xref: /openbmc/linux/fs/pipe.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32 
33 #include "internal.h"
34 
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49 
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55 
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61 
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78 
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81 	if (pipe->files)
82 		mutex_lock_nested(&pipe->mutex, subclass);
83 }
84 
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	/*
88 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 	 */
90 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93 
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96 	if (pipe->files)
97 		mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100 
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105 
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108 	mutex_unlock(&pipe->mutex);
109 }
110 
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 		      struct pipe_inode_info *pipe2)
113 {
114 	BUG_ON(pipe1 == pipe2);
115 
116 	if (pipe1 < pipe2) {
117 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 	} else {
120 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 	}
123 }
124 
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 				  struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	/*
131 	 * If nobody else uses this page, and we don't already have a
132 	 * temporary page, let's keep track of it as a one-deep
133 	 * allocation cache. (Otherwise just release our reference to it)
134 	 */
135 	if (page_count(page) == 1 && !pipe->tmp_page)
136 		pipe->tmp_page = page;
137 	else
138 		put_page(page);
139 }
140 
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 		struct pipe_buffer *buf)
143 {
144 	struct page *page = buf->page;
145 
146 	if (page_count(page) != 1)
147 		return false;
148 	memcg_kmem_uncharge_page(page, 0);
149 	__SetPageLocked(page);
150 	return true;
151 }
152 
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 		struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return true;
178 	}
179 	return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182 
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to get a reference to
187  *
188  * Description:
189  *	This function grabs an extra reference to @buf. It's used in
190  *	the tee() system call, when we duplicate the buffers in one
191  *	pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195 	return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198 
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:	the pipe that the buffer belongs to
202  * @buf:	the buffer to put a reference to
203  *
204  * Description:
205  *	This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 			      struct pipe_buffer *buf)
209 {
210 	put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213 
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 	.release	= anon_pipe_buf_release,
216 	.try_steal	= anon_pipe_buf_try_steal,
217 	.get		= generic_pipe_buf_get,
218 };
219 
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223 	unsigned int head = READ_ONCE(pipe->head);
224 	unsigned int tail = READ_ONCE(pipe->tail);
225 	unsigned int writers = READ_ONCE(pipe->writers);
226 
227 	return !pipe_empty(head, tail) || !writers;
228 }
229 
230 static ssize_t
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233 	size_t total_len = iov_iter_count(to);
234 	struct file *filp = iocb->ki_filp;
235 	struct pipe_inode_info *pipe = filp->private_data;
236 	bool was_full, wake_next_reader = false;
237 	ssize_t ret;
238 
239 	/* Null read succeeds. */
240 	if (unlikely(total_len == 0))
241 		return 0;
242 
243 	ret = 0;
244 	__pipe_lock(pipe);
245 
246 	/*
247 	 * We only wake up writers if the pipe was full when we started
248 	 * reading in order to avoid unnecessary wakeups.
249 	 *
250 	 * But when we do wake up writers, we do so using a sync wakeup
251 	 * (WF_SYNC), because we want them to get going and generate more
252 	 * data for us.
253 	 */
254 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 	for (;;) {
256 		/* Read ->head with a barrier vs post_one_notification() */
257 		unsigned int head = smp_load_acquire(&pipe->head);
258 		unsigned int tail = pipe->tail;
259 		unsigned int mask = pipe->ring_size - 1;
260 
261 #ifdef CONFIG_WATCH_QUEUE
262 		if (pipe->note_loss) {
263 			struct watch_notification n;
264 
265 			if (total_len < 8) {
266 				if (ret == 0)
267 					ret = -ENOBUFS;
268 				break;
269 			}
270 
271 			n.type = WATCH_TYPE_META;
272 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 			n.info = watch_sizeof(n);
274 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 				if (ret == 0)
276 					ret = -EFAULT;
277 				break;
278 			}
279 			ret += sizeof(n);
280 			total_len -= sizeof(n);
281 			pipe->note_loss = false;
282 		}
283 #endif
284 
285 		if (!pipe_empty(head, tail)) {
286 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 			size_t chars = buf->len;
288 			size_t written;
289 			int error;
290 
291 			if (chars > total_len) {
292 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 					if (ret == 0)
294 						ret = -ENOBUFS;
295 					break;
296 				}
297 				chars = total_len;
298 			}
299 
300 			error = pipe_buf_confirm(pipe, buf);
301 			if (error) {
302 				if (!ret)
303 					ret = error;
304 				break;
305 			}
306 
307 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 			if (unlikely(written < chars)) {
309 				if (!ret)
310 					ret = -EFAULT;
311 				break;
312 			}
313 			ret += chars;
314 			buf->offset += chars;
315 			buf->len -= chars;
316 
317 			/* Was it a packet buffer? Clean up and exit */
318 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 				total_len = chars;
320 				buf->len = 0;
321 			}
322 
323 			if (!buf->len) {
324 				pipe_buf_release(pipe, buf);
325 				spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 					pipe->note_loss = true;
329 #endif
330 				tail++;
331 				pipe->tail = tail;
332 				spin_unlock_irq(&pipe->rd_wait.lock);
333 			}
334 			total_len -= chars;
335 			if (!total_len)
336 				break;	/* common path: read succeeded */
337 			if (!pipe_empty(head, tail))	/* More to do? */
338 				continue;
339 		}
340 
341 		if (!pipe->writers)
342 			break;
343 		if (ret)
344 			break;
345 		if (filp->f_flags & O_NONBLOCK) {
346 			ret = -EAGAIN;
347 			break;
348 		}
349 		__pipe_unlock(pipe);
350 
351 		/*
352 		 * We only get here if we didn't actually read anything.
353 		 *
354 		 * However, we could have seen (and removed) a zero-sized
355 		 * pipe buffer, and might have made space in the buffers
356 		 * that way.
357 		 *
358 		 * You can't make zero-sized pipe buffers by doing an empty
359 		 * write (not even in packet mode), but they can happen if
360 		 * the writer gets an EFAULT when trying to fill a buffer
361 		 * that already got allocated and inserted in the buffer
362 		 * array.
363 		 *
364 		 * So we still need to wake up any pending writers in the
365 		 * _very_ unlikely case that the pipe was full, but we got
366 		 * no data.
367 		 */
368 		if (unlikely(was_full))
369 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371 
372 		/*
373 		 * But because we didn't read anything, at this point we can
374 		 * just return directly with -ERESTARTSYS if we're interrupted,
375 		 * since we've done any required wakeups and there's no need
376 		 * to mark anything accessed. And we've dropped the lock.
377 		 */
378 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 			return -ERESTARTSYS;
380 
381 		__pipe_lock(pipe);
382 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 		wake_next_reader = true;
384 	}
385 	if (pipe_empty(pipe->head, pipe->tail))
386 		wake_next_reader = false;
387 	__pipe_unlock(pipe);
388 
389 	if (was_full)
390 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 	if (wake_next_reader)
392 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394 	if (ret > 0)
395 		file_accessed(filp);
396 	return ret;
397 }
398 
399 static inline int is_packetized(struct file *file)
400 {
401 	return (file->f_flags & O_DIRECT) != 0;
402 }
403 
404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 {
407 	unsigned int head = READ_ONCE(pipe->head);
408 	unsigned int tail = READ_ONCE(pipe->tail);
409 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
410 
411 	return !pipe_full(head, tail, max_usage) ||
412 		!READ_ONCE(pipe->readers);
413 }
414 
415 static ssize_t
416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 {
418 	struct file *filp = iocb->ki_filp;
419 	struct pipe_inode_info *pipe = filp->private_data;
420 	unsigned int head;
421 	ssize_t ret = 0;
422 	size_t total_len = iov_iter_count(from);
423 	ssize_t chars;
424 	bool was_empty = false;
425 	bool wake_next_writer = false;
426 
427 	/* Null write succeeds. */
428 	if (unlikely(total_len == 0))
429 		return 0;
430 
431 	__pipe_lock(pipe);
432 
433 	if (!pipe->readers) {
434 		send_sig(SIGPIPE, current, 0);
435 		ret = -EPIPE;
436 		goto out;
437 	}
438 
439 #ifdef CONFIG_WATCH_QUEUE
440 	if (pipe->watch_queue) {
441 		ret = -EXDEV;
442 		goto out;
443 	}
444 #endif
445 
446 	/*
447 	 * If it wasn't empty we try to merge new data into
448 	 * the last buffer.
449 	 *
450 	 * That naturally merges small writes, but it also
451 	 * page-aligns the rest of the writes for large writes
452 	 * spanning multiple pages.
453 	 */
454 	head = pipe->head;
455 	was_empty = pipe_empty(head, pipe->tail);
456 	chars = total_len & (PAGE_SIZE-1);
457 	if (chars && !was_empty) {
458 		unsigned int mask = pipe->ring_size - 1;
459 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
460 		int offset = buf->offset + buf->len;
461 
462 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
463 		    offset + chars <= PAGE_SIZE) {
464 			ret = pipe_buf_confirm(pipe, buf);
465 			if (ret)
466 				goto out;
467 
468 			ret = copy_page_from_iter(buf->page, offset, chars, from);
469 			if (unlikely(ret < chars)) {
470 				ret = -EFAULT;
471 				goto out;
472 			}
473 
474 			buf->len += ret;
475 			if (!iov_iter_count(from))
476 				goto out;
477 		}
478 	}
479 
480 	for (;;) {
481 		if (!pipe->readers) {
482 			send_sig(SIGPIPE, current, 0);
483 			if (!ret)
484 				ret = -EPIPE;
485 			break;
486 		}
487 
488 		head = pipe->head;
489 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
490 			unsigned int mask = pipe->ring_size - 1;
491 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
492 			struct page *page = pipe->tmp_page;
493 			int copied;
494 
495 			if (!page) {
496 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
497 				if (unlikely(!page)) {
498 					ret = ret ? : -ENOMEM;
499 					break;
500 				}
501 				pipe->tmp_page = page;
502 			}
503 
504 			/* Allocate a slot in the ring in advance and attach an
505 			 * empty buffer.  If we fault or otherwise fail to use
506 			 * it, either the reader will consume it or it'll still
507 			 * be there for the next write.
508 			 */
509 			spin_lock_irq(&pipe->rd_wait.lock);
510 
511 			head = pipe->head;
512 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
513 				spin_unlock_irq(&pipe->rd_wait.lock);
514 				continue;
515 			}
516 
517 			pipe->head = head + 1;
518 			spin_unlock_irq(&pipe->rd_wait.lock);
519 
520 			/* Insert it into the buffer array */
521 			buf = &pipe->bufs[head & mask];
522 			buf->page = page;
523 			buf->ops = &anon_pipe_buf_ops;
524 			buf->offset = 0;
525 			buf->len = 0;
526 			if (is_packetized(filp))
527 				buf->flags = PIPE_BUF_FLAG_PACKET;
528 			else
529 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
530 			pipe->tmp_page = NULL;
531 
532 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
533 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
534 				if (!ret)
535 					ret = -EFAULT;
536 				break;
537 			}
538 			ret += copied;
539 			buf->offset = 0;
540 			buf->len = copied;
541 
542 			if (!iov_iter_count(from))
543 				break;
544 		}
545 
546 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
547 			continue;
548 
549 		/* Wait for buffer space to become available. */
550 		if (filp->f_flags & O_NONBLOCK) {
551 			if (!ret)
552 				ret = -EAGAIN;
553 			break;
554 		}
555 		if (signal_pending(current)) {
556 			if (!ret)
557 				ret = -ERESTARTSYS;
558 			break;
559 		}
560 
561 		/*
562 		 * We're going to release the pipe lock and wait for more
563 		 * space. We wake up any readers if necessary, and then
564 		 * after waiting we need to re-check whether the pipe
565 		 * become empty while we dropped the lock.
566 		 */
567 		__pipe_unlock(pipe);
568 		if (was_empty)
569 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
570 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
571 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
572 		__pipe_lock(pipe);
573 		was_empty = pipe_empty(pipe->head, pipe->tail);
574 		wake_next_writer = true;
575 	}
576 out:
577 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
578 		wake_next_writer = false;
579 	__pipe_unlock(pipe);
580 
581 	/*
582 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
583 	 * want the reader to start processing things asap, rather than
584 	 * leave the data pending.
585 	 *
586 	 * This is particularly important for small writes, because of
587 	 * how (for example) the GNU make jobserver uses small writes to
588 	 * wake up pending jobs
589 	 *
590 	 * Epoll nonsensically wants a wakeup whether the pipe
591 	 * was already empty or not.
592 	 */
593 	if (was_empty || pipe->poll_usage)
594 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
595 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 	if (wake_next_writer)
597 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
598 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
599 		int err = file_update_time(filp);
600 		if (err)
601 			ret = err;
602 		sb_end_write(file_inode(filp)->i_sb);
603 	}
604 	return ret;
605 }
606 
607 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
608 {
609 	struct pipe_inode_info *pipe = filp->private_data;
610 	unsigned int count, head, tail, mask;
611 
612 	switch (cmd) {
613 	case FIONREAD:
614 		__pipe_lock(pipe);
615 		count = 0;
616 		head = pipe->head;
617 		tail = pipe->tail;
618 		mask = pipe->ring_size - 1;
619 
620 		while (tail != head) {
621 			count += pipe->bufs[tail & mask].len;
622 			tail++;
623 		}
624 		__pipe_unlock(pipe);
625 
626 		return put_user(count, (int __user *)arg);
627 
628 #ifdef CONFIG_WATCH_QUEUE
629 	case IOC_WATCH_QUEUE_SET_SIZE: {
630 		int ret;
631 		__pipe_lock(pipe);
632 		ret = watch_queue_set_size(pipe, arg);
633 		__pipe_unlock(pipe);
634 		return ret;
635 	}
636 
637 	case IOC_WATCH_QUEUE_SET_FILTER:
638 		return watch_queue_set_filter(
639 			pipe, (struct watch_notification_filter __user *)arg);
640 #endif
641 
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 }
646 
647 /* No kernel lock held - fine */
648 static __poll_t
649 pipe_poll(struct file *filp, poll_table *wait)
650 {
651 	__poll_t mask;
652 	struct pipe_inode_info *pipe = filp->private_data;
653 	unsigned int head, tail;
654 
655 	/* Epoll has some historical nasty semantics, this enables them */
656 	pipe->poll_usage = 1;
657 
658 	/*
659 	 * Reading pipe state only -- no need for acquiring the semaphore.
660 	 *
661 	 * But because this is racy, the code has to add the
662 	 * entry to the poll table _first_ ..
663 	 */
664 	if (filp->f_mode & FMODE_READ)
665 		poll_wait(filp, &pipe->rd_wait, wait);
666 	if (filp->f_mode & FMODE_WRITE)
667 		poll_wait(filp, &pipe->wr_wait, wait);
668 
669 	/*
670 	 * .. and only then can you do the racy tests. That way,
671 	 * if something changes and you got it wrong, the poll
672 	 * table entry will wake you up and fix it.
673 	 */
674 	head = READ_ONCE(pipe->head);
675 	tail = READ_ONCE(pipe->tail);
676 
677 	mask = 0;
678 	if (filp->f_mode & FMODE_READ) {
679 		if (!pipe_empty(head, tail))
680 			mask |= EPOLLIN | EPOLLRDNORM;
681 		if (!pipe->writers && filp->f_version != pipe->w_counter)
682 			mask |= EPOLLHUP;
683 	}
684 
685 	if (filp->f_mode & FMODE_WRITE) {
686 		if (!pipe_full(head, tail, pipe->max_usage))
687 			mask |= EPOLLOUT | EPOLLWRNORM;
688 		/*
689 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 		 * behave exactly like pipes for poll().
691 		 */
692 		if (!pipe->readers)
693 			mask |= EPOLLERR;
694 	}
695 
696 	return mask;
697 }
698 
699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700 {
701 	int kill = 0;
702 
703 	spin_lock(&inode->i_lock);
704 	if (!--pipe->files) {
705 		inode->i_pipe = NULL;
706 		kill = 1;
707 	}
708 	spin_unlock(&inode->i_lock);
709 
710 	if (kill)
711 		free_pipe_info(pipe);
712 }
713 
714 static int
715 pipe_release(struct inode *inode, struct file *file)
716 {
717 	struct pipe_inode_info *pipe = file->private_data;
718 
719 	__pipe_lock(pipe);
720 	if (file->f_mode & FMODE_READ)
721 		pipe->readers--;
722 	if (file->f_mode & FMODE_WRITE)
723 		pipe->writers--;
724 
725 	/* Was that the last reader or writer, but not the other side? */
726 	if (!pipe->readers != !pipe->writers) {
727 		wake_up_interruptible_all(&pipe->rd_wait);
728 		wake_up_interruptible_all(&pipe->wr_wait);
729 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 	}
732 	__pipe_unlock(pipe);
733 
734 	put_pipe_info(inode, pipe);
735 	return 0;
736 }
737 
738 static int
739 pipe_fasync(int fd, struct file *filp, int on)
740 {
741 	struct pipe_inode_info *pipe = filp->private_data;
742 	int retval = 0;
743 
744 	__pipe_lock(pipe);
745 	if (filp->f_mode & FMODE_READ)
746 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749 		if (retval < 0 && (filp->f_mode & FMODE_READ))
750 			/* this can happen only if on == T */
751 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752 	}
753 	__pipe_unlock(pipe);
754 	return retval;
755 }
756 
757 unsigned long account_pipe_buffers(struct user_struct *user,
758 				   unsigned long old, unsigned long new)
759 {
760 	return atomic_long_add_return(new - old, &user->pipe_bufs);
761 }
762 
763 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764 {
765 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766 
767 	return soft_limit && user_bufs > soft_limit;
768 }
769 
770 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771 {
772 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773 
774 	return hard_limit && user_bufs > hard_limit;
775 }
776 
777 bool pipe_is_unprivileged_user(void)
778 {
779 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780 }
781 
782 struct pipe_inode_info *alloc_pipe_info(void)
783 {
784 	struct pipe_inode_info *pipe;
785 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786 	struct user_struct *user = get_current_user();
787 	unsigned long user_bufs;
788 	unsigned int max_size = READ_ONCE(pipe_max_size);
789 
790 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791 	if (pipe == NULL)
792 		goto out_free_uid;
793 
794 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795 		pipe_bufs = max_size >> PAGE_SHIFT;
796 
797 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798 
799 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
800 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
801 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
802 	}
803 
804 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
805 		goto out_revert_acct;
806 
807 	pipe->bufs = kvcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808 			     GFP_KERNEL_ACCOUNT);
809 
810 	if (pipe->bufs) {
811 		init_waitqueue_head(&pipe->rd_wait);
812 		init_waitqueue_head(&pipe->wr_wait);
813 		pipe->r_counter = pipe->w_counter = 1;
814 		pipe->max_usage = pipe_bufs;
815 		pipe->ring_size = pipe_bufs;
816 		pipe->nr_accounted = pipe_bufs;
817 		pipe->user = user;
818 		mutex_init(&pipe->mutex);
819 		return pipe;
820 	}
821 
822 out_revert_acct:
823 	(void) account_pipe_buffers(user, pipe_bufs, 0);
824 	kfree(pipe);
825 out_free_uid:
826 	free_uid(user);
827 	return NULL;
828 }
829 
830 void free_pipe_info(struct pipe_inode_info *pipe)
831 {
832 	unsigned int i;
833 
834 #ifdef CONFIG_WATCH_QUEUE
835 	if (pipe->watch_queue)
836 		watch_queue_clear(pipe->watch_queue);
837 #endif
838 
839 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 	free_uid(pipe->user);
841 	for (i = 0; i < pipe->ring_size; i++) {
842 		struct pipe_buffer *buf = pipe->bufs + i;
843 		if (buf->ops)
844 			pipe_buf_release(pipe, buf);
845 	}
846 #ifdef CONFIG_WATCH_QUEUE
847 	if (pipe->watch_queue)
848 		put_watch_queue(pipe->watch_queue);
849 #endif
850 	if (pipe->tmp_page)
851 		__free_page(pipe->tmp_page);
852 	kvfree(pipe->bufs);
853 	kfree(pipe);
854 }
855 
856 static struct vfsmount *pipe_mnt __read_mostly;
857 
858 /*
859  * pipefs_dname() is called from d_path().
860  */
861 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
862 {
863 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
864 				d_inode(dentry)->i_ino);
865 }
866 
867 static const struct dentry_operations pipefs_dentry_operations = {
868 	.d_dname	= pipefs_dname,
869 };
870 
871 static struct inode * get_pipe_inode(void)
872 {
873 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
874 	struct pipe_inode_info *pipe;
875 
876 	if (!inode)
877 		goto fail_inode;
878 
879 	inode->i_ino = get_next_ino();
880 
881 	pipe = alloc_pipe_info();
882 	if (!pipe)
883 		goto fail_iput;
884 
885 	inode->i_pipe = pipe;
886 	pipe->files = 2;
887 	pipe->readers = pipe->writers = 1;
888 	inode->i_fop = &pipefifo_fops;
889 
890 	/*
891 	 * Mark the inode dirty from the very beginning,
892 	 * that way it will never be moved to the dirty
893 	 * list because "mark_inode_dirty()" will think
894 	 * that it already _is_ on the dirty list.
895 	 */
896 	inode->i_state = I_DIRTY;
897 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
898 	inode->i_uid = current_fsuid();
899 	inode->i_gid = current_fsgid();
900 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
901 
902 	return inode;
903 
904 fail_iput:
905 	iput(inode);
906 
907 fail_inode:
908 	return NULL;
909 }
910 
911 int create_pipe_files(struct file **res, int flags)
912 {
913 	struct inode *inode = get_pipe_inode();
914 	struct file *f;
915 	int error;
916 
917 	if (!inode)
918 		return -ENFILE;
919 
920 	if (flags & O_NOTIFICATION_PIPE) {
921 		error = watch_queue_init(inode->i_pipe);
922 		if (error) {
923 			free_pipe_info(inode->i_pipe);
924 			iput(inode);
925 			return error;
926 		}
927 	}
928 
929 	f = alloc_file_pseudo(inode, pipe_mnt, "",
930 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
931 				&pipefifo_fops);
932 	if (IS_ERR(f)) {
933 		free_pipe_info(inode->i_pipe);
934 		iput(inode);
935 		return PTR_ERR(f);
936 	}
937 
938 	f->private_data = inode->i_pipe;
939 
940 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
941 				  &pipefifo_fops);
942 	if (IS_ERR(res[0])) {
943 		put_pipe_info(inode, inode->i_pipe);
944 		fput(f);
945 		return PTR_ERR(res[0]);
946 	}
947 	res[0]->private_data = inode->i_pipe;
948 	res[1] = f;
949 	stream_open(inode, res[0]);
950 	stream_open(inode, res[1]);
951 	return 0;
952 }
953 
954 static int __do_pipe_flags(int *fd, struct file **files, int flags)
955 {
956 	int error;
957 	int fdw, fdr;
958 
959 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
960 		return -EINVAL;
961 
962 	error = create_pipe_files(files, flags);
963 	if (error)
964 		return error;
965 
966 	error = get_unused_fd_flags(flags);
967 	if (error < 0)
968 		goto err_read_pipe;
969 	fdr = error;
970 
971 	error = get_unused_fd_flags(flags);
972 	if (error < 0)
973 		goto err_fdr;
974 	fdw = error;
975 
976 	audit_fd_pair(fdr, fdw);
977 	fd[0] = fdr;
978 	fd[1] = fdw;
979 	return 0;
980 
981  err_fdr:
982 	put_unused_fd(fdr);
983  err_read_pipe:
984 	fput(files[0]);
985 	fput(files[1]);
986 	return error;
987 }
988 
989 int do_pipe_flags(int *fd, int flags)
990 {
991 	struct file *files[2];
992 	int error = __do_pipe_flags(fd, files, flags);
993 	if (!error) {
994 		fd_install(fd[0], files[0]);
995 		fd_install(fd[1], files[1]);
996 	}
997 	return error;
998 }
999 
1000 /*
1001  * sys_pipe() is the normal C calling standard for creating
1002  * a pipe. It's not the way Unix traditionally does this, though.
1003  */
1004 static int do_pipe2(int __user *fildes, int flags)
1005 {
1006 	struct file *files[2];
1007 	int fd[2];
1008 	int error;
1009 
1010 	error = __do_pipe_flags(fd, files, flags);
1011 	if (!error) {
1012 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013 			fput(files[0]);
1014 			fput(files[1]);
1015 			put_unused_fd(fd[0]);
1016 			put_unused_fd(fd[1]);
1017 			error = -EFAULT;
1018 		} else {
1019 			fd_install(fd[0], files[0]);
1020 			fd_install(fd[1], files[1]);
1021 		}
1022 	}
1023 	return error;
1024 }
1025 
1026 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027 {
1028 	return do_pipe2(fildes, flags);
1029 }
1030 
1031 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032 {
1033 	return do_pipe2(fildes, 0);
1034 }
1035 
1036 /*
1037  * This is the stupid "wait for pipe to be readable or writable"
1038  * model.
1039  *
1040  * See pipe_read/write() for the proper kind of exclusive wait,
1041  * but that requires that we wake up any other readers/writers
1042  * if we then do not end up reading everything (ie the whole
1043  * "wake_next_reader/writer" logic in pipe_read/write()).
1044  */
1045 void pipe_wait_readable(struct pipe_inode_info *pipe)
1046 {
1047 	pipe_unlock(pipe);
1048 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049 	pipe_lock(pipe);
1050 }
1051 
1052 void pipe_wait_writable(struct pipe_inode_info *pipe)
1053 {
1054 	pipe_unlock(pipe);
1055 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056 	pipe_lock(pipe);
1057 }
1058 
1059 /*
1060  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062  * race with the count check and waitqueue prep.
1063  *
1064  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065  * then check the condition you're waiting for, and only then sleep. But
1066  * because of the pipe lock, we can check the condition before being on
1067  * the wait queue.
1068  *
1069  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070  */
1071 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072 {
1073 	DEFINE_WAIT(rdwait);
1074 	int cur = *cnt;
1075 
1076 	while (cur == *cnt) {
1077 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078 		pipe_unlock(pipe);
1079 		schedule();
1080 		finish_wait(&pipe->rd_wait, &rdwait);
1081 		pipe_lock(pipe);
1082 		if (signal_pending(current))
1083 			break;
1084 	}
1085 	return cur == *cnt ? -ERESTARTSYS : 0;
1086 }
1087 
1088 static void wake_up_partner(struct pipe_inode_info *pipe)
1089 {
1090 	wake_up_interruptible_all(&pipe->rd_wait);
1091 }
1092 
1093 static int fifo_open(struct inode *inode, struct file *filp)
1094 {
1095 	struct pipe_inode_info *pipe;
1096 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097 	int ret;
1098 
1099 	filp->f_version = 0;
1100 
1101 	spin_lock(&inode->i_lock);
1102 	if (inode->i_pipe) {
1103 		pipe = inode->i_pipe;
1104 		pipe->files++;
1105 		spin_unlock(&inode->i_lock);
1106 	} else {
1107 		spin_unlock(&inode->i_lock);
1108 		pipe = alloc_pipe_info();
1109 		if (!pipe)
1110 			return -ENOMEM;
1111 		pipe->files = 1;
1112 		spin_lock(&inode->i_lock);
1113 		if (unlikely(inode->i_pipe)) {
1114 			inode->i_pipe->files++;
1115 			spin_unlock(&inode->i_lock);
1116 			free_pipe_info(pipe);
1117 			pipe = inode->i_pipe;
1118 		} else {
1119 			inode->i_pipe = pipe;
1120 			spin_unlock(&inode->i_lock);
1121 		}
1122 	}
1123 	filp->private_data = pipe;
1124 	/* OK, we have a pipe and it's pinned down */
1125 
1126 	__pipe_lock(pipe);
1127 
1128 	/* We can only do regular read/write on fifos */
1129 	stream_open(inode, filp);
1130 
1131 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132 	case FMODE_READ:
1133 	/*
1134 	 *  O_RDONLY
1135 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1136 	 *  opened, even when there is no process writing the FIFO.
1137 	 */
1138 		pipe->r_counter++;
1139 		if (pipe->readers++ == 0)
1140 			wake_up_partner(pipe);
1141 
1142 		if (!is_pipe && !pipe->writers) {
1143 			if ((filp->f_flags & O_NONBLOCK)) {
1144 				/* suppress EPOLLHUP until we have
1145 				 * seen a writer */
1146 				filp->f_version = pipe->w_counter;
1147 			} else {
1148 				if (wait_for_partner(pipe, &pipe->w_counter))
1149 					goto err_rd;
1150 			}
1151 		}
1152 		break;
1153 
1154 	case FMODE_WRITE:
1155 	/*
1156 	 *  O_WRONLY
1157 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1158 	 *  errno=ENXIO when there is no process reading the FIFO.
1159 	 */
1160 		ret = -ENXIO;
1161 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162 			goto err;
1163 
1164 		pipe->w_counter++;
1165 		if (!pipe->writers++)
1166 			wake_up_partner(pipe);
1167 
1168 		if (!is_pipe && !pipe->readers) {
1169 			if (wait_for_partner(pipe, &pipe->r_counter))
1170 				goto err_wr;
1171 		}
1172 		break;
1173 
1174 	case FMODE_READ | FMODE_WRITE:
1175 	/*
1176 	 *  O_RDWR
1177 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178 	 *  This implementation will NEVER block on a O_RDWR open, since
1179 	 *  the process can at least talk to itself.
1180 	 */
1181 
1182 		pipe->readers++;
1183 		pipe->writers++;
1184 		pipe->r_counter++;
1185 		pipe->w_counter++;
1186 		if (pipe->readers == 1 || pipe->writers == 1)
1187 			wake_up_partner(pipe);
1188 		break;
1189 
1190 	default:
1191 		ret = -EINVAL;
1192 		goto err;
1193 	}
1194 
1195 	/* Ok! */
1196 	__pipe_unlock(pipe);
1197 	return 0;
1198 
1199 err_rd:
1200 	if (!--pipe->readers)
1201 		wake_up_interruptible(&pipe->wr_wait);
1202 	ret = -ERESTARTSYS;
1203 	goto err;
1204 
1205 err_wr:
1206 	if (!--pipe->writers)
1207 		wake_up_interruptible_all(&pipe->rd_wait);
1208 	ret = -ERESTARTSYS;
1209 	goto err;
1210 
1211 err:
1212 	__pipe_unlock(pipe);
1213 
1214 	put_pipe_info(inode, pipe);
1215 	return ret;
1216 }
1217 
1218 const struct file_operations pipefifo_fops = {
1219 	.open		= fifo_open,
1220 	.llseek		= no_llseek,
1221 	.read_iter	= pipe_read,
1222 	.write_iter	= pipe_write,
1223 	.poll		= pipe_poll,
1224 	.unlocked_ioctl	= pipe_ioctl,
1225 	.release	= pipe_release,
1226 	.fasync		= pipe_fasync,
1227 	.splice_write	= iter_file_splice_write,
1228 };
1229 
1230 /*
1231  * Currently we rely on the pipe array holding a power-of-2 number
1232  * of pages. Returns 0 on error.
1233  */
1234 unsigned int round_pipe_size(unsigned long size)
1235 {
1236 	if (size > (1U << 31))
1237 		return 0;
1238 
1239 	/* Minimum pipe size, as required by POSIX */
1240 	if (size < PAGE_SIZE)
1241 		return PAGE_SIZE;
1242 
1243 	return roundup_pow_of_two(size);
1244 }
1245 
1246 /*
1247  * Resize the pipe ring to a number of slots.
1248  */
1249 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1250 {
1251 	struct pipe_buffer *bufs;
1252 	unsigned int head, tail, mask, n;
1253 
1254 	/*
1255 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1256 	 * Since we don't expect a lot of shrink+grow operations, just free and
1257 	 * allocate again like we would do for growing.  If the pipe currently
1258 	 * contains more buffers than arg, then return busy.
1259 	 */
1260 	mask = pipe->ring_size - 1;
1261 	head = pipe->head;
1262 	tail = pipe->tail;
1263 	n = pipe_occupancy(pipe->head, pipe->tail);
1264 	if (nr_slots < n)
1265 		return -EBUSY;
1266 
1267 	bufs = kvcalloc(nr_slots, sizeof(*bufs), GFP_KERNEL_ACCOUNT);
1268 	if (unlikely(!bufs))
1269 		return -ENOMEM;
1270 
1271 	/*
1272 	 * The pipe array wraps around, so just start the new one at zero
1273 	 * and adjust the indices.
1274 	 */
1275 	if (n > 0) {
1276 		unsigned int h = head & mask;
1277 		unsigned int t = tail & mask;
1278 		if (h > t) {
1279 			memcpy(bufs, pipe->bufs + t,
1280 			       n * sizeof(struct pipe_buffer));
1281 		} else {
1282 			unsigned int tsize = pipe->ring_size - t;
1283 			if (h > 0)
1284 				memcpy(bufs + tsize, pipe->bufs,
1285 				       h * sizeof(struct pipe_buffer));
1286 			memcpy(bufs, pipe->bufs + t,
1287 			       tsize * sizeof(struct pipe_buffer));
1288 		}
1289 	}
1290 
1291 	head = n;
1292 	tail = 0;
1293 
1294 	kvfree(pipe->bufs);
1295 	pipe->bufs = bufs;
1296 	pipe->ring_size = nr_slots;
1297 	if (pipe->max_usage > nr_slots)
1298 		pipe->max_usage = nr_slots;
1299 	pipe->tail = tail;
1300 	pipe->head = head;
1301 
1302 	/* This might have made more room for writers */
1303 	wake_up_interruptible(&pipe->wr_wait);
1304 	return 0;
1305 }
1306 
1307 /*
1308  * Allocate a new array of pipe buffers and copy the info over. Returns the
1309  * pipe size if successful, or return -ERROR on error.
1310  */
1311 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1312 {
1313 	unsigned long user_bufs;
1314 	unsigned int nr_slots, size;
1315 	long ret = 0;
1316 
1317 #ifdef CONFIG_WATCH_QUEUE
1318 	if (pipe->watch_queue)
1319 		return -EBUSY;
1320 #endif
1321 
1322 	size = round_pipe_size(arg);
1323 	nr_slots = size >> PAGE_SHIFT;
1324 
1325 	if (!nr_slots)
1326 		return -EINVAL;
1327 
1328 	/*
1329 	 * If trying to increase the pipe capacity, check that an
1330 	 * unprivileged user is not trying to exceed various limits
1331 	 * (soft limit check here, hard limit check just below).
1332 	 * Decreasing the pipe capacity is always permitted, even
1333 	 * if the user is currently over a limit.
1334 	 */
1335 	if (nr_slots > pipe->max_usage &&
1336 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1337 		return -EPERM;
1338 
1339 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1340 
1341 	if (nr_slots > pipe->max_usage &&
1342 			(too_many_pipe_buffers_hard(user_bufs) ||
1343 			 too_many_pipe_buffers_soft(user_bufs)) &&
1344 			pipe_is_unprivileged_user()) {
1345 		ret = -EPERM;
1346 		goto out_revert_acct;
1347 	}
1348 
1349 	ret = pipe_resize_ring(pipe, nr_slots);
1350 	if (ret < 0)
1351 		goto out_revert_acct;
1352 
1353 	pipe->max_usage = nr_slots;
1354 	pipe->nr_accounted = nr_slots;
1355 	return pipe->max_usage * PAGE_SIZE;
1356 
1357 out_revert_acct:
1358 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1364  * not enough to verify that this is a pipe.
1365  */
1366 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1367 {
1368 	struct pipe_inode_info *pipe = file->private_data;
1369 
1370 	if (file->f_op != &pipefifo_fops || !pipe)
1371 		return NULL;
1372 #ifdef CONFIG_WATCH_QUEUE
1373 	if (for_splice && pipe->watch_queue)
1374 		return NULL;
1375 #endif
1376 	return pipe;
1377 }
1378 
1379 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1380 {
1381 	struct pipe_inode_info *pipe;
1382 	long ret;
1383 
1384 	pipe = get_pipe_info(file, false);
1385 	if (!pipe)
1386 		return -EBADF;
1387 
1388 	__pipe_lock(pipe);
1389 
1390 	switch (cmd) {
1391 	case F_SETPIPE_SZ:
1392 		ret = pipe_set_size(pipe, arg);
1393 		break;
1394 	case F_GETPIPE_SZ:
1395 		ret = pipe->max_usage * PAGE_SIZE;
1396 		break;
1397 	default:
1398 		ret = -EINVAL;
1399 		break;
1400 	}
1401 
1402 	__pipe_unlock(pipe);
1403 	return ret;
1404 }
1405 
1406 static const struct super_operations pipefs_ops = {
1407 	.destroy_inode = free_inode_nonrcu,
1408 	.statfs = simple_statfs,
1409 };
1410 
1411 /*
1412  * pipefs should _never_ be mounted by userland - too much of security hassle,
1413  * no real gain from having the whole whorehouse mounted. So we don't need
1414  * any operations on the root directory. However, we need a non-trivial
1415  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1416  */
1417 
1418 static int pipefs_init_fs_context(struct fs_context *fc)
1419 {
1420 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1421 	if (!ctx)
1422 		return -ENOMEM;
1423 	ctx->ops = &pipefs_ops;
1424 	ctx->dops = &pipefs_dentry_operations;
1425 	return 0;
1426 }
1427 
1428 static struct file_system_type pipe_fs_type = {
1429 	.name		= "pipefs",
1430 	.init_fs_context = pipefs_init_fs_context,
1431 	.kill_sb	= kill_anon_super,
1432 };
1433 
1434 #ifdef CONFIG_SYSCTL
1435 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1436 					unsigned int *valp,
1437 					int write, void *data)
1438 {
1439 	if (write) {
1440 		unsigned int val;
1441 
1442 		val = round_pipe_size(*lvalp);
1443 		if (val == 0)
1444 			return -EINVAL;
1445 
1446 		*valp = val;
1447 	} else {
1448 		unsigned int val = *valp;
1449 		*lvalp = (unsigned long) val;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1456 				void *buffer, size_t *lenp, loff_t *ppos)
1457 {
1458 	return do_proc_douintvec(table, write, buffer, lenp, ppos,
1459 				 do_proc_dopipe_max_size_conv, NULL);
1460 }
1461 
1462 static struct ctl_table fs_pipe_sysctls[] = {
1463 	{
1464 		.procname	= "pipe-max-size",
1465 		.data		= &pipe_max_size,
1466 		.maxlen		= sizeof(pipe_max_size),
1467 		.mode		= 0644,
1468 		.proc_handler	= proc_dopipe_max_size,
1469 	},
1470 	{
1471 		.procname	= "pipe-user-pages-hard",
1472 		.data		= &pipe_user_pages_hard,
1473 		.maxlen		= sizeof(pipe_user_pages_hard),
1474 		.mode		= 0644,
1475 		.proc_handler	= proc_doulongvec_minmax,
1476 	},
1477 	{
1478 		.procname	= "pipe-user-pages-soft",
1479 		.data		= &pipe_user_pages_soft,
1480 		.maxlen		= sizeof(pipe_user_pages_soft),
1481 		.mode		= 0644,
1482 		.proc_handler	= proc_doulongvec_minmax,
1483 	},
1484 	{ }
1485 };
1486 #endif
1487 
1488 static int __init init_pipe_fs(void)
1489 {
1490 	int err = register_filesystem(&pipe_fs_type);
1491 
1492 	if (!err) {
1493 		pipe_mnt = kern_mount(&pipe_fs_type);
1494 		if (IS_ERR(pipe_mnt)) {
1495 			err = PTR_ERR(pipe_mnt);
1496 			unregister_filesystem(&pipe_fs_type);
1497 		}
1498 	}
1499 #ifdef CONFIG_SYSCTL
1500 	register_sysctl_init("fs", fs_pipe_sysctls);
1501 #endif
1502 	return err;
1503 }
1504 
1505 fs_initcall(init_pipe_fs);
1506