1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 29 #include <linux/uaccess.h> 30 #include <asm/ioctls.h> 31 32 #include "internal.h" 33 34 /* 35 * The max size that a non-root user is allowed to grow the pipe. Can 36 * be set by root in /proc/sys/fs/pipe-max-size 37 */ 38 unsigned int pipe_max_size = 1048576; 39 40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 41 * matches default values. 42 */ 43 unsigned long pipe_user_pages_hard; 44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 45 46 /* 47 * We use head and tail indices that aren't masked off, except at the point of 48 * dereference, but rather they're allowed to wrap naturally. This means there 49 * isn't a dead spot in the buffer, but the ring has to be a power of two and 50 * <= 2^31. 51 * -- David Howells 2019-09-23. 52 * 53 * Reads with count = 0 should always return 0. 54 * -- Julian Bradfield 1999-06-07. 55 * 56 * FIFOs and Pipes now generate SIGIO for both readers and writers. 57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 58 * 59 * pipe_read & write cleanup 60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 61 */ 62 63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 64 { 65 if (pipe->files) 66 mutex_lock_nested(&pipe->mutex, subclass); 67 } 68 69 void pipe_lock(struct pipe_inode_info *pipe) 70 { 71 /* 72 * pipe_lock() nests non-pipe inode locks (for writing to a file) 73 */ 74 pipe_lock_nested(pipe, I_MUTEX_PARENT); 75 } 76 EXPORT_SYMBOL(pipe_lock); 77 78 void pipe_unlock(struct pipe_inode_info *pipe) 79 { 80 if (pipe->files) 81 mutex_unlock(&pipe->mutex); 82 } 83 EXPORT_SYMBOL(pipe_unlock); 84 85 static inline void __pipe_lock(struct pipe_inode_info *pipe) 86 { 87 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 88 } 89 90 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 91 { 92 mutex_unlock(&pipe->mutex); 93 } 94 95 void pipe_double_lock(struct pipe_inode_info *pipe1, 96 struct pipe_inode_info *pipe2) 97 { 98 BUG_ON(pipe1 == pipe2); 99 100 if (pipe1 < pipe2) { 101 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 102 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 103 } else { 104 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 105 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 106 } 107 } 108 109 /* Drop the inode semaphore and wait for a pipe event, atomically */ 110 void pipe_wait(struct pipe_inode_info *pipe) 111 { 112 DEFINE_WAIT(rdwait); 113 DEFINE_WAIT(wrwait); 114 115 /* 116 * Pipes are system-local resources, so sleeping on them 117 * is considered a noninteractive wait: 118 */ 119 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 120 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE); 121 pipe_unlock(pipe); 122 schedule(); 123 finish_wait(&pipe->rd_wait, &rdwait); 124 finish_wait(&pipe->wr_wait, &wrwait); 125 pipe_lock(pipe); 126 } 127 128 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 129 struct pipe_buffer *buf) 130 { 131 struct page *page = buf->page; 132 133 /* 134 * If nobody else uses this page, and we don't already have a 135 * temporary page, let's keep track of it as a one-deep 136 * allocation cache. (Otherwise just release our reference to it) 137 */ 138 if (page_count(page) == 1 && !pipe->tmp_page) 139 pipe->tmp_page = page; 140 else 141 put_page(page); 142 } 143 144 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 145 struct pipe_buffer *buf) 146 { 147 struct page *page = buf->page; 148 149 if (page_count(page) != 1) 150 return false; 151 memcg_kmem_uncharge_page(page, 0); 152 __SetPageLocked(page); 153 return true; 154 } 155 156 /** 157 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 158 * @pipe: the pipe that the buffer belongs to 159 * @buf: the buffer to attempt to steal 160 * 161 * Description: 162 * This function attempts to steal the &struct page attached to 163 * @buf. If successful, this function returns 0 and returns with 164 * the page locked. The caller may then reuse the page for whatever 165 * he wishes; the typical use is insertion into a different file 166 * page cache. 167 */ 168 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 169 struct pipe_buffer *buf) 170 { 171 struct page *page = buf->page; 172 173 /* 174 * A reference of one is golden, that means that the owner of this 175 * page is the only one holding a reference to it. lock the page 176 * and return OK. 177 */ 178 if (page_count(page) == 1) { 179 lock_page(page); 180 return true; 181 } 182 return false; 183 } 184 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 185 186 /** 187 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 188 * @pipe: the pipe that the buffer belongs to 189 * @buf: the buffer to get a reference to 190 * 191 * Description: 192 * This function grabs an extra reference to @buf. It's used in 193 * in the tee() system call, when we duplicate the buffers in one 194 * pipe into another. 195 */ 196 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 197 { 198 return try_get_page(buf->page); 199 } 200 EXPORT_SYMBOL(generic_pipe_buf_get); 201 202 /** 203 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 204 * @pipe: the pipe that the buffer belongs to 205 * @buf: the buffer to put a reference to 206 * 207 * Description: 208 * This function releases a reference to @buf. 209 */ 210 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 211 struct pipe_buffer *buf) 212 { 213 put_page(buf->page); 214 } 215 EXPORT_SYMBOL(generic_pipe_buf_release); 216 217 static const struct pipe_buf_operations anon_pipe_buf_ops = { 218 .release = anon_pipe_buf_release, 219 .try_steal = anon_pipe_buf_try_steal, 220 .get = generic_pipe_buf_get, 221 }; 222 223 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 224 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 225 { 226 unsigned int head = READ_ONCE(pipe->head); 227 unsigned int tail = READ_ONCE(pipe->tail); 228 unsigned int writers = READ_ONCE(pipe->writers); 229 230 return !pipe_empty(head, tail) || !writers; 231 } 232 233 static ssize_t 234 pipe_read(struct kiocb *iocb, struct iov_iter *to) 235 { 236 size_t total_len = iov_iter_count(to); 237 struct file *filp = iocb->ki_filp; 238 struct pipe_inode_info *pipe = filp->private_data; 239 bool was_full, wake_next_reader = false; 240 ssize_t ret; 241 242 /* Null read succeeds. */ 243 if (unlikely(total_len == 0)) 244 return 0; 245 246 ret = 0; 247 __pipe_lock(pipe); 248 249 /* 250 * We only wake up writers if the pipe was full when we started 251 * reading in order to avoid unnecessary wakeups. 252 * 253 * But when we do wake up writers, we do so using a sync wakeup 254 * (WF_SYNC), because we want them to get going and generate more 255 * data for us. 256 */ 257 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 258 for (;;) { 259 unsigned int head = pipe->head; 260 unsigned int tail = pipe->tail; 261 unsigned int mask = pipe->ring_size - 1; 262 263 #ifdef CONFIG_WATCH_QUEUE 264 if (pipe->note_loss) { 265 struct watch_notification n; 266 267 if (total_len < 8) { 268 if (ret == 0) 269 ret = -ENOBUFS; 270 break; 271 } 272 273 n.type = WATCH_TYPE_META; 274 n.subtype = WATCH_META_LOSS_NOTIFICATION; 275 n.info = watch_sizeof(n); 276 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 277 if (ret == 0) 278 ret = -EFAULT; 279 break; 280 } 281 ret += sizeof(n); 282 total_len -= sizeof(n); 283 pipe->note_loss = false; 284 } 285 #endif 286 287 if (!pipe_empty(head, tail)) { 288 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 289 size_t chars = buf->len; 290 size_t written; 291 int error; 292 293 if (chars > total_len) { 294 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 295 if (ret == 0) 296 ret = -ENOBUFS; 297 break; 298 } 299 chars = total_len; 300 } 301 302 error = pipe_buf_confirm(pipe, buf); 303 if (error) { 304 if (!ret) 305 ret = error; 306 break; 307 } 308 309 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 310 if (unlikely(written < chars)) { 311 if (!ret) 312 ret = -EFAULT; 313 break; 314 } 315 ret += chars; 316 buf->offset += chars; 317 buf->len -= chars; 318 319 /* Was it a packet buffer? Clean up and exit */ 320 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 321 total_len = chars; 322 buf->len = 0; 323 } 324 325 if (!buf->len) { 326 pipe_buf_release(pipe, buf); 327 spin_lock_irq(&pipe->rd_wait.lock); 328 #ifdef CONFIG_WATCH_QUEUE 329 if (buf->flags & PIPE_BUF_FLAG_LOSS) 330 pipe->note_loss = true; 331 #endif 332 tail++; 333 pipe->tail = tail; 334 spin_unlock_irq(&pipe->rd_wait.lock); 335 } 336 total_len -= chars; 337 if (!total_len) 338 break; /* common path: read succeeded */ 339 if (!pipe_empty(head, tail)) /* More to do? */ 340 continue; 341 } 342 343 if (!pipe->writers) 344 break; 345 if (ret) 346 break; 347 if (filp->f_flags & O_NONBLOCK) { 348 ret = -EAGAIN; 349 break; 350 } 351 __pipe_unlock(pipe); 352 353 /* 354 * We only get here if we didn't actually read anything. 355 * 356 * However, we could have seen (and removed) a zero-sized 357 * pipe buffer, and might have made space in the buffers 358 * that way. 359 * 360 * You can't make zero-sized pipe buffers by doing an empty 361 * write (not even in packet mode), but they can happen if 362 * the writer gets an EFAULT when trying to fill a buffer 363 * that already got allocated and inserted in the buffer 364 * array. 365 * 366 * So we still need to wake up any pending writers in the 367 * _very_ unlikely case that the pipe was full, but we got 368 * no data. 369 */ 370 if (unlikely(was_full)) { 371 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 372 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 373 } 374 375 /* 376 * But because we didn't read anything, at this point we can 377 * just return directly with -ERESTARTSYS if we're interrupted, 378 * since we've done any required wakeups and there's no need 379 * to mark anything accessed. And we've dropped the lock. 380 */ 381 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 382 return -ERESTARTSYS; 383 384 __pipe_lock(pipe); 385 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 386 wake_next_reader = true; 387 } 388 if (pipe_empty(pipe->head, pipe->tail)) 389 wake_next_reader = false; 390 __pipe_unlock(pipe); 391 392 if (was_full) { 393 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 394 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 395 } 396 if (wake_next_reader) 397 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 398 if (ret > 0) 399 file_accessed(filp); 400 return ret; 401 } 402 403 static inline int is_packetized(struct file *file) 404 { 405 return (file->f_flags & O_DIRECT) != 0; 406 } 407 408 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 409 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 410 { 411 unsigned int head = READ_ONCE(pipe->head); 412 unsigned int tail = READ_ONCE(pipe->tail); 413 unsigned int max_usage = READ_ONCE(pipe->max_usage); 414 415 return !pipe_full(head, tail, max_usage) || 416 !READ_ONCE(pipe->readers); 417 } 418 419 static ssize_t 420 pipe_write(struct kiocb *iocb, struct iov_iter *from) 421 { 422 struct file *filp = iocb->ki_filp; 423 struct pipe_inode_info *pipe = filp->private_data; 424 unsigned int head; 425 ssize_t ret = 0; 426 size_t total_len = iov_iter_count(from); 427 ssize_t chars; 428 bool was_empty = false; 429 bool wake_next_writer = false; 430 431 /* Null write succeeds. */ 432 if (unlikely(total_len == 0)) 433 return 0; 434 435 __pipe_lock(pipe); 436 437 if (!pipe->readers) { 438 send_sig(SIGPIPE, current, 0); 439 ret = -EPIPE; 440 goto out; 441 } 442 443 #ifdef CONFIG_WATCH_QUEUE 444 if (pipe->watch_queue) { 445 ret = -EXDEV; 446 goto out; 447 } 448 #endif 449 450 /* 451 * Only wake up if the pipe started out empty, since 452 * otherwise there should be no readers waiting. 453 * 454 * If it wasn't empty we try to merge new data into 455 * the last buffer. 456 * 457 * That naturally merges small writes, but it also 458 * page-aligs the rest of the writes for large writes 459 * spanning multiple pages. 460 */ 461 head = pipe->head; 462 was_empty = pipe_empty(head, pipe->tail); 463 chars = total_len & (PAGE_SIZE-1); 464 if (chars && !was_empty) { 465 unsigned int mask = pipe->ring_size - 1; 466 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 467 int offset = buf->offset + buf->len; 468 469 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 470 offset + chars <= PAGE_SIZE) { 471 ret = pipe_buf_confirm(pipe, buf); 472 if (ret) 473 goto out; 474 475 ret = copy_page_from_iter(buf->page, offset, chars, from); 476 if (unlikely(ret < chars)) { 477 ret = -EFAULT; 478 goto out; 479 } 480 481 buf->len += ret; 482 if (!iov_iter_count(from)) 483 goto out; 484 } 485 } 486 487 for (;;) { 488 if (!pipe->readers) { 489 send_sig(SIGPIPE, current, 0); 490 if (!ret) 491 ret = -EPIPE; 492 break; 493 } 494 495 head = pipe->head; 496 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 497 unsigned int mask = pipe->ring_size - 1; 498 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 499 struct page *page = pipe->tmp_page; 500 int copied; 501 502 if (!page) { 503 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 504 if (unlikely(!page)) { 505 ret = ret ? : -ENOMEM; 506 break; 507 } 508 pipe->tmp_page = page; 509 } 510 511 /* Allocate a slot in the ring in advance and attach an 512 * empty buffer. If we fault or otherwise fail to use 513 * it, either the reader will consume it or it'll still 514 * be there for the next write. 515 */ 516 spin_lock_irq(&pipe->rd_wait.lock); 517 518 head = pipe->head; 519 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 520 spin_unlock_irq(&pipe->rd_wait.lock); 521 continue; 522 } 523 524 pipe->head = head + 1; 525 spin_unlock_irq(&pipe->rd_wait.lock); 526 527 /* Insert it into the buffer array */ 528 buf = &pipe->bufs[head & mask]; 529 buf->page = page; 530 buf->ops = &anon_pipe_buf_ops; 531 buf->offset = 0; 532 buf->len = 0; 533 if (is_packetized(filp)) 534 buf->flags = PIPE_BUF_FLAG_PACKET; 535 else 536 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 537 pipe->tmp_page = NULL; 538 539 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 540 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 541 if (!ret) 542 ret = -EFAULT; 543 break; 544 } 545 ret += copied; 546 buf->offset = 0; 547 buf->len = copied; 548 549 if (!iov_iter_count(from)) 550 break; 551 } 552 553 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 554 continue; 555 556 /* Wait for buffer space to become available. */ 557 if (filp->f_flags & O_NONBLOCK) { 558 if (!ret) 559 ret = -EAGAIN; 560 break; 561 } 562 if (signal_pending(current)) { 563 if (!ret) 564 ret = -ERESTARTSYS; 565 break; 566 } 567 568 /* 569 * We're going to release the pipe lock and wait for more 570 * space. We wake up any readers if necessary, and then 571 * after waiting we need to re-check whether the pipe 572 * become empty while we dropped the lock. 573 */ 574 __pipe_unlock(pipe); 575 if (was_empty) { 576 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 577 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 578 } 579 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 580 __pipe_lock(pipe); 581 was_empty = pipe_empty(pipe->head, pipe->tail); 582 wake_next_writer = true; 583 } 584 out: 585 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 586 wake_next_writer = false; 587 __pipe_unlock(pipe); 588 589 /* 590 * If we do do a wakeup event, we do a 'sync' wakeup, because we 591 * want the reader to start processing things asap, rather than 592 * leave the data pending. 593 * 594 * This is particularly important for small writes, because of 595 * how (for example) the GNU make jobserver uses small writes to 596 * wake up pending jobs 597 */ 598 if (was_empty) { 599 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 600 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 601 } 602 if (wake_next_writer) 603 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 604 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 605 int err = file_update_time(filp); 606 if (err) 607 ret = err; 608 sb_end_write(file_inode(filp)->i_sb); 609 } 610 return ret; 611 } 612 613 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 614 { 615 struct pipe_inode_info *pipe = filp->private_data; 616 int count, head, tail, mask; 617 618 switch (cmd) { 619 case FIONREAD: 620 __pipe_lock(pipe); 621 count = 0; 622 head = pipe->head; 623 tail = pipe->tail; 624 mask = pipe->ring_size - 1; 625 626 while (tail != head) { 627 count += pipe->bufs[tail & mask].len; 628 tail++; 629 } 630 __pipe_unlock(pipe); 631 632 return put_user(count, (int __user *)arg); 633 634 #ifdef CONFIG_WATCH_QUEUE 635 case IOC_WATCH_QUEUE_SET_SIZE: { 636 int ret; 637 __pipe_lock(pipe); 638 ret = watch_queue_set_size(pipe, arg); 639 __pipe_unlock(pipe); 640 return ret; 641 } 642 643 case IOC_WATCH_QUEUE_SET_FILTER: 644 return watch_queue_set_filter( 645 pipe, (struct watch_notification_filter __user *)arg); 646 #endif 647 648 default: 649 return -ENOIOCTLCMD; 650 } 651 } 652 653 /* No kernel lock held - fine */ 654 static __poll_t 655 pipe_poll(struct file *filp, poll_table *wait) 656 { 657 __poll_t mask; 658 struct pipe_inode_info *pipe = filp->private_data; 659 unsigned int head, tail; 660 661 /* 662 * Reading pipe state only -- no need for acquiring the semaphore. 663 * 664 * But because this is racy, the code has to add the 665 * entry to the poll table _first_ .. 666 */ 667 if (filp->f_mode & FMODE_READ) 668 poll_wait(filp, &pipe->rd_wait, wait); 669 if (filp->f_mode & FMODE_WRITE) 670 poll_wait(filp, &pipe->wr_wait, wait); 671 672 /* 673 * .. and only then can you do the racy tests. That way, 674 * if something changes and you got it wrong, the poll 675 * table entry will wake you up and fix it. 676 */ 677 head = READ_ONCE(pipe->head); 678 tail = READ_ONCE(pipe->tail); 679 680 mask = 0; 681 if (filp->f_mode & FMODE_READ) { 682 if (!pipe_empty(head, tail)) 683 mask |= EPOLLIN | EPOLLRDNORM; 684 if (!pipe->writers && filp->f_version != pipe->w_counter) 685 mask |= EPOLLHUP; 686 } 687 688 if (filp->f_mode & FMODE_WRITE) { 689 if (!pipe_full(head, tail, pipe->max_usage)) 690 mask |= EPOLLOUT | EPOLLWRNORM; 691 /* 692 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 693 * behave exactly like pipes for poll(). 694 */ 695 if (!pipe->readers) 696 mask |= EPOLLERR; 697 } 698 699 return mask; 700 } 701 702 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 703 { 704 int kill = 0; 705 706 spin_lock(&inode->i_lock); 707 if (!--pipe->files) { 708 inode->i_pipe = NULL; 709 kill = 1; 710 } 711 spin_unlock(&inode->i_lock); 712 713 if (kill) 714 free_pipe_info(pipe); 715 } 716 717 static int 718 pipe_release(struct inode *inode, struct file *file) 719 { 720 struct pipe_inode_info *pipe = file->private_data; 721 722 __pipe_lock(pipe); 723 if (file->f_mode & FMODE_READ) 724 pipe->readers--; 725 if (file->f_mode & FMODE_WRITE) 726 pipe->writers--; 727 728 /* Was that the last reader or writer, but not the other side? */ 729 if (!pipe->readers != !pipe->writers) { 730 wake_up_interruptible_all(&pipe->rd_wait); 731 wake_up_interruptible_all(&pipe->wr_wait); 732 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 733 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 734 } 735 __pipe_unlock(pipe); 736 737 put_pipe_info(inode, pipe); 738 return 0; 739 } 740 741 static int 742 pipe_fasync(int fd, struct file *filp, int on) 743 { 744 struct pipe_inode_info *pipe = filp->private_data; 745 int retval = 0; 746 747 __pipe_lock(pipe); 748 if (filp->f_mode & FMODE_READ) 749 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 750 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 751 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 752 if (retval < 0 && (filp->f_mode & FMODE_READ)) 753 /* this can happen only if on == T */ 754 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 755 } 756 __pipe_unlock(pipe); 757 return retval; 758 } 759 760 unsigned long account_pipe_buffers(struct user_struct *user, 761 unsigned long old, unsigned long new) 762 { 763 return atomic_long_add_return(new - old, &user->pipe_bufs); 764 } 765 766 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 767 { 768 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 769 770 return soft_limit && user_bufs > soft_limit; 771 } 772 773 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 774 { 775 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 776 777 return hard_limit && user_bufs > hard_limit; 778 } 779 780 bool pipe_is_unprivileged_user(void) 781 { 782 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 783 } 784 785 struct pipe_inode_info *alloc_pipe_info(void) 786 { 787 struct pipe_inode_info *pipe; 788 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 789 struct user_struct *user = get_current_user(); 790 unsigned long user_bufs; 791 unsigned int max_size = READ_ONCE(pipe_max_size); 792 793 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 794 if (pipe == NULL) 795 goto out_free_uid; 796 797 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 798 pipe_bufs = max_size >> PAGE_SHIFT; 799 800 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 801 802 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 803 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 804 pipe_bufs = 1; 805 } 806 807 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 808 goto out_revert_acct; 809 810 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 811 GFP_KERNEL_ACCOUNT); 812 813 if (pipe->bufs) { 814 init_waitqueue_head(&pipe->rd_wait); 815 init_waitqueue_head(&pipe->wr_wait); 816 pipe->r_counter = pipe->w_counter = 1; 817 pipe->max_usage = pipe_bufs; 818 pipe->ring_size = pipe_bufs; 819 pipe->nr_accounted = pipe_bufs; 820 pipe->user = user; 821 mutex_init(&pipe->mutex); 822 return pipe; 823 } 824 825 out_revert_acct: 826 (void) account_pipe_buffers(user, pipe_bufs, 0); 827 kfree(pipe); 828 out_free_uid: 829 free_uid(user); 830 return NULL; 831 } 832 833 void free_pipe_info(struct pipe_inode_info *pipe) 834 { 835 int i; 836 837 #ifdef CONFIG_WATCH_QUEUE 838 if (pipe->watch_queue) { 839 watch_queue_clear(pipe->watch_queue); 840 put_watch_queue(pipe->watch_queue); 841 } 842 #endif 843 844 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 845 free_uid(pipe->user); 846 for (i = 0; i < pipe->ring_size; i++) { 847 struct pipe_buffer *buf = pipe->bufs + i; 848 if (buf->ops) 849 pipe_buf_release(pipe, buf); 850 } 851 if (pipe->tmp_page) 852 __free_page(pipe->tmp_page); 853 kfree(pipe->bufs); 854 kfree(pipe); 855 } 856 857 static struct vfsmount *pipe_mnt __read_mostly; 858 859 /* 860 * pipefs_dname() is called from d_path(). 861 */ 862 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 863 { 864 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 865 d_inode(dentry)->i_ino); 866 } 867 868 static const struct dentry_operations pipefs_dentry_operations = { 869 .d_dname = pipefs_dname, 870 }; 871 872 static struct inode * get_pipe_inode(void) 873 { 874 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 875 struct pipe_inode_info *pipe; 876 877 if (!inode) 878 goto fail_inode; 879 880 inode->i_ino = get_next_ino(); 881 882 pipe = alloc_pipe_info(); 883 if (!pipe) 884 goto fail_iput; 885 886 inode->i_pipe = pipe; 887 pipe->files = 2; 888 pipe->readers = pipe->writers = 1; 889 inode->i_fop = &pipefifo_fops; 890 891 /* 892 * Mark the inode dirty from the very beginning, 893 * that way it will never be moved to the dirty 894 * list because "mark_inode_dirty()" will think 895 * that it already _is_ on the dirty list. 896 */ 897 inode->i_state = I_DIRTY; 898 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 899 inode->i_uid = current_fsuid(); 900 inode->i_gid = current_fsgid(); 901 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 902 903 return inode; 904 905 fail_iput: 906 iput(inode); 907 908 fail_inode: 909 return NULL; 910 } 911 912 int create_pipe_files(struct file **res, int flags) 913 { 914 struct inode *inode = get_pipe_inode(); 915 struct file *f; 916 917 if (!inode) 918 return -ENFILE; 919 920 if (flags & O_NOTIFICATION_PIPE) { 921 #ifdef CONFIG_WATCH_QUEUE 922 if (watch_queue_init(inode->i_pipe) < 0) { 923 iput(inode); 924 return -ENOMEM; 925 } 926 #else 927 return -ENOPKG; 928 #endif 929 } 930 931 f = alloc_file_pseudo(inode, pipe_mnt, "", 932 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 933 &pipefifo_fops); 934 if (IS_ERR(f)) { 935 free_pipe_info(inode->i_pipe); 936 iput(inode); 937 return PTR_ERR(f); 938 } 939 940 f->private_data = inode->i_pipe; 941 942 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 943 &pipefifo_fops); 944 if (IS_ERR(res[0])) { 945 put_pipe_info(inode, inode->i_pipe); 946 fput(f); 947 return PTR_ERR(res[0]); 948 } 949 res[0]->private_data = inode->i_pipe; 950 res[1] = f; 951 stream_open(inode, res[0]); 952 stream_open(inode, res[1]); 953 return 0; 954 } 955 956 static int __do_pipe_flags(int *fd, struct file **files, int flags) 957 { 958 int error; 959 int fdw, fdr; 960 961 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 962 return -EINVAL; 963 964 error = create_pipe_files(files, flags); 965 if (error) 966 return error; 967 968 error = get_unused_fd_flags(flags); 969 if (error < 0) 970 goto err_read_pipe; 971 fdr = error; 972 973 error = get_unused_fd_flags(flags); 974 if (error < 0) 975 goto err_fdr; 976 fdw = error; 977 978 audit_fd_pair(fdr, fdw); 979 fd[0] = fdr; 980 fd[1] = fdw; 981 return 0; 982 983 err_fdr: 984 put_unused_fd(fdr); 985 err_read_pipe: 986 fput(files[0]); 987 fput(files[1]); 988 return error; 989 } 990 991 int do_pipe_flags(int *fd, int flags) 992 { 993 struct file *files[2]; 994 int error = __do_pipe_flags(fd, files, flags); 995 if (!error) { 996 fd_install(fd[0], files[0]); 997 fd_install(fd[1], files[1]); 998 } 999 return error; 1000 } 1001 1002 /* 1003 * sys_pipe() is the normal C calling standard for creating 1004 * a pipe. It's not the way Unix traditionally does this, though. 1005 */ 1006 static int do_pipe2(int __user *fildes, int flags) 1007 { 1008 struct file *files[2]; 1009 int fd[2]; 1010 int error; 1011 1012 error = __do_pipe_flags(fd, files, flags); 1013 if (!error) { 1014 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1015 fput(files[0]); 1016 fput(files[1]); 1017 put_unused_fd(fd[0]); 1018 put_unused_fd(fd[1]); 1019 error = -EFAULT; 1020 } else { 1021 fd_install(fd[0], files[0]); 1022 fd_install(fd[1], files[1]); 1023 } 1024 } 1025 return error; 1026 } 1027 1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1029 { 1030 return do_pipe2(fildes, flags); 1031 } 1032 1033 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1034 { 1035 return do_pipe2(fildes, 0); 1036 } 1037 1038 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1039 { 1040 int cur = *cnt; 1041 1042 while (cur == *cnt) { 1043 pipe_wait(pipe); 1044 if (signal_pending(current)) 1045 break; 1046 } 1047 return cur == *cnt ? -ERESTARTSYS : 0; 1048 } 1049 1050 static void wake_up_partner(struct pipe_inode_info *pipe) 1051 { 1052 wake_up_interruptible_all(&pipe->rd_wait); 1053 wake_up_interruptible_all(&pipe->wr_wait); 1054 } 1055 1056 static int fifo_open(struct inode *inode, struct file *filp) 1057 { 1058 struct pipe_inode_info *pipe; 1059 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1060 int ret; 1061 1062 filp->f_version = 0; 1063 1064 spin_lock(&inode->i_lock); 1065 if (inode->i_pipe) { 1066 pipe = inode->i_pipe; 1067 pipe->files++; 1068 spin_unlock(&inode->i_lock); 1069 } else { 1070 spin_unlock(&inode->i_lock); 1071 pipe = alloc_pipe_info(); 1072 if (!pipe) 1073 return -ENOMEM; 1074 pipe->files = 1; 1075 spin_lock(&inode->i_lock); 1076 if (unlikely(inode->i_pipe)) { 1077 inode->i_pipe->files++; 1078 spin_unlock(&inode->i_lock); 1079 free_pipe_info(pipe); 1080 pipe = inode->i_pipe; 1081 } else { 1082 inode->i_pipe = pipe; 1083 spin_unlock(&inode->i_lock); 1084 } 1085 } 1086 filp->private_data = pipe; 1087 /* OK, we have a pipe and it's pinned down */ 1088 1089 __pipe_lock(pipe); 1090 1091 /* We can only do regular read/write on fifos */ 1092 stream_open(inode, filp); 1093 1094 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1095 case FMODE_READ: 1096 /* 1097 * O_RDONLY 1098 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1099 * opened, even when there is no process writing the FIFO. 1100 */ 1101 pipe->r_counter++; 1102 if (pipe->readers++ == 0) 1103 wake_up_partner(pipe); 1104 1105 if (!is_pipe && !pipe->writers) { 1106 if ((filp->f_flags & O_NONBLOCK)) { 1107 /* suppress EPOLLHUP until we have 1108 * seen a writer */ 1109 filp->f_version = pipe->w_counter; 1110 } else { 1111 if (wait_for_partner(pipe, &pipe->w_counter)) 1112 goto err_rd; 1113 } 1114 } 1115 break; 1116 1117 case FMODE_WRITE: 1118 /* 1119 * O_WRONLY 1120 * POSIX.1 says that O_NONBLOCK means return -1 with 1121 * errno=ENXIO when there is no process reading the FIFO. 1122 */ 1123 ret = -ENXIO; 1124 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1125 goto err; 1126 1127 pipe->w_counter++; 1128 if (!pipe->writers++) 1129 wake_up_partner(pipe); 1130 1131 if (!is_pipe && !pipe->readers) { 1132 if (wait_for_partner(pipe, &pipe->r_counter)) 1133 goto err_wr; 1134 } 1135 break; 1136 1137 case FMODE_READ | FMODE_WRITE: 1138 /* 1139 * O_RDWR 1140 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1141 * This implementation will NEVER block on a O_RDWR open, since 1142 * the process can at least talk to itself. 1143 */ 1144 1145 pipe->readers++; 1146 pipe->writers++; 1147 pipe->r_counter++; 1148 pipe->w_counter++; 1149 if (pipe->readers == 1 || pipe->writers == 1) 1150 wake_up_partner(pipe); 1151 break; 1152 1153 default: 1154 ret = -EINVAL; 1155 goto err; 1156 } 1157 1158 /* Ok! */ 1159 __pipe_unlock(pipe); 1160 return 0; 1161 1162 err_rd: 1163 if (!--pipe->readers) 1164 wake_up_interruptible(&pipe->wr_wait); 1165 ret = -ERESTARTSYS; 1166 goto err; 1167 1168 err_wr: 1169 if (!--pipe->writers) 1170 wake_up_interruptible_all(&pipe->rd_wait); 1171 ret = -ERESTARTSYS; 1172 goto err; 1173 1174 err: 1175 __pipe_unlock(pipe); 1176 1177 put_pipe_info(inode, pipe); 1178 return ret; 1179 } 1180 1181 const struct file_operations pipefifo_fops = { 1182 .open = fifo_open, 1183 .llseek = no_llseek, 1184 .read_iter = pipe_read, 1185 .write_iter = pipe_write, 1186 .poll = pipe_poll, 1187 .unlocked_ioctl = pipe_ioctl, 1188 .release = pipe_release, 1189 .fasync = pipe_fasync, 1190 }; 1191 1192 /* 1193 * Currently we rely on the pipe array holding a power-of-2 number 1194 * of pages. Returns 0 on error. 1195 */ 1196 unsigned int round_pipe_size(unsigned long size) 1197 { 1198 if (size > (1U << 31)) 1199 return 0; 1200 1201 /* Minimum pipe size, as required by POSIX */ 1202 if (size < PAGE_SIZE) 1203 return PAGE_SIZE; 1204 1205 return roundup_pow_of_two(size); 1206 } 1207 1208 /* 1209 * Resize the pipe ring to a number of slots. 1210 */ 1211 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1212 { 1213 struct pipe_buffer *bufs; 1214 unsigned int head, tail, mask, n; 1215 1216 /* 1217 * We can shrink the pipe, if arg is greater than the ring occupancy. 1218 * Since we don't expect a lot of shrink+grow operations, just free and 1219 * allocate again like we would do for growing. If the pipe currently 1220 * contains more buffers than arg, then return busy. 1221 */ 1222 mask = pipe->ring_size - 1; 1223 head = pipe->head; 1224 tail = pipe->tail; 1225 n = pipe_occupancy(pipe->head, pipe->tail); 1226 if (nr_slots < n) 1227 return -EBUSY; 1228 1229 bufs = kcalloc(nr_slots, sizeof(*bufs), 1230 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1231 if (unlikely(!bufs)) 1232 return -ENOMEM; 1233 1234 /* 1235 * The pipe array wraps around, so just start the new one at zero 1236 * and adjust the indices. 1237 */ 1238 if (n > 0) { 1239 unsigned int h = head & mask; 1240 unsigned int t = tail & mask; 1241 if (h > t) { 1242 memcpy(bufs, pipe->bufs + t, 1243 n * sizeof(struct pipe_buffer)); 1244 } else { 1245 unsigned int tsize = pipe->ring_size - t; 1246 if (h > 0) 1247 memcpy(bufs + tsize, pipe->bufs, 1248 h * sizeof(struct pipe_buffer)); 1249 memcpy(bufs, pipe->bufs + t, 1250 tsize * sizeof(struct pipe_buffer)); 1251 } 1252 } 1253 1254 head = n; 1255 tail = 0; 1256 1257 kfree(pipe->bufs); 1258 pipe->bufs = bufs; 1259 pipe->ring_size = nr_slots; 1260 if (pipe->max_usage > nr_slots) 1261 pipe->max_usage = nr_slots; 1262 pipe->tail = tail; 1263 pipe->head = head; 1264 1265 /* This might have made more room for writers */ 1266 wake_up_interruptible(&pipe->wr_wait); 1267 return 0; 1268 } 1269 1270 /* 1271 * Allocate a new array of pipe buffers and copy the info over. Returns the 1272 * pipe size if successful, or return -ERROR on error. 1273 */ 1274 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1275 { 1276 unsigned long user_bufs; 1277 unsigned int nr_slots, size; 1278 long ret = 0; 1279 1280 #ifdef CONFIG_WATCH_QUEUE 1281 if (pipe->watch_queue) 1282 return -EBUSY; 1283 #endif 1284 1285 size = round_pipe_size(arg); 1286 nr_slots = size >> PAGE_SHIFT; 1287 1288 if (!nr_slots) 1289 return -EINVAL; 1290 1291 /* 1292 * If trying to increase the pipe capacity, check that an 1293 * unprivileged user is not trying to exceed various limits 1294 * (soft limit check here, hard limit check just below). 1295 * Decreasing the pipe capacity is always permitted, even 1296 * if the user is currently over a limit. 1297 */ 1298 if (nr_slots > pipe->max_usage && 1299 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1300 return -EPERM; 1301 1302 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1303 1304 if (nr_slots > pipe->max_usage && 1305 (too_many_pipe_buffers_hard(user_bufs) || 1306 too_many_pipe_buffers_soft(user_bufs)) && 1307 pipe_is_unprivileged_user()) { 1308 ret = -EPERM; 1309 goto out_revert_acct; 1310 } 1311 1312 ret = pipe_resize_ring(pipe, nr_slots); 1313 if (ret < 0) 1314 goto out_revert_acct; 1315 1316 pipe->max_usage = nr_slots; 1317 pipe->nr_accounted = nr_slots; 1318 return pipe->max_usage * PAGE_SIZE; 1319 1320 out_revert_acct: 1321 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1322 return ret; 1323 } 1324 1325 /* 1326 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1327 * location, so checking ->i_pipe is not enough to verify that this is a 1328 * pipe. 1329 */ 1330 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1331 { 1332 struct pipe_inode_info *pipe = file->private_data; 1333 1334 if (file->f_op != &pipefifo_fops || !pipe) 1335 return NULL; 1336 #ifdef CONFIG_WATCH_QUEUE 1337 if (for_splice && pipe->watch_queue) 1338 return NULL; 1339 #endif 1340 return pipe; 1341 } 1342 1343 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1344 { 1345 struct pipe_inode_info *pipe; 1346 long ret; 1347 1348 pipe = get_pipe_info(file, false); 1349 if (!pipe) 1350 return -EBADF; 1351 1352 __pipe_lock(pipe); 1353 1354 switch (cmd) { 1355 case F_SETPIPE_SZ: 1356 ret = pipe_set_size(pipe, arg); 1357 break; 1358 case F_GETPIPE_SZ: 1359 ret = pipe->max_usage * PAGE_SIZE; 1360 break; 1361 default: 1362 ret = -EINVAL; 1363 break; 1364 } 1365 1366 __pipe_unlock(pipe); 1367 return ret; 1368 } 1369 1370 static const struct super_operations pipefs_ops = { 1371 .destroy_inode = free_inode_nonrcu, 1372 .statfs = simple_statfs, 1373 }; 1374 1375 /* 1376 * pipefs should _never_ be mounted by userland - too much of security hassle, 1377 * no real gain from having the whole whorehouse mounted. So we don't need 1378 * any operations on the root directory. However, we need a non-trivial 1379 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1380 */ 1381 1382 static int pipefs_init_fs_context(struct fs_context *fc) 1383 { 1384 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1385 if (!ctx) 1386 return -ENOMEM; 1387 ctx->ops = &pipefs_ops; 1388 ctx->dops = &pipefs_dentry_operations; 1389 return 0; 1390 } 1391 1392 static struct file_system_type pipe_fs_type = { 1393 .name = "pipefs", 1394 .init_fs_context = pipefs_init_fs_context, 1395 .kill_sb = kill_anon_super, 1396 }; 1397 1398 static int __init init_pipe_fs(void) 1399 { 1400 int err = register_filesystem(&pipe_fs_type); 1401 1402 if (!err) { 1403 pipe_mnt = kern_mount(&pipe_fs_type); 1404 if (IS_ERR(pipe_mnt)) { 1405 err = PTR_ERR(pipe_mnt); 1406 unregister_filesystem(&pipe_fs_type); 1407 } 1408 } 1409 return err; 1410 } 1411 1412 fs_initcall(init_pipe_fs); 1413