xref: /openbmc/linux/fs/pipe.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
24 
25 /*
26  * We use a start+len construction, which provides full use of the
27  * allocated memory.
28  * -- Florian Coosmann (FGC)
29  *
30  * Reads with count = 0 should always return 0.
31  * -- Julian Bradfield 1999-06-07.
32  *
33  * FIFOs and Pipes now generate SIGIO for both readers and writers.
34  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35  *
36  * pipe_read & write cleanup
37  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38  */
39 
40 /* Drop the inode semaphore and wait for a pipe event, atomically */
41 void pipe_wait(struct pipe_inode_info *pipe)
42 {
43 	DEFINE_WAIT(wait);
44 
45 	/*
46 	 * Pipes are system-local resources, so sleeping on them
47 	 * is considered a noninteractive wait:
48 	 */
49 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
50 	if (pipe->inode)
51 		mutex_unlock(&pipe->inode->i_mutex);
52 	schedule();
53 	finish_wait(&pipe->wait, &wait);
54 	if (pipe->inode)
55 		mutex_lock(&pipe->inode->i_mutex);
56 }
57 
58 static int
59 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
60 			int atomic)
61 {
62 	unsigned long copy;
63 
64 	while (len > 0) {
65 		while (!iov->iov_len)
66 			iov++;
67 		copy = min_t(unsigned long, len, iov->iov_len);
68 
69 		if (atomic) {
70 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
71 				return -EFAULT;
72 		} else {
73 			if (copy_from_user(to, iov->iov_base, copy))
74 				return -EFAULT;
75 		}
76 		to += copy;
77 		len -= copy;
78 		iov->iov_base += copy;
79 		iov->iov_len -= copy;
80 	}
81 	return 0;
82 }
83 
84 static int
85 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
86 		      int atomic)
87 {
88 	unsigned long copy;
89 
90 	while (len > 0) {
91 		while (!iov->iov_len)
92 			iov++;
93 		copy = min_t(unsigned long, len, iov->iov_len);
94 
95 		if (atomic) {
96 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
97 				return -EFAULT;
98 		} else {
99 			if (copy_to_user(iov->iov_base, from, copy))
100 				return -EFAULT;
101 		}
102 		from += copy;
103 		len -= copy;
104 		iov->iov_base += copy;
105 		iov->iov_len -= copy;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Attempt to pre-fault in the user memory, so we can use atomic copies.
112  * Returns the number of bytes not faulted in.
113  */
114 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
115 {
116 	while (!iov->iov_len)
117 		iov++;
118 
119 	while (len > 0) {
120 		unsigned long this_len;
121 
122 		this_len = min_t(unsigned long, len, iov->iov_len);
123 		if (fault_in_pages_writeable(iov->iov_base, this_len))
124 			break;
125 
126 		len -= this_len;
127 		iov++;
128 	}
129 
130 	return len;
131 }
132 
133 /*
134  * Pre-fault in the user memory, so we can use atomic copies.
135  */
136 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
137 {
138 	while (!iov->iov_len)
139 		iov++;
140 
141 	while (len > 0) {
142 		unsigned long this_len;
143 
144 		this_len = min_t(unsigned long, len, iov->iov_len);
145 		fault_in_pages_readable(iov->iov_base, this_len);
146 		len -= this_len;
147 		iov++;
148 	}
149 }
150 
151 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
152 				  struct pipe_buffer *buf)
153 {
154 	struct page *page = buf->page;
155 
156 	/*
157 	 * If nobody else uses this page, and we don't already have a
158 	 * temporary page, let's keep track of it as a one-deep
159 	 * allocation cache. (Otherwise just release our reference to it)
160 	 */
161 	if (page_count(page) == 1 && !pipe->tmp_page)
162 		pipe->tmp_page = page;
163 	else
164 		page_cache_release(page);
165 }
166 
167 /**
168  * generic_pipe_buf_map - virtually map a pipe buffer
169  * @pipe:	the pipe that the buffer belongs to
170  * @buf:	the buffer that should be mapped
171  * @atomic:	whether to use an atomic map
172  *
173  * Description:
174  *	This function returns a kernel virtual address mapping for the
175  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
176  *	and the caller has to be careful not to fault before calling
177  *	the unmap function.
178  *
179  *	Note that this function occupies KM_USER0 if @atomic != 0.
180  */
181 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
182 			   struct pipe_buffer *buf, int atomic)
183 {
184 	if (atomic) {
185 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
186 		return kmap_atomic(buf->page, KM_USER0);
187 	}
188 
189 	return kmap(buf->page);
190 }
191 
192 /**
193  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
194  * @pipe:	the pipe that the buffer belongs to
195  * @buf:	the buffer that should be unmapped
196  * @map_data:	the data that the mapping function returned
197  *
198  * Description:
199  *	This function undoes the mapping that ->map() provided.
200  */
201 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
202 			    struct pipe_buffer *buf, void *map_data)
203 {
204 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
205 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
206 		kunmap_atomic(map_data, KM_USER0);
207 	} else
208 		kunmap(buf->page);
209 }
210 
211 /**
212  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
213  * @pipe:	the pipe that the buffer belongs to
214  * @buf:	the buffer to attempt to steal
215  *
216  * Description:
217  *	This function attempts to steal the &struct page attached to
218  *	@buf. If successful, this function returns 0 and returns with
219  *	the page locked. The caller may then reuse the page for whatever
220  *	he wishes; the typical use is insertion into a different file
221  *	page cache.
222  */
223 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
224 			   struct pipe_buffer *buf)
225 {
226 	struct page *page = buf->page;
227 
228 	/*
229 	 * A reference of one is golden, that means that the owner of this
230 	 * page is the only one holding a reference to it. lock the page
231 	 * and return OK.
232 	 */
233 	if (page_count(page) == 1) {
234 		lock_page(page);
235 		return 0;
236 	}
237 
238 	return 1;
239 }
240 
241 /**
242  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
243  * @pipe:	the pipe that the buffer belongs to
244  * @buf:	the buffer to get a reference to
245  *
246  * Description:
247  *	This function grabs an extra reference to @buf. It's used in
248  *	in the tee() system call, when we duplicate the buffers in one
249  *	pipe into another.
250  */
251 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
252 {
253 	page_cache_get(buf->page);
254 }
255 
256 /**
257  * generic_pipe_buf_confirm - verify contents of the pipe buffer
258  * @info:	the pipe that the buffer belongs to
259  * @buf:	the buffer to confirm
260  *
261  * Description:
262  *	This function does nothing, because the generic pipe code uses
263  *	pages that are always good when inserted into the pipe.
264  */
265 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
266 			     struct pipe_buffer *buf)
267 {
268 	return 0;
269 }
270 
271 static const struct pipe_buf_operations anon_pipe_buf_ops = {
272 	.can_merge = 1,
273 	.map = generic_pipe_buf_map,
274 	.unmap = generic_pipe_buf_unmap,
275 	.confirm = generic_pipe_buf_confirm,
276 	.release = anon_pipe_buf_release,
277 	.steal = generic_pipe_buf_steal,
278 	.get = generic_pipe_buf_get,
279 };
280 
281 static ssize_t
282 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
283 	   unsigned long nr_segs, loff_t pos)
284 {
285 	struct file *filp = iocb->ki_filp;
286 	struct inode *inode = filp->f_path.dentry->d_inode;
287 	struct pipe_inode_info *pipe;
288 	int do_wakeup;
289 	ssize_t ret;
290 	struct iovec *iov = (struct iovec *)_iov;
291 	size_t total_len;
292 
293 	total_len = iov_length(iov, nr_segs);
294 	/* Null read succeeds. */
295 	if (unlikely(total_len == 0))
296 		return 0;
297 
298 	do_wakeup = 0;
299 	ret = 0;
300 	mutex_lock(&inode->i_mutex);
301 	pipe = inode->i_pipe;
302 	for (;;) {
303 		int bufs = pipe->nrbufs;
304 		if (bufs) {
305 			int curbuf = pipe->curbuf;
306 			struct pipe_buffer *buf = pipe->bufs + curbuf;
307 			const struct pipe_buf_operations *ops = buf->ops;
308 			void *addr;
309 			size_t chars = buf->len;
310 			int error, atomic;
311 
312 			if (chars > total_len)
313 				chars = total_len;
314 
315 			error = ops->confirm(pipe, buf);
316 			if (error) {
317 				if (!ret)
318 					error = ret;
319 				break;
320 			}
321 
322 			atomic = !iov_fault_in_pages_write(iov, chars);
323 redo:
324 			addr = ops->map(pipe, buf, atomic);
325 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
326 			ops->unmap(pipe, buf, addr);
327 			if (unlikely(error)) {
328 				/*
329 				 * Just retry with the slow path if we failed.
330 				 */
331 				if (atomic) {
332 					atomic = 0;
333 					goto redo;
334 				}
335 				if (!ret)
336 					ret = error;
337 				break;
338 			}
339 			ret += chars;
340 			buf->offset += chars;
341 			buf->len -= chars;
342 			if (!buf->len) {
343 				buf->ops = NULL;
344 				ops->release(pipe, buf);
345 				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
346 				pipe->curbuf = curbuf;
347 				pipe->nrbufs = --bufs;
348 				do_wakeup = 1;
349 			}
350 			total_len -= chars;
351 			if (!total_len)
352 				break;	/* common path: read succeeded */
353 		}
354 		if (bufs)	/* More to do? */
355 			continue;
356 		if (!pipe->writers)
357 			break;
358 		if (!pipe->waiting_writers) {
359 			/* syscall merging: Usually we must not sleep
360 			 * if O_NONBLOCK is set, or if we got some data.
361 			 * But if a writer sleeps in kernel space, then
362 			 * we can wait for that data without violating POSIX.
363 			 */
364 			if (ret)
365 				break;
366 			if (filp->f_flags & O_NONBLOCK) {
367 				ret = -EAGAIN;
368 				break;
369 			}
370 		}
371 		if (signal_pending(current)) {
372 			if (!ret)
373 				ret = -ERESTARTSYS;
374 			break;
375 		}
376 		if (do_wakeup) {
377 			wake_up_interruptible_sync(&pipe->wait);
378  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
379 		}
380 		pipe_wait(pipe);
381 	}
382 	mutex_unlock(&inode->i_mutex);
383 
384 	/* Signal writers asynchronously that there is more room. */
385 	if (do_wakeup) {
386 		wake_up_interruptible_sync(&pipe->wait);
387 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
388 	}
389 	if (ret > 0)
390 		file_accessed(filp);
391 	return ret;
392 }
393 
394 static ssize_t
395 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
396 	    unsigned long nr_segs, loff_t ppos)
397 {
398 	struct file *filp = iocb->ki_filp;
399 	struct inode *inode = filp->f_path.dentry->d_inode;
400 	struct pipe_inode_info *pipe;
401 	ssize_t ret;
402 	int do_wakeup;
403 	struct iovec *iov = (struct iovec *)_iov;
404 	size_t total_len;
405 	ssize_t chars;
406 
407 	total_len = iov_length(iov, nr_segs);
408 	/* Null write succeeds. */
409 	if (unlikely(total_len == 0))
410 		return 0;
411 
412 	do_wakeup = 0;
413 	ret = 0;
414 	mutex_lock(&inode->i_mutex);
415 	pipe = inode->i_pipe;
416 
417 	if (!pipe->readers) {
418 		send_sig(SIGPIPE, current, 0);
419 		ret = -EPIPE;
420 		goto out;
421 	}
422 
423 	/* We try to merge small writes */
424 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
425 	if (pipe->nrbufs && chars != 0) {
426 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
427 							(PIPE_BUFFERS-1);
428 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
429 		const struct pipe_buf_operations *ops = buf->ops;
430 		int offset = buf->offset + buf->len;
431 
432 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
433 			int error, atomic = 1;
434 			void *addr;
435 
436 			error = ops->confirm(pipe, buf);
437 			if (error)
438 				goto out;
439 
440 			iov_fault_in_pages_read(iov, chars);
441 redo1:
442 			addr = ops->map(pipe, buf, atomic);
443 			error = pipe_iov_copy_from_user(offset + addr, iov,
444 							chars, atomic);
445 			ops->unmap(pipe, buf, addr);
446 			ret = error;
447 			do_wakeup = 1;
448 			if (error) {
449 				if (atomic) {
450 					atomic = 0;
451 					goto redo1;
452 				}
453 				goto out;
454 			}
455 			buf->len += chars;
456 			total_len -= chars;
457 			ret = chars;
458 			if (!total_len)
459 				goto out;
460 		}
461 	}
462 
463 	for (;;) {
464 		int bufs;
465 
466 		if (!pipe->readers) {
467 			send_sig(SIGPIPE, current, 0);
468 			if (!ret)
469 				ret = -EPIPE;
470 			break;
471 		}
472 		bufs = pipe->nrbufs;
473 		if (bufs < PIPE_BUFFERS) {
474 			int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
475 			struct pipe_buffer *buf = pipe->bufs + newbuf;
476 			struct page *page = pipe->tmp_page;
477 			char *src;
478 			int error, atomic = 1;
479 
480 			if (!page) {
481 				page = alloc_page(GFP_HIGHUSER);
482 				if (unlikely(!page)) {
483 					ret = ret ? : -ENOMEM;
484 					break;
485 				}
486 				pipe->tmp_page = page;
487 			}
488 			/* Always wake up, even if the copy fails. Otherwise
489 			 * we lock up (O_NONBLOCK-)readers that sleep due to
490 			 * syscall merging.
491 			 * FIXME! Is this really true?
492 			 */
493 			do_wakeup = 1;
494 			chars = PAGE_SIZE;
495 			if (chars > total_len)
496 				chars = total_len;
497 
498 			iov_fault_in_pages_read(iov, chars);
499 redo2:
500 			if (atomic)
501 				src = kmap_atomic(page, KM_USER0);
502 			else
503 				src = kmap(page);
504 
505 			error = pipe_iov_copy_from_user(src, iov, chars,
506 							atomic);
507 			if (atomic)
508 				kunmap_atomic(src, KM_USER0);
509 			else
510 				kunmap(page);
511 
512 			if (unlikely(error)) {
513 				if (atomic) {
514 					atomic = 0;
515 					goto redo2;
516 				}
517 				if (!ret)
518 					ret = error;
519 				break;
520 			}
521 			ret += chars;
522 
523 			/* Insert it into the buffer array */
524 			buf->page = page;
525 			buf->ops = &anon_pipe_buf_ops;
526 			buf->offset = 0;
527 			buf->len = chars;
528 			pipe->nrbufs = ++bufs;
529 			pipe->tmp_page = NULL;
530 
531 			total_len -= chars;
532 			if (!total_len)
533 				break;
534 		}
535 		if (bufs < PIPE_BUFFERS)
536 			continue;
537 		if (filp->f_flags & O_NONBLOCK) {
538 			if (!ret)
539 				ret = -EAGAIN;
540 			break;
541 		}
542 		if (signal_pending(current)) {
543 			if (!ret)
544 				ret = -ERESTARTSYS;
545 			break;
546 		}
547 		if (do_wakeup) {
548 			wake_up_interruptible_sync(&pipe->wait);
549 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
550 			do_wakeup = 0;
551 		}
552 		pipe->waiting_writers++;
553 		pipe_wait(pipe);
554 		pipe->waiting_writers--;
555 	}
556 out:
557 	mutex_unlock(&inode->i_mutex);
558 	if (do_wakeup) {
559 		wake_up_interruptible_sync(&pipe->wait);
560 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
561 	}
562 	if (ret > 0)
563 		file_update_time(filp);
564 	return ret;
565 }
566 
567 static ssize_t
568 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
569 {
570 	return -EBADF;
571 }
572 
573 static ssize_t
574 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
575 	   loff_t *ppos)
576 {
577 	return -EBADF;
578 }
579 
580 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
581 {
582 	struct inode *inode = filp->f_path.dentry->d_inode;
583 	struct pipe_inode_info *pipe;
584 	int count, buf, nrbufs;
585 
586 	switch (cmd) {
587 		case FIONREAD:
588 			mutex_lock(&inode->i_mutex);
589 			pipe = inode->i_pipe;
590 			count = 0;
591 			buf = pipe->curbuf;
592 			nrbufs = pipe->nrbufs;
593 			while (--nrbufs >= 0) {
594 				count += pipe->bufs[buf].len;
595 				buf = (buf+1) & (PIPE_BUFFERS-1);
596 			}
597 			mutex_unlock(&inode->i_mutex);
598 
599 			return put_user(count, (int __user *)arg);
600 		default:
601 			return -EINVAL;
602 	}
603 }
604 
605 /* No kernel lock held - fine */
606 static unsigned int
607 pipe_poll(struct file *filp, poll_table *wait)
608 {
609 	unsigned int mask;
610 	struct inode *inode = filp->f_path.dentry->d_inode;
611 	struct pipe_inode_info *pipe = inode->i_pipe;
612 	int nrbufs;
613 
614 	poll_wait(filp, &pipe->wait, wait);
615 
616 	/* Reading only -- no need for acquiring the semaphore.  */
617 	nrbufs = pipe->nrbufs;
618 	mask = 0;
619 	if (filp->f_mode & FMODE_READ) {
620 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
621 		if (!pipe->writers && filp->f_version != pipe->w_counter)
622 			mask |= POLLHUP;
623 	}
624 
625 	if (filp->f_mode & FMODE_WRITE) {
626 		mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
627 		/*
628 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
629 		 * behave exactly like pipes for poll().
630 		 */
631 		if (!pipe->readers)
632 			mask |= POLLERR;
633 	}
634 
635 	return mask;
636 }
637 
638 static int
639 pipe_release(struct inode *inode, int decr, int decw)
640 {
641 	struct pipe_inode_info *pipe;
642 
643 	mutex_lock(&inode->i_mutex);
644 	pipe = inode->i_pipe;
645 	pipe->readers -= decr;
646 	pipe->writers -= decw;
647 
648 	if (!pipe->readers && !pipe->writers) {
649 		free_pipe_info(inode);
650 	} else {
651 		wake_up_interruptible_sync(&pipe->wait);
652 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
653 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
654 	}
655 	mutex_unlock(&inode->i_mutex);
656 
657 	return 0;
658 }
659 
660 static int
661 pipe_read_fasync(int fd, struct file *filp, int on)
662 {
663 	struct inode *inode = filp->f_path.dentry->d_inode;
664 	int retval;
665 
666 	mutex_lock(&inode->i_mutex);
667 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
668 	mutex_unlock(&inode->i_mutex);
669 
670 	return retval;
671 }
672 
673 
674 static int
675 pipe_write_fasync(int fd, struct file *filp, int on)
676 {
677 	struct inode *inode = filp->f_path.dentry->d_inode;
678 	int retval;
679 
680 	mutex_lock(&inode->i_mutex);
681 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
682 	mutex_unlock(&inode->i_mutex);
683 
684 	return retval;
685 }
686 
687 
688 static int
689 pipe_rdwr_fasync(int fd, struct file *filp, int on)
690 {
691 	struct inode *inode = filp->f_path.dentry->d_inode;
692 	struct pipe_inode_info *pipe = inode->i_pipe;
693 	int retval;
694 
695 	mutex_lock(&inode->i_mutex);
696 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
697 	if (retval >= 0) {
698 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
699 		if (retval < 0) /* this can happen only if on == T */
700 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
701 	}
702 	mutex_unlock(&inode->i_mutex);
703 	return retval;
704 }
705 
706 
707 static int
708 pipe_read_release(struct inode *inode, struct file *filp)
709 {
710 	return pipe_release(inode, 1, 0);
711 }
712 
713 static int
714 pipe_write_release(struct inode *inode, struct file *filp)
715 {
716 	return pipe_release(inode, 0, 1);
717 }
718 
719 static int
720 pipe_rdwr_release(struct inode *inode, struct file *filp)
721 {
722 	int decr, decw;
723 
724 	decr = (filp->f_mode & FMODE_READ) != 0;
725 	decw = (filp->f_mode & FMODE_WRITE) != 0;
726 	return pipe_release(inode, decr, decw);
727 }
728 
729 static int
730 pipe_read_open(struct inode *inode, struct file *filp)
731 {
732 	/* We could have perhaps used atomic_t, but this and friends
733 	   below are the only places.  So it doesn't seem worthwhile.  */
734 	mutex_lock(&inode->i_mutex);
735 	inode->i_pipe->readers++;
736 	mutex_unlock(&inode->i_mutex);
737 
738 	return 0;
739 }
740 
741 static int
742 pipe_write_open(struct inode *inode, struct file *filp)
743 {
744 	mutex_lock(&inode->i_mutex);
745 	inode->i_pipe->writers++;
746 	mutex_unlock(&inode->i_mutex);
747 
748 	return 0;
749 }
750 
751 static int
752 pipe_rdwr_open(struct inode *inode, struct file *filp)
753 {
754 	mutex_lock(&inode->i_mutex);
755 	if (filp->f_mode & FMODE_READ)
756 		inode->i_pipe->readers++;
757 	if (filp->f_mode & FMODE_WRITE)
758 		inode->i_pipe->writers++;
759 	mutex_unlock(&inode->i_mutex);
760 
761 	return 0;
762 }
763 
764 /*
765  * The file_operations structs are not static because they
766  * are also used in linux/fs/fifo.c to do operations on FIFOs.
767  *
768  * Pipes reuse fifos' file_operations structs.
769  */
770 const struct file_operations read_pipefifo_fops = {
771 	.llseek		= no_llseek,
772 	.read		= do_sync_read,
773 	.aio_read	= pipe_read,
774 	.write		= bad_pipe_w,
775 	.poll		= pipe_poll,
776 	.unlocked_ioctl	= pipe_ioctl,
777 	.open		= pipe_read_open,
778 	.release	= pipe_read_release,
779 	.fasync		= pipe_read_fasync,
780 };
781 
782 const struct file_operations write_pipefifo_fops = {
783 	.llseek		= no_llseek,
784 	.read		= bad_pipe_r,
785 	.write		= do_sync_write,
786 	.aio_write	= pipe_write,
787 	.poll		= pipe_poll,
788 	.unlocked_ioctl	= pipe_ioctl,
789 	.open		= pipe_write_open,
790 	.release	= pipe_write_release,
791 	.fasync		= pipe_write_fasync,
792 };
793 
794 const struct file_operations rdwr_pipefifo_fops = {
795 	.llseek		= no_llseek,
796 	.read		= do_sync_read,
797 	.aio_read	= pipe_read,
798 	.write		= do_sync_write,
799 	.aio_write	= pipe_write,
800 	.poll		= pipe_poll,
801 	.unlocked_ioctl	= pipe_ioctl,
802 	.open		= pipe_rdwr_open,
803 	.release	= pipe_rdwr_release,
804 	.fasync		= pipe_rdwr_fasync,
805 };
806 
807 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
808 {
809 	struct pipe_inode_info *pipe;
810 
811 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
812 	if (pipe) {
813 		init_waitqueue_head(&pipe->wait);
814 		pipe->r_counter = pipe->w_counter = 1;
815 		pipe->inode = inode;
816 	}
817 
818 	return pipe;
819 }
820 
821 void __free_pipe_info(struct pipe_inode_info *pipe)
822 {
823 	int i;
824 
825 	for (i = 0; i < PIPE_BUFFERS; i++) {
826 		struct pipe_buffer *buf = pipe->bufs + i;
827 		if (buf->ops)
828 			buf->ops->release(pipe, buf);
829 	}
830 	if (pipe->tmp_page)
831 		__free_page(pipe->tmp_page);
832 	kfree(pipe);
833 }
834 
835 void free_pipe_info(struct inode *inode)
836 {
837 	__free_pipe_info(inode->i_pipe);
838 	inode->i_pipe = NULL;
839 }
840 
841 static struct vfsmount *pipe_mnt __read_mostly;
842 static int pipefs_delete_dentry(struct dentry *dentry)
843 {
844 	/*
845 	 * At creation time, we pretended this dentry was hashed
846 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
847 	 * At delete time, we restore the truth : not hashed.
848 	 * (so that dput() can proceed correctly)
849 	 */
850 	dentry->d_flags |= DCACHE_UNHASHED;
851 	return 0;
852 }
853 
854 /*
855  * pipefs_dname() is called from d_path().
856  */
857 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
858 {
859 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
860 				dentry->d_inode->i_ino);
861 }
862 
863 static const struct dentry_operations pipefs_dentry_operations = {
864 	.d_delete	= pipefs_delete_dentry,
865 	.d_dname	= pipefs_dname,
866 };
867 
868 static struct inode * get_pipe_inode(void)
869 {
870 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
871 	struct pipe_inode_info *pipe;
872 
873 	if (!inode)
874 		goto fail_inode;
875 
876 	pipe = alloc_pipe_info(inode);
877 	if (!pipe)
878 		goto fail_iput;
879 	inode->i_pipe = pipe;
880 
881 	pipe->readers = pipe->writers = 1;
882 	inode->i_fop = &rdwr_pipefifo_fops;
883 
884 	/*
885 	 * Mark the inode dirty from the very beginning,
886 	 * that way it will never be moved to the dirty
887 	 * list because "mark_inode_dirty()" will think
888 	 * that it already _is_ on the dirty list.
889 	 */
890 	inode->i_state = I_DIRTY;
891 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
892 	inode->i_uid = current_fsuid();
893 	inode->i_gid = current_fsgid();
894 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
895 
896 	return inode;
897 
898 fail_iput:
899 	iput(inode);
900 
901 fail_inode:
902 	return NULL;
903 }
904 
905 struct file *create_write_pipe(int flags)
906 {
907 	int err;
908 	struct inode *inode;
909 	struct file *f;
910 	struct dentry *dentry;
911 	struct qstr name = { .name = "" };
912 
913 	err = -ENFILE;
914 	inode = get_pipe_inode();
915 	if (!inode)
916 		goto err;
917 
918 	err = -ENOMEM;
919 	dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
920 	if (!dentry)
921 		goto err_inode;
922 
923 	dentry->d_op = &pipefs_dentry_operations;
924 	/*
925 	 * We dont want to publish this dentry into global dentry hash table.
926 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
927 	 * This permits a working /proc/$pid/fd/XXX on pipes
928 	 */
929 	dentry->d_flags &= ~DCACHE_UNHASHED;
930 	d_instantiate(dentry, inode);
931 
932 	err = -ENFILE;
933 	f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
934 	if (!f)
935 		goto err_dentry;
936 	f->f_mapping = inode->i_mapping;
937 
938 	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
939 	f->f_version = 0;
940 
941 	return f;
942 
943  err_dentry:
944 	free_pipe_info(inode);
945 	dput(dentry);
946 	return ERR_PTR(err);
947 
948  err_inode:
949 	free_pipe_info(inode);
950 	iput(inode);
951  err:
952 	return ERR_PTR(err);
953 }
954 
955 void free_write_pipe(struct file *f)
956 {
957 	free_pipe_info(f->f_dentry->d_inode);
958 	path_put(&f->f_path);
959 	put_filp(f);
960 }
961 
962 struct file *create_read_pipe(struct file *wrf, int flags)
963 {
964 	struct file *f = get_empty_filp();
965 	if (!f)
966 		return ERR_PTR(-ENFILE);
967 
968 	/* Grab pipe from the writer */
969 	f->f_path = wrf->f_path;
970 	path_get(&wrf->f_path);
971 	f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
972 
973 	f->f_pos = 0;
974 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
975 	f->f_op = &read_pipefifo_fops;
976 	f->f_mode = FMODE_READ;
977 	f->f_version = 0;
978 
979 	return f;
980 }
981 
982 int do_pipe_flags(int *fd, int flags)
983 {
984 	struct file *fw, *fr;
985 	int error;
986 	int fdw, fdr;
987 
988 	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
989 		return -EINVAL;
990 
991 	fw = create_write_pipe(flags);
992 	if (IS_ERR(fw))
993 		return PTR_ERR(fw);
994 	fr = create_read_pipe(fw, flags);
995 	error = PTR_ERR(fr);
996 	if (IS_ERR(fr))
997 		goto err_write_pipe;
998 
999 	error = get_unused_fd_flags(flags);
1000 	if (error < 0)
1001 		goto err_read_pipe;
1002 	fdr = error;
1003 
1004 	error = get_unused_fd_flags(flags);
1005 	if (error < 0)
1006 		goto err_fdr;
1007 	fdw = error;
1008 
1009 	audit_fd_pair(fdr, fdw);
1010 	fd_install(fdr, fr);
1011 	fd_install(fdw, fw);
1012 	fd[0] = fdr;
1013 	fd[1] = fdw;
1014 
1015 	return 0;
1016 
1017  err_fdr:
1018 	put_unused_fd(fdr);
1019  err_read_pipe:
1020 	path_put(&fr->f_path);
1021 	put_filp(fr);
1022  err_write_pipe:
1023 	free_write_pipe(fw);
1024 	return error;
1025 }
1026 
1027 /*
1028  * sys_pipe() is the normal C calling standard for creating
1029  * a pipe. It's not the way Unix traditionally does this, though.
1030  */
1031 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1032 {
1033 	int fd[2];
1034 	int error;
1035 
1036 	error = do_pipe_flags(fd, flags);
1037 	if (!error) {
1038 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1039 			sys_close(fd[0]);
1040 			sys_close(fd[1]);
1041 			error = -EFAULT;
1042 		}
1043 	}
1044 	return error;
1045 }
1046 
1047 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1048 {
1049 	return sys_pipe2(fildes, 0);
1050 }
1051 
1052 /*
1053  * pipefs should _never_ be mounted by userland - too much of security hassle,
1054  * no real gain from having the whole whorehouse mounted. So we don't need
1055  * any operations on the root directory. However, we need a non-trivial
1056  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1057  */
1058 static int pipefs_get_sb(struct file_system_type *fs_type,
1059 			 int flags, const char *dev_name, void *data,
1060 			 struct vfsmount *mnt)
1061 {
1062 	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1063 }
1064 
1065 static struct file_system_type pipe_fs_type = {
1066 	.name		= "pipefs",
1067 	.get_sb		= pipefs_get_sb,
1068 	.kill_sb	= kill_anon_super,
1069 };
1070 
1071 static int __init init_pipe_fs(void)
1072 {
1073 	int err = register_filesystem(&pipe_fs_type);
1074 
1075 	if (!err) {
1076 		pipe_mnt = kern_mount(&pipe_fs_type);
1077 		if (IS_ERR(pipe_mnt)) {
1078 			err = PTR_ERR(pipe_mnt);
1079 			unregister_filesystem(&pipe_fs_type);
1080 		}
1081 	}
1082 	return err;
1083 }
1084 
1085 static void __exit exit_pipe_fs(void)
1086 {
1087 	unregister_filesystem(&pipe_fs_type);
1088 	mntput(pipe_mnt);
1089 }
1090 
1091 fs_initcall(init_pipe_fs);
1092 module_exit(exit_pipe_fs);
1093