xref: /openbmc/linux/fs/pipe.c (revision 8ec90bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * The max size that a non-root user is allowed to grow the pipe. Can
36  * be set by root in /proc/sys/fs/pipe-max-size
37  */
38 unsigned int pipe_max_size = 1048576;
39 
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41  * matches default values.
42  */
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45 
46 /*
47  * We use head and tail indices that aren't masked off, except at the point of
48  * dereference, but rather they're allowed to wrap naturally.  This means there
49  * isn't a dead spot in the buffer, but the ring has to be a power of two and
50  * <= 2^31.
51  * -- David Howells 2019-09-23.
52  *
53  * Reads with count = 0 should always return 0.
54  * -- Julian Bradfield 1999-06-07.
55  *
56  * FIFOs and Pipes now generate SIGIO for both readers and writers.
57  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58  *
59  * pipe_read & write cleanup
60  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61  */
62 
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 {
65 	if (pipe->files)
66 		mutex_lock_nested(&pipe->mutex, subclass);
67 }
68 
69 void pipe_lock(struct pipe_inode_info *pipe)
70 {
71 	/*
72 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 	 */
74 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 }
76 EXPORT_SYMBOL(pipe_lock);
77 
78 void pipe_unlock(struct pipe_inode_info *pipe)
79 {
80 	if (pipe->files)
81 		mutex_unlock(&pipe->mutex);
82 }
83 EXPORT_SYMBOL(pipe_unlock);
84 
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 }
89 
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 {
92 	mutex_unlock(&pipe->mutex);
93 }
94 
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96 		      struct pipe_inode_info *pipe2)
97 {
98 	BUG_ON(pipe1 == pipe2);
99 
100 	if (pipe1 < pipe2) {
101 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 	} else {
104 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 	}
107 }
108 
109 /* Drop the inode semaphore and wait for a pipe event, atomically */
110 void pipe_wait(struct pipe_inode_info *pipe)
111 {
112 	DEFINE_WAIT(rdwait);
113 	DEFINE_WAIT(wrwait);
114 
115 	/*
116 	 * Pipes are system-local resources, so sleeping on them
117 	 * is considered a noninteractive wait:
118 	 */
119 	prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
120 	prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
121 	pipe_unlock(pipe);
122 	schedule();
123 	finish_wait(&pipe->rd_wait, &rdwait);
124 	finish_wait(&pipe->wr_wait, &wrwait);
125 	pipe_lock(pipe);
126 }
127 
128 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
129 				  struct pipe_buffer *buf)
130 {
131 	struct page *page = buf->page;
132 
133 	/*
134 	 * If nobody else uses this page, and we don't already have a
135 	 * temporary page, let's keep track of it as a one-deep
136 	 * allocation cache. (Otherwise just release our reference to it)
137 	 */
138 	if (page_count(page) == 1 && !pipe->tmp_page)
139 		pipe->tmp_page = page;
140 	else
141 		put_page(page);
142 }
143 
144 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
145 		struct pipe_buffer *buf)
146 {
147 	struct page *page = buf->page;
148 
149 	if (page_count(page) != 1)
150 		return false;
151 	memcg_kmem_uncharge_page(page, 0);
152 	__SetPageLocked(page);
153 	return true;
154 }
155 
156 /**
157  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
158  * @pipe:	the pipe that the buffer belongs to
159  * @buf:	the buffer to attempt to steal
160  *
161  * Description:
162  *	This function attempts to steal the &struct page attached to
163  *	@buf. If successful, this function returns 0 and returns with
164  *	the page locked. The caller may then reuse the page for whatever
165  *	he wishes; the typical use is insertion into a different file
166  *	page cache.
167  */
168 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
169 		struct pipe_buffer *buf)
170 {
171 	struct page *page = buf->page;
172 
173 	/*
174 	 * A reference of one is golden, that means that the owner of this
175 	 * page is the only one holding a reference to it. lock the page
176 	 * and return OK.
177 	 */
178 	if (page_count(page) == 1) {
179 		lock_page(page);
180 		return true;
181 	}
182 	return false;
183 }
184 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
185 
186 /**
187  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188  * @pipe:	the pipe that the buffer belongs to
189  * @buf:	the buffer to get a reference to
190  *
191  * Description:
192  *	This function grabs an extra reference to @buf. It's used in
193  *	in the tee() system call, when we duplicate the buffers in one
194  *	pipe into another.
195  */
196 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
197 {
198 	return try_get_page(buf->page);
199 }
200 EXPORT_SYMBOL(generic_pipe_buf_get);
201 
202 /**
203  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
204  * @pipe:	the pipe that the buffer belongs to
205  * @buf:	the buffer to put a reference to
206  *
207  * Description:
208  *	This function releases a reference to @buf.
209  */
210 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
211 			      struct pipe_buffer *buf)
212 {
213 	put_page(buf->page);
214 }
215 EXPORT_SYMBOL(generic_pipe_buf_release);
216 
217 static const struct pipe_buf_operations anon_pipe_buf_ops = {
218 	.release	= anon_pipe_buf_release,
219 	.try_steal	= anon_pipe_buf_try_steal,
220 	.get		= generic_pipe_buf_get,
221 };
222 
223 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
224 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
225 {
226 	unsigned int head = READ_ONCE(pipe->head);
227 	unsigned int tail = READ_ONCE(pipe->tail);
228 	unsigned int writers = READ_ONCE(pipe->writers);
229 
230 	return !pipe_empty(head, tail) || !writers;
231 }
232 
233 static ssize_t
234 pipe_read(struct kiocb *iocb, struct iov_iter *to)
235 {
236 	size_t total_len = iov_iter_count(to);
237 	struct file *filp = iocb->ki_filp;
238 	struct pipe_inode_info *pipe = filp->private_data;
239 	bool was_full, wake_next_reader = false;
240 	ssize_t ret;
241 
242 	/* Null read succeeds. */
243 	if (unlikely(total_len == 0))
244 		return 0;
245 
246 	ret = 0;
247 	__pipe_lock(pipe);
248 
249 	/*
250 	 * We only wake up writers if the pipe was full when we started
251 	 * reading in order to avoid unnecessary wakeups.
252 	 *
253 	 * But when we do wake up writers, we do so using a sync wakeup
254 	 * (WF_SYNC), because we want them to get going and generate more
255 	 * data for us.
256 	 */
257 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
258 	for (;;) {
259 		unsigned int head = pipe->head;
260 		unsigned int tail = pipe->tail;
261 		unsigned int mask = pipe->ring_size - 1;
262 
263 #ifdef CONFIG_WATCH_QUEUE
264 		if (pipe->note_loss) {
265 			struct watch_notification n;
266 
267 			if (total_len < 8) {
268 				if (ret == 0)
269 					ret = -ENOBUFS;
270 				break;
271 			}
272 
273 			n.type = WATCH_TYPE_META;
274 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
275 			n.info = watch_sizeof(n);
276 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
277 				if (ret == 0)
278 					ret = -EFAULT;
279 				break;
280 			}
281 			ret += sizeof(n);
282 			total_len -= sizeof(n);
283 			pipe->note_loss = false;
284 		}
285 #endif
286 
287 		if (!pipe_empty(head, tail)) {
288 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
289 			size_t chars = buf->len;
290 			size_t written;
291 			int error;
292 
293 			if (chars > total_len) {
294 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
295 					if (ret == 0)
296 						ret = -ENOBUFS;
297 					break;
298 				}
299 				chars = total_len;
300 			}
301 
302 			error = pipe_buf_confirm(pipe, buf);
303 			if (error) {
304 				if (!ret)
305 					ret = error;
306 				break;
307 			}
308 
309 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
310 			if (unlikely(written < chars)) {
311 				if (!ret)
312 					ret = -EFAULT;
313 				break;
314 			}
315 			ret += chars;
316 			buf->offset += chars;
317 			buf->len -= chars;
318 
319 			/* Was it a packet buffer? Clean up and exit */
320 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
321 				total_len = chars;
322 				buf->len = 0;
323 			}
324 
325 			if (!buf->len) {
326 				pipe_buf_release(pipe, buf);
327 				spin_lock_irq(&pipe->rd_wait.lock);
328 #ifdef CONFIG_WATCH_QUEUE
329 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
330 					pipe->note_loss = true;
331 #endif
332 				tail++;
333 				pipe->tail = tail;
334 				spin_unlock_irq(&pipe->rd_wait.lock);
335 			}
336 			total_len -= chars;
337 			if (!total_len)
338 				break;	/* common path: read succeeded */
339 			if (!pipe_empty(head, tail))	/* More to do? */
340 				continue;
341 		}
342 
343 		if (!pipe->writers)
344 			break;
345 		if (ret)
346 			break;
347 		if (filp->f_flags & O_NONBLOCK) {
348 			ret = -EAGAIN;
349 			break;
350 		}
351 		__pipe_unlock(pipe);
352 
353 		/*
354 		 * We only get here if we didn't actually read anything.
355 		 *
356 		 * However, we could have seen (and removed) a zero-sized
357 		 * pipe buffer, and might have made space in the buffers
358 		 * that way.
359 		 *
360 		 * You can't make zero-sized pipe buffers by doing an empty
361 		 * write (not even in packet mode), but they can happen if
362 		 * the writer gets an EFAULT when trying to fill a buffer
363 		 * that already got allocated and inserted in the buffer
364 		 * array.
365 		 *
366 		 * So we still need to wake up any pending writers in the
367 		 * _very_ unlikely case that the pipe was full, but we got
368 		 * no data.
369 		 */
370 		if (unlikely(was_full)) {
371 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
372 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
373 		}
374 
375 		/*
376 		 * But because we didn't read anything, at this point we can
377 		 * just return directly with -ERESTARTSYS if we're interrupted,
378 		 * since we've done any required wakeups and there's no need
379 		 * to mark anything accessed. And we've dropped the lock.
380 		 */
381 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
382 			return -ERESTARTSYS;
383 
384 		__pipe_lock(pipe);
385 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
386 		wake_next_reader = true;
387 	}
388 	if (pipe_empty(pipe->head, pipe->tail))
389 		wake_next_reader = false;
390 	__pipe_unlock(pipe);
391 
392 	if (was_full) {
393 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
394 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 	}
396 	if (wake_next_reader)
397 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
398 	if (ret > 0)
399 		file_accessed(filp);
400 	return ret;
401 }
402 
403 static inline int is_packetized(struct file *file)
404 {
405 	return (file->f_flags & O_DIRECT) != 0;
406 }
407 
408 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
409 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
410 {
411 	unsigned int head = READ_ONCE(pipe->head);
412 	unsigned int tail = READ_ONCE(pipe->tail);
413 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
414 
415 	return !pipe_full(head, tail, max_usage) ||
416 		!READ_ONCE(pipe->readers);
417 }
418 
419 static ssize_t
420 pipe_write(struct kiocb *iocb, struct iov_iter *from)
421 {
422 	struct file *filp = iocb->ki_filp;
423 	struct pipe_inode_info *pipe = filp->private_data;
424 	unsigned int head;
425 	ssize_t ret = 0;
426 	size_t total_len = iov_iter_count(from);
427 	ssize_t chars;
428 	bool was_empty = false;
429 	bool wake_next_writer = false;
430 
431 	/* Null write succeeds. */
432 	if (unlikely(total_len == 0))
433 		return 0;
434 
435 	__pipe_lock(pipe);
436 
437 	if (!pipe->readers) {
438 		send_sig(SIGPIPE, current, 0);
439 		ret = -EPIPE;
440 		goto out;
441 	}
442 
443 #ifdef CONFIG_WATCH_QUEUE
444 	if (pipe->watch_queue) {
445 		ret = -EXDEV;
446 		goto out;
447 	}
448 #endif
449 
450 	/*
451 	 * Only wake up if the pipe started out empty, since
452 	 * otherwise there should be no readers waiting.
453 	 *
454 	 * If it wasn't empty we try to merge new data into
455 	 * the last buffer.
456 	 *
457 	 * That naturally merges small writes, but it also
458 	 * page-aligs the rest of the writes for large writes
459 	 * spanning multiple pages.
460 	 */
461 	head = pipe->head;
462 	was_empty = pipe_empty(head, pipe->tail);
463 	chars = total_len & (PAGE_SIZE-1);
464 	if (chars && !was_empty) {
465 		unsigned int mask = pipe->ring_size - 1;
466 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
467 		int offset = buf->offset + buf->len;
468 
469 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
470 		    offset + chars <= PAGE_SIZE) {
471 			ret = pipe_buf_confirm(pipe, buf);
472 			if (ret)
473 				goto out;
474 
475 			ret = copy_page_from_iter(buf->page, offset, chars, from);
476 			if (unlikely(ret < chars)) {
477 				ret = -EFAULT;
478 				goto out;
479 			}
480 
481 			buf->len += ret;
482 			if (!iov_iter_count(from))
483 				goto out;
484 		}
485 	}
486 
487 	for (;;) {
488 		if (!pipe->readers) {
489 			send_sig(SIGPIPE, current, 0);
490 			if (!ret)
491 				ret = -EPIPE;
492 			break;
493 		}
494 
495 		head = pipe->head;
496 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
497 			unsigned int mask = pipe->ring_size - 1;
498 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
499 			struct page *page = pipe->tmp_page;
500 			int copied;
501 
502 			if (!page) {
503 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
504 				if (unlikely(!page)) {
505 					ret = ret ? : -ENOMEM;
506 					break;
507 				}
508 				pipe->tmp_page = page;
509 			}
510 
511 			/* Allocate a slot in the ring in advance and attach an
512 			 * empty buffer.  If we fault or otherwise fail to use
513 			 * it, either the reader will consume it or it'll still
514 			 * be there for the next write.
515 			 */
516 			spin_lock_irq(&pipe->rd_wait.lock);
517 
518 			head = pipe->head;
519 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
520 				spin_unlock_irq(&pipe->rd_wait.lock);
521 				continue;
522 			}
523 
524 			pipe->head = head + 1;
525 			spin_unlock_irq(&pipe->rd_wait.lock);
526 
527 			/* Insert it into the buffer array */
528 			buf = &pipe->bufs[head & mask];
529 			buf->page = page;
530 			buf->ops = &anon_pipe_buf_ops;
531 			buf->offset = 0;
532 			buf->len = 0;
533 			if (is_packetized(filp))
534 				buf->flags = PIPE_BUF_FLAG_PACKET;
535 			else
536 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
537 			pipe->tmp_page = NULL;
538 
539 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
540 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541 				if (!ret)
542 					ret = -EFAULT;
543 				break;
544 			}
545 			ret += copied;
546 			buf->offset = 0;
547 			buf->len = copied;
548 
549 			if (!iov_iter_count(from))
550 				break;
551 		}
552 
553 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
554 			continue;
555 
556 		/* Wait for buffer space to become available. */
557 		if (filp->f_flags & O_NONBLOCK) {
558 			if (!ret)
559 				ret = -EAGAIN;
560 			break;
561 		}
562 		if (signal_pending(current)) {
563 			if (!ret)
564 				ret = -ERESTARTSYS;
565 			break;
566 		}
567 
568 		/*
569 		 * We're going to release the pipe lock and wait for more
570 		 * space. We wake up any readers if necessary, and then
571 		 * after waiting we need to re-check whether the pipe
572 		 * become empty while we dropped the lock.
573 		 */
574 		__pipe_unlock(pipe);
575 		if (was_empty) {
576 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
577 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
578 		}
579 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580 		__pipe_lock(pipe);
581 		was_empty = pipe_empty(pipe->head, pipe->tail);
582 		wake_next_writer = true;
583 	}
584 out:
585 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586 		wake_next_writer = false;
587 	__pipe_unlock(pipe);
588 
589 	/*
590 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 	 * want the reader to start processing things asap, rather than
592 	 * leave the data pending.
593 	 *
594 	 * This is particularly important for small writes, because of
595 	 * how (for example) the GNU make jobserver uses small writes to
596 	 * wake up pending jobs
597 	 */
598 	if (was_empty) {
599 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
600 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
601 	}
602 	if (wake_next_writer)
603 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
604 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
605 		int err = file_update_time(filp);
606 		if (err)
607 			ret = err;
608 		sb_end_write(file_inode(filp)->i_sb);
609 	}
610 	return ret;
611 }
612 
613 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
614 {
615 	struct pipe_inode_info *pipe = filp->private_data;
616 	int count, head, tail, mask;
617 
618 	switch (cmd) {
619 	case FIONREAD:
620 		__pipe_lock(pipe);
621 		count = 0;
622 		head = pipe->head;
623 		tail = pipe->tail;
624 		mask = pipe->ring_size - 1;
625 
626 		while (tail != head) {
627 			count += pipe->bufs[tail & mask].len;
628 			tail++;
629 		}
630 		__pipe_unlock(pipe);
631 
632 		return put_user(count, (int __user *)arg);
633 
634 #ifdef CONFIG_WATCH_QUEUE
635 	case IOC_WATCH_QUEUE_SET_SIZE: {
636 		int ret;
637 		__pipe_lock(pipe);
638 		ret = watch_queue_set_size(pipe, arg);
639 		__pipe_unlock(pipe);
640 		return ret;
641 	}
642 
643 	case IOC_WATCH_QUEUE_SET_FILTER:
644 		return watch_queue_set_filter(
645 			pipe, (struct watch_notification_filter __user *)arg);
646 #endif
647 
648 	default:
649 		return -ENOIOCTLCMD;
650 	}
651 }
652 
653 /* No kernel lock held - fine */
654 static __poll_t
655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657 	__poll_t mask;
658 	struct pipe_inode_info *pipe = filp->private_data;
659 	unsigned int head, tail;
660 
661 	/*
662 	 * Reading pipe state only -- no need for acquiring the semaphore.
663 	 *
664 	 * But because this is racy, the code has to add the
665 	 * entry to the poll table _first_ ..
666 	 */
667 	if (filp->f_mode & FMODE_READ)
668 		poll_wait(filp, &pipe->rd_wait, wait);
669 	if (filp->f_mode & FMODE_WRITE)
670 		poll_wait(filp, &pipe->wr_wait, wait);
671 
672 	/*
673 	 * .. and only then can you do the racy tests. That way,
674 	 * if something changes and you got it wrong, the poll
675 	 * table entry will wake you up and fix it.
676 	 */
677 	head = READ_ONCE(pipe->head);
678 	tail = READ_ONCE(pipe->tail);
679 
680 	mask = 0;
681 	if (filp->f_mode & FMODE_READ) {
682 		if (!pipe_empty(head, tail))
683 			mask |= EPOLLIN | EPOLLRDNORM;
684 		if (!pipe->writers && filp->f_version != pipe->w_counter)
685 			mask |= EPOLLHUP;
686 	}
687 
688 	if (filp->f_mode & FMODE_WRITE) {
689 		if (!pipe_full(head, tail, pipe->max_usage))
690 			mask |= EPOLLOUT | EPOLLWRNORM;
691 		/*
692 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
693 		 * behave exactly like pipes for poll().
694 		 */
695 		if (!pipe->readers)
696 			mask |= EPOLLERR;
697 	}
698 
699 	return mask;
700 }
701 
702 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
703 {
704 	int kill = 0;
705 
706 	spin_lock(&inode->i_lock);
707 	if (!--pipe->files) {
708 		inode->i_pipe = NULL;
709 		kill = 1;
710 	}
711 	spin_unlock(&inode->i_lock);
712 
713 	if (kill)
714 		free_pipe_info(pipe);
715 }
716 
717 static int
718 pipe_release(struct inode *inode, struct file *file)
719 {
720 	struct pipe_inode_info *pipe = file->private_data;
721 
722 	__pipe_lock(pipe);
723 	if (file->f_mode & FMODE_READ)
724 		pipe->readers--;
725 	if (file->f_mode & FMODE_WRITE)
726 		pipe->writers--;
727 
728 	/* Was that the last reader or writer, but not the other side? */
729 	if (!pipe->readers != !pipe->writers) {
730 		wake_up_interruptible_all(&pipe->rd_wait);
731 		wake_up_interruptible_all(&pipe->wr_wait);
732 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
733 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 	}
735 	__pipe_unlock(pipe);
736 
737 	put_pipe_info(inode, pipe);
738 	return 0;
739 }
740 
741 static int
742 pipe_fasync(int fd, struct file *filp, int on)
743 {
744 	struct pipe_inode_info *pipe = filp->private_data;
745 	int retval = 0;
746 
747 	__pipe_lock(pipe);
748 	if (filp->f_mode & FMODE_READ)
749 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
750 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
751 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
752 		if (retval < 0 && (filp->f_mode & FMODE_READ))
753 			/* this can happen only if on == T */
754 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
755 	}
756 	__pipe_unlock(pipe);
757 	return retval;
758 }
759 
760 unsigned long account_pipe_buffers(struct user_struct *user,
761 				   unsigned long old, unsigned long new)
762 {
763 	return atomic_long_add_return(new - old, &user->pipe_bufs);
764 }
765 
766 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
767 {
768 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
769 
770 	return soft_limit && user_bufs > soft_limit;
771 }
772 
773 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
774 {
775 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
776 
777 	return hard_limit && user_bufs > hard_limit;
778 }
779 
780 bool pipe_is_unprivileged_user(void)
781 {
782 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
783 }
784 
785 struct pipe_inode_info *alloc_pipe_info(void)
786 {
787 	struct pipe_inode_info *pipe;
788 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
789 	struct user_struct *user = get_current_user();
790 	unsigned long user_bufs;
791 	unsigned int max_size = READ_ONCE(pipe_max_size);
792 
793 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
794 	if (pipe == NULL)
795 		goto out_free_uid;
796 
797 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
798 		pipe_bufs = max_size >> PAGE_SHIFT;
799 
800 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
801 
802 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
803 		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
804 		pipe_bufs = 1;
805 	}
806 
807 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
808 		goto out_revert_acct;
809 
810 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
811 			     GFP_KERNEL_ACCOUNT);
812 
813 	if (pipe->bufs) {
814 		init_waitqueue_head(&pipe->rd_wait);
815 		init_waitqueue_head(&pipe->wr_wait);
816 		pipe->r_counter = pipe->w_counter = 1;
817 		pipe->max_usage = pipe_bufs;
818 		pipe->ring_size = pipe_bufs;
819 		pipe->nr_accounted = pipe_bufs;
820 		pipe->user = user;
821 		mutex_init(&pipe->mutex);
822 		return pipe;
823 	}
824 
825 out_revert_acct:
826 	(void) account_pipe_buffers(user, pipe_bufs, 0);
827 	kfree(pipe);
828 out_free_uid:
829 	free_uid(user);
830 	return NULL;
831 }
832 
833 void free_pipe_info(struct pipe_inode_info *pipe)
834 {
835 	int i;
836 
837 #ifdef CONFIG_WATCH_QUEUE
838 	if (pipe->watch_queue) {
839 		watch_queue_clear(pipe->watch_queue);
840 		put_watch_queue(pipe->watch_queue);
841 	}
842 #endif
843 
844 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
845 	free_uid(pipe->user);
846 	for (i = 0; i < pipe->ring_size; i++) {
847 		struct pipe_buffer *buf = pipe->bufs + i;
848 		if (buf->ops)
849 			pipe_buf_release(pipe, buf);
850 	}
851 	if (pipe->tmp_page)
852 		__free_page(pipe->tmp_page);
853 	kfree(pipe->bufs);
854 	kfree(pipe);
855 }
856 
857 static struct vfsmount *pipe_mnt __read_mostly;
858 
859 /*
860  * pipefs_dname() is called from d_path().
861  */
862 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
863 {
864 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
865 				d_inode(dentry)->i_ino);
866 }
867 
868 static const struct dentry_operations pipefs_dentry_operations = {
869 	.d_dname	= pipefs_dname,
870 };
871 
872 static struct inode * get_pipe_inode(void)
873 {
874 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
875 	struct pipe_inode_info *pipe;
876 
877 	if (!inode)
878 		goto fail_inode;
879 
880 	inode->i_ino = get_next_ino();
881 
882 	pipe = alloc_pipe_info();
883 	if (!pipe)
884 		goto fail_iput;
885 
886 	inode->i_pipe = pipe;
887 	pipe->files = 2;
888 	pipe->readers = pipe->writers = 1;
889 	inode->i_fop = &pipefifo_fops;
890 
891 	/*
892 	 * Mark the inode dirty from the very beginning,
893 	 * that way it will never be moved to the dirty
894 	 * list because "mark_inode_dirty()" will think
895 	 * that it already _is_ on the dirty list.
896 	 */
897 	inode->i_state = I_DIRTY;
898 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
899 	inode->i_uid = current_fsuid();
900 	inode->i_gid = current_fsgid();
901 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
902 
903 	return inode;
904 
905 fail_iput:
906 	iput(inode);
907 
908 fail_inode:
909 	return NULL;
910 }
911 
912 int create_pipe_files(struct file **res, int flags)
913 {
914 	struct inode *inode = get_pipe_inode();
915 	struct file *f;
916 
917 	if (!inode)
918 		return -ENFILE;
919 
920 	if (flags & O_NOTIFICATION_PIPE) {
921 #ifdef CONFIG_WATCH_QUEUE
922 		if (watch_queue_init(inode->i_pipe) < 0) {
923 			iput(inode);
924 			return -ENOMEM;
925 		}
926 #else
927 		return -ENOPKG;
928 #endif
929 	}
930 
931 	f = alloc_file_pseudo(inode, pipe_mnt, "",
932 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933 				&pipefifo_fops);
934 	if (IS_ERR(f)) {
935 		free_pipe_info(inode->i_pipe);
936 		iput(inode);
937 		return PTR_ERR(f);
938 	}
939 
940 	f->private_data = inode->i_pipe;
941 
942 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943 				  &pipefifo_fops);
944 	if (IS_ERR(res[0])) {
945 		put_pipe_info(inode, inode->i_pipe);
946 		fput(f);
947 		return PTR_ERR(res[0]);
948 	}
949 	res[0]->private_data = inode->i_pipe;
950 	res[1] = f;
951 	stream_open(inode, res[0]);
952 	stream_open(inode, res[1]);
953 	return 0;
954 }
955 
956 static int __do_pipe_flags(int *fd, struct file **files, int flags)
957 {
958 	int error;
959 	int fdw, fdr;
960 
961 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962 		return -EINVAL;
963 
964 	error = create_pipe_files(files, flags);
965 	if (error)
966 		return error;
967 
968 	error = get_unused_fd_flags(flags);
969 	if (error < 0)
970 		goto err_read_pipe;
971 	fdr = error;
972 
973 	error = get_unused_fd_flags(flags);
974 	if (error < 0)
975 		goto err_fdr;
976 	fdw = error;
977 
978 	audit_fd_pair(fdr, fdw);
979 	fd[0] = fdr;
980 	fd[1] = fdw;
981 	return 0;
982 
983  err_fdr:
984 	put_unused_fd(fdr);
985  err_read_pipe:
986 	fput(files[0]);
987 	fput(files[1]);
988 	return error;
989 }
990 
991 int do_pipe_flags(int *fd, int flags)
992 {
993 	struct file *files[2];
994 	int error = __do_pipe_flags(fd, files, flags);
995 	if (!error) {
996 		fd_install(fd[0], files[0]);
997 		fd_install(fd[1], files[1]);
998 	}
999 	return error;
1000 }
1001 
1002 /*
1003  * sys_pipe() is the normal C calling standard for creating
1004  * a pipe. It's not the way Unix traditionally does this, though.
1005  */
1006 static int do_pipe2(int __user *fildes, int flags)
1007 {
1008 	struct file *files[2];
1009 	int fd[2];
1010 	int error;
1011 
1012 	error = __do_pipe_flags(fd, files, flags);
1013 	if (!error) {
1014 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015 			fput(files[0]);
1016 			fput(files[1]);
1017 			put_unused_fd(fd[0]);
1018 			put_unused_fd(fd[1]);
1019 			error = -EFAULT;
1020 		} else {
1021 			fd_install(fd[0], files[0]);
1022 			fd_install(fd[1], files[1]);
1023 		}
1024 	}
1025 	return error;
1026 }
1027 
1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1029 {
1030 	return do_pipe2(fildes, flags);
1031 }
1032 
1033 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1034 {
1035 	return do_pipe2(fildes, 0);
1036 }
1037 
1038 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1039 {
1040 	int cur = *cnt;
1041 
1042 	while (cur == *cnt) {
1043 		pipe_wait(pipe);
1044 		if (signal_pending(current))
1045 			break;
1046 	}
1047 	return cur == *cnt ? -ERESTARTSYS : 0;
1048 }
1049 
1050 static void wake_up_partner(struct pipe_inode_info *pipe)
1051 {
1052 	wake_up_interruptible_all(&pipe->rd_wait);
1053 	wake_up_interruptible_all(&pipe->wr_wait);
1054 }
1055 
1056 static int fifo_open(struct inode *inode, struct file *filp)
1057 {
1058 	struct pipe_inode_info *pipe;
1059 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1060 	int ret;
1061 
1062 	filp->f_version = 0;
1063 
1064 	spin_lock(&inode->i_lock);
1065 	if (inode->i_pipe) {
1066 		pipe = inode->i_pipe;
1067 		pipe->files++;
1068 		spin_unlock(&inode->i_lock);
1069 	} else {
1070 		spin_unlock(&inode->i_lock);
1071 		pipe = alloc_pipe_info();
1072 		if (!pipe)
1073 			return -ENOMEM;
1074 		pipe->files = 1;
1075 		spin_lock(&inode->i_lock);
1076 		if (unlikely(inode->i_pipe)) {
1077 			inode->i_pipe->files++;
1078 			spin_unlock(&inode->i_lock);
1079 			free_pipe_info(pipe);
1080 			pipe = inode->i_pipe;
1081 		} else {
1082 			inode->i_pipe = pipe;
1083 			spin_unlock(&inode->i_lock);
1084 		}
1085 	}
1086 	filp->private_data = pipe;
1087 	/* OK, we have a pipe and it's pinned down */
1088 
1089 	__pipe_lock(pipe);
1090 
1091 	/* We can only do regular read/write on fifos */
1092 	stream_open(inode, filp);
1093 
1094 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1095 	case FMODE_READ:
1096 	/*
1097 	 *  O_RDONLY
1098 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1099 	 *  opened, even when there is no process writing the FIFO.
1100 	 */
1101 		pipe->r_counter++;
1102 		if (pipe->readers++ == 0)
1103 			wake_up_partner(pipe);
1104 
1105 		if (!is_pipe && !pipe->writers) {
1106 			if ((filp->f_flags & O_NONBLOCK)) {
1107 				/* suppress EPOLLHUP until we have
1108 				 * seen a writer */
1109 				filp->f_version = pipe->w_counter;
1110 			} else {
1111 				if (wait_for_partner(pipe, &pipe->w_counter))
1112 					goto err_rd;
1113 			}
1114 		}
1115 		break;
1116 
1117 	case FMODE_WRITE:
1118 	/*
1119 	 *  O_WRONLY
1120 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1121 	 *  errno=ENXIO when there is no process reading the FIFO.
1122 	 */
1123 		ret = -ENXIO;
1124 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1125 			goto err;
1126 
1127 		pipe->w_counter++;
1128 		if (!pipe->writers++)
1129 			wake_up_partner(pipe);
1130 
1131 		if (!is_pipe && !pipe->readers) {
1132 			if (wait_for_partner(pipe, &pipe->r_counter))
1133 				goto err_wr;
1134 		}
1135 		break;
1136 
1137 	case FMODE_READ | FMODE_WRITE:
1138 	/*
1139 	 *  O_RDWR
1140 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1141 	 *  This implementation will NEVER block on a O_RDWR open, since
1142 	 *  the process can at least talk to itself.
1143 	 */
1144 
1145 		pipe->readers++;
1146 		pipe->writers++;
1147 		pipe->r_counter++;
1148 		pipe->w_counter++;
1149 		if (pipe->readers == 1 || pipe->writers == 1)
1150 			wake_up_partner(pipe);
1151 		break;
1152 
1153 	default:
1154 		ret = -EINVAL;
1155 		goto err;
1156 	}
1157 
1158 	/* Ok! */
1159 	__pipe_unlock(pipe);
1160 	return 0;
1161 
1162 err_rd:
1163 	if (!--pipe->readers)
1164 		wake_up_interruptible(&pipe->wr_wait);
1165 	ret = -ERESTARTSYS;
1166 	goto err;
1167 
1168 err_wr:
1169 	if (!--pipe->writers)
1170 		wake_up_interruptible_all(&pipe->rd_wait);
1171 	ret = -ERESTARTSYS;
1172 	goto err;
1173 
1174 err:
1175 	__pipe_unlock(pipe);
1176 
1177 	put_pipe_info(inode, pipe);
1178 	return ret;
1179 }
1180 
1181 const struct file_operations pipefifo_fops = {
1182 	.open		= fifo_open,
1183 	.llseek		= no_llseek,
1184 	.read_iter	= pipe_read,
1185 	.write_iter	= pipe_write,
1186 	.poll		= pipe_poll,
1187 	.unlocked_ioctl	= pipe_ioctl,
1188 	.release	= pipe_release,
1189 	.fasync		= pipe_fasync,
1190 };
1191 
1192 /*
1193  * Currently we rely on the pipe array holding a power-of-2 number
1194  * of pages. Returns 0 on error.
1195  */
1196 unsigned int round_pipe_size(unsigned long size)
1197 {
1198 	if (size > (1U << 31))
1199 		return 0;
1200 
1201 	/* Minimum pipe size, as required by POSIX */
1202 	if (size < PAGE_SIZE)
1203 		return PAGE_SIZE;
1204 
1205 	return roundup_pow_of_two(size);
1206 }
1207 
1208 /*
1209  * Resize the pipe ring to a number of slots.
1210  */
1211 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1212 {
1213 	struct pipe_buffer *bufs;
1214 	unsigned int head, tail, mask, n;
1215 
1216 	/*
1217 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1218 	 * Since we don't expect a lot of shrink+grow operations, just free and
1219 	 * allocate again like we would do for growing.  If the pipe currently
1220 	 * contains more buffers than arg, then return busy.
1221 	 */
1222 	mask = pipe->ring_size - 1;
1223 	head = pipe->head;
1224 	tail = pipe->tail;
1225 	n = pipe_occupancy(pipe->head, pipe->tail);
1226 	if (nr_slots < n)
1227 		return -EBUSY;
1228 
1229 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1230 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1231 	if (unlikely(!bufs))
1232 		return -ENOMEM;
1233 
1234 	/*
1235 	 * The pipe array wraps around, so just start the new one at zero
1236 	 * and adjust the indices.
1237 	 */
1238 	if (n > 0) {
1239 		unsigned int h = head & mask;
1240 		unsigned int t = tail & mask;
1241 		if (h > t) {
1242 			memcpy(bufs, pipe->bufs + t,
1243 			       n * sizeof(struct pipe_buffer));
1244 		} else {
1245 			unsigned int tsize = pipe->ring_size - t;
1246 			if (h > 0)
1247 				memcpy(bufs + tsize, pipe->bufs,
1248 				       h * sizeof(struct pipe_buffer));
1249 			memcpy(bufs, pipe->bufs + t,
1250 			       tsize * sizeof(struct pipe_buffer));
1251 		}
1252 	}
1253 
1254 	head = n;
1255 	tail = 0;
1256 
1257 	kfree(pipe->bufs);
1258 	pipe->bufs = bufs;
1259 	pipe->ring_size = nr_slots;
1260 	if (pipe->max_usage > nr_slots)
1261 		pipe->max_usage = nr_slots;
1262 	pipe->tail = tail;
1263 	pipe->head = head;
1264 
1265 	/* This might have made more room for writers */
1266 	wake_up_interruptible(&pipe->wr_wait);
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Allocate a new array of pipe buffers and copy the info over. Returns the
1272  * pipe size if successful, or return -ERROR on error.
1273  */
1274 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1275 {
1276 	unsigned long user_bufs;
1277 	unsigned int nr_slots, size;
1278 	long ret = 0;
1279 
1280 #ifdef CONFIG_WATCH_QUEUE
1281 	if (pipe->watch_queue)
1282 		return -EBUSY;
1283 #endif
1284 
1285 	size = round_pipe_size(arg);
1286 	nr_slots = size >> PAGE_SHIFT;
1287 
1288 	if (!nr_slots)
1289 		return -EINVAL;
1290 
1291 	/*
1292 	 * If trying to increase the pipe capacity, check that an
1293 	 * unprivileged user is not trying to exceed various limits
1294 	 * (soft limit check here, hard limit check just below).
1295 	 * Decreasing the pipe capacity is always permitted, even
1296 	 * if the user is currently over a limit.
1297 	 */
1298 	if (nr_slots > pipe->max_usage &&
1299 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1300 		return -EPERM;
1301 
1302 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1303 
1304 	if (nr_slots > pipe->max_usage &&
1305 			(too_many_pipe_buffers_hard(user_bufs) ||
1306 			 too_many_pipe_buffers_soft(user_bufs)) &&
1307 			pipe_is_unprivileged_user()) {
1308 		ret = -EPERM;
1309 		goto out_revert_acct;
1310 	}
1311 
1312 	ret = pipe_resize_ring(pipe, nr_slots);
1313 	if (ret < 0)
1314 		goto out_revert_acct;
1315 
1316 	pipe->max_usage = nr_slots;
1317 	pipe->nr_accounted = nr_slots;
1318 	return pipe->max_usage * PAGE_SIZE;
1319 
1320 out_revert_acct:
1321 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1322 	return ret;
1323 }
1324 
1325 /*
1326  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327  * location, so checking ->i_pipe is not enough to verify that this is a
1328  * pipe.
1329  */
1330 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1331 {
1332 	struct pipe_inode_info *pipe = file->private_data;
1333 
1334 	if (file->f_op != &pipefifo_fops || !pipe)
1335 		return NULL;
1336 #ifdef CONFIG_WATCH_QUEUE
1337 	if (for_splice && pipe->watch_queue)
1338 		return NULL;
1339 #endif
1340 	return pipe;
1341 }
1342 
1343 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1344 {
1345 	struct pipe_inode_info *pipe;
1346 	long ret;
1347 
1348 	pipe = get_pipe_info(file, false);
1349 	if (!pipe)
1350 		return -EBADF;
1351 
1352 	__pipe_lock(pipe);
1353 
1354 	switch (cmd) {
1355 	case F_SETPIPE_SZ:
1356 		ret = pipe_set_size(pipe, arg);
1357 		break;
1358 	case F_GETPIPE_SZ:
1359 		ret = pipe->max_usage * PAGE_SIZE;
1360 		break;
1361 	default:
1362 		ret = -EINVAL;
1363 		break;
1364 	}
1365 
1366 	__pipe_unlock(pipe);
1367 	return ret;
1368 }
1369 
1370 static const struct super_operations pipefs_ops = {
1371 	.destroy_inode = free_inode_nonrcu,
1372 	.statfs = simple_statfs,
1373 };
1374 
1375 /*
1376  * pipefs should _never_ be mounted by userland - too much of security hassle,
1377  * no real gain from having the whole whorehouse mounted. So we don't need
1378  * any operations on the root directory. However, we need a non-trivial
1379  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1380  */
1381 
1382 static int pipefs_init_fs_context(struct fs_context *fc)
1383 {
1384 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1385 	if (!ctx)
1386 		return -ENOMEM;
1387 	ctx->ops = &pipefs_ops;
1388 	ctx->dops = &pipefs_dentry_operations;
1389 	return 0;
1390 }
1391 
1392 static struct file_system_type pipe_fs_type = {
1393 	.name		= "pipefs",
1394 	.init_fs_context = pipefs_init_fs_context,
1395 	.kill_sb	= kill_anon_super,
1396 };
1397 
1398 static int __init init_pipe_fs(void)
1399 {
1400 	int err = register_filesystem(&pipe_fs_type);
1401 
1402 	if (!err) {
1403 		pipe_mnt = kern_mount(&pipe_fs_type);
1404 		if (IS_ERR(pipe_mnt)) {
1405 			err = PTR_ERR(pipe_mnt);
1406 			unregister_filesystem(&pipe_fs_type);
1407 		}
1408 	}
1409 	return err;
1410 }
1411 
1412 fs_initcall(init_pipe_fs);
1413