1, struct mount *m2)
223 {
224 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
225 }
226 
227 static int propagate_one(struct mount *m)
228 {
229 	struct mount *child;
230 	int type;
231 	/* skip ones added by this propagate_mnt() */
232 	if (IS_MNT_NEW(m))
233 		return 0;
234 	/* skip if mountpoint isn't covered by it */
235 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
236 		return 0;
237 	if (peers(m, last_dest)) {
238 		type = CL_MAKE_SHARED;
239 	} else {
240 		struct mount *n, *p;
241 		bool done;
242 		for (n = m; ; n = p) {
243 			p = n->mnt_master;
244 			if (p == dest_master || IS_MNT_MARKED(p))
245 				break;
246 		}
247 		do {
248 			struct mount *parent = last_source->mnt_parent;
249 			if (last_source == first_source)
250 				break;
251 			done = parent->mnt_master == p;
252 			if (done && peers(n, parent))
253 				break;
254 			last_source = last_source->mnt_master;
255 		} while (!done);
256 
257 		type = CL_SLAVE;
258 		/* beginning of peer group among the slaves? */
259 		if (IS_MNT_SHARED(m))
260 			type |= CL_MAKE_SHARED;
261 	}
262 
263 	/* Notice when we are propagating across user namespaces */
264 	if (m->mnt_ns->user_ns != user_ns)
265 		type |= CL_UNPRIVILEGED;
266 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
267 	if (IS_ERR(child))
268 		return PTR_ERR(child);
269 	child->mnt.mnt_flags &= ~MNT_LOCKED;
270 	mnt_set_mountpoint(m, mp, child);
271 	last_dest = m;
272 	last_source = child;
273 	if (m->mnt_master != dest_master) {
274 		read_seqlock_excl(&mount_lock);
275 		SET_MNT_MARK(m->mnt_master);
276 		read_sequnlock_excl(&mount_lock);
277 	}
278 	hlist_add_head(&child->mnt_hash, list);
279 	return count_mounts(m->mnt_ns, child);
280 }
281 
282 /*
283  * mount 'source_mnt' under the destination 'dest_mnt' at
284  * dentry 'dest_dentry'. And propagate that mount to
285  * all the peer and slave mounts of 'dest_mnt'.
286  * Link all the new mounts into a propagation tree headed at
287  * source_mnt. Also link all the new mounts using ->mnt_list
288  * headed at source_mnt's ->mnt_list
289  *
290  * @dest_mnt: destination mount.
291  * @dest_dentry: destination dentry.
292  * @source_mnt: source mount.
293  * @tree_list : list of heads of trees to be attached.
294  */
295 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
296 		    struct mount *source_mnt, struct hlist_head *tree_list)
297 {
298 	struct mount *m, *n;
299 	int ret = 0;
300 
301 	/*
302 	 * we don't want to bother passing tons of arguments to
303 	 * propagate_one(); everything is serialized by namespace_sem,
304 	 * so globals will do just fine.
305 	 */
306 	user_ns = current->nsproxy->mnt_ns->user_ns;
307 	last_dest = dest_mnt;
308 	first_source = source_mnt;
309 	last_source = source_mnt;
310 	mp = dest_mp;
311 	list = tree_list;
312 	dest_master = dest_mnt->mnt_master;
313 
314 	/* all peers of dest_mnt, except dest_mnt itself */
315 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
316 		ret = propagate_one(n);
317 		if (ret)
318 			goto out;
319 	}
320 
321 	/* all slave groups */
322 	for (m = next_group(dest_mnt, dest_mnt); m;
323 			m = next_group(m, dest_mnt)) {
324 		/* everything in that slave group */
325 		n = m;
326 		do {
327 			ret = propagate_one(n);
328 			if (ret)
329 				goto out;
330 			n = next_peer(n);
331 		} while (n != m);
332 	}
333 out:
334 	read_seqlock_excl(&mount_lock);
335 	hlist_for_each_entry(n, tree_list, mnt_hash) {
336 		m = n->mnt_parent;
337 		if (m->mnt_master != dest_mnt->mnt_master)
338 			CLEAR_MNT_MARK(m->mnt_master);
339 	}
340 	read_sequnlock_excl(&mount_lock);
341 	return ret;
342 }
343 
344 static struct mount *find_topper(struct mount *mnt)
345 {
346 	/* If there is exactly one mount covering mnt completely return it. */
347 	struct mount *child;
348 
349 	if (!list_is_singular(&mnt->mnt_mounts))
350 		return NULL;
351 
352 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
353 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
354 		return NULL;
355 
356 	return child;
357 }
358 
359 /*
360  * return true if the refcount is greater than count
361  */
362 static inline int do_refcount_check(struct mount *mnt, int count)
363 {
364 	return mnt_get_count(mnt) > count;
365 }
366 
367 /*
368  * check if the mount 'mnt' can be unmounted successfully.
369  * @mnt: the mount to be checked for unmount
370  * NOTE: unmounting 'mnt' would naturally propagate to all
371  * other mounts its parent propagates to.
372  * Check if any of these mounts that **do not have submounts**
373  * have more references than 'refcnt'. If so return busy.
374  *
375  * vfsmount lock must be held for write
376  */
377 int propagate_mount_busy(struct mount *mnt, int refcnt)
378 {
379 	struct mount *m, *child, *topper;
380 	struct mount *parent = mnt->mnt_parent;
381 
382 	if (mnt == parent)
383 		return do_refcount_check(mnt, refcnt);
384 
385 	/*
386 	 * quickly check if the current mount can be unmounted.
387 	 * If not, we don't have to go checking for all other
388 	 * mounts
389 	 */
390 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
391 		return 1;
392 
393 	for (m = propagation_next(parent, parent); m;
394 	     		m = propagation_next(m, parent)) {
395 		int count = 1;
396 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
397 		if (!child)
398 			continue;
399 
400 		/* Is there exactly one mount on the child that covers
401 		 * it completely whose reference should be ignored?
402 		 */
403 		topper = find_topper(child);
404 		if (topper)
405 			count += 1;
406 		else if (!list_empty(&child->mnt_mounts))
407 			continue;
408 
409 		if (do_refcount_check(child, count))
410 			return 1;
411 	}
412 	return 0;
413 }
414 
415 /*
416  * Clear MNT_LOCKED when it can be shown to be safe.
417  *
418  * mount_lock lock must be held for write
419  */
420 void propagate_mount_unlock(struct mount *mnt)
421 {
422 	struct mount *parent = mnt->mnt_parent;
423 	struct mount *m, *child;
424 
425 	BUG_ON(parent == mnt);
426 
427 	for (m = propagation_next(parent, parent); m;
428 			m = propagation_next(m, parent)) {
429 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
430 		if (child)
431 			child->mnt.mnt_flags &= ~MNT_LOCKED;
432 	}
433 }
434 
435 static void umount_one(struct mount *mnt, struct list_head *to_umount)
436 {
437 	CLEAR_MNT_MARK(mnt);
438 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
439 	list_del_init(&mnt->mnt_child);
440 	list_del_init(&mnt->mnt_umounting);
441 	list_move_tail(&mnt->mnt_list, to_umount);
442 }
443 
444 /*
445  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
446  * parent propagates to.
447  */
448 static bool __propagate_umount(struct mount *mnt,
449 			       struct list_head *to_umount,
450 			       struct list_head *to_restore)
451 {
452 	bool progress = false;
453 	struct mount *child;
454 
455 	/*
456 	 * The state of the parent won't change if this mount is
457 	 * already unmounted or marked as without children.
458 	 */
459 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
460 		goto out;
461 
462 	/* Verify topper is the only grandchild that has not been
463 	 * speculatively unmounted.
464 	 */
465 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
466 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
467 			continue;
468 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
469 			continue;
470 		/* Found a mounted child */
471 		goto children;
472 	}
473 
474 	/* Mark mounts that can be unmounted if not locked */
475 	SET_MNT_MARK(mnt);
476 	progress = true;
477 
478 	/* If a mount is without children and not locked umount it. */
479 	if (!IS_MNT_LOCKED(mnt)) {
480 		umount_one(mnt, to_umount);
481 	} else {
482 children:
483 		list_move_tail(&mnt->mnt_umounting, to_restore);
484 	}
485 out:
486 	return progress;
487 }
488 
489 static void umount_list(struct list_head *to_umount,
490 			struct list_head *to_restore)
491 {
492 	struct mount *mnt, *child, *tmp;
493 	list_for_each_entry(mnt, to_umount, mnt_list) {
494 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
495 			/* topper? */
496 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
497 				list_move_tail(&child->mnt_umounting, to_restore);
498 			else
499 				umount_one(child, to_umount);
500 		}
501 	}
502 }
503 
504 static void restore_mounts(struct list_head *to_restore)
505 {
506 	/* Restore mounts to a clean working state */
507 	while (!list_empty(to_restore)) {
508 		struct mount *mnt, *parent;
509 		struct mountpoint *mp;
510 
511 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
512 		CLEAR_MNT_MARK(mnt);
513 		list_del_init(&mnt->mnt_umounting);
514 
515 		/* Should this mount be reparented? */
516 		mp = mnt->mnt_mp;
517 		parent = mnt->mnt_parent;
518 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
519 			mp = parent->mnt_mp;
520 			parent = parent->mnt_parent;
521 		}
522 		if (parent != mnt->mnt_parent)
523 			mnt_change_mountpoint(parent, mp, mnt);
524 	}
525 }
526 
527 static void cleanup_umount_visitations(struct list_head *visited)
528 {
529 	while (!list_empty(visited)) {
530 		struct mount *mnt =
531 			list_first_entry(visited, struct mount, mnt_umounting);
532 		list_del_init(&mnt->mnt_umounting);
533 	}
534 }
535 
536 /*
537  * collect all mounts that receive propagation from the mount in @list,
538  * and return these additional mounts in the same list.
539  * @list: the list of mounts to be unmounted.
540  *
541  * vfsmount lock must be held for write
542  */
543 int propagate_umount(struct list_head *list)
544 {
545 	struct mount *mnt;
546 	LIST_HEAD(to_restore);
547 	LIST_HEAD(to_umount);
548 	LIST_HEAD(visited);
549 
550 	/* Find candidates for unmounting */
551 	list_for_each_entry_reverse(mnt, list, mnt_list) {
552 		struct mount *parent = mnt->mnt_parent;
553 		struct mount *m;
554 
555 		/*
556 		 * If this mount has already been visited it is known that it's
557 		 * entire peer group and all of their slaves in the propagation
558 		 * tree for the mountpoint has already been visited and there is
559 		 * no need to visit them again.
560 		 */
561 		if (!list_empty(&mnt->mnt_umounting))
562 			continue;
563 
564 		list_add_tail(&mnt->mnt_umounting, &visited);
565 		for (m = propagation_next(parent, parent); m;
566 		     m = propagation_next(m, parent)) {
567 			struct mount *child = __lookup_mnt(&m->mnt,
568 							   mnt->mnt_mountpoint);
569 			if (!child)
570 				continue;
571 
572 			if (!list_empty(&child->mnt_umounting)) {
573 				/*
574 				 * If the child has already been visited it is
575 				 * know that it's entire peer group and all of
576 				 * their slaves in the propgation tree for the
577 				 * mountpoint has already been visited and there
578 				 * is no need to visit this subtree again.
579 				 */
580 				m = skip_propagation_subtree(m, parent);
581 				continue;
582 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
583 				/*
584 				 * We have come accross an partially unmounted
585 				 * mount in list that has not been visited yet.
586 				 * Remember it has been visited and continue
587 				 * about our merry way.
588 				 */
589 				list_add_tail(&child->mnt_umounting, &visited);
590 				continue;
591 			}
592 
593 			/* Check the child and parents while progress is made */
594 			while (__propagate_umount(child,
595 						  &to_umount, &to_restore)) {
596 				/* Is the parent a umount candidate? */
597 				child = child->mnt_parent;
598 				if (list_empty(&child->mnt_umounting))
599 					break;
600 			}
601 		}
602 	}
603 
604 	umount_list(&to_umount, &to_restore);
605 	restore_mounts(&to_restore);
606 	cleanup_umount_visitations(&visited);
607 	list_splice_tail(&to_umount, list);
608 
609 	return 0;
610 }
611