1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/magic.h> 18 #include <linux/pipe_fs_i.h> 19 #include <linux/uio.h> 20 #include <linux/highmem.h> 21 #include <linux/pagemap.h> 22 #include <linux/audit.h> 23 #include <linux/syscalls.h> 24 #include <linux/fcntl.h> 25 #include <linux/memcontrol.h> 26 27 #include <linux/uaccess.h> 28 #include <asm/ioctls.h> 29 30 #include "internal.h" 31 32 /* 33 * The max size that a non-root user is allowed to grow the pipe. Can 34 * be set by root in /proc/sys/fs/pipe-max-size 35 */ 36 unsigned int pipe_max_size = 1048576; 37 38 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 39 * matches default values. 40 */ 41 unsigned long pipe_user_pages_hard; 42 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 43 44 /* 45 * We use a start+len construction, which provides full use of the 46 * allocated memory. 47 * -- Florian Coosmann (FGC) 48 * 49 * Reads with count = 0 should always return 0. 50 * -- Julian Bradfield 1999-06-07. 51 * 52 * FIFOs and Pipes now generate SIGIO for both readers and writers. 53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 54 * 55 * pipe_read & write cleanup 56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 57 */ 58 59 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 60 { 61 if (pipe->files) 62 mutex_lock_nested(&pipe->mutex, subclass); 63 } 64 65 void pipe_lock(struct pipe_inode_info *pipe) 66 { 67 /* 68 * pipe_lock() nests non-pipe inode locks (for writing to a file) 69 */ 70 pipe_lock_nested(pipe, I_MUTEX_PARENT); 71 } 72 EXPORT_SYMBOL(pipe_lock); 73 74 void pipe_unlock(struct pipe_inode_info *pipe) 75 { 76 if (pipe->files) 77 mutex_unlock(&pipe->mutex); 78 } 79 EXPORT_SYMBOL(pipe_unlock); 80 81 static inline void __pipe_lock(struct pipe_inode_info *pipe) 82 { 83 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 84 } 85 86 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 87 { 88 mutex_unlock(&pipe->mutex); 89 } 90 91 void pipe_double_lock(struct pipe_inode_info *pipe1, 92 struct pipe_inode_info *pipe2) 93 { 94 BUG_ON(pipe1 == pipe2); 95 96 if (pipe1 < pipe2) { 97 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 98 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 99 } else { 100 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 102 } 103 } 104 105 /* Drop the inode semaphore and wait for a pipe event, atomically */ 106 void pipe_wait(struct pipe_inode_info *pipe) 107 { 108 DEFINE_WAIT(wait); 109 110 /* 111 * Pipes are system-local resources, so sleeping on them 112 * is considered a noninteractive wait: 113 */ 114 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 115 pipe_unlock(pipe); 116 schedule(); 117 finish_wait(&pipe->wait, &wait); 118 pipe_lock(pipe); 119 } 120 121 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 122 struct pipe_buffer *buf) 123 { 124 struct page *page = buf->page; 125 126 /* 127 * If nobody else uses this page, and we don't already have a 128 * temporary page, let's keep track of it as a one-deep 129 * allocation cache. (Otherwise just release our reference to it) 130 */ 131 if (page_count(page) == 1 && !pipe->tmp_page) 132 pipe->tmp_page = page; 133 else 134 put_page(page); 135 } 136 137 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 138 struct pipe_buffer *buf) 139 { 140 struct page *page = buf->page; 141 142 if (page_count(page) == 1) { 143 if (memcg_kmem_enabled()) 144 memcg_kmem_uncharge(page, 0); 145 __SetPageLocked(page); 146 return 0; 147 } 148 return 1; 149 } 150 151 /** 152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 153 * @pipe: the pipe that the buffer belongs to 154 * @buf: the buffer to attempt to steal 155 * 156 * Description: 157 * This function attempts to steal the &struct page attached to 158 * @buf. If successful, this function returns 0 and returns with 159 * the page locked. The caller may then reuse the page for whatever 160 * he wishes; the typical use is insertion into a different file 161 * page cache. 162 */ 163 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 164 struct pipe_buffer *buf) 165 { 166 struct page *page = buf->page; 167 168 /* 169 * A reference of one is golden, that means that the owner of this 170 * page is the only one holding a reference to it. lock the page 171 * and return OK. 172 */ 173 if (page_count(page) == 1) { 174 lock_page(page); 175 return 0; 176 } 177 178 return 1; 179 } 180 EXPORT_SYMBOL(generic_pipe_buf_steal); 181 182 /** 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 184 * @pipe: the pipe that the buffer belongs to 185 * @buf: the buffer to get a reference to 186 * 187 * Description: 188 * This function grabs an extra reference to @buf. It's used in 189 * in the tee() system call, when we duplicate the buffers in one 190 * pipe into another. 191 */ 192 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 193 { 194 get_page(buf->page); 195 } 196 EXPORT_SYMBOL(generic_pipe_buf_get); 197 198 /** 199 * generic_pipe_buf_confirm - verify contents of the pipe buffer 200 * @info: the pipe that the buffer belongs to 201 * @buf: the buffer to confirm 202 * 203 * Description: 204 * This function does nothing, because the generic pipe code uses 205 * pages that are always good when inserted into the pipe. 206 */ 207 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 208 struct pipe_buffer *buf) 209 { 210 return 0; 211 } 212 EXPORT_SYMBOL(generic_pipe_buf_confirm); 213 214 /** 215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 216 * @pipe: the pipe that the buffer belongs to 217 * @buf: the buffer to put a reference to 218 * 219 * Description: 220 * This function releases a reference to @buf. 221 */ 222 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 223 struct pipe_buffer *buf) 224 { 225 put_page(buf->page); 226 } 227 EXPORT_SYMBOL(generic_pipe_buf_release); 228 229 static const struct pipe_buf_operations anon_pipe_buf_ops = { 230 .can_merge = 1, 231 .confirm = generic_pipe_buf_confirm, 232 .release = anon_pipe_buf_release, 233 .steal = anon_pipe_buf_steal, 234 .get = generic_pipe_buf_get, 235 }; 236 237 static const struct pipe_buf_operations packet_pipe_buf_ops = { 238 .can_merge = 0, 239 .confirm = generic_pipe_buf_confirm, 240 .release = anon_pipe_buf_release, 241 .steal = anon_pipe_buf_steal, 242 .get = generic_pipe_buf_get, 243 }; 244 245 static ssize_t 246 pipe_read(struct kiocb *iocb, struct iov_iter *to) 247 { 248 size_t total_len = iov_iter_count(to); 249 struct file *filp = iocb->ki_filp; 250 struct pipe_inode_info *pipe = filp->private_data; 251 int do_wakeup; 252 ssize_t ret; 253 254 /* Null read succeeds. */ 255 if (unlikely(total_len == 0)) 256 return 0; 257 258 do_wakeup = 0; 259 ret = 0; 260 __pipe_lock(pipe); 261 for (;;) { 262 int bufs = pipe->nrbufs; 263 if (bufs) { 264 int curbuf = pipe->curbuf; 265 struct pipe_buffer *buf = pipe->bufs + curbuf; 266 size_t chars = buf->len; 267 size_t written; 268 int error; 269 270 if (chars > total_len) 271 chars = total_len; 272 273 error = pipe_buf_confirm(pipe, buf); 274 if (error) { 275 if (!ret) 276 ret = error; 277 break; 278 } 279 280 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 281 if (unlikely(written < chars)) { 282 if (!ret) 283 ret = -EFAULT; 284 break; 285 } 286 ret += chars; 287 buf->offset += chars; 288 buf->len -= chars; 289 290 /* Was it a packet buffer? Clean up and exit */ 291 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 292 total_len = chars; 293 buf->len = 0; 294 } 295 296 if (!buf->len) { 297 pipe_buf_release(pipe, buf); 298 curbuf = (curbuf + 1) & (pipe->buffers - 1); 299 pipe->curbuf = curbuf; 300 pipe->nrbufs = --bufs; 301 do_wakeup = 1; 302 } 303 total_len -= chars; 304 if (!total_len) 305 break; /* common path: read succeeded */ 306 } 307 if (bufs) /* More to do? */ 308 continue; 309 if (!pipe->writers) 310 break; 311 if (!pipe->waiting_writers) { 312 /* syscall merging: Usually we must not sleep 313 * if O_NONBLOCK is set, or if we got some data. 314 * But if a writer sleeps in kernel space, then 315 * we can wait for that data without violating POSIX. 316 */ 317 if (ret) 318 break; 319 if (filp->f_flags & O_NONBLOCK) { 320 ret = -EAGAIN; 321 break; 322 } 323 } 324 if (signal_pending(current)) { 325 if (!ret) 326 ret = -ERESTARTSYS; 327 break; 328 } 329 if (do_wakeup) { 330 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 331 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 332 } 333 pipe_wait(pipe); 334 } 335 __pipe_unlock(pipe); 336 337 /* Signal writers asynchronously that there is more room. */ 338 if (do_wakeup) { 339 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 340 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 341 } 342 if (ret > 0) 343 file_accessed(filp); 344 return ret; 345 } 346 347 static inline int is_packetized(struct file *file) 348 { 349 return (file->f_flags & O_DIRECT) != 0; 350 } 351 352 static ssize_t 353 pipe_write(struct kiocb *iocb, struct iov_iter *from) 354 { 355 struct file *filp = iocb->ki_filp; 356 struct pipe_inode_info *pipe = filp->private_data; 357 ssize_t ret = 0; 358 int do_wakeup = 0; 359 size_t total_len = iov_iter_count(from); 360 ssize_t chars; 361 362 /* Null write succeeds. */ 363 if (unlikely(total_len == 0)) 364 return 0; 365 366 __pipe_lock(pipe); 367 368 if (!pipe->readers) { 369 send_sig(SIGPIPE, current, 0); 370 ret = -EPIPE; 371 goto out; 372 } 373 374 /* We try to merge small writes */ 375 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */ 376 if (pipe->nrbufs && chars != 0) { 377 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) & 378 (pipe->buffers - 1); 379 struct pipe_buffer *buf = pipe->bufs + lastbuf; 380 int offset = buf->offset + buf->len; 381 382 if (buf->ops->can_merge && offset + chars <= PAGE_SIZE) { 383 ret = pipe_buf_confirm(pipe, buf); 384 if (ret) 385 goto out; 386 387 ret = copy_page_from_iter(buf->page, offset, chars, from); 388 if (unlikely(ret < chars)) { 389 ret = -EFAULT; 390 goto out; 391 } 392 do_wakeup = 1; 393 buf->len += ret; 394 if (!iov_iter_count(from)) 395 goto out; 396 } 397 } 398 399 for (;;) { 400 int bufs; 401 402 if (!pipe->readers) { 403 send_sig(SIGPIPE, current, 0); 404 if (!ret) 405 ret = -EPIPE; 406 break; 407 } 408 bufs = pipe->nrbufs; 409 if (bufs < pipe->buffers) { 410 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1); 411 struct pipe_buffer *buf = pipe->bufs + newbuf; 412 struct page *page = pipe->tmp_page; 413 int copied; 414 415 if (!page) { 416 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 417 if (unlikely(!page)) { 418 ret = ret ? : -ENOMEM; 419 break; 420 } 421 pipe->tmp_page = page; 422 } 423 /* Always wake up, even if the copy fails. Otherwise 424 * we lock up (O_NONBLOCK-)readers that sleep due to 425 * syscall merging. 426 * FIXME! Is this really true? 427 */ 428 do_wakeup = 1; 429 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 430 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 431 if (!ret) 432 ret = -EFAULT; 433 break; 434 } 435 ret += copied; 436 437 /* Insert it into the buffer array */ 438 buf->page = page; 439 buf->ops = &anon_pipe_buf_ops; 440 buf->offset = 0; 441 buf->len = copied; 442 buf->flags = 0; 443 if (is_packetized(filp)) { 444 buf->ops = &packet_pipe_buf_ops; 445 buf->flags = PIPE_BUF_FLAG_PACKET; 446 } 447 pipe->nrbufs = ++bufs; 448 pipe->tmp_page = NULL; 449 450 if (!iov_iter_count(from)) 451 break; 452 } 453 if (bufs < pipe->buffers) 454 continue; 455 if (filp->f_flags & O_NONBLOCK) { 456 if (!ret) 457 ret = -EAGAIN; 458 break; 459 } 460 if (signal_pending(current)) { 461 if (!ret) 462 ret = -ERESTARTSYS; 463 break; 464 } 465 if (do_wakeup) { 466 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 467 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 468 do_wakeup = 0; 469 } 470 pipe->waiting_writers++; 471 pipe_wait(pipe); 472 pipe->waiting_writers--; 473 } 474 out: 475 __pipe_unlock(pipe); 476 if (do_wakeup) { 477 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 478 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 479 } 480 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 481 int err = file_update_time(filp); 482 if (err) 483 ret = err; 484 sb_end_write(file_inode(filp)->i_sb); 485 } 486 return ret; 487 } 488 489 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 490 { 491 struct pipe_inode_info *pipe = filp->private_data; 492 int count, buf, nrbufs; 493 494 switch (cmd) { 495 case FIONREAD: 496 __pipe_lock(pipe); 497 count = 0; 498 buf = pipe->curbuf; 499 nrbufs = pipe->nrbufs; 500 while (--nrbufs >= 0) { 501 count += pipe->bufs[buf].len; 502 buf = (buf+1) & (pipe->buffers - 1); 503 } 504 __pipe_unlock(pipe); 505 506 return put_user(count, (int __user *)arg); 507 default: 508 return -ENOIOCTLCMD; 509 } 510 } 511 512 /* No kernel lock held - fine */ 513 static __poll_t 514 pipe_poll(struct file *filp, poll_table *wait) 515 { 516 __poll_t mask; 517 struct pipe_inode_info *pipe = filp->private_data; 518 int nrbufs; 519 520 poll_wait(filp, &pipe->wait, wait); 521 522 /* Reading only -- no need for acquiring the semaphore. */ 523 nrbufs = pipe->nrbufs; 524 mask = 0; 525 if (filp->f_mode & FMODE_READ) { 526 mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0; 527 if (!pipe->writers && filp->f_version != pipe->w_counter) 528 mask |= EPOLLHUP; 529 } 530 531 if (filp->f_mode & FMODE_WRITE) { 532 mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0; 533 /* 534 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 535 * behave exactly like pipes for poll(). 536 */ 537 if (!pipe->readers) 538 mask |= EPOLLERR; 539 } 540 541 return mask; 542 } 543 544 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 545 { 546 int kill = 0; 547 548 spin_lock(&inode->i_lock); 549 if (!--pipe->files) { 550 inode->i_pipe = NULL; 551 kill = 1; 552 } 553 spin_unlock(&inode->i_lock); 554 555 if (kill) 556 free_pipe_info(pipe); 557 } 558 559 static int 560 pipe_release(struct inode *inode, struct file *file) 561 { 562 struct pipe_inode_info *pipe = file->private_data; 563 564 __pipe_lock(pipe); 565 if (file->f_mode & FMODE_READ) 566 pipe->readers--; 567 if (file->f_mode & FMODE_WRITE) 568 pipe->writers--; 569 570 if (pipe->readers || pipe->writers) { 571 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP); 572 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 573 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 574 } 575 __pipe_unlock(pipe); 576 577 put_pipe_info(inode, pipe); 578 return 0; 579 } 580 581 static int 582 pipe_fasync(int fd, struct file *filp, int on) 583 { 584 struct pipe_inode_info *pipe = filp->private_data; 585 int retval = 0; 586 587 __pipe_lock(pipe); 588 if (filp->f_mode & FMODE_READ) 589 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 590 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 591 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 592 if (retval < 0 && (filp->f_mode & FMODE_READ)) 593 /* this can happen only if on == T */ 594 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 595 } 596 __pipe_unlock(pipe); 597 return retval; 598 } 599 600 static unsigned long account_pipe_buffers(struct user_struct *user, 601 unsigned long old, unsigned long new) 602 { 603 return atomic_long_add_return(new - old, &user->pipe_bufs); 604 } 605 606 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 607 { 608 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 609 610 return soft_limit && user_bufs > soft_limit; 611 } 612 613 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 614 { 615 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 616 617 return hard_limit && user_bufs > hard_limit; 618 } 619 620 static bool is_unprivileged_user(void) 621 { 622 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 623 } 624 625 struct pipe_inode_info *alloc_pipe_info(void) 626 { 627 struct pipe_inode_info *pipe; 628 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 629 struct user_struct *user = get_current_user(); 630 unsigned long user_bufs; 631 unsigned int max_size = READ_ONCE(pipe_max_size); 632 633 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 634 if (pipe == NULL) 635 goto out_free_uid; 636 637 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 638 pipe_bufs = max_size >> PAGE_SHIFT; 639 640 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 641 642 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 643 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 644 pipe_bufs = 1; 645 } 646 647 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 648 goto out_revert_acct; 649 650 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 651 GFP_KERNEL_ACCOUNT); 652 653 if (pipe->bufs) { 654 init_waitqueue_head(&pipe->wait); 655 pipe->r_counter = pipe->w_counter = 1; 656 pipe->buffers = pipe_bufs; 657 pipe->user = user; 658 mutex_init(&pipe->mutex); 659 return pipe; 660 } 661 662 out_revert_acct: 663 (void) account_pipe_buffers(user, pipe_bufs, 0); 664 kfree(pipe); 665 out_free_uid: 666 free_uid(user); 667 return NULL; 668 } 669 670 void free_pipe_info(struct pipe_inode_info *pipe) 671 { 672 int i; 673 674 (void) account_pipe_buffers(pipe->user, pipe->buffers, 0); 675 free_uid(pipe->user); 676 for (i = 0; i < pipe->buffers; i++) { 677 struct pipe_buffer *buf = pipe->bufs + i; 678 if (buf->ops) 679 pipe_buf_release(pipe, buf); 680 } 681 if (pipe->tmp_page) 682 __free_page(pipe->tmp_page); 683 kfree(pipe->bufs); 684 kfree(pipe); 685 } 686 687 static struct vfsmount *pipe_mnt __read_mostly; 688 689 /* 690 * pipefs_dname() is called from d_path(). 691 */ 692 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 693 { 694 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 695 d_inode(dentry)->i_ino); 696 } 697 698 static const struct dentry_operations pipefs_dentry_operations = { 699 .d_dname = pipefs_dname, 700 }; 701 702 static struct inode * get_pipe_inode(void) 703 { 704 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 705 struct pipe_inode_info *pipe; 706 707 if (!inode) 708 goto fail_inode; 709 710 inode->i_ino = get_next_ino(); 711 712 pipe = alloc_pipe_info(); 713 if (!pipe) 714 goto fail_iput; 715 716 inode->i_pipe = pipe; 717 pipe->files = 2; 718 pipe->readers = pipe->writers = 1; 719 inode->i_fop = &pipefifo_fops; 720 721 /* 722 * Mark the inode dirty from the very beginning, 723 * that way it will never be moved to the dirty 724 * list because "mark_inode_dirty()" will think 725 * that it already _is_ on the dirty list. 726 */ 727 inode->i_state = I_DIRTY; 728 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 729 inode->i_uid = current_fsuid(); 730 inode->i_gid = current_fsgid(); 731 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 732 733 return inode; 734 735 fail_iput: 736 iput(inode); 737 738 fail_inode: 739 return NULL; 740 } 741 742 int create_pipe_files(struct file **res, int flags) 743 { 744 struct inode *inode = get_pipe_inode(); 745 struct file *f; 746 747 if (!inode) 748 return -ENFILE; 749 750 f = alloc_file_pseudo(inode, pipe_mnt, "", 751 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 752 &pipefifo_fops); 753 if (IS_ERR(f)) { 754 free_pipe_info(inode->i_pipe); 755 iput(inode); 756 return PTR_ERR(f); 757 } 758 759 f->private_data = inode->i_pipe; 760 761 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 762 &pipefifo_fops); 763 if (IS_ERR(res[0])) { 764 put_pipe_info(inode, inode->i_pipe); 765 fput(f); 766 return PTR_ERR(res[0]); 767 } 768 res[0]->private_data = inode->i_pipe; 769 res[1] = f; 770 return 0; 771 } 772 773 static int __do_pipe_flags(int *fd, struct file **files, int flags) 774 { 775 int error; 776 int fdw, fdr; 777 778 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 779 return -EINVAL; 780 781 error = create_pipe_files(files, flags); 782 if (error) 783 return error; 784 785 error = get_unused_fd_flags(flags); 786 if (error < 0) 787 goto err_read_pipe; 788 fdr = error; 789 790 error = get_unused_fd_flags(flags); 791 if (error < 0) 792 goto err_fdr; 793 fdw = error; 794 795 audit_fd_pair(fdr, fdw); 796 fd[0] = fdr; 797 fd[1] = fdw; 798 return 0; 799 800 err_fdr: 801 put_unused_fd(fdr); 802 err_read_pipe: 803 fput(files[0]); 804 fput(files[1]); 805 return error; 806 } 807 808 int do_pipe_flags(int *fd, int flags) 809 { 810 struct file *files[2]; 811 int error = __do_pipe_flags(fd, files, flags); 812 if (!error) { 813 fd_install(fd[0], files[0]); 814 fd_install(fd[1], files[1]); 815 } 816 return error; 817 } 818 819 /* 820 * sys_pipe() is the normal C calling standard for creating 821 * a pipe. It's not the way Unix traditionally does this, though. 822 */ 823 static int do_pipe2(int __user *fildes, int flags) 824 { 825 struct file *files[2]; 826 int fd[2]; 827 int error; 828 829 error = __do_pipe_flags(fd, files, flags); 830 if (!error) { 831 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 832 fput(files[0]); 833 fput(files[1]); 834 put_unused_fd(fd[0]); 835 put_unused_fd(fd[1]); 836 error = -EFAULT; 837 } else { 838 fd_install(fd[0], files[0]); 839 fd_install(fd[1], files[1]); 840 } 841 } 842 return error; 843 } 844 845 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 846 { 847 return do_pipe2(fildes, flags); 848 } 849 850 SYSCALL_DEFINE1(pipe, int __user *, fildes) 851 { 852 return do_pipe2(fildes, 0); 853 } 854 855 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 856 { 857 int cur = *cnt; 858 859 while (cur == *cnt) { 860 pipe_wait(pipe); 861 if (signal_pending(current)) 862 break; 863 } 864 return cur == *cnt ? -ERESTARTSYS : 0; 865 } 866 867 static void wake_up_partner(struct pipe_inode_info *pipe) 868 { 869 wake_up_interruptible(&pipe->wait); 870 } 871 872 static int fifo_open(struct inode *inode, struct file *filp) 873 { 874 struct pipe_inode_info *pipe; 875 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 876 int ret; 877 878 filp->f_version = 0; 879 880 spin_lock(&inode->i_lock); 881 if (inode->i_pipe) { 882 pipe = inode->i_pipe; 883 pipe->files++; 884 spin_unlock(&inode->i_lock); 885 } else { 886 spin_unlock(&inode->i_lock); 887 pipe = alloc_pipe_info(); 888 if (!pipe) 889 return -ENOMEM; 890 pipe->files = 1; 891 spin_lock(&inode->i_lock); 892 if (unlikely(inode->i_pipe)) { 893 inode->i_pipe->files++; 894 spin_unlock(&inode->i_lock); 895 free_pipe_info(pipe); 896 pipe = inode->i_pipe; 897 } else { 898 inode->i_pipe = pipe; 899 spin_unlock(&inode->i_lock); 900 } 901 } 902 filp->private_data = pipe; 903 /* OK, we have a pipe and it's pinned down */ 904 905 __pipe_lock(pipe); 906 907 /* We can only do regular read/write on fifos */ 908 filp->f_mode &= (FMODE_READ | FMODE_WRITE); 909 910 switch (filp->f_mode) { 911 case FMODE_READ: 912 /* 913 * O_RDONLY 914 * POSIX.1 says that O_NONBLOCK means return with the FIFO 915 * opened, even when there is no process writing the FIFO. 916 */ 917 pipe->r_counter++; 918 if (pipe->readers++ == 0) 919 wake_up_partner(pipe); 920 921 if (!is_pipe && !pipe->writers) { 922 if ((filp->f_flags & O_NONBLOCK)) { 923 /* suppress EPOLLHUP until we have 924 * seen a writer */ 925 filp->f_version = pipe->w_counter; 926 } else { 927 if (wait_for_partner(pipe, &pipe->w_counter)) 928 goto err_rd; 929 } 930 } 931 break; 932 933 case FMODE_WRITE: 934 /* 935 * O_WRONLY 936 * POSIX.1 says that O_NONBLOCK means return -1 with 937 * errno=ENXIO when there is no process reading the FIFO. 938 */ 939 ret = -ENXIO; 940 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 941 goto err; 942 943 pipe->w_counter++; 944 if (!pipe->writers++) 945 wake_up_partner(pipe); 946 947 if (!is_pipe && !pipe->readers) { 948 if (wait_for_partner(pipe, &pipe->r_counter)) 949 goto err_wr; 950 } 951 break; 952 953 case FMODE_READ | FMODE_WRITE: 954 /* 955 * O_RDWR 956 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 957 * This implementation will NEVER block on a O_RDWR open, since 958 * the process can at least talk to itself. 959 */ 960 961 pipe->readers++; 962 pipe->writers++; 963 pipe->r_counter++; 964 pipe->w_counter++; 965 if (pipe->readers == 1 || pipe->writers == 1) 966 wake_up_partner(pipe); 967 break; 968 969 default: 970 ret = -EINVAL; 971 goto err; 972 } 973 974 /* Ok! */ 975 __pipe_unlock(pipe); 976 return 0; 977 978 err_rd: 979 if (!--pipe->readers) 980 wake_up_interruptible(&pipe->wait); 981 ret = -ERESTARTSYS; 982 goto err; 983 984 err_wr: 985 if (!--pipe->writers) 986 wake_up_interruptible(&pipe->wait); 987 ret = -ERESTARTSYS; 988 goto err; 989 990 err: 991 __pipe_unlock(pipe); 992 993 put_pipe_info(inode, pipe); 994 return ret; 995 } 996 997 const struct file_operations pipefifo_fops = { 998 .open = fifo_open, 999 .llseek = no_llseek, 1000 .read_iter = pipe_read, 1001 .write_iter = pipe_write, 1002 .poll = pipe_poll, 1003 .unlocked_ioctl = pipe_ioctl, 1004 .release = pipe_release, 1005 .fasync = pipe_fasync, 1006 }; 1007 1008 /* 1009 * Currently we rely on the pipe array holding a power-of-2 number 1010 * of pages. Returns 0 on error. 1011 */ 1012 unsigned int round_pipe_size(unsigned long size) 1013 { 1014 if (size > (1U << 31)) 1015 return 0; 1016 1017 /* Minimum pipe size, as required by POSIX */ 1018 if (size < PAGE_SIZE) 1019 return PAGE_SIZE; 1020 1021 return roundup_pow_of_two(size); 1022 } 1023 1024 /* 1025 * Allocate a new array of pipe buffers and copy the info over. Returns the 1026 * pipe size if successful, or return -ERROR on error. 1027 */ 1028 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1029 { 1030 struct pipe_buffer *bufs; 1031 unsigned int size, nr_pages; 1032 unsigned long user_bufs; 1033 long ret = 0; 1034 1035 size = round_pipe_size(arg); 1036 nr_pages = size >> PAGE_SHIFT; 1037 1038 if (!nr_pages) 1039 return -EINVAL; 1040 1041 /* 1042 * If trying to increase the pipe capacity, check that an 1043 * unprivileged user is not trying to exceed various limits 1044 * (soft limit check here, hard limit check just below). 1045 * Decreasing the pipe capacity is always permitted, even 1046 * if the user is currently over a limit. 1047 */ 1048 if (nr_pages > pipe->buffers && 1049 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1050 return -EPERM; 1051 1052 user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages); 1053 1054 if (nr_pages > pipe->buffers && 1055 (too_many_pipe_buffers_hard(user_bufs) || 1056 too_many_pipe_buffers_soft(user_bufs)) && 1057 is_unprivileged_user()) { 1058 ret = -EPERM; 1059 goto out_revert_acct; 1060 } 1061 1062 /* 1063 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't 1064 * expect a lot of shrink+grow operations, just free and allocate 1065 * again like we would do for growing. If the pipe currently 1066 * contains more buffers than arg, then return busy. 1067 */ 1068 if (nr_pages < pipe->nrbufs) { 1069 ret = -EBUSY; 1070 goto out_revert_acct; 1071 } 1072 1073 bufs = kcalloc(nr_pages, sizeof(*bufs), 1074 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1075 if (unlikely(!bufs)) { 1076 ret = -ENOMEM; 1077 goto out_revert_acct; 1078 } 1079 1080 /* 1081 * The pipe array wraps around, so just start the new one at zero 1082 * and adjust the indexes. 1083 */ 1084 if (pipe->nrbufs) { 1085 unsigned int tail; 1086 unsigned int head; 1087 1088 tail = pipe->curbuf + pipe->nrbufs; 1089 if (tail < pipe->buffers) 1090 tail = 0; 1091 else 1092 tail &= (pipe->buffers - 1); 1093 1094 head = pipe->nrbufs - tail; 1095 if (head) 1096 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer)); 1097 if (tail) 1098 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer)); 1099 } 1100 1101 pipe->curbuf = 0; 1102 kfree(pipe->bufs); 1103 pipe->bufs = bufs; 1104 pipe->buffers = nr_pages; 1105 return nr_pages * PAGE_SIZE; 1106 1107 out_revert_acct: 1108 (void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers); 1109 return ret; 1110 } 1111 1112 /* 1113 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1114 * location, so checking ->i_pipe is not enough to verify that this is a 1115 * pipe. 1116 */ 1117 struct pipe_inode_info *get_pipe_info(struct file *file) 1118 { 1119 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1120 } 1121 1122 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1123 { 1124 struct pipe_inode_info *pipe; 1125 long ret; 1126 1127 pipe = get_pipe_info(file); 1128 if (!pipe) 1129 return -EBADF; 1130 1131 __pipe_lock(pipe); 1132 1133 switch (cmd) { 1134 case F_SETPIPE_SZ: 1135 ret = pipe_set_size(pipe, arg); 1136 break; 1137 case F_GETPIPE_SZ: 1138 ret = pipe->buffers * PAGE_SIZE; 1139 break; 1140 default: 1141 ret = -EINVAL; 1142 break; 1143 } 1144 1145 __pipe_unlock(pipe); 1146 return ret; 1147 } 1148 1149 static const struct super_operations pipefs_ops = { 1150 .destroy_inode = free_inode_nonrcu, 1151 .statfs = simple_statfs, 1152 }; 1153 1154 /* 1155 * pipefs should _never_ be mounted by userland - too much of security hassle, 1156 * no real gain from having the whole whorehouse mounted. So we don't need 1157 * any operations on the root directory. However, we need a non-trivial 1158 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1159 */ 1160 static struct dentry *pipefs_mount(struct file_system_type *fs_type, 1161 int flags, const char *dev_name, void *data) 1162 { 1163 return mount_pseudo(fs_type, "pipe:", &pipefs_ops, 1164 &pipefs_dentry_operations, PIPEFS_MAGIC); 1165 } 1166 1167 static struct file_system_type pipe_fs_type = { 1168 .name = "pipefs", 1169 .mount = pipefs_mount, 1170 .kill_sb = kill_anon_super, 1171 }; 1172 1173 static int __init init_pipe_fs(void) 1174 { 1175 int err = register_filesystem(&pipe_fs_type); 1176 1177 if (!err) { 1178 pipe_mnt = kern_mount(&pipe_fs_type); 1179 if (IS_ERR(pipe_mnt)) { 1180 err = PTR_ERR(pipe_mnt); 1181 unregister_filesystem(&pipe_fs_type); 1182 } 1183 } 1184 return err; 1185 } 1186 1187 fs_initcall(init_pipe_fs); 1188