1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 29 #include <linux/uaccess.h> 30 #include <asm/ioctls.h> 31 32 #include "internal.h" 33 34 /* 35 * The max size that a non-root user is allowed to grow the pipe. Can 36 * be set by root in /proc/sys/fs/pipe-max-size 37 */ 38 unsigned int pipe_max_size = 1048576; 39 40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 41 * matches default values. 42 */ 43 unsigned long pipe_user_pages_hard; 44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 45 46 /* 47 * We use head and tail indices that aren't masked off, except at the point of 48 * dereference, but rather they're allowed to wrap naturally. This means there 49 * isn't a dead spot in the buffer, but the ring has to be a power of two and 50 * <= 2^31. 51 * -- David Howells 2019-09-23. 52 * 53 * Reads with count = 0 should always return 0. 54 * -- Julian Bradfield 1999-06-07. 55 * 56 * FIFOs and Pipes now generate SIGIO for both readers and writers. 57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 58 * 59 * pipe_read & write cleanup 60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 61 */ 62 63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 64 { 65 if (pipe->files) 66 mutex_lock_nested(&pipe->mutex, subclass); 67 } 68 69 void pipe_lock(struct pipe_inode_info *pipe) 70 { 71 /* 72 * pipe_lock() nests non-pipe inode locks (for writing to a file) 73 */ 74 pipe_lock_nested(pipe, I_MUTEX_PARENT); 75 } 76 EXPORT_SYMBOL(pipe_lock); 77 78 void pipe_unlock(struct pipe_inode_info *pipe) 79 { 80 if (pipe->files) 81 mutex_unlock(&pipe->mutex); 82 } 83 EXPORT_SYMBOL(pipe_unlock); 84 85 static inline void __pipe_lock(struct pipe_inode_info *pipe) 86 { 87 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 88 } 89 90 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 91 { 92 mutex_unlock(&pipe->mutex); 93 } 94 95 void pipe_double_lock(struct pipe_inode_info *pipe1, 96 struct pipe_inode_info *pipe2) 97 { 98 BUG_ON(pipe1 == pipe2); 99 100 if (pipe1 < pipe2) { 101 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 102 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 103 } else { 104 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 105 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 106 } 107 } 108 109 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 110 struct pipe_buffer *buf) 111 { 112 struct page *page = buf->page; 113 114 /* 115 * If nobody else uses this page, and we don't already have a 116 * temporary page, let's keep track of it as a one-deep 117 * allocation cache. (Otherwise just release our reference to it) 118 */ 119 if (page_count(page) == 1 && !pipe->tmp_page) 120 pipe->tmp_page = page; 121 else 122 put_page(page); 123 } 124 125 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 126 struct pipe_buffer *buf) 127 { 128 struct page *page = buf->page; 129 130 if (page_count(page) != 1) 131 return false; 132 memcg_kmem_uncharge_page(page, 0); 133 __SetPageLocked(page); 134 return true; 135 } 136 137 /** 138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 139 * @pipe: the pipe that the buffer belongs to 140 * @buf: the buffer to attempt to steal 141 * 142 * Description: 143 * This function attempts to steal the &struct page attached to 144 * @buf. If successful, this function returns 0 and returns with 145 * the page locked. The caller may then reuse the page for whatever 146 * he wishes; the typical use is insertion into a different file 147 * page cache. 148 */ 149 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 150 struct pipe_buffer *buf) 151 { 152 struct page *page = buf->page; 153 154 /* 155 * A reference of one is golden, that means that the owner of this 156 * page is the only one holding a reference to it. lock the page 157 * and return OK. 158 */ 159 if (page_count(page) == 1) { 160 lock_page(page); 161 return true; 162 } 163 return false; 164 } 165 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 166 167 /** 168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 169 * @pipe: the pipe that the buffer belongs to 170 * @buf: the buffer to get a reference to 171 * 172 * Description: 173 * This function grabs an extra reference to @buf. It's used in 174 * the tee() system call, when we duplicate the buffers in one 175 * pipe into another. 176 */ 177 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 178 { 179 return try_get_page(buf->page); 180 } 181 EXPORT_SYMBOL(generic_pipe_buf_get); 182 183 /** 184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 185 * @pipe: the pipe that the buffer belongs to 186 * @buf: the buffer to put a reference to 187 * 188 * Description: 189 * This function releases a reference to @buf. 190 */ 191 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 192 struct pipe_buffer *buf) 193 { 194 put_page(buf->page); 195 } 196 EXPORT_SYMBOL(generic_pipe_buf_release); 197 198 static const struct pipe_buf_operations anon_pipe_buf_ops = { 199 .release = anon_pipe_buf_release, 200 .try_steal = anon_pipe_buf_try_steal, 201 .get = generic_pipe_buf_get, 202 }; 203 204 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 205 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 206 { 207 unsigned int head = READ_ONCE(pipe->head); 208 unsigned int tail = READ_ONCE(pipe->tail); 209 unsigned int writers = READ_ONCE(pipe->writers); 210 211 return !pipe_empty(head, tail) || !writers; 212 } 213 214 static ssize_t 215 pipe_read(struct kiocb *iocb, struct iov_iter *to) 216 { 217 size_t total_len = iov_iter_count(to); 218 struct file *filp = iocb->ki_filp; 219 struct pipe_inode_info *pipe = filp->private_data; 220 bool was_full, wake_next_reader = false; 221 ssize_t ret; 222 223 /* Null read succeeds. */ 224 if (unlikely(total_len == 0)) 225 return 0; 226 227 ret = 0; 228 __pipe_lock(pipe); 229 230 /* 231 * We only wake up writers if the pipe was full when we started 232 * reading in order to avoid unnecessary wakeups. 233 * 234 * But when we do wake up writers, we do so using a sync wakeup 235 * (WF_SYNC), because we want them to get going and generate more 236 * data for us. 237 */ 238 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 239 for (;;) { 240 unsigned int head = pipe->head; 241 unsigned int tail = pipe->tail; 242 unsigned int mask = pipe->ring_size - 1; 243 244 #ifdef CONFIG_WATCH_QUEUE 245 if (pipe->note_loss) { 246 struct watch_notification n; 247 248 if (total_len < 8) { 249 if (ret == 0) 250 ret = -ENOBUFS; 251 break; 252 } 253 254 n.type = WATCH_TYPE_META; 255 n.subtype = WATCH_META_LOSS_NOTIFICATION; 256 n.info = watch_sizeof(n); 257 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 258 if (ret == 0) 259 ret = -EFAULT; 260 break; 261 } 262 ret += sizeof(n); 263 total_len -= sizeof(n); 264 pipe->note_loss = false; 265 } 266 #endif 267 268 if (!pipe_empty(head, tail)) { 269 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 270 size_t chars = buf->len; 271 size_t written; 272 int error; 273 274 if (chars > total_len) { 275 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 276 if (ret == 0) 277 ret = -ENOBUFS; 278 break; 279 } 280 chars = total_len; 281 } 282 283 error = pipe_buf_confirm(pipe, buf); 284 if (error) { 285 if (!ret) 286 ret = error; 287 break; 288 } 289 290 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 291 if (unlikely(written < chars)) { 292 if (!ret) 293 ret = -EFAULT; 294 break; 295 } 296 ret += chars; 297 buf->offset += chars; 298 buf->len -= chars; 299 300 /* Was it a packet buffer? Clean up and exit */ 301 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 302 total_len = chars; 303 buf->len = 0; 304 } 305 306 if (!buf->len) { 307 pipe_buf_release(pipe, buf); 308 spin_lock_irq(&pipe->rd_wait.lock); 309 #ifdef CONFIG_WATCH_QUEUE 310 if (buf->flags & PIPE_BUF_FLAG_LOSS) 311 pipe->note_loss = true; 312 #endif 313 tail++; 314 pipe->tail = tail; 315 spin_unlock_irq(&pipe->rd_wait.lock); 316 } 317 total_len -= chars; 318 if (!total_len) 319 break; /* common path: read succeeded */ 320 if (!pipe_empty(head, tail)) /* More to do? */ 321 continue; 322 } 323 324 if (!pipe->writers) 325 break; 326 if (ret) 327 break; 328 if (filp->f_flags & O_NONBLOCK) { 329 ret = -EAGAIN; 330 break; 331 } 332 __pipe_unlock(pipe); 333 334 /* 335 * We only get here if we didn't actually read anything. 336 * 337 * However, we could have seen (and removed) a zero-sized 338 * pipe buffer, and might have made space in the buffers 339 * that way. 340 * 341 * You can't make zero-sized pipe buffers by doing an empty 342 * write (not even in packet mode), but they can happen if 343 * the writer gets an EFAULT when trying to fill a buffer 344 * that already got allocated and inserted in the buffer 345 * array. 346 * 347 * So we still need to wake up any pending writers in the 348 * _very_ unlikely case that the pipe was full, but we got 349 * no data. 350 */ 351 if (unlikely(was_full)) { 352 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 353 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 354 } 355 356 /* 357 * But because we didn't read anything, at this point we can 358 * just return directly with -ERESTARTSYS if we're interrupted, 359 * since we've done any required wakeups and there's no need 360 * to mark anything accessed. And we've dropped the lock. 361 */ 362 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 363 return -ERESTARTSYS; 364 365 __pipe_lock(pipe); 366 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 367 wake_next_reader = true; 368 } 369 if (pipe_empty(pipe->head, pipe->tail)) 370 wake_next_reader = false; 371 __pipe_unlock(pipe); 372 373 if (was_full) { 374 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 375 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 376 } 377 if (wake_next_reader) 378 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 379 if (ret > 0) 380 file_accessed(filp); 381 return ret; 382 } 383 384 static inline int is_packetized(struct file *file) 385 { 386 return (file->f_flags & O_DIRECT) != 0; 387 } 388 389 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 390 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 391 { 392 unsigned int head = READ_ONCE(pipe->head); 393 unsigned int tail = READ_ONCE(pipe->tail); 394 unsigned int max_usage = READ_ONCE(pipe->max_usage); 395 396 return !pipe_full(head, tail, max_usage) || 397 !READ_ONCE(pipe->readers); 398 } 399 400 static ssize_t 401 pipe_write(struct kiocb *iocb, struct iov_iter *from) 402 { 403 struct file *filp = iocb->ki_filp; 404 struct pipe_inode_info *pipe = filp->private_data; 405 unsigned int head; 406 ssize_t ret = 0; 407 size_t total_len = iov_iter_count(from); 408 ssize_t chars; 409 bool was_empty = false; 410 bool wake_next_writer = false; 411 412 /* Null write succeeds. */ 413 if (unlikely(total_len == 0)) 414 return 0; 415 416 __pipe_lock(pipe); 417 418 if (!pipe->readers) { 419 send_sig(SIGPIPE, current, 0); 420 ret = -EPIPE; 421 goto out; 422 } 423 424 #ifdef CONFIG_WATCH_QUEUE 425 if (pipe->watch_queue) { 426 ret = -EXDEV; 427 goto out; 428 } 429 #endif 430 431 /* 432 * Only wake up if the pipe started out empty, since 433 * otherwise there should be no readers waiting. 434 * 435 * If it wasn't empty we try to merge new data into 436 * the last buffer. 437 * 438 * That naturally merges small writes, but it also 439 * page-aligs the rest of the writes for large writes 440 * spanning multiple pages. 441 */ 442 head = pipe->head; 443 was_empty = pipe_empty(head, pipe->tail); 444 chars = total_len & (PAGE_SIZE-1); 445 if (chars && !was_empty) { 446 unsigned int mask = pipe->ring_size - 1; 447 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 448 int offset = buf->offset + buf->len; 449 450 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 451 offset + chars <= PAGE_SIZE) { 452 ret = pipe_buf_confirm(pipe, buf); 453 if (ret) 454 goto out; 455 456 ret = copy_page_from_iter(buf->page, offset, chars, from); 457 if (unlikely(ret < chars)) { 458 ret = -EFAULT; 459 goto out; 460 } 461 462 buf->len += ret; 463 if (!iov_iter_count(from)) 464 goto out; 465 } 466 } 467 468 for (;;) { 469 if (!pipe->readers) { 470 send_sig(SIGPIPE, current, 0); 471 if (!ret) 472 ret = -EPIPE; 473 break; 474 } 475 476 head = pipe->head; 477 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 478 unsigned int mask = pipe->ring_size - 1; 479 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 480 struct page *page = pipe->tmp_page; 481 int copied; 482 483 if (!page) { 484 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 485 if (unlikely(!page)) { 486 ret = ret ? : -ENOMEM; 487 break; 488 } 489 pipe->tmp_page = page; 490 } 491 492 /* Allocate a slot in the ring in advance and attach an 493 * empty buffer. If we fault or otherwise fail to use 494 * it, either the reader will consume it or it'll still 495 * be there for the next write. 496 */ 497 spin_lock_irq(&pipe->rd_wait.lock); 498 499 head = pipe->head; 500 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 501 spin_unlock_irq(&pipe->rd_wait.lock); 502 continue; 503 } 504 505 pipe->head = head + 1; 506 spin_unlock_irq(&pipe->rd_wait.lock); 507 508 /* Insert it into the buffer array */ 509 buf = &pipe->bufs[head & mask]; 510 buf->page = page; 511 buf->ops = &anon_pipe_buf_ops; 512 buf->offset = 0; 513 buf->len = 0; 514 if (is_packetized(filp)) 515 buf->flags = PIPE_BUF_FLAG_PACKET; 516 else 517 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 518 pipe->tmp_page = NULL; 519 520 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 521 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 522 if (!ret) 523 ret = -EFAULT; 524 break; 525 } 526 ret += copied; 527 buf->offset = 0; 528 buf->len = copied; 529 530 if (!iov_iter_count(from)) 531 break; 532 } 533 534 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 535 continue; 536 537 /* Wait for buffer space to become available. */ 538 if (filp->f_flags & O_NONBLOCK) { 539 if (!ret) 540 ret = -EAGAIN; 541 break; 542 } 543 if (signal_pending(current)) { 544 if (!ret) 545 ret = -ERESTARTSYS; 546 break; 547 } 548 549 /* 550 * We're going to release the pipe lock and wait for more 551 * space. We wake up any readers if necessary, and then 552 * after waiting we need to re-check whether the pipe 553 * become empty while we dropped the lock. 554 */ 555 __pipe_unlock(pipe); 556 if (was_empty) { 557 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 558 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 559 } 560 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 561 __pipe_lock(pipe); 562 was_empty = pipe_empty(pipe->head, pipe->tail); 563 wake_next_writer = true; 564 } 565 out: 566 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 567 wake_next_writer = false; 568 __pipe_unlock(pipe); 569 570 /* 571 * If we do do a wakeup event, we do a 'sync' wakeup, because we 572 * want the reader to start processing things asap, rather than 573 * leave the data pending. 574 * 575 * This is particularly important for small writes, because of 576 * how (for example) the GNU make jobserver uses small writes to 577 * wake up pending jobs 578 */ 579 if (was_empty) { 580 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 581 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 582 } 583 if (wake_next_writer) 584 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 585 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 586 int err = file_update_time(filp); 587 if (err) 588 ret = err; 589 sb_end_write(file_inode(filp)->i_sb); 590 } 591 return ret; 592 } 593 594 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 595 { 596 struct pipe_inode_info *pipe = filp->private_data; 597 int count, head, tail, mask; 598 599 switch (cmd) { 600 case FIONREAD: 601 __pipe_lock(pipe); 602 count = 0; 603 head = pipe->head; 604 tail = pipe->tail; 605 mask = pipe->ring_size - 1; 606 607 while (tail != head) { 608 count += pipe->bufs[tail & mask].len; 609 tail++; 610 } 611 __pipe_unlock(pipe); 612 613 return put_user(count, (int __user *)arg); 614 615 #ifdef CONFIG_WATCH_QUEUE 616 case IOC_WATCH_QUEUE_SET_SIZE: { 617 int ret; 618 __pipe_lock(pipe); 619 ret = watch_queue_set_size(pipe, arg); 620 __pipe_unlock(pipe); 621 return ret; 622 } 623 624 case IOC_WATCH_QUEUE_SET_FILTER: 625 return watch_queue_set_filter( 626 pipe, (struct watch_notification_filter __user *)arg); 627 #endif 628 629 default: 630 return -ENOIOCTLCMD; 631 } 632 } 633 634 /* No kernel lock held - fine */ 635 static __poll_t 636 pipe_poll(struct file *filp, poll_table *wait) 637 { 638 __poll_t mask; 639 struct pipe_inode_info *pipe = filp->private_data; 640 unsigned int head, tail; 641 642 /* 643 * Reading pipe state only -- no need for acquiring the semaphore. 644 * 645 * But because this is racy, the code has to add the 646 * entry to the poll table _first_ .. 647 */ 648 if (filp->f_mode & FMODE_READ) 649 poll_wait(filp, &pipe->rd_wait, wait); 650 if (filp->f_mode & FMODE_WRITE) 651 poll_wait(filp, &pipe->wr_wait, wait); 652 653 /* 654 * .. and only then can you do the racy tests. That way, 655 * if something changes and you got it wrong, the poll 656 * table entry will wake you up and fix it. 657 */ 658 head = READ_ONCE(pipe->head); 659 tail = READ_ONCE(pipe->tail); 660 661 mask = 0; 662 if (filp->f_mode & FMODE_READ) { 663 if (!pipe_empty(head, tail)) 664 mask |= EPOLLIN | EPOLLRDNORM; 665 if (!pipe->writers && filp->f_version != pipe->w_counter) 666 mask |= EPOLLHUP; 667 } 668 669 if (filp->f_mode & FMODE_WRITE) { 670 if (!pipe_full(head, tail, pipe->max_usage)) 671 mask |= EPOLLOUT | EPOLLWRNORM; 672 /* 673 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 674 * behave exactly like pipes for poll(). 675 */ 676 if (!pipe->readers) 677 mask |= EPOLLERR; 678 } 679 680 return mask; 681 } 682 683 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 684 { 685 int kill = 0; 686 687 spin_lock(&inode->i_lock); 688 if (!--pipe->files) { 689 inode->i_pipe = NULL; 690 kill = 1; 691 } 692 spin_unlock(&inode->i_lock); 693 694 if (kill) 695 free_pipe_info(pipe); 696 } 697 698 static int 699 pipe_release(struct inode *inode, struct file *file) 700 { 701 struct pipe_inode_info *pipe = file->private_data; 702 703 __pipe_lock(pipe); 704 if (file->f_mode & FMODE_READ) 705 pipe->readers--; 706 if (file->f_mode & FMODE_WRITE) 707 pipe->writers--; 708 709 /* Was that the last reader or writer, but not the other side? */ 710 if (!pipe->readers != !pipe->writers) { 711 wake_up_interruptible_all(&pipe->rd_wait); 712 wake_up_interruptible_all(&pipe->wr_wait); 713 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 714 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 715 } 716 __pipe_unlock(pipe); 717 718 put_pipe_info(inode, pipe); 719 return 0; 720 } 721 722 static int 723 pipe_fasync(int fd, struct file *filp, int on) 724 { 725 struct pipe_inode_info *pipe = filp->private_data; 726 int retval = 0; 727 728 __pipe_lock(pipe); 729 if (filp->f_mode & FMODE_READ) 730 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 731 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 732 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 733 if (retval < 0 && (filp->f_mode & FMODE_READ)) 734 /* this can happen only if on == T */ 735 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 736 } 737 __pipe_unlock(pipe); 738 return retval; 739 } 740 741 unsigned long account_pipe_buffers(struct user_struct *user, 742 unsigned long old, unsigned long new) 743 { 744 return atomic_long_add_return(new - old, &user->pipe_bufs); 745 } 746 747 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 748 { 749 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 750 751 return soft_limit && user_bufs > soft_limit; 752 } 753 754 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 755 { 756 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 757 758 return hard_limit && user_bufs > hard_limit; 759 } 760 761 bool pipe_is_unprivileged_user(void) 762 { 763 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 764 } 765 766 struct pipe_inode_info *alloc_pipe_info(void) 767 { 768 struct pipe_inode_info *pipe; 769 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 770 struct user_struct *user = get_current_user(); 771 unsigned long user_bufs; 772 unsigned int max_size = READ_ONCE(pipe_max_size); 773 774 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 775 if (pipe == NULL) 776 goto out_free_uid; 777 778 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 779 pipe_bufs = max_size >> PAGE_SHIFT; 780 781 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 782 783 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 784 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 785 pipe_bufs = 1; 786 } 787 788 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 789 goto out_revert_acct; 790 791 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 792 GFP_KERNEL_ACCOUNT); 793 794 if (pipe->bufs) { 795 init_waitqueue_head(&pipe->rd_wait); 796 init_waitqueue_head(&pipe->wr_wait); 797 pipe->r_counter = pipe->w_counter = 1; 798 pipe->max_usage = pipe_bufs; 799 pipe->ring_size = pipe_bufs; 800 pipe->nr_accounted = pipe_bufs; 801 pipe->user = user; 802 mutex_init(&pipe->mutex); 803 return pipe; 804 } 805 806 out_revert_acct: 807 (void) account_pipe_buffers(user, pipe_bufs, 0); 808 kfree(pipe); 809 out_free_uid: 810 free_uid(user); 811 return NULL; 812 } 813 814 void free_pipe_info(struct pipe_inode_info *pipe) 815 { 816 int i; 817 818 #ifdef CONFIG_WATCH_QUEUE 819 if (pipe->watch_queue) { 820 watch_queue_clear(pipe->watch_queue); 821 put_watch_queue(pipe->watch_queue); 822 } 823 #endif 824 825 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 826 free_uid(pipe->user); 827 for (i = 0; i < pipe->ring_size; i++) { 828 struct pipe_buffer *buf = pipe->bufs + i; 829 if (buf->ops) 830 pipe_buf_release(pipe, buf); 831 } 832 if (pipe->tmp_page) 833 __free_page(pipe->tmp_page); 834 kfree(pipe->bufs); 835 kfree(pipe); 836 } 837 838 static struct vfsmount *pipe_mnt __read_mostly; 839 840 /* 841 * pipefs_dname() is called from d_path(). 842 */ 843 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 844 { 845 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 846 d_inode(dentry)->i_ino); 847 } 848 849 static const struct dentry_operations pipefs_dentry_operations = { 850 .d_dname = pipefs_dname, 851 }; 852 853 static struct inode * get_pipe_inode(void) 854 { 855 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 856 struct pipe_inode_info *pipe; 857 858 if (!inode) 859 goto fail_inode; 860 861 inode->i_ino = get_next_ino(); 862 863 pipe = alloc_pipe_info(); 864 if (!pipe) 865 goto fail_iput; 866 867 inode->i_pipe = pipe; 868 pipe->files = 2; 869 pipe->readers = pipe->writers = 1; 870 inode->i_fop = &pipefifo_fops; 871 872 /* 873 * Mark the inode dirty from the very beginning, 874 * that way it will never be moved to the dirty 875 * list because "mark_inode_dirty()" will think 876 * that it already _is_ on the dirty list. 877 */ 878 inode->i_state = I_DIRTY; 879 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 880 inode->i_uid = current_fsuid(); 881 inode->i_gid = current_fsgid(); 882 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 883 884 return inode; 885 886 fail_iput: 887 iput(inode); 888 889 fail_inode: 890 return NULL; 891 } 892 893 int create_pipe_files(struct file **res, int flags) 894 { 895 struct inode *inode = get_pipe_inode(); 896 struct file *f; 897 int error; 898 899 if (!inode) 900 return -ENFILE; 901 902 if (flags & O_NOTIFICATION_PIPE) { 903 error = watch_queue_init(inode->i_pipe); 904 if (error) { 905 free_pipe_info(inode->i_pipe); 906 iput(inode); 907 return error; 908 } 909 } 910 911 f = alloc_file_pseudo(inode, pipe_mnt, "", 912 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 913 &pipefifo_fops); 914 if (IS_ERR(f)) { 915 free_pipe_info(inode->i_pipe); 916 iput(inode); 917 return PTR_ERR(f); 918 } 919 920 f->private_data = inode->i_pipe; 921 922 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 923 &pipefifo_fops); 924 if (IS_ERR(res[0])) { 925 put_pipe_info(inode, inode->i_pipe); 926 fput(f); 927 return PTR_ERR(res[0]); 928 } 929 res[0]->private_data = inode->i_pipe; 930 res[1] = f; 931 stream_open(inode, res[0]); 932 stream_open(inode, res[1]); 933 return 0; 934 } 935 936 static int __do_pipe_flags(int *fd, struct file **files, int flags) 937 { 938 int error; 939 int fdw, fdr; 940 941 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 942 return -EINVAL; 943 944 error = create_pipe_files(files, flags); 945 if (error) 946 return error; 947 948 error = get_unused_fd_flags(flags); 949 if (error < 0) 950 goto err_read_pipe; 951 fdr = error; 952 953 error = get_unused_fd_flags(flags); 954 if (error < 0) 955 goto err_fdr; 956 fdw = error; 957 958 audit_fd_pair(fdr, fdw); 959 fd[0] = fdr; 960 fd[1] = fdw; 961 return 0; 962 963 err_fdr: 964 put_unused_fd(fdr); 965 err_read_pipe: 966 fput(files[0]); 967 fput(files[1]); 968 return error; 969 } 970 971 int do_pipe_flags(int *fd, int flags) 972 { 973 struct file *files[2]; 974 int error = __do_pipe_flags(fd, files, flags); 975 if (!error) { 976 fd_install(fd[0], files[0]); 977 fd_install(fd[1], files[1]); 978 } 979 return error; 980 } 981 982 /* 983 * sys_pipe() is the normal C calling standard for creating 984 * a pipe. It's not the way Unix traditionally does this, though. 985 */ 986 static int do_pipe2(int __user *fildes, int flags) 987 { 988 struct file *files[2]; 989 int fd[2]; 990 int error; 991 992 error = __do_pipe_flags(fd, files, flags); 993 if (!error) { 994 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 995 fput(files[0]); 996 fput(files[1]); 997 put_unused_fd(fd[0]); 998 put_unused_fd(fd[1]); 999 error = -EFAULT; 1000 } else { 1001 fd_install(fd[0], files[0]); 1002 fd_install(fd[1], files[1]); 1003 } 1004 } 1005 return error; 1006 } 1007 1008 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1009 { 1010 return do_pipe2(fildes, flags); 1011 } 1012 1013 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1014 { 1015 return do_pipe2(fildes, 0); 1016 } 1017 1018 /* 1019 * This is the stupid "wait for pipe to be readable or writable" 1020 * model. 1021 * 1022 * See pipe_read/write() for the proper kind of exclusive wait, 1023 * but that requires that we wake up any other readers/writers 1024 * if we then do not end up reading everything (ie the whole 1025 * "wake_next_reader/writer" logic in pipe_read/write()). 1026 */ 1027 void pipe_wait_readable(struct pipe_inode_info *pipe) 1028 { 1029 pipe_unlock(pipe); 1030 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1031 pipe_lock(pipe); 1032 } 1033 1034 void pipe_wait_writable(struct pipe_inode_info *pipe) 1035 { 1036 pipe_unlock(pipe); 1037 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1038 pipe_lock(pipe); 1039 } 1040 1041 /* 1042 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1044 * race with the count check and waitqueue prep. 1045 * 1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1047 * then check the condition you're waiting for, and only then sleep. But 1048 * because of the pipe lock, we can check the condition before being on 1049 * the wait queue. 1050 * 1051 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1052 */ 1053 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1054 { 1055 DEFINE_WAIT(rdwait); 1056 int cur = *cnt; 1057 1058 while (cur == *cnt) { 1059 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1060 pipe_unlock(pipe); 1061 schedule(); 1062 finish_wait(&pipe->rd_wait, &rdwait); 1063 pipe_lock(pipe); 1064 if (signal_pending(current)) 1065 break; 1066 } 1067 return cur == *cnt ? -ERESTARTSYS : 0; 1068 } 1069 1070 static void wake_up_partner(struct pipe_inode_info *pipe) 1071 { 1072 wake_up_interruptible_all(&pipe->rd_wait); 1073 } 1074 1075 static int fifo_open(struct inode *inode, struct file *filp) 1076 { 1077 struct pipe_inode_info *pipe; 1078 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1079 int ret; 1080 1081 filp->f_version = 0; 1082 1083 spin_lock(&inode->i_lock); 1084 if (inode->i_pipe) { 1085 pipe = inode->i_pipe; 1086 pipe->files++; 1087 spin_unlock(&inode->i_lock); 1088 } else { 1089 spin_unlock(&inode->i_lock); 1090 pipe = alloc_pipe_info(); 1091 if (!pipe) 1092 return -ENOMEM; 1093 pipe->files = 1; 1094 spin_lock(&inode->i_lock); 1095 if (unlikely(inode->i_pipe)) { 1096 inode->i_pipe->files++; 1097 spin_unlock(&inode->i_lock); 1098 free_pipe_info(pipe); 1099 pipe = inode->i_pipe; 1100 } else { 1101 inode->i_pipe = pipe; 1102 spin_unlock(&inode->i_lock); 1103 } 1104 } 1105 filp->private_data = pipe; 1106 /* OK, we have a pipe and it's pinned down */ 1107 1108 __pipe_lock(pipe); 1109 1110 /* We can only do regular read/write on fifos */ 1111 stream_open(inode, filp); 1112 1113 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1114 case FMODE_READ: 1115 /* 1116 * O_RDONLY 1117 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1118 * opened, even when there is no process writing the FIFO. 1119 */ 1120 pipe->r_counter++; 1121 if (pipe->readers++ == 0) 1122 wake_up_partner(pipe); 1123 1124 if (!is_pipe && !pipe->writers) { 1125 if ((filp->f_flags & O_NONBLOCK)) { 1126 /* suppress EPOLLHUP until we have 1127 * seen a writer */ 1128 filp->f_version = pipe->w_counter; 1129 } else { 1130 if (wait_for_partner(pipe, &pipe->w_counter)) 1131 goto err_rd; 1132 } 1133 } 1134 break; 1135 1136 case FMODE_WRITE: 1137 /* 1138 * O_WRONLY 1139 * POSIX.1 says that O_NONBLOCK means return -1 with 1140 * errno=ENXIO when there is no process reading the FIFO. 1141 */ 1142 ret = -ENXIO; 1143 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1144 goto err; 1145 1146 pipe->w_counter++; 1147 if (!pipe->writers++) 1148 wake_up_partner(pipe); 1149 1150 if (!is_pipe && !pipe->readers) { 1151 if (wait_for_partner(pipe, &pipe->r_counter)) 1152 goto err_wr; 1153 } 1154 break; 1155 1156 case FMODE_READ | FMODE_WRITE: 1157 /* 1158 * O_RDWR 1159 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1160 * This implementation will NEVER block on a O_RDWR open, since 1161 * the process can at least talk to itself. 1162 */ 1163 1164 pipe->readers++; 1165 pipe->writers++; 1166 pipe->r_counter++; 1167 pipe->w_counter++; 1168 if (pipe->readers == 1 || pipe->writers == 1) 1169 wake_up_partner(pipe); 1170 break; 1171 1172 default: 1173 ret = -EINVAL; 1174 goto err; 1175 } 1176 1177 /* Ok! */ 1178 __pipe_unlock(pipe); 1179 return 0; 1180 1181 err_rd: 1182 if (!--pipe->readers) 1183 wake_up_interruptible(&pipe->wr_wait); 1184 ret = -ERESTARTSYS; 1185 goto err; 1186 1187 err_wr: 1188 if (!--pipe->writers) 1189 wake_up_interruptible_all(&pipe->rd_wait); 1190 ret = -ERESTARTSYS; 1191 goto err; 1192 1193 err: 1194 __pipe_unlock(pipe); 1195 1196 put_pipe_info(inode, pipe); 1197 return ret; 1198 } 1199 1200 const struct file_operations pipefifo_fops = { 1201 .open = fifo_open, 1202 .llseek = no_llseek, 1203 .read_iter = pipe_read, 1204 .write_iter = pipe_write, 1205 .poll = pipe_poll, 1206 .unlocked_ioctl = pipe_ioctl, 1207 .release = pipe_release, 1208 .fasync = pipe_fasync, 1209 .splice_write = iter_file_splice_write, 1210 }; 1211 1212 /* 1213 * Currently we rely on the pipe array holding a power-of-2 number 1214 * of pages. Returns 0 on error. 1215 */ 1216 unsigned int round_pipe_size(unsigned long size) 1217 { 1218 if (size > (1U << 31)) 1219 return 0; 1220 1221 /* Minimum pipe size, as required by POSIX */ 1222 if (size < PAGE_SIZE) 1223 return PAGE_SIZE; 1224 1225 return roundup_pow_of_two(size); 1226 } 1227 1228 /* 1229 * Resize the pipe ring to a number of slots. 1230 */ 1231 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1232 { 1233 struct pipe_buffer *bufs; 1234 unsigned int head, tail, mask, n; 1235 1236 /* 1237 * We can shrink the pipe, if arg is greater than the ring occupancy. 1238 * Since we don't expect a lot of shrink+grow operations, just free and 1239 * allocate again like we would do for growing. If the pipe currently 1240 * contains more buffers than arg, then return busy. 1241 */ 1242 mask = pipe->ring_size - 1; 1243 head = pipe->head; 1244 tail = pipe->tail; 1245 n = pipe_occupancy(pipe->head, pipe->tail); 1246 if (nr_slots < n) 1247 return -EBUSY; 1248 1249 bufs = kcalloc(nr_slots, sizeof(*bufs), 1250 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1251 if (unlikely(!bufs)) 1252 return -ENOMEM; 1253 1254 /* 1255 * The pipe array wraps around, so just start the new one at zero 1256 * and adjust the indices. 1257 */ 1258 if (n > 0) { 1259 unsigned int h = head & mask; 1260 unsigned int t = tail & mask; 1261 if (h > t) { 1262 memcpy(bufs, pipe->bufs + t, 1263 n * sizeof(struct pipe_buffer)); 1264 } else { 1265 unsigned int tsize = pipe->ring_size - t; 1266 if (h > 0) 1267 memcpy(bufs + tsize, pipe->bufs, 1268 h * sizeof(struct pipe_buffer)); 1269 memcpy(bufs, pipe->bufs + t, 1270 tsize * sizeof(struct pipe_buffer)); 1271 } 1272 } 1273 1274 head = n; 1275 tail = 0; 1276 1277 kfree(pipe->bufs); 1278 pipe->bufs = bufs; 1279 pipe->ring_size = nr_slots; 1280 if (pipe->max_usage > nr_slots) 1281 pipe->max_usage = nr_slots; 1282 pipe->tail = tail; 1283 pipe->head = head; 1284 1285 /* This might have made more room for writers */ 1286 wake_up_interruptible(&pipe->wr_wait); 1287 return 0; 1288 } 1289 1290 /* 1291 * Allocate a new array of pipe buffers and copy the info over. Returns the 1292 * pipe size if successful, or return -ERROR on error. 1293 */ 1294 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1295 { 1296 unsigned long user_bufs; 1297 unsigned int nr_slots, size; 1298 long ret = 0; 1299 1300 #ifdef CONFIG_WATCH_QUEUE 1301 if (pipe->watch_queue) 1302 return -EBUSY; 1303 #endif 1304 1305 size = round_pipe_size(arg); 1306 nr_slots = size >> PAGE_SHIFT; 1307 1308 if (!nr_slots) 1309 return -EINVAL; 1310 1311 /* 1312 * If trying to increase the pipe capacity, check that an 1313 * unprivileged user is not trying to exceed various limits 1314 * (soft limit check here, hard limit check just below). 1315 * Decreasing the pipe capacity is always permitted, even 1316 * if the user is currently over a limit. 1317 */ 1318 if (nr_slots > pipe->max_usage && 1319 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1320 return -EPERM; 1321 1322 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1323 1324 if (nr_slots > pipe->max_usage && 1325 (too_many_pipe_buffers_hard(user_bufs) || 1326 too_many_pipe_buffers_soft(user_bufs)) && 1327 pipe_is_unprivileged_user()) { 1328 ret = -EPERM; 1329 goto out_revert_acct; 1330 } 1331 1332 ret = pipe_resize_ring(pipe, nr_slots); 1333 if (ret < 0) 1334 goto out_revert_acct; 1335 1336 pipe->max_usage = nr_slots; 1337 pipe->nr_accounted = nr_slots; 1338 return pipe->max_usage * PAGE_SIZE; 1339 1340 out_revert_acct: 1341 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1342 return ret; 1343 } 1344 1345 /* 1346 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1347 * not enough to verify that this is a pipe. 1348 */ 1349 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1350 { 1351 struct pipe_inode_info *pipe = file->private_data; 1352 1353 if (file->f_op != &pipefifo_fops || !pipe) 1354 return NULL; 1355 #ifdef CONFIG_WATCH_QUEUE 1356 if (for_splice && pipe->watch_queue) 1357 return NULL; 1358 #endif 1359 return pipe; 1360 } 1361 1362 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1363 { 1364 struct pipe_inode_info *pipe; 1365 long ret; 1366 1367 pipe = get_pipe_info(file, false); 1368 if (!pipe) 1369 return -EBADF; 1370 1371 __pipe_lock(pipe); 1372 1373 switch (cmd) { 1374 case F_SETPIPE_SZ: 1375 ret = pipe_set_size(pipe, arg); 1376 break; 1377 case F_GETPIPE_SZ: 1378 ret = pipe->max_usage * PAGE_SIZE; 1379 break; 1380 default: 1381 ret = -EINVAL; 1382 break; 1383 } 1384 1385 __pipe_unlock(pipe); 1386 return ret; 1387 } 1388 1389 static const struct super_operations pipefs_ops = { 1390 .destroy_inode = free_inode_nonrcu, 1391 .statfs = simple_statfs, 1392 }; 1393 1394 /* 1395 * pipefs should _never_ be mounted by userland - too much of security hassle, 1396 * no real gain from having the whole whorehouse mounted. So we don't need 1397 * any operations on the root directory. However, we need a non-trivial 1398 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1399 */ 1400 1401 static int pipefs_init_fs_context(struct fs_context *fc) 1402 { 1403 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1404 if (!ctx) 1405 return -ENOMEM; 1406 ctx->ops = &pipefs_ops; 1407 ctx->dops = &pipefs_dentry_operations; 1408 return 0; 1409 } 1410 1411 static struct file_system_type pipe_fs_type = { 1412 .name = "pipefs", 1413 .init_fs_context = pipefs_init_fs_context, 1414 .kill_sb = kill_anon_super, 1415 }; 1416 1417 static int __init init_pipe_fs(void) 1418 { 1419 int err = register_filesystem(&pipe_fs_type); 1420 1421 if (!err) { 1422 pipe_mnt = kern_mount(&pipe_fs_type); 1423 if (IS_ERR(pipe_mnt)) { 1424 err = PTR_ERR(pipe_mnt); 1425 unregister_filesystem(&pipe_fs_type); 1426 } 1427 } 1428 return err; 1429 } 1430 1431 fs_initcall(init_pipe_fs); 1432