xref: /openbmc/linux/fs/pnode.c (revision 0d456bad)
1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
14 
15 /* return the next shared peer mount of @p */
16 static inline struct mount *next_peer(struct mount *p)
17 {
18 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
19 }
20 
21 static inline struct mount *first_slave(struct mount *p)
22 {
23 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
24 }
25 
26 static inline struct mount *next_slave(struct mount *p)
27 {
28 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
29 }
30 
31 static struct mount *get_peer_under_root(struct mount *mnt,
32 					 struct mnt_namespace *ns,
33 					 const struct path *root)
34 {
35 	struct mount *m = mnt;
36 
37 	do {
38 		/* Check the namespace first for optimization */
39 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
40 			return m;
41 
42 		m = next_peer(m);
43 	} while (m != mnt);
44 
45 	return NULL;
46 }
47 
48 /*
49  * Get ID of closest dominating peer group having a representative
50  * under the given root.
51  *
52  * Caller must hold namespace_sem
53  */
54 int get_dominating_id(struct mount *mnt, const struct path *root)
55 {
56 	struct mount *m;
57 
58 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
59 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
60 		if (d)
61 			return d->mnt_group_id;
62 	}
63 
64 	return 0;
65 }
66 
67 static int do_make_slave(struct mount *mnt)
68 {
69 	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
70 	struct mount *slave_mnt;
71 
72 	/*
73 	 * slave 'mnt' to a peer mount that has the
74 	 * same root dentry. If none is available then
75 	 * slave it to anything that is available.
76 	 */
77 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
78 	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
79 
80 	if (peer_mnt == mnt) {
81 		peer_mnt = next_peer(mnt);
82 		if (peer_mnt == mnt)
83 			peer_mnt = NULL;
84 	}
85 	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
86 		mnt_release_group_id(mnt);
87 
88 	list_del_init(&mnt->mnt_share);
89 	mnt->mnt_group_id = 0;
90 
91 	if (peer_mnt)
92 		master = peer_mnt;
93 
94 	if (master) {
95 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
96 			slave_mnt->mnt_master = master;
97 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
98 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
99 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
100 	} else {
101 		struct list_head *p = &mnt->mnt_slave_list;
102 		while (!list_empty(p)) {
103                         slave_mnt = list_first_entry(p,
104 					struct mount, mnt_slave);
105 			list_del_init(&slave_mnt->mnt_slave);
106 			slave_mnt->mnt_master = NULL;
107 		}
108 	}
109 	mnt->mnt_master = master;
110 	CLEAR_MNT_SHARED(mnt);
111 	return 0;
112 }
113 
114 /*
115  * vfsmount lock must be held for write
116  */
117 void change_mnt_propagation(struct mount *mnt, int type)
118 {
119 	if (type == MS_SHARED) {
120 		set_mnt_shared(mnt);
121 		return;
122 	}
123 	do_make_slave(mnt);
124 	if (type != MS_SLAVE) {
125 		list_del_init(&mnt->mnt_slave);
126 		mnt->mnt_master = NULL;
127 		if (type == MS_UNBINDABLE)
128 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129 		else
130 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
131 	}
132 }
133 
134 /*
135  * get the next mount in the propagation tree.
136  * @m: the mount seen last
137  * @origin: the original mount from where the tree walk initiated
138  *
139  * Note that peer groups form contiguous segments of slave lists.
140  * We rely on that in get_source() to be able to find out if
141  * vfsmount found while iterating with propagation_next() is
142  * a peer of one we'd found earlier.
143  */
144 static struct mount *propagation_next(struct mount *m,
145 					 struct mount *origin)
146 {
147 	/* are there any slaves of this mount? */
148 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149 		return first_slave(m);
150 
151 	while (1) {
152 		struct mount *master = m->mnt_master;
153 
154 		if (master == origin->mnt_master) {
155 			struct mount *next = next_peer(m);
156 			return (next == origin) ? NULL : next;
157 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
158 			return next_slave(m);
159 
160 		/* back at master */
161 		m = master;
162 	}
163 }
164 
165 /*
166  * return the source mount to be used for cloning
167  *
168  * @dest 	the current destination mount
169  * @last_dest  	the last seen destination mount
170  * @last_src  	the last seen source mount
171  * @type	return CL_SLAVE if the new mount has to be
172  * 		cloned as a slave.
173  */
174 static struct mount *get_source(struct mount *dest,
175 				struct mount *last_dest,
176 				struct mount *last_src,
177 				int *type)
178 {
179 	struct mount *p_last_src = NULL;
180 	struct mount *p_last_dest = NULL;
181 
182 	while (last_dest != dest->mnt_master) {
183 		p_last_dest = last_dest;
184 		p_last_src = last_src;
185 		last_dest = last_dest->mnt_master;
186 		last_src = last_src->mnt_master;
187 	}
188 
189 	if (p_last_dest) {
190 		do {
191 			p_last_dest = next_peer(p_last_dest);
192 		} while (IS_MNT_NEW(p_last_dest));
193 		/* is that a peer of the earlier? */
194 		if (dest == p_last_dest) {
195 			*type = CL_MAKE_SHARED;
196 			return p_last_src;
197 		}
198 	}
199 	/* slave of the earlier, then */
200 	*type = CL_SLAVE;
201 	/* beginning of peer group among the slaves? */
202 	if (IS_MNT_SHARED(dest))
203 		*type |= CL_MAKE_SHARED;
204 	return last_src;
205 }
206 
207 /*
208  * mount 'source_mnt' under the destination 'dest_mnt' at
209  * dentry 'dest_dentry'. And propagate that mount to
210  * all the peer and slave mounts of 'dest_mnt'.
211  * Link all the new mounts into a propagation tree headed at
212  * source_mnt. Also link all the new mounts using ->mnt_list
213  * headed at source_mnt's ->mnt_list
214  *
215  * @dest_mnt: destination mount.
216  * @dest_dentry: destination dentry.
217  * @source_mnt: source mount.
218  * @tree_list : list of heads of trees to be attached.
219  */
220 int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry,
221 		    struct mount *source_mnt, struct list_head *tree_list)
222 {
223 	struct mount *m, *child;
224 	int ret = 0;
225 	struct mount *prev_dest_mnt = dest_mnt;
226 	struct mount *prev_src_mnt  = source_mnt;
227 	LIST_HEAD(tmp_list);
228 	LIST_HEAD(umount_list);
229 
230 	for (m = propagation_next(dest_mnt, dest_mnt); m;
231 			m = propagation_next(m, dest_mnt)) {
232 		int type;
233 		struct mount *source;
234 
235 		if (IS_MNT_NEW(m))
236 			continue;
237 
238 		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
239 
240 		child = copy_tree(source, source->mnt.mnt_root, type);
241 		if (IS_ERR(child)) {
242 			ret = PTR_ERR(child);
243 			list_splice(tree_list, tmp_list.prev);
244 			goto out;
245 		}
246 
247 		if (is_subdir(dest_dentry, m->mnt.mnt_root)) {
248 			mnt_set_mountpoint(m, dest_dentry, child);
249 			list_add_tail(&child->mnt_hash, tree_list);
250 		} else {
251 			/*
252 			 * This can happen if the parent mount was bind mounted
253 			 * on some subdirectory of a shared/slave mount.
254 			 */
255 			list_add_tail(&child->mnt_hash, &tmp_list);
256 		}
257 		prev_dest_mnt = m;
258 		prev_src_mnt  = child;
259 	}
260 out:
261 	br_write_lock(&vfsmount_lock);
262 	while (!list_empty(&tmp_list)) {
263 		child = list_first_entry(&tmp_list, struct mount, mnt_hash);
264 		umount_tree(child, 0, &umount_list);
265 	}
266 	br_write_unlock(&vfsmount_lock);
267 	release_mounts(&umount_list);
268 	return ret;
269 }
270 
271 /*
272  * return true if the refcount is greater than count
273  */
274 static inline int do_refcount_check(struct mount *mnt, int count)
275 {
276 	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
277 	return (mycount > count);
278 }
279 
280 /*
281  * check if the mount 'mnt' can be unmounted successfully.
282  * @mnt: the mount to be checked for unmount
283  * NOTE: unmounting 'mnt' would naturally propagate to all
284  * other mounts its parent propagates to.
285  * Check if any of these mounts that **do not have submounts**
286  * have more references than 'refcnt'. If so return busy.
287  *
288  * vfsmount lock must be held for write
289  */
290 int propagate_mount_busy(struct mount *mnt, int refcnt)
291 {
292 	struct mount *m, *child;
293 	struct mount *parent = mnt->mnt_parent;
294 	int ret = 0;
295 
296 	if (mnt == parent)
297 		return do_refcount_check(mnt, refcnt);
298 
299 	/*
300 	 * quickly check if the current mount can be unmounted.
301 	 * If not, we don't have to go checking for all other
302 	 * mounts
303 	 */
304 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
305 		return 1;
306 
307 	for (m = propagation_next(parent, parent); m;
308 	     		m = propagation_next(m, parent)) {
309 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0);
310 		if (child && list_empty(&child->mnt_mounts) &&
311 		    (ret = do_refcount_check(child, 1)))
312 			break;
313 	}
314 	return ret;
315 }
316 
317 /*
318  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
319  * parent propagates to.
320  */
321 static void __propagate_umount(struct mount *mnt)
322 {
323 	struct mount *parent = mnt->mnt_parent;
324 	struct mount *m;
325 
326 	BUG_ON(parent == mnt);
327 
328 	for (m = propagation_next(parent, parent); m;
329 			m = propagation_next(m, parent)) {
330 
331 		struct mount *child = __lookup_mnt(&m->mnt,
332 					mnt->mnt_mountpoint, 0);
333 		/*
334 		 * umount the child only if the child has no
335 		 * other children
336 		 */
337 		if (child && list_empty(&child->mnt_mounts))
338 			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
339 	}
340 }
341 
342 /*
343  * collect all mounts that receive propagation from the mount in @list,
344  * and return these additional mounts in the same list.
345  * @list: the list of mounts to be unmounted.
346  *
347  * vfsmount lock must be held for write
348  */
349 int propagate_umount(struct list_head *list)
350 {
351 	struct mount *mnt;
352 
353 	list_for_each_entry(mnt, list, mnt_hash)
354 		__propagate_umount(mnt);
355 	return 0;
356 }
357