1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 80 { 81 if (pipe->files) 82 mutex_lock_nested(&pipe->mutex, subclass); 83 } 84 85 void pipe_lock(struct pipe_inode_info *pipe) 86 { 87 /* 88 * pipe_lock() nests non-pipe inode locks (for writing to a file) 89 */ 90 pipe_lock_nested(pipe, I_MUTEX_PARENT); 91 } 92 EXPORT_SYMBOL(pipe_lock); 93 94 void pipe_unlock(struct pipe_inode_info *pipe) 95 { 96 if (pipe->files) 97 mutex_unlock(&pipe->mutex); 98 } 99 EXPORT_SYMBOL(pipe_unlock); 100 101 static inline void __pipe_lock(struct pipe_inode_info *pipe) 102 { 103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 104 } 105 106 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 107 { 108 mutex_unlock(&pipe->mutex); 109 } 110 111 void pipe_double_lock(struct pipe_inode_info *pipe1, 112 struct pipe_inode_info *pipe2) 113 { 114 BUG_ON(pipe1 == pipe2); 115 116 if (pipe1 < pipe2) { 117 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 118 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 119 } else { 120 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 121 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 122 } 123 } 124 125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 126 struct pipe_buffer *buf) 127 { 128 struct page *page = buf->page; 129 130 /* 131 * If nobody else uses this page, and we don't already have a 132 * temporary page, let's keep track of it as a one-deep 133 * allocation cache. (Otherwise just release our reference to it) 134 */ 135 if (page_count(page) == 1 && !pipe->tmp_page) 136 pipe->tmp_page = page; 137 else 138 put_page(page); 139 } 140 141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143 { 144 struct page *page = buf->page; 145 146 if (page_count(page) != 1) 147 return false; 148 memcg_kmem_uncharge_page(page, 0); 149 __SetPageLocked(page); 150 return true; 151 } 152 153 /** 154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return true; 178 } 179 return false; 180 } 181 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 182 183 /** 184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 185 * @pipe: the pipe that the buffer belongs to 186 * @buf: the buffer to get a reference to 187 * 188 * Description: 189 * This function grabs an extra reference to @buf. It's used in 190 * the tee() system call, when we duplicate the buffers in one 191 * pipe into another. 192 */ 193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 194 { 195 return try_get_page(buf->page); 196 } 197 EXPORT_SYMBOL(generic_pipe_buf_get); 198 199 /** 200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 201 * @pipe: the pipe that the buffer belongs to 202 * @buf: the buffer to put a reference to 203 * 204 * Description: 205 * This function releases a reference to @buf. 206 */ 207 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 208 struct pipe_buffer *buf) 209 { 210 put_page(buf->page); 211 } 212 EXPORT_SYMBOL(generic_pipe_buf_release); 213 214 static const struct pipe_buf_operations anon_pipe_buf_ops = { 215 .release = anon_pipe_buf_release, 216 .try_steal = anon_pipe_buf_try_steal, 217 .get = generic_pipe_buf_get, 218 }; 219 220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 221 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 222 { 223 unsigned int head = READ_ONCE(pipe->head); 224 unsigned int tail = READ_ONCE(pipe->tail); 225 unsigned int writers = READ_ONCE(pipe->writers); 226 227 return !pipe_empty(head, tail) || !writers; 228 } 229 230 static ssize_t 231 pipe_read(struct kiocb *iocb, struct iov_iter *to) 232 { 233 size_t total_len = iov_iter_count(to); 234 struct file *filp = iocb->ki_filp; 235 struct pipe_inode_info *pipe = filp->private_data; 236 bool was_full, wake_next_reader = false; 237 ssize_t ret; 238 239 /* Null read succeeds. */ 240 if (unlikely(total_len == 0)) 241 return 0; 242 243 ret = 0; 244 __pipe_lock(pipe); 245 246 /* 247 * We only wake up writers if the pipe was full when we started 248 * reading in order to avoid unnecessary wakeups. 249 * 250 * But when we do wake up writers, we do so using a sync wakeup 251 * (WF_SYNC), because we want them to get going and generate more 252 * data for us. 253 */ 254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 255 for (;;) { 256 /* Read ->head with a barrier vs post_one_notification() */ 257 unsigned int head = smp_load_acquire(&pipe->head); 258 unsigned int tail = pipe->tail; 259 unsigned int mask = pipe->ring_size - 1; 260 261 #ifdef CONFIG_WATCH_QUEUE 262 if (pipe->note_loss) { 263 struct watch_notification n; 264 265 if (total_len < 8) { 266 if (ret == 0) 267 ret = -ENOBUFS; 268 break; 269 } 270 271 n.type = WATCH_TYPE_META; 272 n.subtype = WATCH_META_LOSS_NOTIFICATION; 273 n.info = watch_sizeof(n); 274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 275 if (ret == 0) 276 ret = -EFAULT; 277 break; 278 } 279 ret += sizeof(n); 280 total_len -= sizeof(n); 281 pipe->note_loss = false; 282 } 283 #endif 284 285 if (!pipe_empty(head, tail)) { 286 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 287 size_t chars = buf->len; 288 size_t written; 289 int error; 290 291 if (chars > total_len) { 292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 293 if (ret == 0) 294 ret = -ENOBUFS; 295 break; 296 } 297 chars = total_len; 298 } 299 300 error = pipe_buf_confirm(pipe, buf); 301 if (error) { 302 if (!ret) 303 ret = error; 304 break; 305 } 306 307 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 308 if (unlikely(written < chars)) { 309 if (!ret) 310 ret = -EFAULT; 311 break; 312 } 313 ret += chars; 314 buf->offset += chars; 315 buf->len -= chars; 316 317 /* Was it a packet buffer? Clean up and exit */ 318 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 319 total_len = chars; 320 buf->len = 0; 321 } 322 323 if (!buf->len) { 324 pipe_buf_release(pipe, buf); 325 spin_lock_irq(&pipe->rd_wait.lock); 326 #ifdef CONFIG_WATCH_QUEUE 327 if (buf->flags & PIPE_BUF_FLAG_LOSS) 328 pipe->note_loss = true; 329 #endif 330 tail++; 331 pipe->tail = tail; 332 spin_unlock_irq(&pipe->rd_wait.lock); 333 } 334 total_len -= chars; 335 if (!total_len) 336 break; /* common path: read succeeded */ 337 if (!pipe_empty(head, tail)) /* More to do? */ 338 continue; 339 } 340 341 if (!pipe->writers) 342 break; 343 if (ret) 344 break; 345 if (filp->f_flags & O_NONBLOCK) { 346 ret = -EAGAIN; 347 break; 348 } 349 __pipe_unlock(pipe); 350 351 /* 352 * We only get here if we didn't actually read anything. 353 * 354 * However, we could have seen (and removed) a zero-sized 355 * pipe buffer, and might have made space in the buffers 356 * that way. 357 * 358 * You can't make zero-sized pipe buffers by doing an empty 359 * write (not even in packet mode), but they can happen if 360 * the writer gets an EFAULT when trying to fill a buffer 361 * that already got allocated and inserted in the buffer 362 * array. 363 * 364 * So we still need to wake up any pending writers in the 365 * _very_ unlikely case that the pipe was full, but we got 366 * no data. 367 */ 368 if (unlikely(was_full)) 369 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 371 372 /* 373 * But because we didn't read anything, at this point we can 374 * just return directly with -ERESTARTSYS if we're interrupted, 375 * since we've done any required wakeups and there's no need 376 * to mark anything accessed. And we've dropped the lock. 377 */ 378 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 379 return -ERESTARTSYS; 380 381 __pipe_lock(pipe); 382 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 383 wake_next_reader = true; 384 } 385 if (pipe_empty(pipe->head, pipe->tail)) 386 wake_next_reader = false; 387 __pipe_unlock(pipe); 388 389 if (was_full) 390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 391 if (wake_next_reader) 392 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 393 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 394 if (ret > 0) 395 file_accessed(filp); 396 return ret; 397 } 398 399 static inline int is_packetized(struct file *file) 400 { 401 return (file->f_flags & O_DIRECT) != 0; 402 } 403 404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 405 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 406 { 407 unsigned int head = READ_ONCE(pipe->head); 408 unsigned int tail = READ_ONCE(pipe->tail); 409 unsigned int max_usage = READ_ONCE(pipe->max_usage); 410 411 return !pipe_full(head, tail, max_usage) || 412 !READ_ONCE(pipe->readers); 413 } 414 415 static ssize_t 416 pipe_write(struct kiocb *iocb, struct iov_iter *from) 417 { 418 struct file *filp = iocb->ki_filp; 419 struct pipe_inode_info *pipe = filp->private_data; 420 unsigned int head; 421 ssize_t ret = 0; 422 size_t total_len = iov_iter_count(from); 423 ssize_t chars; 424 bool was_empty = false; 425 bool wake_next_writer = false; 426 427 /* Null write succeeds. */ 428 if (unlikely(total_len == 0)) 429 return 0; 430 431 __pipe_lock(pipe); 432 433 if (!pipe->readers) { 434 send_sig(SIGPIPE, current, 0); 435 ret = -EPIPE; 436 goto out; 437 } 438 439 #ifdef CONFIG_WATCH_QUEUE 440 if (pipe->watch_queue) { 441 ret = -EXDEV; 442 goto out; 443 } 444 #endif 445 446 /* 447 * If it wasn't empty we try to merge new data into 448 * the last buffer. 449 * 450 * That naturally merges small writes, but it also 451 * page-aligns the rest of the writes for large writes 452 * spanning multiple pages. 453 */ 454 head = pipe->head; 455 was_empty = pipe_empty(head, pipe->tail); 456 chars = total_len & (PAGE_SIZE-1); 457 if (chars && !was_empty) { 458 unsigned int mask = pipe->ring_size - 1; 459 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 460 int offset = buf->offset + buf->len; 461 462 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 463 offset + chars <= PAGE_SIZE) { 464 ret = pipe_buf_confirm(pipe, buf); 465 if (ret) 466 goto out; 467 468 ret = copy_page_from_iter(buf->page, offset, chars, from); 469 if (unlikely(ret < chars)) { 470 ret = -EFAULT; 471 goto out; 472 } 473 474 buf->len += ret; 475 if (!iov_iter_count(from)) 476 goto out; 477 } 478 } 479 480 for (;;) { 481 if (!pipe->readers) { 482 send_sig(SIGPIPE, current, 0); 483 if (!ret) 484 ret = -EPIPE; 485 break; 486 } 487 488 head = pipe->head; 489 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 490 unsigned int mask = pipe->ring_size - 1; 491 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 492 struct page *page = pipe->tmp_page; 493 int copied; 494 495 if (!page) { 496 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 497 if (unlikely(!page)) { 498 ret = ret ? : -ENOMEM; 499 break; 500 } 501 pipe->tmp_page = page; 502 } 503 504 /* Allocate a slot in the ring in advance and attach an 505 * empty buffer. If we fault or otherwise fail to use 506 * it, either the reader will consume it or it'll still 507 * be there for the next write. 508 */ 509 spin_lock_irq(&pipe->rd_wait.lock); 510 511 head = pipe->head; 512 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 513 spin_unlock_irq(&pipe->rd_wait.lock); 514 continue; 515 } 516 517 pipe->head = head + 1; 518 spin_unlock_irq(&pipe->rd_wait.lock); 519 520 /* Insert it into the buffer array */ 521 buf = &pipe->bufs[head & mask]; 522 buf->page = page; 523 buf->ops = &anon_pipe_buf_ops; 524 buf->offset = 0; 525 buf->len = 0; 526 if (is_packetized(filp)) 527 buf->flags = PIPE_BUF_FLAG_PACKET; 528 else 529 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 530 pipe->tmp_page = NULL; 531 532 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 533 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 534 if (!ret) 535 ret = -EFAULT; 536 break; 537 } 538 ret += copied; 539 buf->offset = 0; 540 buf->len = copied; 541 542 if (!iov_iter_count(from)) 543 break; 544 } 545 546 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 547 continue; 548 549 /* Wait for buffer space to become available. */ 550 if (filp->f_flags & O_NONBLOCK) { 551 if (!ret) 552 ret = -EAGAIN; 553 break; 554 } 555 if (signal_pending(current)) { 556 if (!ret) 557 ret = -ERESTARTSYS; 558 break; 559 } 560 561 /* 562 * We're going to release the pipe lock and wait for more 563 * space. We wake up any readers if necessary, and then 564 * after waiting we need to re-check whether the pipe 565 * become empty while we dropped the lock. 566 */ 567 __pipe_unlock(pipe); 568 if (was_empty) 569 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 570 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 571 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 572 __pipe_lock(pipe); 573 was_empty = pipe_empty(pipe->head, pipe->tail); 574 wake_next_writer = true; 575 } 576 out: 577 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 578 wake_next_writer = false; 579 __pipe_unlock(pipe); 580 581 /* 582 * If we do do a wakeup event, we do a 'sync' wakeup, because we 583 * want the reader to start processing things asap, rather than 584 * leave the data pending. 585 * 586 * This is particularly important for small writes, because of 587 * how (for example) the GNU make jobserver uses small writes to 588 * wake up pending jobs 589 * 590 * Epoll nonsensically wants a wakeup whether the pipe 591 * was already empty or not. 592 */ 593 if (was_empty || pipe->poll_usage) 594 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 596 if (wake_next_writer) 597 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 598 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 599 int err = file_update_time(filp); 600 if (err) 601 ret = err; 602 sb_end_write(file_inode(filp)->i_sb); 603 } 604 return ret; 605 } 606 607 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 608 { 609 struct pipe_inode_info *pipe = filp->private_data; 610 unsigned int count, head, tail, mask; 611 612 switch (cmd) { 613 case FIONREAD: 614 __pipe_lock(pipe); 615 count = 0; 616 head = pipe->head; 617 tail = pipe->tail; 618 mask = pipe->ring_size - 1; 619 620 while (tail != head) { 621 count += pipe->bufs[tail & mask].len; 622 tail++; 623 } 624 __pipe_unlock(pipe); 625 626 return put_user(count, (int __user *)arg); 627 628 #ifdef CONFIG_WATCH_QUEUE 629 case IOC_WATCH_QUEUE_SET_SIZE: { 630 int ret; 631 __pipe_lock(pipe); 632 ret = watch_queue_set_size(pipe, arg); 633 __pipe_unlock(pipe); 634 return ret; 635 } 636 637 case IOC_WATCH_QUEUE_SET_FILTER: 638 return watch_queue_set_filter( 639 pipe, (struct watch_notification_filter __user *)arg); 640 #endif 641 642 default: 643 return -ENOIOCTLCMD; 644 } 645 } 646 647 /* No kernel lock held - fine */ 648 static __poll_t 649 pipe_poll(struct file *filp, poll_table *wait) 650 { 651 __poll_t mask; 652 struct pipe_inode_info *pipe = filp->private_data; 653 unsigned int head, tail; 654 655 /* Epoll has some historical nasty semantics, this enables them */ 656 pipe->poll_usage = 1; 657 658 /* 659 * Reading pipe state only -- no need for acquiring the semaphore. 660 * 661 * But because this is racy, the code has to add the 662 * entry to the poll table _first_ .. 663 */ 664 if (filp->f_mode & FMODE_READ) 665 poll_wait(filp, &pipe->rd_wait, wait); 666 if (filp->f_mode & FMODE_WRITE) 667 poll_wait(filp, &pipe->wr_wait, wait); 668 669 /* 670 * .. and only then can you do the racy tests. That way, 671 * if something changes and you got it wrong, the poll 672 * table entry will wake you up and fix it. 673 */ 674 head = READ_ONCE(pipe->head); 675 tail = READ_ONCE(pipe->tail); 676 677 mask = 0; 678 if (filp->f_mode & FMODE_READ) { 679 if (!pipe_empty(head, tail)) 680 mask |= EPOLLIN | EPOLLRDNORM; 681 if (!pipe->writers && filp->f_version != pipe->w_counter) 682 mask |= EPOLLHUP; 683 } 684 685 if (filp->f_mode & FMODE_WRITE) { 686 if (!pipe_full(head, tail, pipe->max_usage)) 687 mask |= EPOLLOUT | EPOLLWRNORM; 688 /* 689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 690 * behave exactly like pipes for poll(). 691 */ 692 if (!pipe->readers) 693 mask |= EPOLLERR; 694 } 695 696 return mask; 697 } 698 699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 700 { 701 int kill = 0; 702 703 spin_lock(&inode->i_lock); 704 if (!--pipe->files) { 705 inode->i_pipe = NULL; 706 kill = 1; 707 } 708 spin_unlock(&inode->i_lock); 709 710 if (kill) 711 free_pipe_info(pipe); 712 } 713 714 static int 715 pipe_release(struct inode *inode, struct file *file) 716 { 717 struct pipe_inode_info *pipe = file->private_data; 718 719 __pipe_lock(pipe); 720 if (file->f_mode & FMODE_READ) 721 pipe->readers--; 722 if (file->f_mode & FMODE_WRITE) 723 pipe->writers--; 724 725 /* Was that the last reader or writer, but not the other side? */ 726 if (!pipe->readers != !pipe->writers) { 727 wake_up_interruptible_all(&pipe->rd_wait); 728 wake_up_interruptible_all(&pipe->wr_wait); 729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 731 } 732 __pipe_unlock(pipe); 733 734 put_pipe_info(inode, pipe); 735 return 0; 736 } 737 738 static int 739 pipe_fasync(int fd, struct file *filp, int on) 740 { 741 struct pipe_inode_info *pipe = filp->private_data; 742 int retval = 0; 743 744 __pipe_lock(pipe); 745 if (filp->f_mode & FMODE_READ) 746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 749 if (retval < 0 && (filp->f_mode & FMODE_READ)) 750 /* this can happen only if on == T */ 751 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 752 } 753 __pipe_unlock(pipe); 754 return retval; 755 } 756 757 unsigned long account_pipe_buffers(struct user_struct *user, 758 unsigned long old, unsigned long new) 759 { 760 return atomic_long_add_return(new - old, &user->pipe_bufs); 761 } 762 763 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 764 { 765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 766 767 return soft_limit && user_bufs > soft_limit; 768 } 769 770 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 771 { 772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 773 774 return hard_limit && user_bufs > hard_limit; 775 } 776 777 bool pipe_is_unprivileged_user(void) 778 { 779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 780 } 781 782 struct pipe_inode_info *alloc_pipe_info(void) 783 { 784 struct pipe_inode_info *pipe; 785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 786 struct user_struct *user = get_current_user(); 787 unsigned long user_bufs; 788 unsigned int max_size = READ_ONCE(pipe_max_size); 789 790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 791 if (pipe == NULL) 792 goto out_free_uid; 793 794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 795 pipe_bufs = max_size >> PAGE_SHIFT; 796 797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 798 799 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 800 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 801 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 802 } 803 804 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 805 goto out_revert_acct; 806 807 pipe->bufs = kvcalloc(pipe_bufs, sizeof(struct pipe_buffer), 808 GFP_KERNEL_ACCOUNT); 809 810 if (pipe->bufs) { 811 init_waitqueue_head(&pipe->rd_wait); 812 init_waitqueue_head(&pipe->wr_wait); 813 pipe->r_counter = pipe->w_counter = 1; 814 pipe->max_usage = pipe_bufs; 815 pipe->ring_size = pipe_bufs; 816 pipe->nr_accounted = pipe_bufs; 817 pipe->user = user; 818 mutex_init(&pipe->mutex); 819 return pipe; 820 } 821 822 out_revert_acct: 823 (void) account_pipe_buffers(user, pipe_bufs, 0); 824 kfree(pipe); 825 out_free_uid: 826 free_uid(user); 827 return NULL; 828 } 829 830 void free_pipe_info(struct pipe_inode_info *pipe) 831 { 832 unsigned int i; 833 834 #ifdef CONFIG_WATCH_QUEUE 835 if (pipe->watch_queue) 836 watch_queue_clear(pipe->watch_queue); 837 #endif 838 839 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 840 free_uid(pipe->user); 841 for (i = 0; i < pipe->ring_size; i++) { 842 struct pipe_buffer *buf = pipe->bufs + i; 843 if (buf->ops) 844 pipe_buf_release(pipe, buf); 845 } 846 #ifdef CONFIG_WATCH_QUEUE 847 if (pipe->watch_queue) 848 put_watch_queue(pipe->watch_queue); 849 #endif 850 if (pipe->tmp_page) 851 __free_page(pipe->tmp_page); 852 kvfree(pipe->bufs); 853 kfree(pipe); 854 } 855 856 static struct vfsmount *pipe_mnt __read_mostly; 857 858 /* 859 * pipefs_dname() is called from d_path(). 860 */ 861 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 862 { 863 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 864 d_inode(dentry)->i_ino); 865 } 866 867 static const struct dentry_operations pipefs_dentry_operations = { 868 .d_dname = pipefs_dname, 869 }; 870 871 static struct inode * get_pipe_inode(void) 872 { 873 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 874 struct pipe_inode_info *pipe; 875 876 if (!inode) 877 goto fail_inode; 878 879 inode->i_ino = get_next_ino(); 880 881 pipe = alloc_pipe_info(); 882 if (!pipe) 883 goto fail_iput; 884 885 inode->i_pipe = pipe; 886 pipe->files = 2; 887 pipe->readers = pipe->writers = 1; 888 inode->i_fop = &pipefifo_fops; 889 890 /* 891 * Mark the inode dirty from the very beginning, 892 * that way it will never be moved to the dirty 893 * list because "mark_inode_dirty()" will think 894 * that it already _is_ on the dirty list. 895 */ 896 inode->i_state = I_DIRTY; 897 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 898 inode->i_uid = current_fsuid(); 899 inode->i_gid = current_fsgid(); 900 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 901 902 return inode; 903 904 fail_iput: 905 iput(inode); 906 907 fail_inode: 908 return NULL; 909 } 910 911 int create_pipe_files(struct file **res, int flags) 912 { 913 struct inode *inode = get_pipe_inode(); 914 struct file *f; 915 int error; 916 917 if (!inode) 918 return -ENFILE; 919 920 if (flags & O_NOTIFICATION_PIPE) { 921 error = watch_queue_init(inode->i_pipe); 922 if (error) { 923 free_pipe_info(inode->i_pipe); 924 iput(inode); 925 return error; 926 } 927 } 928 929 f = alloc_file_pseudo(inode, pipe_mnt, "", 930 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 931 &pipefifo_fops); 932 if (IS_ERR(f)) { 933 free_pipe_info(inode->i_pipe); 934 iput(inode); 935 return PTR_ERR(f); 936 } 937 938 f->private_data = inode->i_pipe; 939 940 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 941 &pipefifo_fops); 942 if (IS_ERR(res[0])) { 943 put_pipe_info(inode, inode->i_pipe); 944 fput(f); 945 return PTR_ERR(res[0]); 946 } 947 res[0]->private_data = inode->i_pipe; 948 res[1] = f; 949 stream_open(inode, res[0]); 950 stream_open(inode, res[1]); 951 return 0; 952 } 953 954 static int __do_pipe_flags(int *fd, struct file **files, int flags) 955 { 956 int error; 957 int fdw, fdr; 958 959 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 960 return -EINVAL; 961 962 error = create_pipe_files(files, flags); 963 if (error) 964 return error; 965 966 error = get_unused_fd_flags(flags); 967 if (error < 0) 968 goto err_read_pipe; 969 fdr = error; 970 971 error = get_unused_fd_flags(flags); 972 if (error < 0) 973 goto err_fdr; 974 fdw = error; 975 976 audit_fd_pair(fdr, fdw); 977 fd[0] = fdr; 978 fd[1] = fdw; 979 return 0; 980 981 err_fdr: 982 put_unused_fd(fdr); 983 err_read_pipe: 984 fput(files[0]); 985 fput(files[1]); 986 return error; 987 } 988 989 int do_pipe_flags(int *fd, int flags) 990 { 991 struct file *files[2]; 992 int error = __do_pipe_flags(fd, files, flags); 993 if (!error) { 994 fd_install(fd[0], files[0]); 995 fd_install(fd[1], files[1]); 996 } 997 return error; 998 } 999 1000 /* 1001 * sys_pipe() is the normal C calling standard for creating 1002 * a pipe. It's not the way Unix traditionally does this, though. 1003 */ 1004 static int do_pipe2(int __user *fildes, int flags) 1005 { 1006 struct file *files[2]; 1007 int fd[2]; 1008 int error; 1009 1010 error = __do_pipe_flags(fd, files, flags); 1011 if (!error) { 1012 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1013 fput(files[0]); 1014 fput(files[1]); 1015 put_unused_fd(fd[0]); 1016 put_unused_fd(fd[1]); 1017 error = -EFAULT; 1018 } else { 1019 fd_install(fd[0], files[0]); 1020 fd_install(fd[1], files[1]); 1021 } 1022 } 1023 return error; 1024 } 1025 1026 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1027 { 1028 return do_pipe2(fildes, flags); 1029 } 1030 1031 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1032 { 1033 return do_pipe2(fildes, 0); 1034 } 1035 1036 /* 1037 * This is the stupid "wait for pipe to be readable or writable" 1038 * model. 1039 * 1040 * See pipe_read/write() for the proper kind of exclusive wait, 1041 * but that requires that we wake up any other readers/writers 1042 * if we then do not end up reading everything (ie the whole 1043 * "wake_next_reader/writer" logic in pipe_read/write()). 1044 */ 1045 void pipe_wait_readable(struct pipe_inode_info *pipe) 1046 { 1047 pipe_unlock(pipe); 1048 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1049 pipe_lock(pipe); 1050 } 1051 1052 void pipe_wait_writable(struct pipe_inode_info *pipe) 1053 { 1054 pipe_unlock(pipe); 1055 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1056 pipe_lock(pipe); 1057 } 1058 1059 /* 1060 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1061 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1062 * race with the count check and waitqueue prep. 1063 * 1064 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1065 * then check the condition you're waiting for, and only then sleep. But 1066 * because of the pipe lock, we can check the condition before being on 1067 * the wait queue. 1068 * 1069 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1070 */ 1071 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1072 { 1073 DEFINE_WAIT(rdwait); 1074 int cur = *cnt; 1075 1076 while (cur == *cnt) { 1077 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1078 pipe_unlock(pipe); 1079 schedule(); 1080 finish_wait(&pipe->rd_wait, &rdwait); 1081 pipe_lock(pipe); 1082 if (signal_pending(current)) 1083 break; 1084 } 1085 return cur == *cnt ? -ERESTARTSYS : 0; 1086 } 1087 1088 static void wake_up_partner(struct pipe_inode_info *pipe) 1089 { 1090 wake_up_interruptible_all(&pipe->rd_wait); 1091 } 1092 1093 static int fifo_open(struct inode *inode, struct file *filp) 1094 { 1095 struct pipe_inode_info *pipe; 1096 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1097 int ret; 1098 1099 filp->f_version = 0; 1100 1101 spin_lock(&inode->i_lock); 1102 if (inode->i_pipe) { 1103 pipe = inode->i_pipe; 1104 pipe->files++; 1105 spin_unlock(&inode->i_lock); 1106 } else { 1107 spin_unlock(&inode->i_lock); 1108 pipe = alloc_pipe_info(); 1109 if (!pipe) 1110 return -ENOMEM; 1111 pipe->files = 1; 1112 spin_lock(&inode->i_lock); 1113 if (unlikely(inode->i_pipe)) { 1114 inode->i_pipe->files++; 1115 spin_unlock(&inode->i_lock); 1116 free_pipe_info(pipe); 1117 pipe = inode->i_pipe; 1118 } else { 1119 inode->i_pipe = pipe; 1120 spin_unlock(&inode->i_lock); 1121 } 1122 } 1123 filp->private_data = pipe; 1124 /* OK, we have a pipe and it's pinned down */ 1125 1126 __pipe_lock(pipe); 1127 1128 /* We can only do regular read/write on fifos */ 1129 stream_open(inode, filp); 1130 1131 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1132 case FMODE_READ: 1133 /* 1134 * O_RDONLY 1135 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1136 * opened, even when there is no process writing the FIFO. 1137 */ 1138 pipe->r_counter++; 1139 if (pipe->readers++ == 0) 1140 wake_up_partner(pipe); 1141 1142 if (!is_pipe && !pipe->writers) { 1143 if ((filp->f_flags & O_NONBLOCK)) { 1144 /* suppress EPOLLHUP until we have 1145 * seen a writer */ 1146 filp->f_version = pipe->w_counter; 1147 } else { 1148 if (wait_for_partner(pipe, &pipe->w_counter)) 1149 goto err_rd; 1150 } 1151 } 1152 break; 1153 1154 case FMODE_WRITE: 1155 /* 1156 * O_WRONLY 1157 * POSIX.1 says that O_NONBLOCK means return -1 with 1158 * errno=ENXIO when there is no process reading the FIFO. 1159 */ 1160 ret = -ENXIO; 1161 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1162 goto err; 1163 1164 pipe->w_counter++; 1165 if (!pipe->writers++) 1166 wake_up_partner(pipe); 1167 1168 if (!is_pipe && !pipe->readers) { 1169 if (wait_for_partner(pipe, &pipe->r_counter)) 1170 goto err_wr; 1171 } 1172 break; 1173 1174 case FMODE_READ | FMODE_WRITE: 1175 /* 1176 * O_RDWR 1177 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1178 * This implementation will NEVER block on a O_RDWR open, since 1179 * the process can at least talk to itself. 1180 */ 1181 1182 pipe->readers++; 1183 pipe->writers++; 1184 pipe->r_counter++; 1185 pipe->w_counter++; 1186 if (pipe->readers == 1 || pipe->writers == 1) 1187 wake_up_partner(pipe); 1188 break; 1189 1190 default: 1191 ret = -EINVAL; 1192 goto err; 1193 } 1194 1195 /* Ok! */ 1196 __pipe_unlock(pipe); 1197 return 0; 1198 1199 err_rd: 1200 if (!--pipe->readers) 1201 wake_up_interruptible(&pipe->wr_wait); 1202 ret = -ERESTARTSYS; 1203 goto err; 1204 1205 err_wr: 1206 if (!--pipe->writers) 1207 wake_up_interruptible_all(&pipe->rd_wait); 1208 ret = -ERESTARTSYS; 1209 goto err; 1210 1211 err: 1212 __pipe_unlock(pipe); 1213 1214 put_pipe_info(inode, pipe); 1215 return ret; 1216 } 1217 1218 const struct file_operations pipefifo_fops = { 1219 .open = fifo_open, 1220 .llseek = no_llseek, 1221 .read_iter = pipe_read, 1222 .write_iter = pipe_write, 1223 .poll = pipe_poll, 1224 .unlocked_ioctl = pipe_ioctl, 1225 .release = pipe_release, 1226 .fasync = pipe_fasync, 1227 .splice_write = iter_file_splice_write, 1228 }; 1229 1230 /* 1231 * Currently we rely on the pipe array holding a power-of-2 number 1232 * of pages. Returns 0 on error. 1233 */ 1234 unsigned int round_pipe_size(unsigned long size) 1235 { 1236 if (size > (1U << 31)) 1237 return 0; 1238 1239 /* Minimum pipe size, as required by POSIX */ 1240 if (size < PAGE_SIZE) 1241 return PAGE_SIZE; 1242 1243 return roundup_pow_of_two(size); 1244 } 1245 1246 /* 1247 * Resize the pipe ring to a number of slots. 1248 */ 1249 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1250 { 1251 struct pipe_buffer *bufs; 1252 unsigned int head, tail, mask, n; 1253 1254 /* 1255 * We can shrink the pipe, if arg is greater than the ring occupancy. 1256 * Since we don't expect a lot of shrink+grow operations, just free and 1257 * allocate again like we would do for growing. If the pipe currently 1258 * contains more buffers than arg, then return busy. 1259 */ 1260 mask = pipe->ring_size - 1; 1261 head = pipe->head; 1262 tail = pipe->tail; 1263 n = pipe_occupancy(pipe->head, pipe->tail); 1264 if (nr_slots < n) 1265 return -EBUSY; 1266 1267 bufs = kvcalloc(nr_slots, sizeof(*bufs), GFP_KERNEL_ACCOUNT); 1268 if (unlikely(!bufs)) 1269 return -ENOMEM; 1270 1271 /* 1272 * The pipe array wraps around, so just start the new one at zero 1273 * and adjust the indices. 1274 */ 1275 if (n > 0) { 1276 unsigned int h = head & mask; 1277 unsigned int t = tail & mask; 1278 if (h > t) { 1279 memcpy(bufs, pipe->bufs + t, 1280 n * sizeof(struct pipe_buffer)); 1281 } else { 1282 unsigned int tsize = pipe->ring_size - t; 1283 if (h > 0) 1284 memcpy(bufs + tsize, pipe->bufs, 1285 h * sizeof(struct pipe_buffer)); 1286 memcpy(bufs, pipe->bufs + t, 1287 tsize * sizeof(struct pipe_buffer)); 1288 } 1289 } 1290 1291 head = n; 1292 tail = 0; 1293 1294 kvfree(pipe->bufs); 1295 pipe->bufs = bufs; 1296 pipe->ring_size = nr_slots; 1297 if (pipe->max_usage > nr_slots) 1298 pipe->max_usage = nr_slots; 1299 pipe->tail = tail; 1300 pipe->head = head; 1301 1302 /* This might have made more room for writers */ 1303 wake_up_interruptible(&pipe->wr_wait); 1304 return 0; 1305 } 1306 1307 /* 1308 * Allocate a new array of pipe buffers and copy the info over. Returns the 1309 * pipe size if successful, or return -ERROR on error. 1310 */ 1311 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1312 { 1313 unsigned long user_bufs; 1314 unsigned int nr_slots, size; 1315 long ret = 0; 1316 1317 #ifdef CONFIG_WATCH_QUEUE 1318 if (pipe->watch_queue) 1319 return -EBUSY; 1320 #endif 1321 1322 size = round_pipe_size(arg); 1323 nr_slots = size >> PAGE_SHIFT; 1324 1325 if (!nr_slots) 1326 return -EINVAL; 1327 1328 /* 1329 * If trying to increase the pipe capacity, check that an 1330 * unprivileged user is not trying to exceed various limits 1331 * (soft limit check here, hard limit check just below). 1332 * Decreasing the pipe capacity is always permitted, even 1333 * if the user is currently over a limit. 1334 */ 1335 if (nr_slots > pipe->max_usage && 1336 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1337 return -EPERM; 1338 1339 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1340 1341 if (nr_slots > pipe->max_usage && 1342 (too_many_pipe_buffers_hard(user_bufs) || 1343 too_many_pipe_buffers_soft(user_bufs)) && 1344 pipe_is_unprivileged_user()) { 1345 ret = -EPERM; 1346 goto out_revert_acct; 1347 } 1348 1349 ret = pipe_resize_ring(pipe, nr_slots); 1350 if (ret < 0) 1351 goto out_revert_acct; 1352 1353 pipe->max_usage = nr_slots; 1354 pipe->nr_accounted = nr_slots; 1355 return pipe->max_usage * PAGE_SIZE; 1356 1357 out_revert_acct: 1358 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1359 return ret; 1360 } 1361 1362 /* 1363 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1364 * not enough to verify that this is a pipe. 1365 */ 1366 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1367 { 1368 struct pipe_inode_info *pipe = file->private_data; 1369 1370 if (file->f_op != &pipefifo_fops || !pipe) 1371 return NULL; 1372 #ifdef CONFIG_WATCH_QUEUE 1373 if (for_splice && pipe->watch_queue) 1374 return NULL; 1375 #endif 1376 return pipe; 1377 } 1378 1379 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1380 { 1381 struct pipe_inode_info *pipe; 1382 long ret; 1383 1384 pipe = get_pipe_info(file, false); 1385 if (!pipe) 1386 return -EBADF; 1387 1388 __pipe_lock(pipe); 1389 1390 switch (cmd) { 1391 case F_SETPIPE_SZ: 1392 ret = pipe_set_size(pipe, arg); 1393 break; 1394 case F_GETPIPE_SZ: 1395 ret = pipe->max_usage * PAGE_SIZE; 1396 break; 1397 default: 1398 ret = -EINVAL; 1399 break; 1400 } 1401 1402 __pipe_unlock(pipe); 1403 return ret; 1404 } 1405 1406 static const struct super_operations pipefs_ops = { 1407 .destroy_inode = free_inode_nonrcu, 1408 .statfs = simple_statfs, 1409 }; 1410 1411 /* 1412 * pipefs should _never_ be mounted by userland - too much of security hassle, 1413 * no real gain from having the whole whorehouse mounted. So we don't need 1414 * any operations on the root directory. However, we need a non-trivial 1415 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1416 */ 1417 1418 static int pipefs_init_fs_context(struct fs_context *fc) 1419 { 1420 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1421 if (!ctx) 1422 return -ENOMEM; 1423 ctx->ops = &pipefs_ops; 1424 ctx->dops = &pipefs_dentry_operations; 1425 return 0; 1426 } 1427 1428 static struct file_system_type pipe_fs_type = { 1429 .name = "pipefs", 1430 .init_fs_context = pipefs_init_fs_context, 1431 .kill_sb = kill_anon_super, 1432 }; 1433 1434 #ifdef CONFIG_SYSCTL 1435 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1436 unsigned int *valp, 1437 int write, void *data) 1438 { 1439 if (write) { 1440 unsigned int val; 1441 1442 val = round_pipe_size(*lvalp); 1443 if (val == 0) 1444 return -EINVAL; 1445 1446 *valp = val; 1447 } else { 1448 unsigned int val = *valp; 1449 *lvalp = (unsigned long) val; 1450 } 1451 1452 return 0; 1453 } 1454 1455 static int proc_dopipe_max_size(struct ctl_table *table, int write, 1456 void *buffer, size_t *lenp, loff_t *ppos) 1457 { 1458 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1459 do_proc_dopipe_max_size_conv, NULL); 1460 } 1461 1462 static struct ctl_table fs_pipe_sysctls[] = { 1463 { 1464 .procname = "pipe-max-size", 1465 .data = &pipe_max_size, 1466 .maxlen = sizeof(pipe_max_size), 1467 .mode = 0644, 1468 .proc_handler = proc_dopipe_max_size, 1469 }, 1470 { 1471 .procname = "pipe-user-pages-hard", 1472 .data = &pipe_user_pages_hard, 1473 .maxlen = sizeof(pipe_user_pages_hard), 1474 .mode = 0644, 1475 .proc_handler = proc_doulongvec_minmax, 1476 }, 1477 { 1478 .procname = "pipe-user-pages-soft", 1479 .data = &pipe_user_pages_soft, 1480 .maxlen = sizeof(pipe_user_pages_soft), 1481 .mode = 0644, 1482 .proc_handler = proc_doulongvec_minmax, 1483 }, 1484 { } 1485 }; 1486 #endif 1487 1488 static int __init init_pipe_fs(void) 1489 { 1490 int err = register_filesystem(&pipe_fs_type); 1491 1492 if (!err) { 1493 pipe_mnt = kern_mount(&pipe_fs_type); 1494 if (IS_ERR(pipe_mnt)) { 1495 err = PTR_ERR(pipe_mnt); 1496 unregister_filesystem(&pipe_fs_type); 1497 } 1498 } 1499 #ifdef CONFIG_SYSCTL 1500 register_sysctl_init("fs", fs_pipe_sysctls); 1501 #endif 1502 return err; 1503 } 1504 1505 fs_initcall(init_pipe_fs); 1506