xref: /openbmc/linux/fs/pnode.c (revision 1802d0be)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include <linux/nsproxy.h>
13 #include <uapi/linux/mount.h>
14 #include "internal.h"
15 #include "pnode.h"
16 
17 /* return the next shared peer mount of @p */
18 static inline struct mount *next_peer(struct mount *p)
19 {
20 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
21 }
22 
23 static inline struct mount *first_slave(struct mount *p)
24 {
25 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
26 }
27 
28 static inline struct mount *last_slave(struct mount *p)
29 {
30 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
31 }
32 
33 static inline struct mount *next_slave(struct mount *p)
34 {
35 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
36 }
37 
38 static struct mount *get_peer_under_root(struct mount *mnt,
39 					 struct mnt_namespace *ns,
40 					 const struct path *root)
41 {
42 	struct mount *m = mnt;
43 
44 	do {
45 		/* Check the namespace first for optimization */
46 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
47 			return m;
48 
49 		m = next_peer(m);
50 	} while (m != mnt);
51 
52 	return NULL;
53 }
54 
55 /*
56  * Get ID of closest dominating peer group having a representative
57  * under the given root.
58  *
59  * Caller must hold namespace_sem
60  */
61 int get_dominating_id(struct mount *mnt, const struct path *root)
62 {
63 	struct mount *m;
64 
65 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
66 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
67 		if (d)
68 			return d->mnt_group_id;
69 	}
70 
71 	return 0;
72 }
73 
74 static int do_make_slave(struct mount *mnt)
75 {
76 	struct mount *master, *slave_mnt;
77 
78 	if (list_empty(&mnt->mnt_share)) {
79 		if (IS_MNT_SHARED(mnt)) {
80 			mnt_release_group_id(mnt);
81 			CLEAR_MNT_SHARED(mnt);
82 		}
83 		master = mnt->mnt_master;
84 		if (!master) {
85 			struct list_head *p = &mnt->mnt_slave_list;
86 			while (!list_empty(p)) {
87 				slave_mnt = list_first_entry(p,
88 						struct mount, mnt_slave);
89 				list_del_init(&slave_mnt->mnt_slave);
90 				slave_mnt->mnt_master = NULL;
91 			}
92 			return 0;
93 		}
94 	} else {
95 		struct mount *m;
96 		/*
97 		 * slave 'mnt' to a peer mount that has the
98 		 * same root dentry. If none is available then
99 		 * slave it to anything that is available.
100 		 */
101 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
102 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
103 				master = m;
104 				break;
105 			}
106 		}
107 		list_del_init(&mnt->mnt_share);
108 		mnt->mnt_group_id = 0;
109 		CLEAR_MNT_SHARED(mnt);
110 	}
111 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
112 		slave_mnt->mnt_master = master;
113 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
114 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
115 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
116 	mnt->mnt_master = master;
117 	return 0;
118 }
119 
120 /*
121  * vfsmount lock must be held for write
122  */
123 void change_mnt_propagation(struct mount *mnt, int type)
124 {
125 	if (type == MS_SHARED) {
126 		set_mnt_shared(mnt);
127 		return;
128 	}
129 	do_make_slave(mnt);
130 	if (type != MS_SLAVE) {
131 		list_del_init(&mnt->mnt_slave);
132 		mnt->mnt_master = NULL;
133 		if (type == MS_UNBINDABLE)
134 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
135 		else
136 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
137 	}
138 }
139 
140 /*
141  * get the next mount in the propagation tree.
142  * @m: the mount seen last
143  * @origin: the original mount from where the tree walk initiated
144  *
145  * Note that peer groups form contiguous segments of slave lists.
146  * We rely on that in get_source() to be able to find out if
147  * vfsmount found while iterating with propagation_next() is
148  * a peer of one we'd found earlier.
149  */
150 static struct mount *propagation_next(struct mount *m,
151 					 struct mount *origin)
152 {
153 	/* are there any slaves of this mount? */
154 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
155 		return first_slave(m);
156 
157 	while (1) {
158 		struct mount *master = m->mnt_master;
159 
160 		if (master == origin->mnt_master) {
161 			struct mount *next = next_peer(m);
162 			return (next == origin) ? NULL : next;
163 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
164 			return next_slave(m);
165 
166 		/* back at master */
167 		m = master;
168 	}
169 }
170 
171 static struct mount *skip_propagation_subtree(struct mount *m,
172 						struct mount *origin)
173 {
174 	/*
175 	 * Advance m such that propagation_next will not return
176 	 * the slaves of m.
177 	 */
178 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
179 		m = last_slave(m);
180 
181 	return m;
182 }
183 
184 static struct mount *next_group(struct mount *m, struct mount *origin)
185 {
186 	while (1) {
187 		while (1) {
188 			struct mount *next;
189 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
190 				return first_slave(m);
191 			next = next_peer(m);
192 			if (m->mnt_group_id == origin->mnt_group_id) {
193 				if (next == origin)
194 					return NULL;
195 			} else if (m->mnt_slave.next != &next->mnt_slave)
196 				break;
197 			m = next;
198 		}
199 		/* m is the last peer */
200 		while (1) {
201 			struct mount *master = m->mnt_master;
202 			if (m->mnt_slave.next != &master->mnt_slave_list)
203 				return next_slave(m);
204 			m = next_peer(master);
205 			if (master->mnt_group_id == origin->mnt_group_id)
206 				break;
207 			if (master->mnt_slave.next == &m->mnt_slave)
208 				break;
209 			m = master;
210 		}
211 		if (m == origin)
212 			return NULL;
213 	}
214 }
215 
216 /* all accesses are serialized by namespace_sem */
217 static struct mount *last_dest, *first_source, *last_source, *dest_master;
218 static struct mountpoint *mp;
219 static struct hlist_head *list;
220 
221 static inline bool peers(struct mount *m1, struct mount *m2)
222 {
223 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
224 }
225 
226 static int propagate_one(struct mount *m)
227 {
228 	struct mount *child;
229 	int type;
230 	/* skip ones added by this propagate_mnt() */
231 	if (IS_MNT_NEW(m))
232 		return 0;
233 	/* skip if mountpoint isn't covered by it */
234 	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
235 		return 0;
236 	if (peers(m, last_dest)) {
237 		type = CL_MAKE_SHARED;
238 	} else {
239 		struct mount *n, *p;
240 		bool done;
241 		for (n = m; ; n = p) {
242 			p = n->mnt_master;
243 			if (p == dest_master || IS_MNT_MARKED(p))
244 				break;
245 		}
246 		do {
247 			struct mount *parent = last_source->mnt_parent;
248 			if (last_source == first_source)
249 				break;
250 			done = parent->mnt_master == p;
251 			if (done && peers(n, parent))
252 				break;
253 			last_source = last_source->mnt_master;
254 		} while (!done);
255 
256 		type = CL_SLAVE;
257 		/* beginning of peer group among the slaves? */
258 		if (IS_MNT_SHARED(m))
259 			type |= CL_MAKE_SHARED;
260 	}
261 
262 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
263 	if (IS_ERR(child))
264 		return PTR_ERR(child);
265 	child->mnt.mnt_flags &= ~MNT_LOCKED;
266 	mnt_set_mountpoint(m, mp, child);
267 	last_dest = m;
268 	last_source = child;
269 	if (m->mnt_master != dest_master) {
270 		read_seqlock_excl(&mount_lock);
271 		SET_MNT_MARK(m->mnt_master);
272 		read_sequnlock_excl(&mount_lock);
273 	}
274 	hlist_add_head(&child->mnt_hash, list);
275 	return count_mounts(m->mnt_ns, child);
276 }
277 
278 /*
279  * mount 'source_mnt' under the destination 'dest_mnt' at
280  * dentry 'dest_dentry'. And propagate that mount to
281  * all the peer and slave mounts of 'dest_mnt'.
282  * Link all the new mounts into a propagation tree headed at
283  * source_mnt. Also link all the new mounts using ->mnt_list
284  * headed at source_mnt's ->mnt_list
285  *
286  * @dest_mnt: destination mount.
287  * @dest_dentry: destination dentry.
288  * @source_mnt: source mount.
289  * @tree_list : list of heads of trees to be attached.
290  */
291 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
292 		    struct mount *source_mnt, struct hlist_head *tree_list)
293 {
294 	struct mount *m, *n;
295 	int ret = 0;
296 
297 	/*
298 	 * we don't want to bother passing tons of arguments to
299 	 * propagate_one(); everything is serialized by namespace_sem,
300 	 * so globals will do just fine.
301 	 */
302 	last_dest = dest_mnt;
303 	first_source = source_mnt;
304 	last_source = source_mnt;
305 	mp = dest_mp;
306 	list = tree_list;
307 	dest_master = dest_mnt->mnt_master;
308 
309 	/* all peers of dest_mnt, except dest_mnt itself */
310 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
311 		ret = propagate_one(n);
312 		if (ret)
313 			goto out;
314 	}
315 
316 	/* all slave groups */
317 	for (m = next_group(dest_mnt, dest_mnt); m;
318 			m = next_group(m, dest_mnt)) {
319 		/* everything in that slave group */
320 		n = m;
321 		do {
322 			ret = propagate_one(n);
323 			if (ret)
324 				goto out;
325 			n = next_peer(n);
326 		} while (n != m);
327 	}
328 out:
329 	read_seqlock_excl(&mount_lock);
330 	hlist_for_each_entry(n, tree_list, mnt_hash) {
331 		m = n->mnt_parent;
332 		if (m->mnt_master != dest_mnt->mnt_master)
333 			CLEAR_MNT_MARK(m->mnt_master);
334 	}
335 	read_sequnlock_excl(&mount_lock);
336 	return ret;
337 }
338 
339 static struct mount *find_topper(struct mount *mnt)
340 {
341 	/* If there is exactly one mount covering mnt completely return it. */
342 	struct mount *child;
343 
344 	if (!list_is_singular(&mnt->mnt_mounts))
345 		return NULL;
346 
347 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
348 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
349 		return NULL;
350 
351 	return child;
352 }
353 
354 /*
355  * return true if the refcount is greater than count
356  */
357 static inline int do_refcount_check(struct mount *mnt, int count)
358 {
359 	return mnt_get_count(mnt) > count;
360 }
361 
362 /*
363  * check if the mount 'mnt' can be unmounted successfully.
364  * @mnt: the mount to be checked for unmount
365  * NOTE: unmounting 'mnt' would naturally propagate to all
366  * other mounts its parent propagates to.
367  * Check if any of these mounts that **do not have submounts**
368  * have more references than 'refcnt'. If so return busy.
369  *
370  * vfsmount lock must be held for write
371  */
372 int propagate_mount_busy(struct mount *mnt, int refcnt)
373 {
374 	struct mount *m, *child, *topper;
375 	struct mount *parent = mnt->mnt_parent;
376 
377 	if (mnt == parent)
378 		return do_refcount_check(mnt, refcnt);
379 
380 	/*
381 	 * quickly check if the current mount can be unmounted.
382 	 * If not, we don't have to go checking for all other
383 	 * mounts
384 	 */
385 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
386 		return 1;
387 
388 	for (m = propagation_next(parent, parent); m;
389 	     		m = propagation_next(m, parent)) {
390 		int count = 1;
391 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
392 		if (!child)
393 			continue;
394 
395 		/* Is there exactly one mount on the child that covers
396 		 * it completely whose reference should be ignored?
397 		 */
398 		topper = find_topper(child);
399 		if (topper)
400 			count += 1;
401 		else if (!list_empty(&child->mnt_mounts))
402 			continue;
403 
404 		if (do_refcount_check(child, count))
405 			return 1;
406 	}
407 	return 0;
408 }
409 
410 /*
411  * Clear MNT_LOCKED when it can be shown to be safe.
412  *
413  * mount_lock lock must be held for write
414  */
415 void propagate_mount_unlock(struct mount *mnt)
416 {
417 	struct mount *parent = mnt->mnt_parent;
418 	struct mount *m, *child;
419 
420 	BUG_ON(parent == mnt);
421 
422 	for (m = propagation_next(parent, parent); m;
423 			m = propagation_next(m, parent)) {
424 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
425 		if (child)
426 			child->mnt.mnt_flags &= ~MNT_LOCKED;
427 	}
428 }
429 
430 static void umount_one(struct mount *mnt, struct list_head *to_umount)
431 {
432 	CLEAR_MNT_MARK(mnt);
433 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
434 	list_del_init(&mnt->mnt_child);
435 	list_del_init(&mnt->mnt_umounting);
436 	list_move_tail(&mnt->mnt_list, to_umount);
437 }
438 
439 /*
440  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
441  * parent propagates to.
442  */
443 static bool __propagate_umount(struct mount *mnt,
444 			       struct list_head *to_umount,
445 			       struct list_head *to_restore)
446 {
447 	bool progress = false;
448 	struct mount *child;
449 
450 	/*
451 	 * The state of the parent won't change if this mount is
452 	 * already unmounted or marked as without children.
453 	 */
454 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
455 		goto out;
456 
457 	/* Verify topper is the only grandchild that has not been
458 	 * speculatively unmounted.
459 	 */
460 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
461 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
462 			continue;
463 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
464 			continue;
465 		/* Found a mounted child */
466 		goto children;
467 	}
468 
469 	/* Mark mounts that can be unmounted if not locked */
470 	SET_MNT_MARK(mnt);
471 	progress = true;
472 
473 	/* If a mount is without children and not locked umount it. */
474 	if (!IS_MNT_LOCKED(mnt)) {
475 		umount_one(mnt, to_umount);
476 	} else {
477 children:
478 		list_move_tail(&mnt->mnt_umounting, to_restore);
479 	}
480 out:
481 	return progress;
482 }
483 
484 static void umount_list(struct list_head *to_umount,
485 			struct list_head *to_restore)
486 {
487 	struct mount *mnt, *child, *tmp;
488 	list_for_each_entry(mnt, to_umount, mnt_list) {
489 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
490 			/* topper? */
491 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
492 				list_move_tail(&child->mnt_umounting, to_restore);
493 			else
494 				umount_one(child, to_umount);
495 		}
496 	}
497 }
498 
499 static void restore_mounts(struct list_head *to_restore)
500 {
501 	/* Restore mounts to a clean working state */
502 	while (!list_empty(to_restore)) {
503 		struct mount *mnt, *parent;
504 		struct mountpoint *mp;
505 
506 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
507 		CLEAR_MNT_MARK(mnt);
508 		list_del_init(&mnt->mnt_umounting);
509 
510 		/* Should this mount be reparented? */
511 		mp = mnt->mnt_mp;
512 		parent = mnt->mnt_parent;
513 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
514 			mp = parent->mnt_mp;
515 			parent = parent->mnt_parent;
516 		}
517 		if (parent != mnt->mnt_parent)
518 			mnt_change_mountpoint(parent, mp, mnt);
519 	}
520 }
521 
522 static void cleanup_umount_visitations(struct list_head *visited)
523 {
524 	while (!list_empty(visited)) {
525 		struct mount *mnt =
526 			list_first_entry(visited, struct mount, mnt_umounting);
527 		list_del_init(&mnt->mnt_umounting);
528 	}
529 }
530 
531 /*
532  * collect all mounts that receive propagation from the mount in @list,
533  * and return these additional mounts in the same list.
534  * @list: the list of mounts to be unmounted.
535  *
536  * vfsmount lock must be held for write
537  */
538 int propagate_umount(struct list_head *list)
539 {
540 	struct mount *mnt;
541 	LIST_HEAD(to_restore);
542 	LIST_HEAD(to_umount);
543 	LIST_HEAD(visited);
544 
545 	/* Find candidates for unmounting */
546 	list_for_each_entry_reverse(mnt, list, mnt_list) {
547 		struct mount *parent = mnt->mnt_parent;
548 		struct mount *m;
549 
550 		/*
551 		 * If this mount has already been visited it is known that it's
552 		 * entire peer group and all of their slaves in the propagation
553 		 * tree for the mountpoint has already been visited and there is
554 		 * no need to visit them again.
555 		 */
556 		if (!list_empty(&mnt->mnt_umounting))
557 			continue;
558 
559 		list_add_tail(&mnt->mnt_umounting, &visited);
560 		for (m = propagation_next(parent, parent); m;
561 		     m = propagation_next(m, parent)) {
562 			struct mount *child = __lookup_mnt(&m->mnt,
563 							   mnt->mnt_mountpoint);
564 			if (!child)
565 				continue;
566 
567 			if (!list_empty(&child->mnt_umounting)) {
568 				/*
569 				 * If the child has already been visited it is
570 				 * know that it's entire peer group and all of
571 				 * their slaves in the propgation tree for the
572 				 * mountpoint has already been visited and there
573 				 * is no need to visit this subtree again.
574 				 */
575 				m = skip_propagation_subtree(m, parent);
576 				continue;
577 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
578 				/*
579 				 * We have come accross an partially unmounted
580 				 * mount in list that has not been visited yet.
581 				 * Remember it has been visited and continue
582 				 * about our merry way.
583 				 */
584 				list_add_tail(&child->mnt_umounting, &visited);
585 				continue;
586 			}
587 
588 			/* Check the child and parents while progress is made */
589 			while (__propagate_umount(child,
590 						  &to_umount, &to_restore)) {
591 				/* Is the parent a umount candidate? */
592 				child = child->mnt_parent;
593 				if (list_empty(&child->mnt_umounting))
594 					break;
595 			}
596 		}
597 	}
598 
599 	umount_list(&to_umount, &to_restore);
600 	restore_mounts(&to_restore);
601 	cleanup_umount_visitations(&visited);
602 	list_splice_tail(&to_umount, list);
603 
604 	return 0;
605 }
606