1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 28 #include <linux/uaccess.h> 29 #include <asm/ioctls.h> 30 31 #include "internal.h" 32 33 /* 34 * The max size that a non-root user is allowed to grow the pipe. Can 35 * be set by root in /proc/sys/fs/pipe-max-size 36 */ 37 unsigned int pipe_max_size = 1048576; 38 39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 40 * matches default values. 41 */ 42 unsigned long pipe_user_pages_hard; 43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 44 45 /* 46 * We use head and tail indices that aren't masked off, except at the point of 47 * dereference, but rather they're allowed to wrap naturally. This means there 48 * isn't a dead spot in the buffer, but the ring has to be a power of two and 49 * <= 2^31. 50 * -- David Howells 2019-09-23. 51 * 52 * Reads with count = 0 should always return 0. 53 * -- Julian Bradfield 1999-06-07. 54 * 55 * FIFOs and Pipes now generate SIGIO for both readers and writers. 56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 57 * 58 * pipe_read & write cleanup 59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 60 */ 61 62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 63 { 64 if (pipe->files) 65 mutex_lock_nested(&pipe->mutex, subclass); 66 } 67 68 void pipe_lock(struct pipe_inode_info *pipe) 69 { 70 /* 71 * pipe_lock() nests non-pipe inode locks (for writing to a file) 72 */ 73 pipe_lock_nested(pipe, I_MUTEX_PARENT); 74 } 75 EXPORT_SYMBOL(pipe_lock); 76 77 void pipe_unlock(struct pipe_inode_info *pipe) 78 { 79 if (pipe->files) 80 mutex_unlock(&pipe->mutex); 81 } 82 EXPORT_SYMBOL(pipe_unlock); 83 84 static inline void __pipe_lock(struct pipe_inode_info *pipe) 85 { 86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 87 } 88 89 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 90 { 91 mutex_unlock(&pipe->mutex); 92 } 93 94 void pipe_double_lock(struct pipe_inode_info *pipe1, 95 struct pipe_inode_info *pipe2) 96 { 97 BUG_ON(pipe1 == pipe2); 98 99 if (pipe1 < pipe2) { 100 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 102 } else { 103 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 104 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 105 } 106 } 107 108 /* Drop the inode semaphore and wait for a pipe event, atomically */ 109 void pipe_wait(struct pipe_inode_info *pipe) 110 { 111 DEFINE_WAIT(rdwait); 112 DEFINE_WAIT(wrwait); 113 114 /* 115 * Pipes are system-local resources, so sleeping on them 116 * is considered a noninteractive wait: 117 */ 118 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 119 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE); 120 pipe_unlock(pipe); 121 schedule(); 122 finish_wait(&pipe->rd_wait, &rdwait); 123 finish_wait(&pipe->wr_wait, &wrwait); 124 pipe_lock(pipe); 125 } 126 127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 128 struct pipe_buffer *buf) 129 { 130 struct page *page = buf->page; 131 132 /* 133 * If nobody else uses this page, and we don't already have a 134 * temporary page, let's keep track of it as a one-deep 135 * allocation cache. (Otherwise just release our reference to it) 136 */ 137 if (page_count(page) == 1 && !pipe->tmp_page) 138 pipe->tmp_page = page; 139 else 140 put_page(page); 141 } 142 143 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 144 struct pipe_buffer *buf) 145 { 146 struct page *page = buf->page; 147 148 if (page_count(page) != 1) 149 return false; 150 memcg_kmem_uncharge_page(page, 0); 151 __SetPageLocked(page); 152 return true; 153 } 154 155 /** 156 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 157 * @pipe: the pipe that the buffer belongs to 158 * @buf: the buffer to attempt to steal 159 * 160 * Description: 161 * This function attempts to steal the &struct page attached to 162 * @buf. If successful, this function returns 0 and returns with 163 * the page locked. The caller may then reuse the page for whatever 164 * he wishes; the typical use is insertion into a different file 165 * page cache. 166 */ 167 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 168 struct pipe_buffer *buf) 169 { 170 struct page *page = buf->page; 171 172 /* 173 * A reference of one is golden, that means that the owner of this 174 * page is the only one holding a reference to it. lock the page 175 * and return OK. 176 */ 177 if (page_count(page) == 1) { 178 lock_page(page); 179 return true; 180 } 181 return false; 182 } 183 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 184 185 /** 186 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 187 * @pipe: the pipe that the buffer belongs to 188 * @buf: the buffer to get a reference to 189 * 190 * Description: 191 * This function grabs an extra reference to @buf. It's used in 192 * in the tee() system call, when we duplicate the buffers in one 193 * pipe into another. 194 */ 195 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 196 { 197 return try_get_page(buf->page); 198 } 199 EXPORT_SYMBOL(generic_pipe_buf_get); 200 201 /** 202 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 203 * @pipe: the pipe that the buffer belongs to 204 * @buf: the buffer to put a reference to 205 * 206 * Description: 207 * This function releases a reference to @buf. 208 */ 209 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 210 struct pipe_buffer *buf) 211 { 212 put_page(buf->page); 213 } 214 EXPORT_SYMBOL(generic_pipe_buf_release); 215 216 static const struct pipe_buf_operations anon_pipe_buf_ops = { 217 .release = anon_pipe_buf_release, 218 .try_steal = anon_pipe_buf_try_steal, 219 .get = generic_pipe_buf_get, 220 }; 221 222 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 223 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 224 { 225 unsigned int head = READ_ONCE(pipe->head); 226 unsigned int tail = READ_ONCE(pipe->tail); 227 unsigned int writers = READ_ONCE(pipe->writers); 228 229 return !pipe_empty(head, tail) || !writers; 230 } 231 232 static ssize_t 233 pipe_read(struct kiocb *iocb, struct iov_iter *to) 234 { 235 size_t total_len = iov_iter_count(to); 236 struct file *filp = iocb->ki_filp; 237 struct pipe_inode_info *pipe = filp->private_data; 238 bool was_full, wake_next_reader = false; 239 ssize_t ret; 240 241 /* Null read succeeds. */ 242 if (unlikely(total_len == 0)) 243 return 0; 244 245 ret = 0; 246 __pipe_lock(pipe); 247 248 /* 249 * We only wake up writers if the pipe was full when we started 250 * reading in order to avoid unnecessary wakeups. 251 * 252 * But when we do wake up writers, we do so using a sync wakeup 253 * (WF_SYNC), because we want them to get going and generate more 254 * data for us. 255 */ 256 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 257 for (;;) { 258 unsigned int head = pipe->head; 259 unsigned int tail = pipe->tail; 260 unsigned int mask = pipe->ring_size - 1; 261 262 if (!pipe_empty(head, tail)) { 263 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 264 size_t chars = buf->len; 265 size_t written; 266 int error; 267 268 if (chars > total_len) 269 chars = total_len; 270 271 error = pipe_buf_confirm(pipe, buf); 272 if (error) { 273 if (!ret) 274 ret = error; 275 break; 276 } 277 278 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 279 if (unlikely(written < chars)) { 280 if (!ret) 281 ret = -EFAULT; 282 break; 283 } 284 ret += chars; 285 buf->offset += chars; 286 buf->len -= chars; 287 288 /* Was it a packet buffer? Clean up and exit */ 289 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 290 total_len = chars; 291 buf->len = 0; 292 } 293 294 if (!buf->len) { 295 pipe_buf_release(pipe, buf); 296 spin_lock_irq(&pipe->rd_wait.lock); 297 tail++; 298 pipe->tail = tail; 299 spin_unlock_irq(&pipe->rd_wait.lock); 300 } 301 total_len -= chars; 302 if (!total_len) 303 break; /* common path: read succeeded */ 304 if (!pipe_empty(head, tail)) /* More to do? */ 305 continue; 306 } 307 308 if (!pipe->writers) 309 break; 310 if (ret) 311 break; 312 if (filp->f_flags & O_NONBLOCK) { 313 ret = -EAGAIN; 314 break; 315 } 316 __pipe_unlock(pipe); 317 318 /* 319 * We only get here if we didn't actually read anything. 320 * 321 * However, we could have seen (and removed) a zero-sized 322 * pipe buffer, and might have made space in the buffers 323 * that way. 324 * 325 * You can't make zero-sized pipe buffers by doing an empty 326 * write (not even in packet mode), but they can happen if 327 * the writer gets an EFAULT when trying to fill a buffer 328 * that already got allocated and inserted in the buffer 329 * array. 330 * 331 * So we still need to wake up any pending writers in the 332 * _very_ unlikely case that the pipe was full, but we got 333 * no data. 334 */ 335 if (unlikely(was_full)) { 336 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 337 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 338 } 339 340 /* 341 * But because we didn't read anything, at this point we can 342 * just return directly with -ERESTARTSYS if we're interrupted, 343 * since we've done any required wakeups and there's no need 344 * to mark anything accessed. And we've dropped the lock. 345 */ 346 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 347 return -ERESTARTSYS; 348 349 __pipe_lock(pipe); 350 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 351 wake_next_reader = true; 352 } 353 if (pipe_empty(pipe->head, pipe->tail)) 354 wake_next_reader = false; 355 __pipe_unlock(pipe); 356 357 if (was_full) { 358 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 359 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 360 } 361 if (wake_next_reader) 362 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 363 if (ret > 0) 364 file_accessed(filp); 365 return ret; 366 } 367 368 static inline int is_packetized(struct file *file) 369 { 370 return (file->f_flags & O_DIRECT) != 0; 371 } 372 373 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 374 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 375 { 376 unsigned int head = READ_ONCE(pipe->head); 377 unsigned int tail = READ_ONCE(pipe->tail); 378 unsigned int max_usage = READ_ONCE(pipe->max_usage); 379 380 return !pipe_full(head, tail, max_usage) || 381 !READ_ONCE(pipe->readers); 382 } 383 384 static ssize_t 385 pipe_write(struct kiocb *iocb, struct iov_iter *from) 386 { 387 struct file *filp = iocb->ki_filp; 388 struct pipe_inode_info *pipe = filp->private_data; 389 unsigned int head; 390 ssize_t ret = 0; 391 size_t total_len = iov_iter_count(from); 392 ssize_t chars; 393 bool was_empty = false; 394 bool wake_next_writer = false; 395 396 /* Null write succeeds. */ 397 if (unlikely(total_len == 0)) 398 return 0; 399 400 __pipe_lock(pipe); 401 402 if (!pipe->readers) { 403 send_sig(SIGPIPE, current, 0); 404 ret = -EPIPE; 405 goto out; 406 } 407 408 /* 409 * Only wake up if the pipe started out empty, since 410 * otherwise there should be no readers waiting. 411 * 412 * If it wasn't empty we try to merge new data into 413 * the last buffer. 414 * 415 * That naturally merges small writes, but it also 416 * page-aligs the rest of the writes for large writes 417 * spanning multiple pages. 418 */ 419 head = pipe->head; 420 was_empty = pipe_empty(head, pipe->tail); 421 chars = total_len & (PAGE_SIZE-1); 422 if (chars && !was_empty) { 423 unsigned int mask = pipe->ring_size - 1; 424 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 425 int offset = buf->offset + buf->len; 426 427 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 428 offset + chars <= PAGE_SIZE) { 429 ret = pipe_buf_confirm(pipe, buf); 430 if (ret) 431 goto out; 432 433 ret = copy_page_from_iter(buf->page, offset, chars, from); 434 if (unlikely(ret < chars)) { 435 ret = -EFAULT; 436 goto out; 437 } 438 439 buf->len += ret; 440 if (!iov_iter_count(from)) 441 goto out; 442 } 443 } 444 445 for (;;) { 446 if (!pipe->readers) { 447 send_sig(SIGPIPE, current, 0); 448 if (!ret) 449 ret = -EPIPE; 450 break; 451 } 452 453 head = pipe->head; 454 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 455 unsigned int mask = pipe->ring_size - 1; 456 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 457 struct page *page = pipe->tmp_page; 458 int copied; 459 460 if (!page) { 461 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 462 if (unlikely(!page)) { 463 ret = ret ? : -ENOMEM; 464 break; 465 } 466 pipe->tmp_page = page; 467 } 468 469 /* Allocate a slot in the ring in advance and attach an 470 * empty buffer. If we fault or otherwise fail to use 471 * it, either the reader will consume it or it'll still 472 * be there for the next write. 473 */ 474 spin_lock_irq(&pipe->rd_wait.lock); 475 476 head = pipe->head; 477 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 478 spin_unlock_irq(&pipe->rd_wait.lock); 479 continue; 480 } 481 482 pipe->head = head + 1; 483 spin_unlock_irq(&pipe->rd_wait.lock); 484 485 /* Insert it into the buffer array */ 486 buf = &pipe->bufs[head & mask]; 487 buf->page = page; 488 buf->ops = &anon_pipe_buf_ops; 489 buf->offset = 0; 490 buf->len = 0; 491 if (is_packetized(filp)) 492 buf->flags = PIPE_BUF_FLAG_PACKET; 493 else 494 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 495 pipe->tmp_page = NULL; 496 497 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 498 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 499 if (!ret) 500 ret = -EFAULT; 501 break; 502 } 503 ret += copied; 504 buf->offset = 0; 505 buf->len = copied; 506 507 if (!iov_iter_count(from)) 508 break; 509 } 510 511 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 512 continue; 513 514 /* Wait for buffer space to become available. */ 515 if (filp->f_flags & O_NONBLOCK) { 516 if (!ret) 517 ret = -EAGAIN; 518 break; 519 } 520 if (signal_pending(current)) { 521 if (!ret) 522 ret = -ERESTARTSYS; 523 break; 524 } 525 526 /* 527 * We're going to release the pipe lock and wait for more 528 * space. We wake up any readers if necessary, and then 529 * after waiting we need to re-check whether the pipe 530 * become empty while we dropped the lock. 531 */ 532 __pipe_unlock(pipe); 533 if (was_empty) { 534 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 535 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 536 } 537 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 538 __pipe_lock(pipe); 539 was_empty = pipe_empty(pipe->head, pipe->tail); 540 wake_next_writer = true; 541 } 542 out: 543 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 544 wake_next_writer = false; 545 __pipe_unlock(pipe); 546 547 /* 548 * If we do do a wakeup event, we do a 'sync' wakeup, because we 549 * want the reader to start processing things asap, rather than 550 * leave the data pending. 551 * 552 * This is particularly important for small writes, because of 553 * how (for example) the GNU make jobserver uses small writes to 554 * wake up pending jobs 555 */ 556 if (was_empty) { 557 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 558 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 559 } 560 if (wake_next_writer) 561 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 562 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 563 int err = file_update_time(filp); 564 if (err) 565 ret = err; 566 sb_end_write(file_inode(filp)->i_sb); 567 } 568 return ret; 569 } 570 571 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 572 { 573 struct pipe_inode_info *pipe = filp->private_data; 574 int count, head, tail, mask; 575 576 switch (cmd) { 577 case FIONREAD: 578 __pipe_lock(pipe); 579 count = 0; 580 head = pipe->head; 581 tail = pipe->tail; 582 mask = pipe->ring_size - 1; 583 584 while (tail != head) { 585 count += pipe->bufs[tail & mask].len; 586 tail++; 587 } 588 __pipe_unlock(pipe); 589 590 return put_user(count, (int __user *)arg); 591 default: 592 return -ENOIOCTLCMD; 593 } 594 } 595 596 /* No kernel lock held - fine */ 597 static __poll_t 598 pipe_poll(struct file *filp, poll_table *wait) 599 { 600 __poll_t mask; 601 struct pipe_inode_info *pipe = filp->private_data; 602 unsigned int head, tail; 603 604 /* 605 * Reading pipe state only -- no need for acquiring the semaphore. 606 * 607 * But because this is racy, the code has to add the 608 * entry to the poll table _first_ .. 609 */ 610 if (filp->f_mode & FMODE_READ) 611 poll_wait(filp, &pipe->rd_wait, wait); 612 if (filp->f_mode & FMODE_WRITE) 613 poll_wait(filp, &pipe->wr_wait, wait); 614 615 /* 616 * .. and only then can you do the racy tests. That way, 617 * if something changes and you got it wrong, the poll 618 * table entry will wake you up and fix it. 619 */ 620 head = READ_ONCE(pipe->head); 621 tail = READ_ONCE(pipe->tail); 622 623 mask = 0; 624 if (filp->f_mode & FMODE_READ) { 625 if (!pipe_empty(head, tail)) 626 mask |= EPOLLIN | EPOLLRDNORM; 627 if (!pipe->writers && filp->f_version != pipe->w_counter) 628 mask |= EPOLLHUP; 629 } 630 631 if (filp->f_mode & FMODE_WRITE) { 632 if (!pipe_full(head, tail, pipe->max_usage)) 633 mask |= EPOLLOUT | EPOLLWRNORM; 634 /* 635 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 636 * behave exactly like pipes for poll(). 637 */ 638 if (!pipe->readers) 639 mask |= EPOLLERR; 640 } 641 642 return mask; 643 } 644 645 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 646 { 647 int kill = 0; 648 649 spin_lock(&inode->i_lock); 650 if (!--pipe->files) { 651 inode->i_pipe = NULL; 652 kill = 1; 653 } 654 spin_unlock(&inode->i_lock); 655 656 if (kill) 657 free_pipe_info(pipe); 658 } 659 660 static int 661 pipe_release(struct inode *inode, struct file *file) 662 { 663 struct pipe_inode_info *pipe = file->private_data; 664 665 __pipe_lock(pipe); 666 if (file->f_mode & FMODE_READ) 667 pipe->readers--; 668 if (file->f_mode & FMODE_WRITE) 669 pipe->writers--; 670 671 /* Was that the last reader or writer, but not the other side? */ 672 if (!pipe->readers != !pipe->writers) { 673 wake_up_interruptible_all(&pipe->rd_wait); 674 wake_up_interruptible_all(&pipe->wr_wait); 675 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 676 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 677 } 678 __pipe_unlock(pipe); 679 680 put_pipe_info(inode, pipe); 681 return 0; 682 } 683 684 static int 685 pipe_fasync(int fd, struct file *filp, int on) 686 { 687 struct pipe_inode_info *pipe = filp->private_data; 688 int retval = 0; 689 690 __pipe_lock(pipe); 691 if (filp->f_mode & FMODE_READ) 692 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 693 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 694 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 695 if (retval < 0 && (filp->f_mode & FMODE_READ)) 696 /* this can happen only if on == T */ 697 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 698 } 699 __pipe_unlock(pipe); 700 return retval; 701 } 702 703 static unsigned long account_pipe_buffers(struct user_struct *user, 704 unsigned long old, unsigned long new) 705 { 706 return atomic_long_add_return(new - old, &user->pipe_bufs); 707 } 708 709 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 710 { 711 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 712 713 return soft_limit && user_bufs > soft_limit; 714 } 715 716 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 717 { 718 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 719 720 return hard_limit && user_bufs > hard_limit; 721 } 722 723 static bool is_unprivileged_user(void) 724 { 725 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 726 } 727 728 struct pipe_inode_info *alloc_pipe_info(void) 729 { 730 struct pipe_inode_info *pipe; 731 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 732 struct user_struct *user = get_current_user(); 733 unsigned long user_bufs; 734 unsigned int max_size = READ_ONCE(pipe_max_size); 735 736 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 737 if (pipe == NULL) 738 goto out_free_uid; 739 740 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 741 pipe_bufs = max_size >> PAGE_SHIFT; 742 743 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 744 745 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 746 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 747 pipe_bufs = 1; 748 } 749 750 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 751 goto out_revert_acct; 752 753 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 754 GFP_KERNEL_ACCOUNT); 755 756 if (pipe->bufs) { 757 init_waitqueue_head(&pipe->rd_wait); 758 init_waitqueue_head(&pipe->wr_wait); 759 pipe->r_counter = pipe->w_counter = 1; 760 pipe->max_usage = pipe_bufs; 761 pipe->ring_size = pipe_bufs; 762 pipe->user = user; 763 mutex_init(&pipe->mutex); 764 return pipe; 765 } 766 767 out_revert_acct: 768 (void) account_pipe_buffers(user, pipe_bufs, 0); 769 kfree(pipe); 770 out_free_uid: 771 free_uid(user); 772 return NULL; 773 } 774 775 void free_pipe_info(struct pipe_inode_info *pipe) 776 { 777 int i; 778 779 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0); 780 free_uid(pipe->user); 781 for (i = 0; i < pipe->ring_size; i++) { 782 struct pipe_buffer *buf = pipe->bufs + i; 783 if (buf->ops) 784 pipe_buf_release(pipe, buf); 785 } 786 if (pipe->tmp_page) 787 __free_page(pipe->tmp_page); 788 kfree(pipe->bufs); 789 kfree(pipe); 790 } 791 792 static struct vfsmount *pipe_mnt __read_mostly; 793 794 /* 795 * pipefs_dname() is called from d_path(). 796 */ 797 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 798 { 799 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 800 d_inode(dentry)->i_ino); 801 } 802 803 static const struct dentry_operations pipefs_dentry_operations = { 804 .d_dname = pipefs_dname, 805 }; 806 807 static struct inode * get_pipe_inode(void) 808 { 809 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 810 struct pipe_inode_info *pipe; 811 812 if (!inode) 813 goto fail_inode; 814 815 inode->i_ino = get_next_ino(); 816 817 pipe = alloc_pipe_info(); 818 if (!pipe) 819 goto fail_iput; 820 821 inode->i_pipe = pipe; 822 pipe->files = 2; 823 pipe->readers = pipe->writers = 1; 824 inode->i_fop = &pipefifo_fops; 825 826 /* 827 * Mark the inode dirty from the very beginning, 828 * that way it will never be moved to the dirty 829 * list because "mark_inode_dirty()" will think 830 * that it already _is_ on the dirty list. 831 */ 832 inode->i_state = I_DIRTY; 833 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 834 inode->i_uid = current_fsuid(); 835 inode->i_gid = current_fsgid(); 836 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 837 838 return inode; 839 840 fail_iput: 841 iput(inode); 842 843 fail_inode: 844 return NULL; 845 } 846 847 int create_pipe_files(struct file **res, int flags) 848 { 849 struct inode *inode = get_pipe_inode(); 850 struct file *f; 851 852 if (!inode) 853 return -ENFILE; 854 855 f = alloc_file_pseudo(inode, pipe_mnt, "", 856 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 857 &pipefifo_fops); 858 if (IS_ERR(f)) { 859 free_pipe_info(inode->i_pipe); 860 iput(inode); 861 return PTR_ERR(f); 862 } 863 864 f->private_data = inode->i_pipe; 865 866 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 867 &pipefifo_fops); 868 if (IS_ERR(res[0])) { 869 put_pipe_info(inode, inode->i_pipe); 870 fput(f); 871 return PTR_ERR(res[0]); 872 } 873 res[0]->private_data = inode->i_pipe; 874 res[1] = f; 875 stream_open(inode, res[0]); 876 stream_open(inode, res[1]); 877 return 0; 878 } 879 880 static int __do_pipe_flags(int *fd, struct file **files, int flags) 881 { 882 int error; 883 int fdw, fdr; 884 885 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 886 return -EINVAL; 887 888 error = create_pipe_files(files, flags); 889 if (error) 890 return error; 891 892 error = get_unused_fd_flags(flags); 893 if (error < 0) 894 goto err_read_pipe; 895 fdr = error; 896 897 error = get_unused_fd_flags(flags); 898 if (error < 0) 899 goto err_fdr; 900 fdw = error; 901 902 audit_fd_pair(fdr, fdw); 903 fd[0] = fdr; 904 fd[1] = fdw; 905 return 0; 906 907 err_fdr: 908 put_unused_fd(fdr); 909 err_read_pipe: 910 fput(files[0]); 911 fput(files[1]); 912 return error; 913 } 914 915 int do_pipe_flags(int *fd, int flags) 916 { 917 struct file *files[2]; 918 int error = __do_pipe_flags(fd, files, flags); 919 if (!error) { 920 fd_install(fd[0], files[0]); 921 fd_install(fd[1], files[1]); 922 } 923 return error; 924 } 925 926 /* 927 * sys_pipe() is the normal C calling standard for creating 928 * a pipe. It's not the way Unix traditionally does this, though. 929 */ 930 static int do_pipe2(int __user *fildes, int flags) 931 { 932 struct file *files[2]; 933 int fd[2]; 934 int error; 935 936 error = __do_pipe_flags(fd, files, flags); 937 if (!error) { 938 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 939 fput(files[0]); 940 fput(files[1]); 941 put_unused_fd(fd[0]); 942 put_unused_fd(fd[1]); 943 error = -EFAULT; 944 } else { 945 fd_install(fd[0], files[0]); 946 fd_install(fd[1], files[1]); 947 } 948 } 949 return error; 950 } 951 952 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 953 { 954 return do_pipe2(fildes, flags); 955 } 956 957 SYSCALL_DEFINE1(pipe, int __user *, fildes) 958 { 959 return do_pipe2(fildes, 0); 960 } 961 962 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 963 { 964 int cur = *cnt; 965 966 while (cur == *cnt) { 967 pipe_wait(pipe); 968 if (signal_pending(current)) 969 break; 970 } 971 return cur == *cnt ? -ERESTARTSYS : 0; 972 } 973 974 static void wake_up_partner(struct pipe_inode_info *pipe) 975 { 976 wake_up_interruptible_all(&pipe->rd_wait); 977 wake_up_interruptible_all(&pipe->wr_wait); 978 } 979 980 static int fifo_open(struct inode *inode, struct file *filp) 981 { 982 struct pipe_inode_info *pipe; 983 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 984 int ret; 985 986 filp->f_version = 0; 987 988 spin_lock(&inode->i_lock); 989 if (inode->i_pipe) { 990 pipe = inode->i_pipe; 991 pipe->files++; 992 spin_unlock(&inode->i_lock); 993 } else { 994 spin_unlock(&inode->i_lock); 995 pipe = alloc_pipe_info(); 996 if (!pipe) 997 return -ENOMEM; 998 pipe->files = 1; 999 spin_lock(&inode->i_lock); 1000 if (unlikely(inode->i_pipe)) { 1001 inode->i_pipe->files++; 1002 spin_unlock(&inode->i_lock); 1003 free_pipe_info(pipe); 1004 pipe = inode->i_pipe; 1005 } else { 1006 inode->i_pipe = pipe; 1007 spin_unlock(&inode->i_lock); 1008 } 1009 } 1010 filp->private_data = pipe; 1011 /* OK, we have a pipe and it's pinned down */ 1012 1013 __pipe_lock(pipe); 1014 1015 /* We can only do regular read/write on fifos */ 1016 stream_open(inode, filp); 1017 1018 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1019 case FMODE_READ: 1020 /* 1021 * O_RDONLY 1022 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1023 * opened, even when there is no process writing the FIFO. 1024 */ 1025 pipe->r_counter++; 1026 if (pipe->readers++ == 0) 1027 wake_up_partner(pipe); 1028 1029 if (!is_pipe && !pipe->writers) { 1030 if ((filp->f_flags & O_NONBLOCK)) { 1031 /* suppress EPOLLHUP until we have 1032 * seen a writer */ 1033 filp->f_version = pipe->w_counter; 1034 } else { 1035 if (wait_for_partner(pipe, &pipe->w_counter)) 1036 goto err_rd; 1037 } 1038 } 1039 break; 1040 1041 case FMODE_WRITE: 1042 /* 1043 * O_WRONLY 1044 * POSIX.1 says that O_NONBLOCK means return -1 with 1045 * errno=ENXIO when there is no process reading the FIFO. 1046 */ 1047 ret = -ENXIO; 1048 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1049 goto err; 1050 1051 pipe->w_counter++; 1052 if (!pipe->writers++) 1053 wake_up_partner(pipe); 1054 1055 if (!is_pipe && !pipe->readers) { 1056 if (wait_for_partner(pipe, &pipe->r_counter)) 1057 goto err_wr; 1058 } 1059 break; 1060 1061 case FMODE_READ | FMODE_WRITE: 1062 /* 1063 * O_RDWR 1064 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1065 * This implementation will NEVER block on a O_RDWR open, since 1066 * the process can at least talk to itself. 1067 */ 1068 1069 pipe->readers++; 1070 pipe->writers++; 1071 pipe->r_counter++; 1072 pipe->w_counter++; 1073 if (pipe->readers == 1 || pipe->writers == 1) 1074 wake_up_partner(pipe); 1075 break; 1076 1077 default: 1078 ret = -EINVAL; 1079 goto err; 1080 } 1081 1082 /* Ok! */ 1083 __pipe_unlock(pipe); 1084 return 0; 1085 1086 err_rd: 1087 if (!--pipe->readers) 1088 wake_up_interruptible(&pipe->wr_wait); 1089 ret = -ERESTARTSYS; 1090 goto err; 1091 1092 err_wr: 1093 if (!--pipe->writers) 1094 wake_up_interruptible_all(&pipe->rd_wait); 1095 ret = -ERESTARTSYS; 1096 goto err; 1097 1098 err: 1099 __pipe_unlock(pipe); 1100 1101 put_pipe_info(inode, pipe); 1102 return ret; 1103 } 1104 1105 const struct file_operations pipefifo_fops = { 1106 .open = fifo_open, 1107 .llseek = no_llseek, 1108 .read_iter = pipe_read, 1109 .write_iter = pipe_write, 1110 .poll = pipe_poll, 1111 .unlocked_ioctl = pipe_ioctl, 1112 .release = pipe_release, 1113 .fasync = pipe_fasync, 1114 }; 1115 1116 /* 1117 * Currently we rely on the pipe array holding a power-of-2 number 1118 * of pages. Returns 0 on error. 1119 */ 1120 unsigned int round_pipe_size(unsigned long size) 1121 { 1122 if (size > (1U << 31)) 1123 return 0; 1124 1125 /* Minimum pipe size, as required by POSIX */ 1126 if (size < PAGE_SIZE) 1127 return PAGE_SIZE; 1128 1129 return roundup_pow_of_two(size); 1130 } 1131 1132 /* 1133 * Allocate a new array of pipe buffers and copy the info over. Returns the 1134 * pipe size if successful, or return -ERROR on error. 1135 */ 1136 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1137 { 1138 struct pipe_buffer *bufs; 1139 unsigned int size, nr_slots, head, tail, mask, n; 1140 unsigned long user_bufs; 1141 long ret = 0; 1142 1143 size = round_pipe_size(arg); 1144 nr_slots = size >> PAGE_SHIFT; 1145 1146 if (!nr_slots) 1147 return -EINVAL; 1148 1149 /* 1150 * If trying to increase the pipe capacity, check that an 1151 * unprivileged user is not trying to exceed various limits 1152 * (soft limit check here, hard limit check just below). 1153 * Decreasing the pipe capacity is always permitted, even 1154 * if the user is currently over a limit. 1155 */ 1156 if (nr_slots > pipe->ring_size && 1157 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1158 return -EPERM; 1159 1160 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots); 1161 1162 if (nr_slots > pipe->ring_size && 1163 (too_many_pipe_buffers_hard(user_bufs) || 1164 too_many_pipe_buffers_soft(user_bufs)) && 1165 is_unprivileged_user()) { 1166 ret = -EPERM; 1167 goto out_revert_acct; 1168 } 1169 1170 /* 1171 * We can shrink the pipe, if arg is greater than the ring occupancy. 1172 * Since we don't expect a lot of shrink+grow operations, just free and 1173 * allocate again like we would do for growing. If the pipe currently 1174 * contains more buffers than arg, then return busy. 1175 */ 1176 mask = pipe->ring_size - 1; 1177 head = pipe->head; 1178 tail = pipe->tail; 1179 n = pipe_occupancy(pipe->head, pipe->tail); 1180 if (nr_slots < n) { 1181 ret = -EBUSY; 1182 goto out_revert_acct; 1183 } 1184 1185 bufs = kcalloc(nr_slots, sizeof(*bufs), 1186 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1187 if (unlikely(!bufs)) { 1188 ret = -ENOMEM; 1189 goto out_revert_acct; 1190 } 1191 1192 /* 1193 * The pipe array wraps around, so just start the new one at zero 1194 * and adjust the indices. 1195 */ 1196 if (n > 0) { 1197 unsigned int h = head & mask; 1198 unsigned int t = tail & mask; 1199 if (h > t) { 1200 memcpy(bufs, pipe->bufs + t, 1201 n * sizeof(struct pipe_buffer)); 1202 } else { 1203 unsigned int tsize = pipe->ring_size - t; 1204 if (h > 0) 1205 memcpy(bufs + tsize, pipe->bufs, 1206 h * sizeof(struct pipe_buffer)); 1207 memcpy(bufs, pipe->bufs + t, 1208 tsize * sizeof(struct pipe_buffer)); 1209 } 1210 } 1211 1212 head = n; 1213 tail = 0; 1214 1215 kfree(pipe->bufs); 1216 pipe->bufs = bufs; 1217 pipe->ring_size = nr_slots; 1218 pipe->max_usage = nr_slots; 1219 pipe->tail = tail; 1220 pipe->head = head; 1221 1222 /* This might have made more room for writers */ 1223 wake_up_interruptible(&pipe->wr_wait); 1224 return pipe->max_usage * PAGE_SIZE; 1225 1226 out_revert_acct: 1227 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size); 1228 return ret; 1229 } 1230 1231 /* 1232 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1233 * location, so checking ->i_pipe is not enough to verify that this is a 1234 * pipe. 1235 */ 1236 struct pipe_inode_info *get_pipe_info(struct file *file) 1237 { 1238 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1239 } 1240 1241 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1242 { 1243 struct pipe_inode_info *pipe; 1244 long ret; 1245 1246 pipe = get_pipe_info(file); 1247 if (!pipe) 1248 return -EBADF; 1249 1250 __pipe_lock(pipe); 1251 1252 switch (cmd) { 1253 case F_SETPIPE_SZ: 1254 ret = pipe_set_size(pipe, arg); 1255 break; 1256 case F_GETPIPE_SZ: 1257 ret = pipe->max_usage * PAGE_SIZE; 1258 break; 1259 default: 1260 ret = -EINVAL; 1261 break; 1262 } 1263 1264 __pipe_unlock(pipe); 1265 return ret; 1266 } 1267 1268 static const struct super_operations pipefs_ops = { 1269 .destroy_inode = free_inode_nonrcu, 1270 .statfs = simple_statfs, 1271 }; 1272 1273 /* 1274 * pipefs should _never_ be mounted by userland - too much of security hassle, 1275 * no real gain from having the whole whorehouse mounted. So we don't need 1276 * any operations on the root directory. However, we need a non-trivial 1277 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1278 */ 1279 1280 static int pipefs_init_fs_context(struct fs_context *fc) 1281 { 1282 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1283 if (!ctx) 1284 return -ENOMEM; 1285 ctx->ops = &pipefs_ops; 1286 ctx->dops = &pipefs_dentry_operations; 1287 return 0; 1288 } 1289 1290 static struct file_system_type pipe_fs_type = { 1291 .name = "pipefs", 1292 .init_fs_context = pipefs_init_fs_context, 1293 .kill_sb = kill_anon_super, 1294 }; 1295 1296 static int __init init_pipe_fs(void) 1297 { 1298 int err = register_filesystem(&pipe_fs_type); 1299 1300 if (!err) { 1301 pipe_mnt = kern_mount(&pipe_fs_type); 1302 if (IS_ERR(pipe_mnt)) { 1303 err = PTR_ERR(pipe_mnt); 1304 unregister_filesystem(&pipe_fs_type); 1305 } 1306 } 1307 return err; 1308 } 1309 1310 fs_initcall(init_pipe_fs); 1311