xref: /openbmc/linux/fs/pipe.c (revision b627b4ed)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
24 
25 /*
26  * We use a start+len construction, which provides full use of the
27  * allocated memory.
28  * -- Florian Coosmann (FGC)
29  *
30  * Reads with count = 0 should always return 0.
31  * -- Julian Bradfield 1999-06-07.
32  *
33  * FIFOs and Pipes now generate SIGIO for both readers and writers.
34  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35  *
36  * pipe_read & write cleanup
37  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38  */
39 
40 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
41 {
42 	if (pipe->inode)
43 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
44 }
45 
46 void pipe_lock(struct pipe_inode_info *pipe)
47 {
48 	/*
49 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
50 	 */
51 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
52 }
53 EXPORT_SYMBOL(pipe_lock);
54 
55 void pipe_unlock(struct pipe_inode_info *pipe)
56 {
57 	if (pipe->inode)
58 		mutex_unlock(&pipe->inode->i_mutex);
59 }
60 EXPORT_SYMBOL(pipe_unlock);
61 
62 void pipe_double_lock(struct pipe_inode_info *pipe1,
63 		      struct pipe_inode_info *pipe2)
64 {
65 	BUG_ON(pipe1 == pipe2);
66 
67 	if (pipe1 < pipe2) {
68 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70 	} else {
71 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
72 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
73 	}
74 }
75 
76 /* Drop the inode semaphore and wait for a pipe event, atomically */
77 void pipe_wait(struct pipe_inode_info *pipe)
78 {
79 	DEFINE_WAIT(wait);
80 
81 	/*
82 	 * Pipes are system-local resources, so sleeping on them
83 	 * is considered a noninteractive wait:
84 	 */
85 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86 	pipe_unlock(pipe);
87 	schedule();
88 	finish_wait(&pipe->wait, &wait);
89 	pipe_lock(pipe);
90 }
91 
92 static int
93 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94 			int atomic)
95 {
96 	unsigned long copy;
97 
98 	while (len > 0) {
99 		while (!iov->iov_len)
100 			iov++;
101 		copy = min_t(unsigned long, len, iov->iov_len);
102 
103 		if (atomic) {
104 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105 				return -EFAULT;
106 		} else {
107 			if (copy_from_user(to, iov->iov_base, copy))
108 				return -EFAULT;
109 		}
110 		to += copy;
111 		len -= copy;
112 		iov->iov_base += copy;
113 		iov->iov_len -= copy;
114 	}
115 	return 0;
116 }
117 
118 static int
119 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120 		      int atomic)
121 {
122 	unsigned long copy;
123 
124 	while (len > 0) {
125 		while (!iov->iov_len)
126 			iov++;
127 		copy = min_t(unsigned long, len, iov->iov_len);
128 
129 		if (atomic) {
130 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131 				return -EFAULT;
132 		} else {
133 			if (copy_to_user(iov->iov_base, from, copy))
134 				return -EFAULT;
135 		}
136 		from += copy;
137 		len -= copy;
138 		iov->iov_base += copy;
139 		iov->iov_len -= copy;
140 	}
141 	return 0;
142 }
143 
144 /*
145  * Attempt to pre-fault in the user memory, so we can use atomic copies.
146  * Returns the number of bytes not faulted in.
147  */
148 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
149 {
150 	while (!iov->iov_len)
151 		iov++;
152 
153 	while (len > 0) {
154 		unsigned long this_len;
155 
156 		this_len = min_t(unsigned long, len, iov->iov_len);
157 		if (fault_in_pages_writeable(iov->iov_base, this_len))
158 			break;
159 
160 		len -= this_len;
161 		iov++;
162 	}
163 
164 	return len;
165 }
166 
167 /*
168  * Pre-fault in the user memory, so we can use atomic copies.
169  */
170 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
171 {
172 	while (!iov->iov_len)
173 		iov++;
174 
175 	while (len > 0) {
176 		unsigned long this_len;
177 
178 		this_len = min_t(unsigned long, len, iov->iov_len);
179 		fault_in_pages_readable(iov->iov_base, this_len);
180 		len -= this_len;
181 		iov++;
182 	}
183 }
184 
185 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186 				  struct pipe_buffer *buf)
187 {
188 	struct page *page = buf->page;
189 
190 	/*
191 	 * If nobody else uses this page, and we don't already have a
192 	 * temporary page, let's keep track of it as a one-deep
193 	 * allocation cache. (Otherwise just release our reference to it)
194 	 */
195 	if (page_count(page) == 1 && !pipe->tmp_page)
196 		pipe->tmp_page = page;
197 	else
198 		page_cache_release(page);
199 }
200 
201 /**
202  * generic_pipe_buf_map - virtually map a pipe buffer
203  * @pipe:	the pipe that the buffer belongs to
204  * @buf:	the buffer that should be mapped
205  * @atomic:	whether to use an atomic map
206  *
207  * Description:
208  *	This function returns a kernel virtual address mapping for the
209  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210  *	and the caller has to be careful not to fault before calling
211  *	the unmap function.
212  *
213  *	Note that this function occupies KM_USER0 if @atomic != 0.
214  */
215 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216 			   struct pipe_buffer *buf, int atomic)
217 {
218 	if (atomic) {
219 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220 		return kmap_atomic(buf->page, KM_USER0);
221 	}
222 
223 	return kmap(buf->page);
224 }
225 
226 /**
227  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228  * @pipe:	the pipe that the buffer belongs to
229  * @buf:	the buffer that should be unmapped
230  * @map_data:	the data that the mapping function returned
231  *
232  * Description:
233  *	This function undoes the mapping that ->map() provided.
234  */
235 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236 			    struct pipe_buffer *buf, void *map_data)
237 {
238 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240 		kunmap_atomic(map_data, KM_USER0);
241 	} else
242 		kunmap(buf->page);
243 }
244 
245 /**
246  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247  * @pipe:	the pipe that the buffer belongs to
248  * @buf:	the buffer to attempt to steal
249  *
250  * Description:
251  *	This function attempts to steal the &struct page attached to
252  *	@buf. If successful, this function returns 0 and returns with
253  *	the page locked. The caller may then reuse the page for whatever
254  *	he wishes; the typical use is insertion into a different file
255  *	page cache.
256  */
257 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258 			   struct pipe_buffer *buf)
259 {
260 	struct page *page = buf->page;
261 
262 	/*
263 	 * A reference of one is golden, that means that the owner of this
264 	 * page is the only one holding a reference to it. lock the page
265 	 * and return OK.
266 	 */
267 	if (page_count(page) == 1) {
268 		lock_page(page);
269 		return 0;
270 	}
271 
272 	return 1;
273 }
274 
275 /**
276  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277  * @pipe:	the pipe that the buffer belongs to
278  * @buf:	the buffer to get a reference to
279  *
280  * Description:
281  *	This function grabs an extra reference to @buf. It's used in
282  *	in the tee() system call, when we duplicate the buffers in one
283  *	pipe into another.
284  */
285 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
286 {
287 	page_cache_get(buf->page);
288 }
289 
290 /**
291  * generic_pipe_buf_confirm - verify contents of the pipe buffer
292  * @info:	the pipe that the buffer belongs to
293  * @buf:	the buffer to confirm
294  *
295  * Description:
296  *	This function does nothing, because the generic pipe code uses
297  *	pages that are always good when inserted into the pipe.
298  */
299 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300 			     struct pipe_buffer *buf)
301 {
302 	return 0;
303 }
304 
305 static const struct pipe_buf_operations anon_pipe_buf_ops = {
306 	.can_merge = 1,
307 	.map = generic_pipe_buf_map,
308 	.unmap = generic_pipe_buf_unmap,
309 	.confirm = generic_pipe_buf_confirm,
310 	.release = anon_pipe_buf_release,
311 	.steal = generic_pipe_buf_steal,
312 	.get = generic_pipe_buf_get,
313 };
314 
315 static ssize_t
316 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
317 	   unsigned long nr_segs, loff_t pos)
318 {
319 	struct file *filp = iocb->ki_filp;
320 	struct inode *inode = filp->f_path.dentry->d_inode;
321 	struct pipe_inode_info *pipe;
322 	int do_wakeup;
323 	ssize_t ret;
324 	struct iovec *iov = (struct iovec *)_iov;
325 	size_t total_len;
326 
327 	total_len = iov_length(iov, nr_segs);
328 	/* Null read succeeds. */
329 	if (unlikely(total_len == 0))
330 		return 0;
331 
332 	do_wakeup = 0;
333 	ret = 0;
334 	mutex_lock(&inode->i_mutex);
335 	pipe = inode->i_pipe;
336 	for (;;) {
337 		int bufs = pipe->nrbufs;
338 		if (bufs) {
339 			int curbuf = pipe->curbuf;
340 			struct pipe_buffer *buf = pipe->bufs + curbuf;
341 			const struct pipe_buf_operations *ops = buf->ops;
342 			void *addr;
343 			size_t chars = buf->len;
344 			int error, atomic;
345 
346 			if (chars > total_len)
347 				chars = total_len;
348 
349 			error = ops->confirm(pipe, buf);
350 			if (error) {
351 				if (!ret)
352 					error = ret;
353 				break;
354 			}
355 
356 			atomic = !iov_fault_in_pages_write(iov, chars);
357 redo:
358 			addr = ops->map(pipe, buf, atomic);
359 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
360 			ops->unmap(pipe, buf, addr);
361 			if (unlikely(error)) {
362 				/*
363 				 * Just retry with the slow path if we failed.
364 				 */
365 				if (atomic) {
366 					atomic = 0;
367 					goto redo;
368 				}
369 				if (!ret)
370 					ret = error;
371 				break;
372 			}
373 			ret += chars;
374 			buf->offset += chars;
375 			buf->len -= chars;
376 			if (!buf->len) {
377 				buf->ops = NULL;
378 				ops->release(pipe, buf);
379 				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
380 				pipe->curbuf = curbuf;
381 				pipe->nrbufs = --bufs;
382 				do_wakeup = 1;
383 			}
384 			total_len -= chars;
385 			if (!total_len)
386 				break;	/* common path: read succeeded */
387 		}
388 		if (bufs)	/* More to do? */
389 			continue;
390 		if (!pipe->writers)
391 			break;
392 		if (!pipe->waiting_writers) {
393 			/* syscall merging: Usually we must not sleep
394 			 * if O_NONBLOCK is set, or if we got some data.
395 			 * But if a writer sleeps in kernel space, then
396 			 * we can wait for that data without violating POSIX.
397 			 */
398 			if (ret)
399 				break;
400 			if (filp->f_flags & O_NONBLOCK) {
401 				ret = -EAGAIN;
402 				break;
403 			}
404 		}
405 		if (signal_pending(current)) {
406 			if (!ret)
407 				ret = -ERESTARTSYS;
408 			break;
409 		}
410 		if (do_wakeup) {
411 			wake_up_interruptible_sync(&pipe->wait);
412  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
413 		}
414 		pipe_wait(pipe);
415 	}
416 	mutex_unlock(&inode->i_mutex);
417 
418 	/* Signal writers asynchronously that there is more room. */
419 	if (do_wakeup) {
420 		wake_up_interruptible_sync(&pipe->wait);
421 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
422 	}
423 	if (ret > 0)
424 		file_accessed(filp);
425 	return ret;
426 }
427 
428 static ssize_t
429 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
430 	    unsigned long nr_segs, loff_t ppos)
431 {
432 	struct file *filp = iocb->ki_filp;
433 	struct inode *inode = filp->f_path.dentry->d_inode;
434 	struct pipe_inode_info *pipe;
435 	ssize_t ret;
436 	int do_wakeup;
437 	struct iovec *iov = (struct iovec *)_iov;
438 	size_t total_len;
439 	ssize_t chars;
440 
441 	total_len = iov_length(iov, nr_segs);
442 	/* Null write succeeds. */
443 	if (unlikely(total_len == 0))
444 		return 0;
445 
446 	do_wakeup = 0;
447 	ret = 0;
448 	mutex_lock(&inode->i_mutex);
449 	pipe = inode->i_pipe;
450 
451 	if (!pipe->readers) {
452 		send_sig(SIGPIPE, current, 0);
453 		ret = -EPIPE;
454 		goto out;
455 	}
456 
457 	/* We try to merge small writes */
458 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
459 	if (pipe->nrbufs && chars != 0) {
460 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
461 							(PIPE_BUFFERS-1);
462 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
463 		const struct pipe_buf_operations *ops = buf->ops;
464 		int offset = buf->offset + buf->len;
465 
466 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
467 			int error, atomic = 1;
468 			void *addr;
469 
470 			error = ops->confirm(pipe, buf);
471 			if (error)
472 				goto out;
473 
474 			iov_fault_in_pages_read(iov, chars);
475 redo1:
476 			addr = ops->map(pipe, buf, atomic);
477 			error = pipe_iov_copy_from_user(offset + addr, iov,
478 							chars, atomic);
479 			ops->unmap(pipe, buf, addr);
480 			ret = error;
481 			do_wakeup = 1;
482 			if (error) {
483 				if (atomic) {
484 					atomic = 0;
485 					goto redo1;
486 				}
487 				goto out;
488 			}
489 			buf->len += chars;
490 			total_len -= chars;
491 			ret = chars;
492 			if (!total_len)
493 				goto out;
494 		}
495 	}
496 
497 	for (;;) {
498 		int bufs;
499 
500 		if (!pipe->readers) {
501 			send_sig(SIGPIPE, current, 0);
502 			if (!ret)
503 				ret = -EPIPE;
504 			break;
505 		}
506 		bufs = pipe->nrbufs;
507 		if (bufs < PIPE_BUFFERS) {
508 			int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
509 			struct pipe_buffer *buf = pipe->bufs + newbuf;
510 			struct page *page = pipe->tmp_page;
511 			char *src;
512 			int error, atomic = 1;
513 
514 			if (!page) {
515 				page = alloc_page(GFP_HIGHUSER);
516 				if (unlikely(!page)) {
517 					ret = ret ? : -ENOMEM;
518 					break;
519 				}
520 				pipe->tmp_page = page;
521 			}
522 			/* Always wake up, even if the copy fails. Otherwise
523 			 * we lock up (O_NONBLOCK-)readers that sleep due to
524 			 * syscall merging.
525 			 * FIXME! Is this really true?
526 			 */
527 			do_wakeup = 1;
528 			chars = PAGE_SIZE;
529 			if (chars > total_len)
530 				chars = total_len;
531 
532 			iov_fault_in_pages_read(iov, chars);
533 redo2:
534 			if (atomic)
535 				src = kmap_atomic(page, KM_USER0);
536 			else
537 				src = kmap(page);
538 
539 			error = pipe_iov_copy_from_user(src, iov, chars,
540 							atomic);
541 			if (atomic)
542 				kunmap_atomic(src, KM_USER0);
543 			else
544 				kunmap(page);
545 
546 			if (unlikely(error)) {
547 				if (atomic) {
548 					atomic = 0;
549 					goto redo2;
550 				}
551 				if (!ret)
552 					ret = error;
553 				break;
554 			}
555 			ret += chars;
556 
557 			/* Insert it into the buffer array */
558 			buf->page = page;
559 			buf->ops = &anon_pipe_buf_ops;
560 			buf->offset = 0;
561 			buf->len = chars;
562 			pipe->nrbufs = ++bufs;
563 			pipe->tmp_page = NULL;
564 
565 			total_len -= chars;
566 			if (!total_len)
567 				break;
568 		}
569 		if (bufs < PIPE_BUFFERS)
570 			continue;
571 		if (filp->f_flags & O_NONBLOCK) {
572 			if (!ret)
573 				ret = -EAGAIN;
574 			break;
575 		}
576 		if (signal_pending(current)) {
577 			if (!ret)
578 				ret = -ERESTARTSYS;
579 			break;
580 		}
581 		if (do_wakeup) {
582 			wake_up_interruptible_sync(&pipe->wait);
583 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
584 			do_wakeup = 0;
585 		}
586 		pipe->waiting_writers++;
587 		pipe_wait(pipe);
588 		pipe->waiting_writers--;
589 	}
590 out:
591 	mutex_unlock(&inode->i_mutex);
592 	if (do_wakeup) {
593 		wake_up_interruptible_sync(&pipe->wait);
594 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595 	}
596 	if (ret > 0)
597 		file_update_time(filp);
598 	return ret;
599 }
600 
601 static ssize_t
602 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
603 {
604 	return -EBADF;
605 }
606 
607 static ssize_t
608 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
609 	   loff_t *ppos)
610 {
611 	return -EBADF;
612 }
613 
614 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
615 {
616 	struct inode *inode = filp->f_path.dentry->d_inode;
617 	struct pipe_inode_info *pipe;
618 	int count, buf, nrbufs;
619 
620 	switch (cmd) {
621 		case FIONREAD:
622 			mutex_lock(&inode->i_mutex);
623 			pipe = inode->i_pipe;
624 			count = 0;
625 			buf = pipe->curbuf;
626 			nrbufs = pipe->nrbufs;
627 			while (--nrbufs >= 0) {
628 				count += pipe->bufs[buf].len;
629 				buf = (buf+1) & (PIPE_BUFFERS-1);
630 			}
631 			mutex_unlock(&inode->i_mutex);
632 
633 			return put_user(count, (int __user *)arg);
634 		default:
635 			return -EINVAL;
636 	}
637 }
638 
639 /* No kernel lock held - fine */
640 static unsigned int
641 pipe_poll(struct file *filp, poll_table *wait)
642 {
643 	unsigned int mask;
644 	struct inode *inode = filp->f_path.dentry->d_inode;
645 	struct pipe_inode_info *pipe = inode->i_pipe;
646 	int nrbufs;
647 
648 	poll_wait(filp, &pipe->wait, wait);
649 
650 	/* Reading only -- no need for acquiring the semaphore.  */
651 	nrbufs = pipe->nrbufs;
652 	mask = 0;
653 	if (filp->f_mode & FMODE_READ) {
654 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
655 		if (!pipe->writers && filp->f_version != pipe->w_counter)
656 			mask |= POLLHUP;
657 	}
658 
659 	if (filp->f_mode & FMODE_WRITE) {
660 		mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
661 		/*
662 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
663 		 * behave exactly like pipes for poll().
664 		 */
665 		if (!pipe->readers)
666 			mask |= POLLERR;
667 	}
668 
669 	return mask;
670 }
671 
672 static int
673 pipe_release(struct inode *inode, int decr, int decw)
674 {
675 	struct pipe_inode_info *pipe;
676 
677 	mutex_lock(&inode->i_mutex);
678 	pipe = inode->i_pipe;
679 	pipe->readers -= decr;
680 	pipe->writers -= decw;
681 
682 	if (!pipe->readers && !pipe->writers) {
683 		free_pipe_info(inode);
684 	} else {
685 		wake_up_interruptible_sync(&pipe->wait);
686 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
687 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
688 	}
689 	mutex_unlock(&inode->i_mutex);
690 
691 	return 0;
692 }
693 
694 static int
695 pipe_read_fasync(int fd, struct file *filp, int on)
696 {
697 	struct inode *inode = filp->f_path.dentry->d_inode;
698 	int retval;
699 
700 	mutex_lock(&inode->i_mutex);
701 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
702 	mutex_unlock(&inode->i_mutex);
703 
704 	return retval;
705 }
706 
707 
708 static int
709 pipe_write_fasync(int fd, struct file *filp, int on)
710 {
711 	struct inode *inode = filp->f_path.dentry->d_inode;
712 	int retval;
713 
714 	mutex_lock(&inode->i_mutex);
715 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
716 	mutex_unlock(&inode->i_mutex);
717 
718 	return retval;
719 }
720 
721 
722 static int
723 pipe_rdwr_fasync(int fd, struct file *filp, int on)
724 {
725 	struct inode *inode = filp->f_path.dentry->d_inode;
726 	struct pipe_inode_info *pipe = inode->i_pipe;
727 	int retval;
728 
729 	mutex_lock(&inode->i_mutex);
730 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 	if (retval >= 0) {
732 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 		if (retval < 0) /* this can happen only if on == T */
734 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
735 	}
736 	mutex_unlock(&inode->i_mutex);
737 	return retval;
738 }
739 
740 
741 static int
742 pipe_read_release(struct inode *inode, struct file *filp)
743 {
744 	return pipe_release(inode, 1, 0);
745 }
746 
747 static int
748 pipe_write_release(struct inode *inode, struct file *filp)
749 {
750 	return pipe_release(inode, 0, 1);
751 }
752 
753 static int
754 pipe_rdwr_release(struct inode *inode, struct file *filp)
755 {
756 	int decr, decw;
757 
758 	decr = (filp->f_mode & FMODE_READ) != 0;
759 	decw = (filp->f_mode & FMODE_WRITE) != 0;
760 	return pipe_release(inode, decr, decw);
761 }
762 
763 static int
764 pipe_read_open(struct inode *inode, struct file *filp)
765 {
766 	/* We could have perhaps used atomic_t, but this and friends
767 	   below are the only places.  So it doesn't seem worthwhile.  */
768 	mutex_lock(&inode->i_mutex);
769 	inode->i_pipe->readers++;
770 	mutex_unlock(&inode->i_mutex);
771 
772 	return 0;
773 }
774 
775 static int
776 pipe_write_open(struct inode *inode, struct file *filp)
777 {
778 	mutex_lock(&inode->i_mutex);
779 	inode->i_pipe->writers++;
780 	mutex_unlock(&inode->i_mutex);
781 
782 	return 0;
783 }
784 
785 static int
786 pipe_rdwr_open(struct inode *inode, struct file *filp)
787 {
788 	mutex_lock(&inode->i_mutex);
789 	if (filp->f_mode & FMODE_READ)
790 		inode->i_pipe->readers++;
791 	if (filp->f_mode & FMODE_WRITE)
792 		inode->i_pipe->writers++;
793 	mutex_unlock(&inode->i_mutex);
794 
795 	return 0;
796 }
797 
798 /*
799  * The file_operations structs are not static because they
800  * are also used in linux/fs/fifo.c to do operations on FIFOs.
801  *
802  * Pipes reuse fifos' file_operations structs.
803  */
804 const struct file_operations read_pipefifo_fops = {
805 	.llseek		= no_llseek,
806 	.read		= do_sync_read,
807 	.aio_read	= pipe_read,
808 	.write		= bad_pipe_w,
809 	.poll		= pipe_poll,
810 	.unlocked_ioctl	= pipe_ioctl,
811 	.open		= pipe_read_open,
812 	.release	= pipe_read_release,
813 	.fasync		= pipe_read_fasync,
814 };
815 
816 const struct file_operations write_pipefifo_fops = {
817 	.llseek		= no_llseek,
818 	.read		= bad_pipe_r,
819 	.write		= do_sync_write,
820 	.aio_write	= pipe_write,
821 	.poll		= pipe_poll,
822 	.unlocked_ioctl	= pipe_ioctl,
823 	.open		= pipe_write_open,
824 	.release	= pipe_write_release,
825 	.fasync		= pipe_write_fasync,
826 };
827 
828 const struct file_operations rdwr_pipefifo_fops = {
829 	.llseek		= no_llseek,
830 	.read		= do_sync_read,
831 	.aio_read	= pipe_read,
832 	.write		= do_sync_write,
833 	.aio_write	= pipe_write,
834 	.poll		= pipe_poll,
835 	.unlocked_ioctl	= pipe_ioctl,
836 	.open		= pipe_rdwr_open,
837 	.release	= pipe_rdwr_release,
838 	.fasync		= pipe_rdwr_fasync,
839 };
840 
841 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
842 {
843 	struct pipe_inode_info *pipe;
844 
845 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
846 	if (pipe) {
847 		init_waitqueue_head(&pipe->wait);
848 		pipe->r_counter = pipe->w_counter = 1;
849 		pipe->inode = inode;
850 	}
851 
852 	return pipe;
853 }
854 
855 void __free_pipe_info(struct pipe_inode_info *pipe)
856 {
857 	int i;
858 
859 	for (i = 0; i < PIPE_BUFFERS; i++) {
860 		struct pipe_buffer *buf = pipe->bufs + i;
861 		if (buf->ops)
862 			buf->ops->release(pipe, buf);
863 	}
864 	if (pipe->tmp_page)
865 		__free_page(pipe->tmp_page);
866 	kfree(pipe);
867 }
868 
869 void free_pipe_info(struct inode *inode)
870 {
871 	__free_pipe_info(inode->i_pipe);
872 	inode->i_pipe = NULL;
873 }
874 
875 static struct vfsmount *pipe_mnt __read_mostly;
876 static int pipefs_delete_dentry(struct dentry *dentry)
877 {
878 	/*
879 	 * At creation time, we pretended this dentry was hashed
880 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
881 	 * At delete time, we restore the truth : not hashed.
882 	 * (so that dput() can proceed correctly)
883 	 */
884 	dentry->d_flags |= DCACHE_UNHASHED;
885 	return 0;
886 }
887 
888 /*
889  * pipefs_dname() is called from d_path().
890  */
891 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
892 {
893 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
894 				dentry->d_inode->i_ino);
895 }
896 
897 static const struct dentry_operations pipefs_dentry_operations = {
898 	.d_delete	= pipefs_delete_dentry,
899 	.d_dname	= pipefs_dname,
900 };
901 
902 static struct inode * get_pipe_inode(void)
903 {
904 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
905 	struct pipe_inode_info *pipe;
906 
907 	if (!inode)
908 		goto fail_inode;
909 
910 	pipe = alloc_pipe_info(inode);
911 	if (!pipe)
912 		goto fail_iput;
913 	inode->i_pipe = pipe;
914 
915 	pipe->readers = pipe->writers = 1;
916 	inode->i_fop = &rdwr_pipefifo_fops;
917 
918 	/*
919 	 * Mark the inode dirty from the very beginning,
920 	 * that way it will never be moved to the dirty
921 	 * list because "mark_inode_dirty()" will think
922 	 * that it already _is_ on the dirty list.
923 	 */
924 	inode->i_state = I_DIRTY;
925 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
926 	inode->i_uid = current_fsuid();
927 	inode->i_gid = current_fsgid();
928 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
929 
930 	return inode;
931 
932 fail_iput:
933 	iput(inode);
934 
935 fail_inode:
936 	return NULL;
937 }
938 
939 struct file *create_write_pipe(int flags)
940 {
941 	int err;
942 	struct inode *inode;
943 	struct file *f;
944 	struct dentry *dentry;
945 	struct qstr name = { .name = "" };
946 
947 	err = -ENFILE;
948 	inode = get_pipe_inode();
949 	if (!inode)
950 		goto err;
951 
952 	err = -ENOMEM;
953 	dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
954 	if (!dentry)
955 		goto err_inode;
956 
957 	dentry->d_op = &pipefs_dentry_operations;
958 	/*
959 	 * We dont want to publish this dentry into global dentry hash table.
960 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
961 	 * This permits a working /proc/$pid/fd/XXX on pipes
962 	 */
963 	dentry->d_flags &= ~DCACHE_UNHASHED;
964 	d_instantiate(dentry, inode);
965 
966 	err = -ENFILE;
967 	f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
968 	if (!f)
969 		goto err_dentry;
970 	f->f_mapping = inode->i_mapping;
971 
972 	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
973 	f->f_version = 0;
974 
975 	return f;
976 
977  err_dentry:
978 	free_pipe_info(inode);
979 	dput(dentry);
980 	return ERR_PTR(err);
981 
982  err_inode:
983 	free_pipe_info(inode);
984 	iput(inode);
985  err:
986 	return ERR_PTR(err);
987 }
988 
989 void free_write_pipe(struct file *f)
990 {
991 	free_pipe_info(f->f_dentry->d_inode);
992 	path_put(&f->f_path);
993 	put_filp(f);
994 }
995 
996 struct file *create_read_pipe(struct file *wrf, int flags)
997 {
998 	struct file *f = get_empty_filp();
999 	if (!f)
1000 		return ERR_PTR(-ENFILE);
1001 
1002 	/* Grab pipe from the writer */
1003 	f->f_path = wrf->f_path;
1004 	path_get(&wrf->f_path);
1005 	f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1006 
1007 	f->f_pos = 0;
1008 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1009 	f->f_op = &read_pipefifo_fops;
1010 	f->f_mode = FMODE_READ;
1011 	f->f_version = 0;
1012 
1013 	return f;
1014 }
1015 
1016 int do_pipe_flags(int *fd, int flags)
1017 {
1018 	struct file *fw, *fr;
1019 	int error;
1020 	int fdw, fdr;
1021 
1022 	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1023 		return -EINVAL;
1024 
1025 	fw = create_write_pipe(flags);
1026 	if (IS_ERR(fw))
1027 		return PTR_ERR(fw);
1028 	fr = create_read_pipe(fw, flags);
1029 	error = PTR_ERR(fr);
1030 	if (IS_ERR(fr))
1031 		goto err_write_pipe;
1032 
1033 	error = get_unused_fd_flags(flags);
1034 	if (error < 0)
1035 		goto err_read_pipe;
1036 	fdr = error;
1037 
1038 	error = get_unused_fd_flags(flags);
1039 	if (error < 0)
1040 		goto err_fdr;
1041 	fdw = error;
1042 
1043 	audit_fd_pair(fdr, fdw);
1044 	fd_install(fdr, fr);
1045 	fd_install(fdw, fw);
1046 	fd[0] = fdr;
1047 	fd[1] = fdw;
1048 
1049 	return 0;
1050 
1051  err_fdr:
1052 	put_unused_fd(fdr);
1053  err_read_pipe:
1054 	path_put(&fr->f_path);
1055 	put_filp(fr);
1056  err_write_pipe:
1057 	free_write_pipe(fw);
1058 	return error;
1059 }
1060 
1061 /*
1062  * sys_pipe() is the normal C calling standard for creating
1063  * a pipe. It's not the way Unix traditionally does this, though.
1064  */
1065 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1066 {
1067 	int fd[2];
1068 	int error;
1069 
1070 	error = do_pipe_flags(fd, flags);
1071 	if (!error) {
1072 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1073 			sys_close(fd[0]);
1074 			sys_close(fd[1]);
1075 			error = -EFAULT;
1076 		}
1077 	}
1078 	return error;
1079 }
1080 
1081 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1082 {
1083 	return sys_pipe2(fildes, 0);
1084 }
1085 
1086 /*
1087  * pipefs should _never_ be mounted by userland - too much of security hassle,
1088  * no real gain from having the whole whorehouse mounted. So we don't need
1089  * any operations on the root directory. However, we need a non-trivial
1090  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1091  */
1092 static int pipefs_get_sb(struct file_system_type *fs_type,
1093 			 int flags, const char *dev_name, void *data,
1094 			 struct vfsmount *mnt)
1095 {
1096 	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1097 }
1098 
1099 static struct file_system_type pipe_fs_type = {
1100 	.name		= "pipefs",
1101 	.get_sb		= pipefs_get_sb,
1102 	.kill_sb	= kill_anon_super,
1103 };
1104 
1105 static int __init init_pipe_fs(void)
1106 {
1107 	int err = register_filesystem(&pipe_fs_type);
1108 
1109 	if (!err) {
1110 		pipe_mnt = kern_mount(&pipe_fs_type);
1111 		if (IS_ERR(pipe_mnt)) {
1112 			err = PTR_ERR(pipe_mnt);
1113 			unregister_filesystem(&pipe_fs_type);
1114 		}
1115 	}
1116 	return err;
1117 }
1118 
1119 static void __exit exit_pipe_fs(void)
1120 {
1121 	unregister_filesystem(&pipe_fs_type);
1122 	mntput(pipe_mnt);
1123 }
1124 
1125 fs_initcall(init_pipe_fs);
1126 module_exit(exit_pipe_fs);
1127