xref: /openbmc/linux/fs/pipe.c (revision fd589a8f)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
24 
25 /*
26  * We use a start+len construction, which provides full use of the
27  * allocated memory.
28  * -- Florian Coosmann (FGC)
29  *
30  * Reads with count = 0 should always return 0.
31  * -- Julian Bradfield 1999-06-07.
32  *
33  * FIFOs and Pipes now generate SIGIO for both readers and writers.
34  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35  *
36  * pipe_read & write cleanup
37  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38  */
39 
40 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
41 {
42 	if (pipe->inode)
43 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
44 }
45 
46 void pipe_lock(struct pipe_inode_info *pipe)
47 {
48 	/*
49 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
50 	 */
51 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
52 }
53 EXPORT_SYMBOL(pipe_lock);
54 
55 void pipe_unlock(struct pipe_inode_info *pipe)
56 {
57 	if (pipe->inode)
58 		mutex_unlock(&pipe->inode->i_mutex);
59 }
60 EXPORT_SYMBOL(pipe_unlock);
61 
62 void pipe_double_lock(struct pipe_inode_info *pipe1,
63 		      struct pipe_inode_info *pipe2)
64 {
65 	BUG_ON(pipe1 == pipe2);
66 
67 	if (pipe1 < pipe2) {
68 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70 	} else {
71 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
72 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
73 	}
74 }
75 
76 /* Drop the inode semaphore and wait for a pipe event, atomically */
77 void pipe_wait(struct pipe_inode_info *pipe)
78 {
79 	DEFINE_WAIT(wait);
80 
81 	/*
82 	 * Pipes are system-local resources, so sleeping on them
83 	 * is considered a noninteractive wait:
84 	 */
85 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86 	pipe_unlock(pipe);
87 	schedule();
88 	finish_wait(&pipe->wait, &wait);
89 	pipe_lock(pipe);
90 }
91 
92 static int
93 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94 			int atomic)
95 {
96 	unsigned long copy;
97 
98 	while (len > 0) {
99 		while (!iov->iov_len)
100 			iov++;
101 		copy = min_t(unsigned long, len, iov->iov_len);
102 
103 		if (atomic) {
104 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105 				return -EFAULT;
106 		} else {
107 			if (copy_from_user(to, iov->iov_base, copy))
108 				return -EFAULT;
109 		}
110 		to += copy;
111 		len -= copy;
112 		iov->iov_base += copy;
113 		iov->iov_len -= copy;
114 	}
115 	return 0;
116 }
117 
118 static int
119 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120 		      int atomic)
121 {
122 	unsigned long copy;
123 
124 	while (len > 0) {
125 		while (!iov->iov_len)
126 			iov++;
127 		copy = min_t(unsigned long, len, iov->iov_len);
128 
129 		if (atomic) {
130 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131 				return -EFAULT;
132 		} else {
133 			if (copy_to_user(iov->iov_base, from, copy))
134 				return -EFAULT;
135 		}
136 		from += copy;
137 		len -= copy;
138 		iov->iov_base += copy;
139 		iov->iov_len -= copy;
140 	}
141 	return 0;
142 }
143 
144 /*
145  * Attempt to pre-fault in the user memory, so we can use atomic copies.
146  * Returns the number of bytes not faulted in.
147  */
148 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
149 {
150 	while (!iov->iov_len)
151 		iov++;
152 
153 	while (len > 0) {
154 		unsigned long this_len;
155 
156 		this_len = min_t(unsigned long, len, iov->iov_len);
157 		if (fault_in_pages_writeable(iov->iov_base, this_len))
158 			break;
159 
160 		len -= this_len;
161 		iov++;
162 	}
163 
164 	return len;
165 }
166 
167 /*
168  * Pre-fault in the user memory, so we can use atomic copies.
169  */
170 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
171 {
172 	while (!iov->iov_len)
173 		iov++;
174 
175 	while (len > 0) {
176 		unsigned long this_len;
177 
178 		this_len = min_t(unsigned long, len, iov->iov_len);
179 		fault_in_pages_readable(iov->iov_base, this_len);
180 		len -= this_len;
181 		iov++;
182 	}
183 }
184 
185 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186 				  struct pipe_buffer *buf)
187 {
188 	struct page *page = buf->page;
189 
190 	/*
191 	 * If nobody else uses this page, and we don't already have a
192 	 * temporary page, let's keep track of it as a one-deep
193 	 * allocation cache. (Otherwise just release our reference to it)
194 	 */
195 	if (page_count(page) == 1 && !pipe->tmp_page)
196 		pipe->tmp_page = page;
197 	else
198 		page_cache_release(page);
199 }
200 
201 /**
202  * generic_pipe_buf_map - virtually map a pipe buffer
203  * @pipe:	the pipe that the buffer belongs to
204  * @buf:	the buffer that should be mapped
205  * @atomic:	whether to use an atomic map
206  *
207  * Description:
208  *	This function returns a kernel virtual address mapping for the
209  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210  *	and the caller has to be careful not to fault before calling
211  *	the unmap function.
212  *
213  *	Note that this function occupies KM_USER0 if @atomic != 0.
214  */
215 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216 			   struct pipe_buffer *buf, int atomic)
217 {
218 	if (atomic) {
219 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220 		return kmap_atomic(buf->page, KM_USER0);
221 	}
222 
223 	return kmap(buf->page);
224 }
225 
226 /**
227  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228  * @pipe:	the pipe that the buffer belongs to
229  * @buf:	the buffer that should be unmapped
230  * @map_data:	the data that the mapping function returned
231  *
232  * Description:
233  *	This function undoes the mapping that ->map() provided.
234  */
235 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236 			    struct pipe_buffer *buf, void *map_data)
237 {
238 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240 		kunmap_atomic(map_data, KM_USER0);
241 	} else
242 		kunmap(buf->page);
243 }
244 
245 /**
246  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247  * @pipe:	the pipe that the buffer belongs to
248  * @buf:	the buffer to attempt to steal
249  *
250  * Description:
251  *	This function attempts to steal the &struct page attached to
252  *	@buf. If successful, this function returns 0 and returns with
253  *	the page locked. The caller may then reuse the page for whatever
254  *	he wishes; the typical use is insertion into a different file
255  *	page cache.
256  */
257 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258 			   struct pipe_buffer *buf)
259 {
260 	struct page *page = buf->page;
261 
262 	/*
263 	 * A reference of one is golden, that means that the owner of this
264 	 * page is the only one holding a reference to it. lock the page
265 	 * and return OK.
266 	 */
267 	if (page_count(page) == 1) {
268 		lock_page(page);
269 		return 0;
270 	}
271 
272 	return 1;
273 }
274 
275 /**
276  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277  * @pipe:	the pipe that the buffer belongs to
278  * @buf:	the buffer to get a reference to
279  *
280  * Description:
281  *	This function grabs an extra reference to @buf. It's used in
282  *	in the tee() system call, when we duplicate the buffers in one
283  *	pipe into another.
284  */
285 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
286 {
287 	page_cache_get(buf->page);
288 }
289 
290 /**
291  * generic_pipe_buf_confirm - verify contents of the pipe buffer
292  * @info:	the pipe that the buffer belongs to
293  * @buf:	the buffer to confirm
294  *
295  * Description:
296  *	This function does nothing, because the generic pipe code uses
297  *	pages that are always good when inserted into the pipe.
298  */
299 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300 			     struct pipe_buffer *buf)
301 {
302 	return 0;
303 }
304 
305 /**
306  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
307  * @pipe:	the pipe that the buffer belongs to
308  * @buf:	the buffer to put a reference to
309  *
310  * Description:
311  *	This function releases a reference to @buf.
312  */
313 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
314 			      struct pipe_buffer *buf)
315 {
316 	page_cache_release(buf->page);
317 }
318 
319 static const struct pipe_buf_operations anon_pipe_buf_ops = {
320 	.can_merge = 1,
321 	.map = generic_pipe_buf_map,
322 	.unmap = generic_pipe_buf_unmap,
323 	.confirm = generic_pipe_buf_confirm,
324 	.release = anon_pipe_buf_release,
325 	.steal = generic_pipe_buf_steal,
326 	.get = generic_pipe_buf_get,
327 };
328 
329 static ssize_t
330 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
331 	   unsigned long nr_segs, loff_t pos)
332 {
333 	struct file *filp = iocb->ki_filp;
334 	struct inode *inode = filp->f_path.dentry->d_inode;
335 	struct pipe_inode_info *pipe;
336 	int do_wakeup;
337 	ssize_t ret;
338 	struct iovec *iov = (struct iovec *)_iov;
339 	size_t total_len;
340 
341 	total_len = iov_length(iov, nr_segs);
342 	/* Null read succeeds. */
343 	if (unlikely(total_len == 0))
344 		return 0;
345 
346 	do_wakeup = 0;
347 	ret = 0;
348 	mutex_lock(&inode->i_mutex);
349 	pipe = inode->i_pipe;
350 	for (;;) {
351 		int bufs = pipe->nrbufs;
352 		if (bufs) {
353 			int curbuf = pipe->curbuf;
354 			struct pipe_buffer *buf = pipe->bufs + curbuf;
355 			const struct pipe_buf_operations *ops = buf->ops;
356 			void *addr;
357 			size_t chars = buf->len;
358 			int error, atomic;
359 
360 			if (chars > total_len)
361 				chars = total_len;
362 
363 			error = ops->confirm(pipe, buf);
364 			if (error) {
365 				if (!ret)
366 					error = ret;
367 				break;
368 			}
369 
370 			atomic = !iov_fault_in_pages_write(iov, chars);
371 redo:
372 			addr = ops->map(pipe, buf, atomic);
373 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
374 			ops->unmap(pipe, buf, addr);
375 			if (unlikely(error)) {
376 				/*
377 				 * Just retry with the slow path if we failed.
378 				 */
379 				if (atomic) {
380 					atomic = 0;
381 					goto redo;
382 				}
383 				if (!ret)
384 					ret = error;
385 				break;
386 			}
387 			ret += chars;
388 			buf->offset += chars;
389 			buf->len -= chars;
390 			if (!buf->len) {
391 				buf->ops = NULL;
392 				ops->release(pipe, buf);
393 				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
394 				pipe->curbuf = curbuf;
395 				pipe->nrbufs = --bufs;
396 				do_wakeup = 1;
397 			}
398 			total_len -= chars;
399 			if (!total_len)
400 				break;	/* common path: read succeeded */
401 		}
402 		if (bufs)	/* More to do? */
403 			continue;
404 		if (!pipe->writers)
405 			break;
406 		if (!pipe->waiting_writers) {
407 			/* syscall merging: Usually we must not sleep
408 			 * if O_NONBLOCK is set, or if we got some data.
409 			 * But if a writer sleeps in kernel space, then
410 			 * we can wait for that data without violating POSIX.
411 			 */
412 			if (ret)
413 				break;
414 			if (filp->f_flags & O_NONBLOCK) {
415 				ret = -EAGAIN;
416 				break;
417 			}
418 		}
419 		if (signal_pending(current)) {
420 			if (!ret)
421 				ret = -ERESTARTSYS;
422 			break;
423 		}
424 		if (do_wakeup) {
425 			wake_up_interruptible_sync(&pipe->wait);
426  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
427 		}
428 		pipe_wait(pipe);
429 	}
430 	mutex_unlock(&inode->i_mutex);
431 
432 	/* Signal writers asynchronously that there is more room. */
433 	if (do_wakeup) {
434 		wake_up_interruptible_sync(&pipe->wait);
435 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
436 	}
437 	if (ret > 0)
438 		file_accessed(filp);
439 	return ret;
440 }
441 
442 static ssize_t
443 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
444 	    unsigned long nr_segs, loff_t ppos)
445 {
446 	struct file *filp = iocb->ki_filp;
447 	struct inode *inode = filp->f_path.dentry->d_inode;
448 	struct pipe_inode_info *pipe;
449 	ssize_t ret;
450 	int do_wakeup;
451 	struct iovec *iov = (struct iovec *)_iov;
452 	size_t total_len;
453 	ssize_t chars;
454 
455 	total_len = iov_length(iov, nr_segs);
456 	/* Null write succeeds. */
457 	if (unlikely(total_len == 0))
458 		return 0;
459 
460 	do_wakeup = 0;
461 	ret = 0;
462 	mutex_lock(&inode->i_mutex);
463 	pipe = inode->i_pipe;
464 
465 	if (!pipe->readers) {
466 		send_sig(SIGPIPE, current, 0);
467 		ret = -EPIPE;
468 		goto out;
469 	}
470 
471 	/* We try to merge small writes */
472 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
473 	if (pipe->nrbufs && chars != 0) {
474 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
475 							(PIPE_BUFFERS-1);
476 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
477 		const struct pipe_buf_operations *ops = buf->ops;
478 		int offset = buf->offset + buf->len;
479 
480 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
481 			int error, atomic = 1;
482 			void *addr;
483 
484 			error = ops->confirm(pipe, buf);
485 			if (error)
486 				goto out;
487 
488 			iov_fault_in_pages_read(iov, chars);
489 redo1:
490 			addr = ops->map(pipe, buf, atomic);
491 			error = pipe_iov_copy_from_user(offset + addr, iov,
492 							chars, atomic);
493 			ops->unmap(pipe, buf, addr);
494 			ret = error;
495 			do_wakeup = 1;
496 			if (error) {
497 				if (atomic) {
498 					atomic = 0;
499 					goto redo1;
500 				}
501 				goto out;
502 			}
503 			buf->len += chars;
504 			total_len -= chars;
505 			ret = chars;
506 			if (!total_len)
507 				goto out;
508 		}
509 	}
510 
511 	for (;;) {
512 		int bufs;
513 
514 		if (!pipe->readers) {
515 			send_sig(SIGPIPE, current, 0);
516 			if (!ret)
517 				ret = -EPIPE;
518 			break;
519 		}
520 		bufs = pipe->nrbufs;
521 		if (bufs < PIPE_BUFFERS) {
522 			int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
523 			struct pipe_buffer *buf = pipe->bufs + newbuf;
524 			struct page *page = pipe->tmp_page;
525 			char *src;
526 			int error, atomic = 1;
527 
528 			if (!page) {
529 				page = alloc_page(GFP_HIGHUSER);
530 				if (unlikely(!page)) {
531 					ret = ret ? : -ENOMEM;
532 					break;
533 				}
534 				pipe->tmp_page = page;
535 			}
536 			/* Always wake up, even if the copy fails. Otherwise
537 			 * we lock up (O_NONBLOCK-)readers that sleep due to
538 			 * syscall merging.
539 			 * FIXME! Is this really true?
540 			 */
541 			do_wakeup = 1;
542 			chars = PAGE_SIZE;
543 			if (chars > total_len)
544 				chars = total_len;
545 
546 			iov_fault_in_pages_read(iov, chars);
547 redo2:
548 			if (atomic)
549 				src = kmap_atomic(page, KM_USER0);
550 			else
551 				src = kmap(page);
552 
553 			error = pipe_iov_copy_from_user(src, iov, chars,
554 							atomic);
555 			if (atomic)
556 				kunmap_atomic(src, KM_USER0);
557 			else
558 				kunmap(page);
559 
560 			if (unlikely(error)) {
561 				if (atomic) {
562 					atomic = 0;
563 					goto redo2;
564 				}
565 				if (!ret)
566 					ret = error;
567 				break;
568 			}
569 			ret += chars;
570 
571 			/* Insert it into the buffer array */
572 			buf->page = page;
573 			buf->ops = &anon_pipe_buf_ops;
574 			buf->offset = 0;
575 			buf->len = chars;
576 			pipe->nrbufs = ++bufs;
577 			pipe->tmp_page = NULL;
578 
579 			total_len -= chars;
580 			if (!total_len)
581 				break;
582 		}
583 		if (bufs < PIPE_BUFFERS)
584 			continue;
585 		if (filp->f_flags & O_NONBLOCK) {
586 			if (!ret)
587 				ret = -EAGAIN;
588 			break;
589 		}
590 		if (signal_pending(current)) {
591 			if (!ret)
592 				ret = -ERESTARTSYS;
593 			break;
594 		}
595 		if (do_wakeup) {
596 			wake_up_interruptible_sync(&pipe->wait);
597 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598 			do_wakeup = 0;
599 		}
600 		pipe->waiting_writers++;
601 		pipe_wait(pipe);
602 		pipe->waiting_writers--;
603 	}
604 out:
605 	mutex_unlock(&inode->i_mutex);
606 	if (do_wakeup) {
607 		wake_up_interruptible_sync(&pipe->wait);
608 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
609 	}
610 	if (ret > 0)
611 		file_update_time(filp);
612 	return ret;
613 }
614 
615 static ssize_t
616 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
617 {
618 	return -EBADF;
619 }
620 
621 static ssize_t
622 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
623 	   loff_t *ppos)
624 {
625 	return -EBADF;
626 }
627 
628 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
629 {
630 	struct inode *inode = filp->f_path.dentry->d_inode;
631 	struct pipe_inode_info *pipe;
632 	int count, buf, nrbufs;
633 
634 	switch (cmd) {
635 		case FIONREAD:
636 			mutex_lock(&inode->i_mutex);
637 			pipe = inode->i_pipe;
638 			count = 0;
639 			buf = pipe->curbuf;
640 			nrbufs = pipe->nrbufs;
641 			while (--nrbufs >= 0) {
642 				count += pipe->bufs[buf].len;
643 				buf = (buf+1) & (PIPE_BUFFERS-1);
644 			}
645 			mutex_unlock(&inode->i_mutex);
646 
647 			return put_user(count, (int __user *)arg);
648 		default:
649 			return -EINVAL;
650 	}
651 }
652 
653 /* No kernel lock held - fine */
654 static unsigned int
655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657 	unsigned int mask;
658 	struct inode *inode = filp->f_path.dentry->d_inode;
659 	struct pipe_inode_info *pipe = inode->i_pipe;
660 	int nrbufs;
661 
662 	poll_wait(filp, &pipe->wait, wait);
663 
664 	/* Reading only -- no need for acquiring the semaphore.  */
665 	nrbufs = pipe->nrbufs;
666 	mask = 0;
667 	if (filp->f_mode & FMODE_READ) {
668 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
669 		if (!pipe->writers && filp->f_version != pipe->w_counter)
670 			mask |= POLLHUP;
671 	}
672 
673 	if (filp->f_mode & FMODE_WRITE) {
674 		mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
675 		/*
676 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
677 		 * behave exactly like pipes for poll().
678 		 */
679 		if (!pipe->readers)
680 			mask |= POLLERR;
681 	}
682 
683 	return mask;
684 }
685 
686 static int
687 pipe_release(struct inode *inode, int decr, int decw)
688 {
689 	struct pipe_inode_info *pipe;
690 
691 	mutex_lock(&inode->i_mutex);
692 	pipe = inode->i_pipe;
693 	pipe->readers -= decr;
694 	pipe->writers -= decw;
695 
696 	if (!pipe->readers && !pipe->writers) {
697 		free_pipe_info(inode);
698 	} else {
699 		wake_up_interruptible_sync(&pipe->wait);
700 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
701 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
702 	}
703 	mutex_unlock(&inode->i_mutex);
704 
705 	return 0;
706 }
707 
708 static int
709 pipe_read_fasync(int fd, struct file *filp, int on)
710 {
711 	struct inode *inode = filp->f_path.dentry->d_inode;
712 	int retval;
713 
714 	mutex_lock(&inode->i_mutex);
715 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
716 	mutex_unlock(&inode->i_mutex);
717 
718 	return retval;
719 }
720 
721 
722 static int
723 pipe_write_fasync(int fd, struct file *filp, int on)
724 {
725 	struct inode *inode = filp->f_path.dentry->d_inode;
726 	int retval;
727 
728 	mutex_lock(&inode->i_mutex);
729 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
730 	mutex_unlock(&inode->i_mutex);
731 
732 	return retval;
733 }
734 
735 
736 static int
737 pipe_rdwr_fasync(int fd, struct file *filp, int on)
738 {
739 	struct inode *inode = filp->f_path.dentry->d_inode;
740 	struct pipe_inode_info *pipe = inode->i_pipe;
741 	int retval;
742 
743 	mutex_lock(&inode->i_mutex);
744 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 	if (retval >= 0) {
746 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 		if (retval < 0) /* this can happen only if on == T */
748 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
749 	}
750 	mutex_unlock(&inode->i_mutex);
751 	return retval;
752 }
753 
754 
755 static int
756 pipe_read_release(struct inode *inode, struct file *filp)
757 {
758 	return pipe_release(inode, 1, 0);
759 }
760 
761 static int
762 pipe_write_release(struct inode *inode, struct file *filp)
763 {
764 	return pipe_release(inode, 0, 1);
765 }
766 
767 static int
768 pipe_rdwr_release(struct inode *inode, struct file *filp)
769 {
770 	int decr, decw;
771 
772 	decr = (filp->f_mode & FMODE_READ) != 0;
773 	decw = (filp->f_mode & FMODE_WRITE) != 0;
774 	return pipe_release(inode, decr, decw);
775 }
776 
777 static int
778 pipe_read_open(struct inode *inode, struct file *filp)
779 {
780 	/* We could have perhaps used atomic_t, but this and friends
781 	   below are the only places.  So it doesn't seem worthwhile.  */
782 	mutex_lock(&inode->i_mutex);
783 	inode->i_pipe->readers++;
784 	mutex_unlock(&inode->i_mutex);
785 
786 	return 0;
787 }
788 
789 static int
790 pipe_write_open(struct inode *inode, struct file *filp)
791 {
792 	mutex_lock(&inode->i_mutex);
793 	inode->i_pipe->writers++;
794 	mutex_unlock(&inode->i_mutex);
795 
796 	return 0;
797 }
798 
799 static int
800 pipe_rdwr_open(struct inode *inode, struct file *filp)
801 {
802 	mutex_lock(&inode->i_mutex);
803 	if (filp->f_mode & FMODE_READ)
804 		inode->i_pipe->readers++;
805 	if (filp->f_mode & FMODE_WRITE)
806 		inode->i_pipe->writers++;
807 	mutex_unlock(&inode->i_mutex);
808 
809 	return 0;
810 }
811 
812 /*
813  * The file_operations structs are not static because they
814  * are also used in linux/fs/fifo.c to do operations on FIFOs.
815  *
816  * Pipes reuse fifos' file_operations structs.
817  */
818 const struct file_operations read_pipefifo_fops = {
819 	.llseek		= no_llseek,
820 	.read		= do_sync_read,
821 	.aio_read	= pipe_read,
822 	.write		= bad_pipe_w,
823 	.poll		= pipe_poll,
824 	.unlocked_ioctl	= pipe_ioctl,
825 	.open		= pipe_read_open,
826 	.release	= pipe_read_release,
827 	.fasync		= pipe_read_fasync,
828 };
829 
830 const struct file_operations write_pipefifo_fops = {
831 	.llseek		= no_llseek,
832 	.read		= bad_pipe_r,
833 	.write		= do_sync_write,
834 	.aio_write	= pipe_write,
835 	.poll		= pipe_poll,
836 	.unlocked_ioctl	= pipe_ioctl,
837 	.open		= pipe_write_open,
838 	.release	= pipe_write_release,
839 	.fasync		= pipe_write_fasync,
840 };
841 
842 const struct file_operations rdwr_pipefifo_fops = {
843 	.llseek		= no_llseek,
844 	.read		= do_sync_read,
845 	.aio_read	= pipe_read,
846 	.write		= do_sync_write,
847 	.aio_write	= pipe_write,
848 	.poll		= pipe_poll,
849 	.unlocked_ioctl	= pipe_ioctl,
850 	.open		= pipe_rdwr_open,
851 	.release	= pipe_rdwr_release,
852 	.fasync		= pipe_rdwr_fasync,
853 };
854 
855 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
856 {
857 	struct pipe_inode_info *pipe;
858 
859 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
860 	if (pipe) {
861 		init_waitqueue_head(&pipe->wait);
862 		pipe->r_counter = pipe->w_counter = 1;
863 		pipe->inode = inode;
864 	}
865 
866 	return pipe;
867 }
868 
869 void __free_pipe_info(struct pipe_inode_info *pipe)
870 {
871 	int i;
872 
873 	for (i = 0; i < PIPE_BUFFERS; i++) {
874 		struct pipe_buffer *buf = pipe->bufs + i;
875 		if (buf->ops)
876 			buf->ops->release(pipe, buf);
877 	}
878 	if (pipe->tmp_page)
879 		__free_page(pipe->tmp_page);
880 	kfree(pipe);
881 }
882 
883 void free_pipe_info(struct inode *inode)
884 {
885 	__free_pipe_info(inode->i_pipe);
886 	inode->i_pipe = NULL;
887 }
888 
889 static struct vfsmount *pipe_mnt __read_mostly;
890 static int pipefs_delete_dentry(struct dentry *dentry)
891 {
892 	/*
893 	 * At creation time, we pretended this dentry was hashed
894 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
895 	 * At delete time, we restore the truth : not hashed.
896 	 * (so that dput() can proceed correctly)
897 	 */
898 	dentry->d_flags |= DCACHE_UNHASHED;
899 	return 0;
900 }
901 
902 /*
903  * pipefs_dname() is called from d_path().
904  */
905 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
906 {
907 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
908 				dentry->d_inode->i_ino);
909 }
910 
911 static const struct dentry_operations pipefs_dentry_operations = {
912 	.d_delete	= pipefs_delete_dentry,
913 	.d_dname	= pipefs_dname,
914 };
915 
916 static struct inode * get_pipe_inode(void)
917 {
918 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
919 	struct pipe_inode_info *pipe;
920 
921 	if (!inode)
922 		goto fail_inode;
923 
924 	pipe = alloc_pipe_info(inode);
925 	if (!pipe)
926 		goto fail_iput;
927 	inode->i_pipe = pipe;
928 
929 	pipe->readers = pipe->writers = 1;
930 	inode->i_fop = &rdwr_pipefifo_fops;
931 
932 	/*
933 	 * Mark the inode dirty from the very beginning,
934 	 * that way it will never be moved to the dirty
935 	 * list because "mark_inode_dirty()" will think
936 	 * that it already _is_ on the dirty list.
937 	 */
938 	inode->i_state = I_DIRTY;
939 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
940 	inode->i_uid = current_fsuid();
941 	inode->i_gid = current_fsgid();
942 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
943 
944 	return inode;
945 
946 fail_iput:
947 	iput(inode);
948 
949 fail_inode:
950 	return NULL;
951 }
952 
953 struct file *create_write_pipe(int flags)
954 {
955 	int err;
956 	struct inode *inode;
957 	struct file *f;
958 	struct dentry *dentry;
959 	struct qstr name = { .name = "" };
960 
961 	err = -ENFILE;
962 	inode = get_pipe_inode();
963 	if (!inode)
964 		goto err;
965 
966 	err = -ENOMEM;
967 	dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
968 	if (!dentry)
969 		goto err_inode;
970 
971 	dentry->d_op = &pipefs_dentry_operations;
972 	/*
973 	 * We dont want to publish this dentry into global dentry hash table.
974 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
975 	 * This permits a working /proc/$pid/fd/XXX on pipes
976 	 */
977 	dentry->d_flags &= ~DCACHE_UNHASHED;
978 	d_instantiate(dentry, inode);
979 
980 	err = -ENFILE;
981 	f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
982 	if (!f)
983 		goto err_dentry;
984 	f->f_mapping = inode->i_mapping;
985 
986 	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
987 	f->f_version = 0;
988 
989 	return f;
990 
991  err_dentry:
992 	free_pipe_info(inode);
993 	dput(dentry);
994 	return ERR_PTR(err);
995 
996  err_inode:
997 	free_pipe_info(inode);
998 	iput(inode);
999  err:
1000 	return ERR_PTR(err);
1001 }
1002 
1003 void free_write_pipe(struct file *f)
1004 {
1005 	free_pipe_info(f->f_dentry->d_inode);
1006 	path_put(&f->f_path);
1007 	put_filp(f);
1008 }
1009 
1010 struct file *create_read_pipe(struct file *wrf, int flags)
1011 {
1012 	struct file *f = get_empty_filp();
1013 	if (!f)
1014 		return ERR_PTR(-ENFILE);
1015 
1016 	/* Grab pipe from the writer */
1017 	f->f_path = wrf->f_path;
1018 	path_get(&wrf->f_path);
1019 	f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1020 
1021 	f->f_pos = 0;
1022 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1023 	f->f_op = &read_pipefifo_fops;
1024 	f->f_mode = FMODE_READ;
1025 	f->f_version = 0;
1026 
1027 	return f;
1028 }
1029 
1030 int do_pipe_flags(int *fd, int flags)
1031 {
1032 	struct file *fw, *fr;
1033 	int error;
1034 	int fdw, fdr;
1035 
1036 	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1037 		return -EINVAL;
1038 
1039 	fw = create_write_pipe(flags);
1040 	if (IS_ERR(fw))
1041 		return PTR_ERR(fw);
1042 	fr = create_read_pipe(fw, flags);
1043 	error = PTR_ERR(fr);
1044 	if (IS_ERR(fr))
1045 		goto err_write_pipe;
1046 
1047 	error = get_unused_fd_flags(flags);
1048 	if (error < 0)
1049 		goto err_read_pipe;
1050 	fdr = error;
1051 
1052 	error = get_unused_fd_flags(flags);
1053 	if (error < 0)
1054 		goto err_fdr;
1055 	fdw = error;
1056 
1057 	audit_fd_pair(fdr, fdw);
1058 	fd_install(fdr, fr);
1059 	fd_install(fdw, fw);
1060 	fd[0] = fdr;
1061 	fd[1] = fdw;
1062 
1063 	return 0;
1064 
1065  err_fdr:
1066 	put_unused_fd(fdr);
1067  err_read_pipe:
1068 	path_put(&fr->f_path);
1069 	put_filp(fr);
1070  err_write_pipe:
1071 	free_write_pipe(fw);
1072 	return error;
1073 }
1074 
1075 /*
1076  * sys_pipe() is the normal C calling standard for creating
1077  * a pipe. It's not the way Unix traditionally does this, though.
1078  */
1079 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1080 {
1081 	int fd[2];
1082 	int error;
1083 
1084 	error = do_pipe_flags(fd, flags);
1085 	if (!error) {
1086 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1087 			sys_close(fd[0]);
1088 			sys_close(fd[1]);
1089 			error = -EFAULT;
1090 		}
1091 	}
1092 	return error;
1093 }
1094 
1095 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1096 {
1097 	return sys_pipe2(fildes, 0);
1098 }
1099 
1100 /*
1101  * pipefs should _never_ be mounted by userland - too much of security hassle,
1102  * no real gain from having the whole whorehouse mounted. So we don't need
1103  * any operations on the root directory. However, we need a non-trivial
1104  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1105  */
1106 static int pipefs_get_sb(struct file_system_type *fs_type,
1107 			 int flags, const char *dev_name, void *data,
1108 			 struct vfsmount *mnt)
1109 {
1110 	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1111 }
1112 
1113 static struct file_system_type pipe_fs_type = {
1114 	.name		= "pipefs",
1115 	.get_sb		= pipefs_get_sb,
1116 	.kill_sb	= kill_anon_super,
1117 };
1118 
1119 static int __init init_pipe_fs(void)
1120 {
1121 	int err = register_filesystem(&pipe_fs_type);
1122 
1123 	if (!err) {
1124 		pipe_mnt = kern_mount(&pipe_fs_type);
1125 		if (IS_ERR(pipe_mnt)) {
1126 			err = PTR_ERR(pipe_mnt);
1127 			unregister_filesystem(&pipe_fs_type);
1128 		}
1129 	}
1130 	return err;
1131 }
1132 
1133 static void __exit exit_pipe_fs(void)
1134 {
1135 	unregister_filesystem(&pipe_fs_type);
1136 	mntput(pipe_mnt);
1137 }
1138 
1139 fs_initcall(init_pipe_fs);
1140 module_exit(exit_pipe_fs);
1141