1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/magic.h> 18 #include <linux/pipe_fs_i.h> 19 #include <linux/uio.h> 20 #include <linux/highmem.h> 21 #include <linux/pagemap.h> 22 #include <linux/audit.h> 23 #include <linux/syscalls.h> 24 #include <linux/fcntl.h> 25 #include <linux/memcontrol.h> 26 27 #include <linux/uaccess.h> 28 #include <asm/ioctls.h> 29 30 #include "internal.h" 31 32 /* 33 * The max size that a non-root user is allowed to grow the pipe. Can 34 * be set by root in /proc/sys/fs/pipe-max-size 35 */ 36 unsigned int pipe_max_size = 1048576; 37 38 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 39 * matches default values. 40 */ 41 unsigned long pipe_user_pages_hard; 42 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 43 44 /* 45 * We use a start+len construction, which provides full use of the 46 * allocated memory. 47 * -- Florian Coosmann (FGC) 48 * 49 * Reads with count = 0 should always return 0. 50 * -- Julian Bradfield 1999-06-07. 51 * 52 * FIFOs and Pipes now generate SIGIO for both readers and writers. 53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 54 * 55 * pipe_read & write cleanup 56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 57 */ 58 59 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 60 { 61 if (pipe->files) 62 mutex_lock_nested(&pipe->mutex, subclass); 63 } 64 65 void pipe_lock(struct pipe_inode_info *pipe) 66 { 67 /* 68 * pipe_lock() nests non-pipe inode locks (for writing to a file) 69 */ 70 pipe_lock_nested(pipe, I_MUTEX_PARENT); 71 } 72 EXPORT_SYMBOL(pipe_lock); 73 74 void pipe_unlock(struct pipe_inode_info *pipe) 75 { 76 if (pipe->files) 77 mutex_unlock(&pipe->mutex); 78 } 79 EXPORT_SYMBOL(pipe_unlock); 80 81 static inline void __pipe_lock(struct pipe_inode_info *pipe) 82 { 83 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 84 } 85 86 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 87 { 88 mutex_unlock(&pipe->mutex); 89 } 90 91 void pipe_double_lock(struct pipe_inode_info *pipe1, 92 struct pipe_inode_info *pipe2) 93 { 94 BUG_ON(pipe1 == pipe2); 95 96 if (pipe1 < pipe2) { 97 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 98 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 99 } else { 100 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 102 } 103 } 104 105 /* Drop the inode semaphore and wait for a pipe event, atomically */ 106 void pipe_wait(struct pipe_inode_info *pipe) 107 { 108 DEFINE_WAIT(wait); 109 110 /* 111 * Pipes are system-local resources, so sleeping on them 112 * is considered a noninteractive wait: 113 */ 114 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 115 pipe_unlock(pipe); 116 schedule(); 117 finish_wait(&pipe->wait, &wait); 118 pipe_lock(pipe); 119 } 120 121 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 122 struct pipe_buffer *buf) 123 { 124 struct page *page = buf->page; 125 126 /* 127 * If nobody else uses this page, and we don't already have a 128 * temporary page, let's keep track of it as a one-deep 129 * allocation cache. (Otherwise just release our reference to it) 130 */ 131 if (page_count(page) == 1 && !pipe->tmp_page) 132 pipe->tmp_page = page; 133 else 134 put_page(page); 135 } 136 137 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 138 struct pipe_buffer *buf) 139 { 140 struct page *page = buf->page; 141 142 if (page_count(page) == 1) { 143 memcg_kmem_uncharge(page, 0); 144 __SetPageLocked(page); 145 return 0; 146 } 147 return 1; 148 } 149 150 /** 151 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 152 * @pipe: the pipe that the buffer belongs to 153 * @buf: the buffer to attempt to steal 154 * 155 * Description: 156 * This function attempts to steal the &struct page attached to 157 * @buf. If successful, this function returns 0 and returns with 158 * the page locked. The caller may then reuse the page for whatever 159 * he wishes; the typical use is insertion into a different file 160 * page cache. 161 */ 162 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 163 struct pipe_buffer *buf) 164 { 165 struct page *page = buf->page; 166 167 /* 168 * A reference of one is golden, that means that the owner of this 169 * page is the only one holding a reference to it. lock the page 170 * and return OK. 171 */ 172 if (page_count(page) == 1) { 173 lock_page(page); 174 return 0; 175 } 176 177 return 1; 178 } 179 EXPORT_SYMBOL(generic_pipe_buf_steal); 180 181 /** 182 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 183 * @pipe: the pipe that the buffer belongs to 184 * @buf: the buffer to get a reference to 185 * 186 * Description: 187 * This function grabs an extra reference to @buf. It's used in 188 * in the tee() system call, when we duplicate the buffers in one 189 * pipe into another. 190 */ 191 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 192 { 193 get_page(buf->page); 194 } 195 EXPORT_SYMBOL(generic_pipe_buf_get); 196 197 /** 198 * generic_pipe_buf_confirm - verify contents of the pipe buffer 199 * @info: the pipe that the buffer belongs to 200 * @buf: the buffer to confirm 201 * 202 * Description: 203 * This function does nothing, because the generic pipe code uses 204 * pages that are always good when inserted into the pipe. 205 */ 206 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 207 struct pipe_buffer *buf) 208 { 209 return 0; 210 } 211 EXPORT_SYMBOL(generic_pipe_buf_confirm); 212 213 /** 214 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 215 * @pipe: the pipe that the buffer belongs to 216 * @buf: the buffer to put a reference to 217 * 218 * Description: 219 * This function releases a reference to @buf. 220 */ 221 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 222 struct pipe_buffer *buf) 223 { 224 put_page(buf->page); 225 } 226 EXPORT_SYMBOL(generic_pipe_buf_release); 227 228 static const struct pipe_buf_operations anon_pipe_buf_ops = { 229 .can_merge = 1, 230 .confirm = generic_pipe_buf_confirm, 231 .release = anon_pipe_buf_release, 232 .steal = anon_pipe_buf_steal, 233 .get = generic_pipe_buf_get, 234 }; 235 236 static const struct pipe_buf_operations packet_pipe_buf_ops = { 237 .can_merge = 0, 238 .confirm = generic_pipe_buf_confirm, 239 .release = anon_pipe_buf_release, 240 .steal = anon_pipe_buf_steal, 241 .get = generic_pipe_buf_get, 242 }; 243 244 static ssize_t 245 pipe_read(struct kiocb *iocb, struct iov_iter *to) 246 { 247 size_t total_len = iov_iter_count(to); 248 struct file *filp = iocb->ki_filp; 249 struct pipe_inode_info *pipe = filp->private_data; 250 int do_wakeup; 251 ssize_t ret; 252 253 /* Null read succeeds. */ 254 if (unlikely(total_len == 0)) 255 return 0; 256 257 do_wakeup = 0; 258 ret = 0; 259 __pipe_lock(pipe); 260 for (;;) { 261 int bufs = pipe->nrbufs; 262 if (bufs) { 263 int curbuf = pipe->curbuf; 264 struct pipe_buffer *buf = pipe->bufs + curbuf; 265 size_t chars = buf->len; 266 size_t written; 267 int error; 268 269 if (chars > total_len) 270 chars = total_len; 271 272 error = pipe_buf_confirm(pipe, buf); 273 if (error) { 274 if (!ret) 275 ret = error; 276 break; 277 } 278 279 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 280 if (unlikely(written < chars)) { 281 if (!ret) 282 ret = -EFAULT; 283 break; 284 } 285 ret += chars; 286 buf->offset += chars; 287 buf->len -= chars; 288 289 /* Was it a packet buffer? Clean up and exit */ 290 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 291 total_len = chars; 292 buf->len = 0; 293 } 294 295 if (!buf->len) { 296 pipe_buf_release(pipe, buf); 297 curbuf = (curbuf + 1) & (pipe->buffers - 1); 298 pipe->curbuf = curbuf; 299 pipe->nrbufs = --bufs; 300 do_wakeup = 1; 301 } 302 total_len -= chars; 303 if (!total_len) 304 break; /* common path: read succeeded */ 305 } 306 if (bufs) /* More to do? */ 307 continue; 308 if (!pipe->writers) 309 break; 310 if (!pipe->waiting_writers) { 311 /* syscall merging: Usually we must not sleep 312 * if O_NONBLOCK is set, or if we got some data. 313 * But if a writer sleeps in kernel space, then 314 * we can wait for that data without violating POSIX. 315 */ 316 if (ret) 317 break; 318 if (filp->f_flags & O_NONBLOCK) { 319 ret = -EAGAIN; 320 break; 321 } 322 } 323 if (signal_pending(current)) { 324 if (!ret) 325 ret = -ERESTARTSYS; 326 break; 327 } 328 if (do_wakeup) { 329 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 330 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 331 } 332 pipe_wait(pipe); 333 } 334 __pipe_unlock(pipe); 335 336 /* Signal writers asynchronously that there is more room. */ 337 if (do_wakeup) { 338 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 339 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 340 } 341 if (ret > 0) 342 file_accessed(filp); 343 return ret; 344 } 345 346 static inline int is_packetized(struct file *file) 347 { 348 return (file->f_flags & O_DIRECT) != 0; 349 } 350 351 static ssize_t 352 pipe_write(struct kiocb *iocb, struct iov_iter *from) 353 { 354 struct file *filp = iocb->ki_filp; 355 struct pipe_inode_info *pipe = filp->private_data; 356 ssize_t ret = 0; 357 int do_wakeup = 0; 358 size_t total_len = iov_iter_count(from); 359 ssize_t chars; 360 361 /* Null write succeeds. */ 362 if (unlikely(total_len == 0)) 363 return 0; 364 365 __pipe_lock(pipe); 366 367 if (!pipe->readers) { 368 send_sig(SIGPIPE, current, 0); 369 ret = -EPIPE; 370 goto out; 371 } 372 373 /* We try to merge small writes */ 374 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */ 375 if (pipe->nrbufs && chars != 0) { 376 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) & 377 (pipe->buffers - 1); 378 struct pipe_buffer *buf = pipe->bufs + lastbuf; 379 int offset = buf->offset + buf->len; 380 381 if (buf->ops->can_merge && offset + chars <= PAGE_SIZE) { 382 ret = pipe_buf_confirm(pipe, buf); 383 if (ret) 384 goto out; 385 386 ret = copy_page_from_iter(buf->page, offset, chars, from); 387 if (unlikely(ret < chars)) { 388 ret = -EFAULT; 389 goto out; 390 } 391 do_wakeup = 1; 392 buf->len += ret; 393 if (!iov_iter_count(from)) 394 goto out; 395 } 396 } 397 398 for (;;) { 399 int bufs; 400 401 if (!pipe->readers) { 402 send_sig(SIGPIPE, current, 0); 403 if (!ret) 404 ret = -EPIPE; 405 break; 406 } 407 bufs = pipe->nrbufs; 408 if (bufs < pipe->buffers) { 409 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1); 410 struct pipe_buffer *buf = pipe->bufs + newbuf; 411 struct page *page = pipe->tmp_page; 412 int copied; 413 414 if (!page) { 415 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 416 if (unlikely(!page)) { 417 ret = ret ? : -ENOMEM; 418 break; 419 } 420 pipe->tmp_page = page; 421 } 422 /* Always wake up, even if the copy fails. Otherwise 423 * we lock up (O_NONBLOCK-)readers that sleep due to 424 * syscall merging. 425 * FIXME! Is this really true? 426 */ 427 do_wakeup = 1; 428 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 429 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 430 if (!ret) 431 ret = -EFAULT; 432 break; 433 } 434 ret += copied; 435 436 /* Insert it into the buffer array */ 437 buf->page = page; 438 buf->ops = &anon_pipe_buf_ops; 439 buf->offset = 0; 440 buf->len = copied; 441 buf->flags = 0; 442 if (is_packetized(filp)) { 443 buf->ops = &packet_pipe_buf_ops; 444 buf->flags = PIPE_BUF_FLAG_PACKET; 445 } 446 pipe->nrbufs = ++bufs; 447 pipe->tmp_page = NULL; 448 449 if (!iov_iter_count(from)) 450 break; 451 } 452 if (bufs < pipe->buffers) 453 continue; 454 if (filp->f_flags & O_NONBLOCK) { 455 if (!ret) 456 ret = -EAGAIN; 457 break; 458 } 459 if (signal_pending(current)) { 460 if (!ret) 461 ret = -ERESTARTSYS; 462 break; 463 } 464 if (do_wakeup) { 465 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 466 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 467 do_wakeup = 0; 468 } 469 pipe->waiting_writers++; 470 pipe_wait(pipe); 471 pipe->waiting_writers--; 472 } 473 out: 474 __pipe_unlock(pipe); 475 if (do_wakeup) { 476 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 477 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 478 } 479 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 480 int err = file_update_time(filp); 481 if (err) 482 ret = err; 483 sb_end_write(file_inode(filp)->i_sb); 484 } 485 return ret; 486 } 487 488 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 489 { 490 struct pipe_inode_info *pipe = filp->private_data; 491 int count, buf, nrbufs; 492 493 switch (cmd) { 494 case FIONREAD: 495 __pipe_lock(pipe); 496 count = 0; 497 buf = pipe->curbuf; 498 nrbufs = pipe->nrbufs; 499 while (--nrbufs >= 0) { 500 count += pipe->bufs[buf].len; 501 buf = (buf+1) & (pipe->buffers - 1); 502 } 503 __pipe_unlock(pipe); 504 505 return put_user(count, (int __user *)arg); 506 default: 507 return -ENOIOCTLCMD; 508 } 509 } 510 511 /* No kernel lock held - fine */ 512 static __poll_t 513 pipe_poll(struct file *filp, poll_table *wait) 514 { 515 __poll_t mask; 516 struct pipe_inode_info *pipe = filp->private_data; 517 int nrbufs; 518 519 poll_wait(filp, &pipe->wait, wait); 520 521 /* Reading only -- no need for acquiring the semaphore. */ 522 nrbufs = pipe->nrbufs; 523 mask = 0; 524 if (filp->f_mode & FMODE_READ) { 525 mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0; 526 if (!pipe->writers && filp->f_version != pipe->w_counter) 527 mask |= EPOLLHUP; 528 } 529 530 if (filp->f_mode & FMODE_WRITE) { 531 mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0; 532 /* 533 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 534 * behave exactly like pipes for poll(). 535 */ 536 if (!pipe->readers) 537 mask |= EPOLLERR; 538 } 539 540 return mask; 541 } 542 543 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 544 { 545 int kill = 0; 546 547 spin_lock(&inode->i_lock); 548 if (!--pipe->files) { 549 inode->i_pipe = NULL; 550 kill = 1; 551 } 552 spin_unlock(&inode->i_lock); 553 554 if (kill) 555 free_pipe_info(pipe); 556 } 557 558 static int 559 pipe_release(struct inode *inode, struct file *file) 560 { 561 struct pipe_inode_info *pipe = file->private_data; 562 563 __pipe_lock(pipe); 564 if (file->f_mode & FMODE_READ) 565 pipe->readers--; 566 if (file->f_mode & FMODE_WRITE) 567 pipe->writers--; 568 569 if (pipe->readers || pipe->writers) { 570 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP); 571 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 572 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 573 } 574 __pipe_unlock(pipe); 575 576 put_pipe_info(inode, pipe); 577 return 0; 578 } 579 580 static int 581 pipe_fasync(int fd, struct file *filp, int on) 582 { 583 struct pipe_inode_info *pipe = filp->private_data; 584 int retval = 0; 585 586 __pipe_lock(pipe); 587 if (filp->f_mode & FMODE_READ) 588 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 589 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 590 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 591 if (retval < 0 && (filp->f_mode & FMODE_READ)) 592 /* this can happen only if on == T */ 593 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 594 } 595 __pipe_unlock(pipe); 596 return retval; 597 } 598 599 static unsigned long account_pipe_buffers(struct user_struct *user, 600 unsigned long old, unsigned long new) 601 { 602 return atomic_long_add_return(new - old, &user->pipe_bufs); 603 } 604 605 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 606 { 607 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 608 609 return soft_limit && user_bufs > soft_limit; 610 } 611 612 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 613 { 614 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 615 616 return hard_limit && user_bufs > hard_limit; 617 } 618 619 static bool is_unprivileged_user(void) 620 { 621 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 622 } 623 624 struct pipe_inode_info *alloc_pipe_info(void) 625 { 626 struct pipe_inode_info *pipe; 627 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 628 struct user_struct *user = get_current_user(); 629 unsigned long user_bufs; 630 unsigned int max_size = READ_ONCE(pipe_max_size); 631 632 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 633 if (pipe == NULL) 634 goto out_free_uid; 635 636 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 637 pipe_bufs = max_size >> PAGE_SHIFT; 638 639 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 640 641 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 642 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 643 pipe_bufs = 1; 644 } 645 646 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 647 goto out_revert_acct; 648 649 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 650 GFP_KERNEL_ACCOUNT); 651 652 if (pipe->bufs) { 653 init_waitqueue_head(&pipe->wait); 654 pipe->r_counter = pipe->w_counter = 1; 655 pipe->buffers = pipe_bufs; 656 pipe->user = user; 657 mutex_init(&pipe->mutex); 658 return pipe; 659 } 660 661 out_revert_acct: 662 (void) account_pipe_buffers(user, pipe_bufs, 0); 663 kfree(pipe); 664 out_free_uid: 665 free_uid(user); 666 return NULL; 667 } 668 669 void free_pipe_info(struct pipe_inode_info *pipe) 670 { 671 int i; 672 673 (void) account_pipe_buffers(pipe->user, pipe->buffers, 0); 674 free_uid(pipe->user); 675 for (i = 0; i < pipe->buffers; i++) { 676 struct pipe_buffer *buf = pipe->bufs + i; 677 if (buf->ops) 678 pipe_buf_release(pipe, buf); 679 } 680 if (pipe->tmp_page) 681 __free_page(pipe->tmp_page); 682 kfree(pipe->bufs); 683 kfree(pipe); 684 } 685 686 static struct vfsmount *pipe_mnt __read_mostly; 687 688 /* 689 * pipefs_dname() is called from d_path(). 690 */ 691 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 692 { 693 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 694 d_inode(dentry)->i_ino); 695 } 696 697 static const struct dentry_operations pipefs_dentry_operations = { 698 .d_dname = pipefs_dname, 699 }; 700 701 static struct inode * get_pipe_inode(void) 702 { 703 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 704 struct pipe_inode_info *pipe; 705 706 if (!inode) 707 goto fail_inode; 708 709 inode->i_ino = get_next_ino(); 710 711 pipe = alloc_pipe_info(); 712 if (!pipe) 713 goto fail_iput; 714 715 inode->i_pipe = pipe; 716 pipe->files = 2; 717 pipe->readers = pipe->writers = 1; 718 inode->i_fop = &pipefifo_fops; 719 720 /* 721 * Mark the inode dirty from the very beginning, 722 * that way it will never be moved to the dirty 723 * list because "mark_inode_dirty()" will think 724 * that it already _is_ on the dirty list. 725 */ 726 inode->i_state = I_DIRTY; 727 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 728 inode->i_uid = current_fsuid(); 729 inode->i_gid = current_fsgid(); 730 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 731 732 return inode; 733 734 fail_iput: 735 iput(inode); 736 737 fail_inode: 738 return NULL; 739 } 740 741 int create_pipe_files(struct file **res, int flags) 742 { 743 struct inode *inode = get_pipe_inode(); 744 struct file *f; 745 746 if (!inode) 747 return -ENFILE; 748 749 f = alloc_file_pseudo(inode, pipe_mnt, "", 750 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 751 &pipefifo_fops); 752 if (IS_ERR(f)) { 753 free_pipe_info(inode->i_pipe); 754 iput(inode); 755 return PTR_ERR(f); 756 } 757 758 f->private_data = inode->i_pipe; 759 760 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 761 &pipefifo_fops); 762 if (IS_ERR(res[0])) { 763 put_pipe_info(inode, inode->i_pipe); 764 fput(f); 765 return PTR_ERR(res[0]); 766 } 767 res[0]->private_data = inode->i_pipe; 768 res[1] = f; 769 return 0; 770 } 771 772 static int __do_pipe_flags(int *fd, struct file **files, int flags) 773 { 774 int error; 775 int fdw, fdr; 776 777 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 778 return -EINVAL; 779 780 error = create_pipe_files(files, flags); 781 if (error) 782 return error; 783 784 error = get_unused_fd_flags(flags); 785 if (error < 0) 786 goto err_read_pipe; 787 fdr = error; 788 789 error = get_unused_fd_flags(flags); 790 if (error < 0) 791 goto err_fdr; 792 fdw = error; 793 794 audit_fd_pair(fdr, fdw); 795 fd[0] = fdr; 796 fd[1] = fdw; 797 return 0; 798 799 err_fdr: 800 put_unused_fd(fdr); 801 err_read_pipe: 802 fput(files[0]); 803 fput(files[1]); 804 return error; 805 } 806 807 int do_pipe_flags(int *fd, int flags) 808 { 809 struct file *files[2]; 810 int error = __do_pipe_flags(fd, files, flags); 811 if (!error) { 812 fd_install(fd[0], files[0]); 813 fd_install(fd[1], files[1]); 814 } 815 return error; 816 } 817 818 /* 819 * sys_pipe() is the normal C calling standard for creating 820 * a pipe. It's not the way Unix traditionally does this, though. 821 */ 822 static int do_pipe2(int __user *fildes, int flags) 823 { 824 struct file *files[2]; 825 int fd[2]; 826 int error; 827 828 error = __do_pipe_flags(fd, files, flags); 829 if (!error) { 830 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 831 fput(files[0]); 832 fput(files[1]); 833 put_unused_fd(fd[0]); 834 put_unused_fd(fd[1]); 835 error = -EFAULT; 836 } else { 837 fd_install(fd[0], files[0]); 838 fd_install(fd[1], files[1]); 839 } 840 } 841 return error; 842 } 843 844 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 845 { 846 return do_pipe2(fildes, flags); 847 } 848 849 SYSCALL_DEFINE1(pipe, int __user *, fildes) 850 { 851 return do_pipe2(fildes, 0); 852 } 853 854 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 855 { 856 int cur = *cnt; 857 858 while (cur == *cnt) { 859 pipe_wait(pipe); 860 if (signal_pending(current)) 861 break; 862 } 863 return cur == *cnt ? -ERESTARTSYS : 0; 864 } 865 866 static void wake_up_partner(struct pipe_inode_info *pipe) 867 { 868 wake_up_interruptible(&pipe->wait); 869 } 870 871 static int fifo_open(struct inode *inode, struct file *filp) 872 { 873 struct pipe_inode_info *pipe; 874 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 875 int ret; 876 877 filp->f_version = 0; 878 879 spin_lock(&inode->i_lock); 880 if (inode->i_pipe) { 881 pipe = inode->i_pipe; 882 pipe->files++; 883 spin_unlock(&inode->i_lock); 884 } else { 885 spin_unlock(&inode->i_lock); 886 pipe = alloc_pipe_info(); 887 if (!pipe) 888 return -ENOMEM; 889 pipe->files = 1; 890 spin_lock(&inode->i_lock); 891 if (unlikely(inode->i_pipe)) { 892 inode->i_pipe->files++; 893 spin_unlock(&inode->i_lock); 894 free_pipe_info(pipe); 895 pipe = inode->i_pipe; 896 } else { 897 inode->i_pipe = pipe; 898 spin_unlock(&inode->i_lock); 899 } 900 } 901 filp->private_data = pipe; 902 /* OK, we have a pipe and it's pinned down */ 903 904 __pipe_lock(pipe); 905 906 /* We can only do regular read/write on fifos */ 907 filp->f_mode &= (FMODE_READ | FMODE_WRITE); 908 909 switch (filp->f_mode) { 910 case FMODE_READ: 911 /* 912 * O_RDONLY 913 * POSIX.1 says that O_NONBLOCK means return with the FIFO 914 * opened, even when there is no process writing the FIFO. 915 */ 916 pipe->r_counter++; 917 if (pipe->readers++ == 0) 918 wake_up_partner(pipe); 919 920 if (!is_pipe && !pipe->writers) { 921 if ((filp->f_flags & O_NONBLOCK)) { 922 /* suppress EPOLLHUP until we have 923 * seen a writer */ 924 filp->f_version = pipe->w_counter; 925 } else { 926 if (wait_for_partner(pipe, &pipe->w_counter)) 927 goto err_rd; 928 } 929 } 930 break; 931 932 case FMODE_WRITE: 933 /* 934 * O_WRONLY 935 * POSIX.1 says that O_NONBLOCK means return -1 with 936 * errno=ENXIO when there is no process reading the FIFO. 937 */ 938 ret = -ENXIO; 939 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 940 goto err; 941 942 pipe->w_counter++; 943 if (!pipe->writers++) 944 wake_up_partner(pipe); 945 946 if (!is_pipe && !pipe->readers) { 947 if (wait_for_partner(pipe, &pipe->r_counter)) 948 goto err_wr; 949 } 950 break; 951 952 case FMODE_READ | FMODE_WRITE: 953 /* 954 * O_RDWR 955 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 956 * This implementation will NEVER block on a O_RDWR open, since 957 * the process can at least talk to itself. 958 */ 959 960 pipe->readers++; 961 pipe->writers++; 962 pipe->r_counter++; 963 pipe->w_counter++; 964 if (pipe->readers == 1 || pipe->writers == 1) 965 wake_up_partner(pipe); 966 break; 967 968 default: 969 ret = -EINVAL; 970 goto err; 971 } 972 973 /* Ok! */ 974 __pipe_unlock(pipe); 975 return 0; 976 977 err_rd: 978 if (!--pipe->readers) 979 wake_up_interruptible(&pipe->wait); 980 ret = -ERESTARTSYS; 981 goto err; 982 983 err_wr: 984 if (!--pipe->writers) 985 wake_up_interruptible(&pipe->wait); 986 ret = -ERESTARTSYS; 987 goto err; 988 989 err: 990 __pipe_unlock(pipe); 991 992 put_pipe_info(inode, pipe); 993 return ret; 994 } 995 996 const struct file_operations pipefifo_fops = { 997 .open = fifo_open, 998 .llseek = no_llseek, 999 .read_iter = pipe_read, 1000 .write_iter = pipe_write, 1001 .poll = pipe_poll, 1002 .unlocked_ioctl = pipe_ioctl, 1003 .release = pipe_release, 1004 .fasync = pipe_fasync, 1005 }; 1006 1007 /* 1008 * Currently we rely on the pipe array holding a power-of-2 number 1009 * of pages. Returns 0 on error. 1010 */ 1011 unsigned int round_pipe_size(unsigned long size) 1012 { 1013 if (size > (1U << 31)) 1014 return 0; 1015 1016 /* Minimum pipe size, as required by POSIX */ 1017 if (size < PAGE_SIZE) 1018 return PAGE_SIZE; 1019 1020 return roundup_pow_of_two(size); 1021 } 1022 1023 /* 1024 * Allocate a new array of pipe buffers and copy the info over. Returns the 1025 * pipe size if successful, or return -ERROR on error. 1026 */ 1027 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1028 { 1029 struct pipe_buffer *bufs; 1030 unsigned int size, nr_pages; 1031 unsigned long user_bufs; 1032 long ret = 0; 1033 1034 size = round_pipe_size(arg); 1035 nr_pages = size >> PAGE_SHIFT; 1036 1037 if (!nr_pages) 1038 return -EINVAL; 1039 1040 /* 1041 * If trying to increase the pipe capacity, check that an 1042 * unprivileged user is not trying to exceed various limits 1043 * (soft limit check here, hard limit check just below). 1044 * Decreasing the pipe capacity is always permitted, even 1045 * if the user is currently over a limit. 1046 */ 1047 if (nr_pages > pipe->buffers && 1048 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1049 return -EPERM; 1050 1051 user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages); 1052 1053 if (nr_pages > pipe->buffers && 1054 (too_many_pipe_buffers_hard(user_bufs) || 1055 too_many_pipe_buffers_soft(user_bufs)) && 1056 is_unprivileged_user()) { 1057 ret = -EPERM; 1058 goto out_revert_acct; 1059 } 1060 1061 /* 1062 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't 1063 * expect a lot of shrink+grow operations, just free and allocate 1064 * again like we would do for growing. If the pipe currently 1065 * contains more buffers than arg, then return busy. 1066 */ 1067 if (nr_pages < pipe->nrbufs) { 1068 ret = -EBUSY; 1069 goto out_revert_acct; 1070 } 1071 1072 bufs = kcalloc(nr_pages, sizeof(*bufs), 1073 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1074 if (unlikely(!bufs)) { 1075 ret = -ENOMEM; 1076 goto out_revert_acct; 1077 } 1078 1079 /* 1080 * The pipe array wraps around, so just start the new one at zero 1081 * and adjust the indexes. 1082 */ 1083 if (pipe->nrbufs) { 1084 unsigned int tail; 1085 unsigned int head; 1086 1087 tail = pipe->curbuf + pipe->nrbufs; 1088 if (tail < pipe->buffers) 1089 tail = 0; 1090 else 1091 tail &= (pipe->buffers - 1); 1092 1093 head = pipe->nrbufs - tail; 1094 if (head) 1095 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer)); 1096 if (tail) 1097 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer)); 1098 } 1099 1100 pipe->curbuf = 0; 1101 kfree(pipe->bufs); 1102 pipe->bufs = bufs; 1103 pipe->buffers = nr_pages; 1104 return nr_pages * PAGE_SIZE; 1105 1106 out_revert_acct: 1107 (void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers); 1108 return ret; 1109 } 1110 1111 /* 1112 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1113 * location, so checking ->i_pipe is not enough to verify that this is a 1114 * pipe. 1115 */ 1116 struct pipe_inode_info *get_pipe_info(struct file *file) 1117 { 1118 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1119 } 1120 1121 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1122 { 1123 struct pipe_inode_info *pipe; 1124 long ret; 1125 1126 pipe = get_pipe_info(file); 1127 if (!pipe) 1128 return -EBADF; 1129 1130 __pipe_lock(pipe); 1131 1132 switch (cmd) { 1133 case F_SETPIPE_SZ: 1134 ret = pipe_set_size(pipe, arg); 1135 break; 1136 case F_GETPIPE_SZ: 1137 ret = pipe->buffers * PAGE_SIZE; 1138 break; 1139 default: 1140 ret = -EINVAL; 1141 break; 1142 } 1143 1144 __pipe_unlock(pipe); 1145 return ret; 1146 } 1147 1148 static const struct super_operations pipefs_ops = { 1149 .destroy_inode = free_inode_nonrcu, 1150 .statfs = simple_statfs, 1151 }; 1152 1153 /* 1154 * pipefs should _never_ be mounted by userland - too much of security hassle, 1155 * no real gain from having the whole whorehouse mounted. So we don't need 1156 * any operations on the root directory. However, we need a non-trivial 1157 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1158 */ 1159 static struct dentry *pipefs_mount(struct file_system_type *fs_type, 1160 int flags, const char *dev_name, void *data) 1161 { 1162 return mount_pseudo(fs_type, "pipe:", &pipefs_ops, 1163 &pipefs_dentry_operations, PIPEFS_MAGIC); 1164 } 1165 1166 static struct file_system_type pipe_fs_type = { 1167 .name = "pipefs", 1168 .mount = pipefs_mount, 1169 .kill_sb = kill_anon_super, 1170 }; 1171 1172 static int __init init_pipe_fs(void) 1173 { 1174 int err = register_filesystem(&pipe_fs_type); 1175 1176 if (!err) { 1177 pipe_mnt = kern_mount(&pipe_fs_type); 1178 if (IS_ERR(pipe_mnt)) { 1179 err = PTR_ERR(pipe_mnt); 1180 unregister_filesystem(&pipe_fs_type); 1181 } 1182 } 1183 return err; 1184 } 1185 1186 fs_initcall(init_pipe_fs); 1187