xref: /openbmc/linux/fs/pipe.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31 
32 #include "internal.h"
33 
34 /*
35  * The max size that a non-root user is allowed to grow the pipe. Can
36  * be set by root in /proc/sys/fs/pipe-max-size
37  */
38 unsigned int pipe_max_size = 1048576;
39 
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41  * matches default values.
42  */
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45 
46 /*
47  * We use head and tail indices that aren't masked off, except at the point of
48  * dereference, but rather they're allowed to wrap naturally.  This means there
49  * isn't a dead spot in the buffer, but the ring has to be a power of two and
50  * <= 2^31.
51  * -- David Howells 2019-09-23.
52  *
53  * Reads with count = 0 should always return 0.
54  * -- Julian Bradfield 1999-06-07.
55  *
56  * FIFOs and Pipes now generate SIGIO for both readers and writers.
57  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58  *
59  * pipe_read & write cleanup
60  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61  */
62 
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 {
65 	if (pipe->files)
66 		mutex_lock_nested(&pipe->mutex, subclass);
67 }
68 
69 void pipe_lock(struct pipe_inode_info *pipe)
70 {
71 	/*
72 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 	 */
74 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 }
76 EXPORT_SYMBOL(pipe_lock);
77 
78 void pipe_unlock(struct pipe_inode_info *pipe)
79 {
80 	if (pipe->files)
81 		mutex_unlock(&pipe->mutex);
82 }
83 EXPORT_SYMBOL(pipe_unlock);
84 
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 {
87 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 }
89 
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 {
92 	mutex_unlock(&pipe->mutex);
93 }
94 
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96 		      struct pipe_inode_info *pipe2)
97 {
98 	BUG_ON(pipe1 == pipe2);
99 
100 	if (pipe1 < pipe2) {
101 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 	} else {
104 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 	}
107 }
108 
109 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
110 				  struct pipe_buffer *buf)
111 {
112 	struct page *page = buf->page;
113 
114 	/*
115 	 * If nobody else uses this page, and we don't already have a
116 	 * temporary page, let's keep track of it as a one-deep
117 	 * allocation cache. (Otherwise just release our reference to it)
118 	 */
119 	if (page_count(page) == 1 && !pipe->tmp_page)
120 		pipe->tmp_page = page;
121 	else
122 		put_page(page);
123 }
124 
125 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
126 		struct pipe_buffer *buf)
127 {
128 	struct page *page = buf->page;
129 
130 	if (page_count(page) != 1)
131 		return false;
132 	memcg_kmem_uncharge_page(page, 0);
133 	__SetPageLocked(page);
134 	return true;
135 }
136 
137 /**
138  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
139  * @pipe:	the pipe that the buffer belongs to
140  * @buf:	the buffer to attempt to steal
141  *
142  * Description:
143  *	This function attempts to steal the &struct page attached to
144  *	@buf. If successful, this function returns 0 and returns with
145  *	the page locked. The caller may then reuse the page for whatever
146  *	he wishes; the typical use is insertion into a different file
147  *	page cache.
148  */
149 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
150 		struct pipe_buffer *buf)
151 {
152 	struct page *page = buf->page;
153 
154 	/*
155 	 * A reference of one is golden, that means that the owner of this
156 	 * page is the only one holding a reference to it. lock the page
157 	 * and return OK.
158 	 */
159 	if (page_count(page) == 1) {
160 		lock_page(page);
161 		return true;
162 	}
163 	return false;
164 }
165 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
166 
167 /**
168  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
169  * @pipe:	the pipe that the buffer belongs to
170  * @buf:	the buffer to get a reference to
171  *
172  * Description:
173  *	This function grabs an extra reference to @buf. It's used in
174  *	the tee() system call, when we duplicate the buffers in one
175  *	pipe into another.
176  */
177 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
178 {
179 	return try_get_page(buf->page);
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_get);
182 
183 /**
184  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
185  * @pipe:	the pipe that the buffer belongs to
186  * @buf:	the buffer to put a reference to
187  *
188  * Description:
189  *	This function releases a reference to @buf.
190  */
191 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
192 			      struct pipe_buffer *buf)
193 {
194 	put_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_release);
197 
198 static const struct pipe_buf_operations anon_pipe_buf_ops = {
199 	.release	= anon_pipe_buf_release,
200 	.try_steal	= anon_pipe_buf_try_steal,
201 	.get		= generic_pipe_buf_get,
202 };
203 
204 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
205 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
206 {
207 	unsigned int head = READ_ONCE(pipe->head);
208 	unsigned int tail = READ_ONCE(pipe->tail);
209 	unsigned int writers = READ_ONCE(pipe->writers);
210 
211 	return !pipe_empty(head, tail) || !writers;
212 }
213 
214 static ssize_t
215 pipe_read(struct kiocb *iocb, struct iov_iter *to)
216 {
217 	size_t total_len = iov_iter_count(to);
218 	struct file *filp = iocb->ki_filp;
219 	struct pipe_inode_info *pipe = filp->private_data;
220 	bool was_full, wake_next_reader = false;
221 	ssize_t ret;
222 
223 	/* Null read succeeds. */
224 	if (unlikely(total_len == 0))
225 		return 0;
226 
227 	ret = 0;
228 	__pipe_lock(pipe);
229 
230 	/*
231 	 * We only wake up writers if the pipe was full when we started
232 	 * reading in order to avoid unnecessary wakeups.
233 	 *
234 	 * But when we do wake up writers, we do so using a sync wakeup
235 	 * (WF_SYNC), because we want them to get going and generate more
236 	 * data for us.
237 	 */
238 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
239 	for (;;) {
240 		unsigned int head = pipe->head;
241 		unsigned int tail = pipe->tail;
242 		unsigned int mask = pipe->ring_size - 1;
243 
244 #ifdef CONFIG_WATCH_QUEUE
245 		if (pipe->note_loss) {
246 			struct watch_notification n;
247 
248 			if (total_len < 8) {
249 				if (ret == 0)
250 					ret = -ENOBUFS;
251 				break;
252 			}
253 
254 			n.type = WATCH_TYPE_META;
255 			n.subtype = WATCH_META_LOSS_NOTIFICATION;
256 			n.info = watch_sizeof(n);
257 			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
258 				if (ret == 0)
259 					ret = -EFAULT;
260 				break;
261 			}
262 			ret += sizeof(n);
263 			total_len -= sizeof(n);
264 			pipe->note_loss = false;
265 		}
266 #endif
267 
268 		if (!pipe_empty(head, tail)) {
269 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
270 			size_t chars = buf->len;
271 			size_t written;
272 			int error;
273 
274 			if (chars > total_len) {
275 				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
276 					if (ret == 0)
277 						ret = -ENOBUFS;
278 					break;
279 				}
280 				chars = total_len;
281 			}
282 
283 			error = pipe_buf_confirm(pipe, buf);
284 			if (error) {
285 				if (!ret)
286 					ret = error;
287 				break;
288 			}
289 
290 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
291 			if (unlikely(written < chars)) {
292 				if (!ret)
293 					ret = -EFAULT;
294 				break;
295 			}
296 			ret += chars;
297 			buf->offset += chars;
298 			buf->len -= chars;
299 
300 			/* Was it a packet buffer? Clean up and exit */
301 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
302 				total_len = chars;
303 				buf->len = 0;
304 			}
305 
306 			if (!buf->len) {
307 				pipe_buf_release(pipe, buf);
308 				spin_lock_irq(&pipe->rd_wait.lock);
309 #ifdef CONFIG_WATCH_QUEUE
310 				if (buf->flags & PIPE_BUF_FLAG_LOSS)
311 					pipe->note_loss = true;
312 #endif
313 				tail++;
314 				pipe->tail = tail;
315 				spin_unlock_irq(&pipe->rd_wait.lock);
316 			}
317 			total_len -= chars;
318 			if (!total_len)
319 				break;	/* common path: read succeeded */
320 			if (!pipe_empty(head, tail))	/* More to do? */
321 				continue;
322 		}
323 
324 		if (!pipe->writers)
325 			break;
326 		if (ret)
327 			break;
328 		if (filp->f_flags & O_NONBLOCK) {
329 			ret = -EAGAIN;
330 			break;
331 		}
332 		__pipe_unlock(pipe);
333 
334 		/*
335 		 * We only get here if we didn't actually read anything.
336 		 *
337 		 * However, we could have seen (and removed) a zero-sized
338 		 * pipe buffer, and might have made space in the buffers
339 		 * that way.
340 		 *
341 		 * You can't make zero-sized pipe buffers by doing an empty
342 		 * write (not even in packet mode), but they can happen if
343 		 * the writer gets an EFAULT when trying to fill a buffer
344 		 * that already got allocated and inserted in the buffer
345 		 * array.
346 		 *
347 		 * So we still need to wake up any pending writers in the
348 		 * _very_ unlikely case that the pipe was full, but we got
349 		 * no data.
350 		 */
351 		if (unlikely(was_full)) {
352 			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
353 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
354 		}
355 
356 		/*
357 		 * But because we didn't read anything, at this point we can
358 		 * just return directly with -ERESTARTSYS if we're interrupted,
359 		 * since we've done any required wakeups and there's no need
360 		 * to mark anything accessed. And we've dropped the lock.
361 		 */
362 		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
363 			return -ERESTARTSYS;
364 
365 		__pipe_lock(pipe);
366 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
367 		wake_next_reader = true;
368 	}
369 	if (pipe_empty(pipe->head, pipe->tail))
370 		wake_next_reader = false;
371 	__pipe_unlock(pipe);
372 
373 	if (was_full) {
374 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
375 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 	}
377 	if (wake_next_reader)
378 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
379 	if (ret > 0)
380 		file_accessed(filp);
381 	return ret;
382 }
383 
384 static inline int is_packetized(struct file *file)
385 {
386 	return (file->f_flags & O_DIRECT) != 0;
387 }
388 
389 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
390 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
391 {
392 	unsigned int head = READ_ONCE(pipe->head);
393 	unsigned int tail = READ_ONCE(pipe->tail);
394 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
395 
396 	return !pipe_full(head, tail, max_usage) ||
397 		!READ_ONCE(pipe->readers);
398 }
399 
400 static ssize_t
401 pipe_write(struct kiocb *iocb, struct iov_iter *from)
402 {
403 	struct file *filp = iocb->ki_filp;
404 	struct pipe_inode_info *pipe = filp->private_data;
405 	unsigned int head;
406 	ssize_t ret = 0;
407 	size_t total_len = iov_iter_count(from);
408 	ssize_t chars;
409 	bool was_empty = false;
410 	bool wake_next_writer = false;
411 
412 	/* Null write succeeds. */
413 	if (unlikely(total_len == 0))
414 		return 0;
415 
416 	__pipe_lock(pipe);
417 
418 	if (!pipe->readers) {
419 		send_sig(SIGPIPE, current, 0);
420 		ret = -EPIPE;
421 		goto out;
422 	}
423 
424 #ifdef CONFIG_WATCH_QUEUE
425 	if (pipe->watch_queue) {
426 		ret = -EXDEV;
427 		goto out;
428 	}
429 #endif
430 
431 	/*
432 	 * Only wake up if the pipe started out empty, since
433 	 * otherwise there should be no readers waiting.
434 	 *
435 	 * If it wasn't empty we try to merge new data into
436 	 * the last buffer.
437 	 *
438 	 * That naturally merges small writes, but it also
439 	 * page-aligs the rest of the writes for large writes
440 	 * spanning multiple pages.
441 	 */
442 	head = pipe->head;
443 	was_empty = pipe_empty(head, pipe->tail);
444 	chars = total_len & (PAGE_SIZE-1);
445 	if (chars && !was_empty) {
446 		unsigned int mask = pipe->ring_size - 1;
447 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
448 		int offset = buf->offset + buf->len;
449 
450 		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
451 		    offset + chars <= PAGE_SIZE) {
452 			ret = pipe_buf_confirm(pipe, buf);
453 			if (ret)
454 				goto out;
455 
456 			ret = copy_page_from_iter(buf->page, offset, chars, from);
457 			if (unlikely(ret < chars)) {
458 				ret = -EFAULT;
459 				goto out;
460 			}
461 
462 			buf->len += ret;
463 			if (!iov_iter_count(from))
464 				goto out;
465 		}
466 	}
467 
468 	for (;;) {
469 		if (!pipe->readers) {
470 			send_sig(SIGPIPE, current, 0);
471 			if (!ret)
472 				ret = -EPIPE;
473 			break;
474 		}
475 
476 		head = pipe->head;
477 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
478 			unsigned int mask = pipe->ring_size - 1;
479 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
480 			struct page *page = pipe->tmp_page;
481 			int copied;
482 
483 			if (!page) {
484 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
485 				if (unlikely(!page)) {
486 					ret = ret ? : -ENOMEM;
487 					break;
488 				}
489 				pipe->tmp_page = page;
490 			}
491 
492 			/* Allocate a slot in the ring in advance and attach an
493 			 * empty buffer.  If we fault or otherwise fail to use
494 			 * it, either the reader will consume it or it'll still
495 			 * be there for the next write.
496 			 */
497 			spin_lock_irq(&pipe->rd_wait.lock);
498 
499 			head = pipe->head;
500 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
501 				spin_unlock_irq(&pipe->rd_wait.lock);
502 				continue;
503 			}
504 
505 			pipe->head = head + 1;
506 			spin_unlock_irq(&pipe->rd_wait.lock);
507 
508 			/* Insert it into the buffer array */
509 			buf = &pipe->bufs[head & mask];
510 			buf->page = page;
511 			buf->ops = &anon_pipe_buf_ops;
512 			buf->offset = 0;
513 			buf->len = 0;
514 			if (is_packetized(filp))
515 				buf->flags = PIPE_BUF_FLAG_PACKET;
516 			else
517 				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
518 			pipe->tmp_page = NULL;
519 
520 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
521 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
522 				if (!ret)
523 					ret = -EFAULT;
524 				break;
525 			}
526 			ret += copied;
527 			buf->offset = 0;
528 			buf->len = copied;
529 
530 			if (!iov_iter_count(from))
531 				break;
532 		}
533 
534 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
535 			continue;
536 
537 		/* Wait for buffer space to become available. */
538 		if (filp->f_flags & O_NONBLOCK) {
539 			if (!ret)
540 				ret = -EAGAIN;
541 			break;
542 		}
543 		if (signal_pending(current)) {
544 			if (!ret)
545 				ret = -ERESTARTSYS;
546 			break;
547 		}
548 
549 		/*
550 		 * We're going to release the pipe lock and wait for more
551 		 * space. We wake up any readers if necessary, and then
552 		 * after waiting we need to re-check whether the pipe
553 		 * become empty while we dropped the lock.
554 		 */
555 		__pipe_unlock(pipe);
556 		if (was_empty) {
557 			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
558 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559 		}
560 		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
561 		__pipe_lock(pipe);
562 		was_empty = pipe_empty(pipe->head, pipe->tail);
563 		wake_next_writer = true;
564 	}
565 out:
566 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
567 		wake_next_writer = false;
568 	__pipe_unlock(pipe);
569 
570 	/*
571 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
572 	 * want the reader to start processing things asap, rather than
573 	 * leave the data pending.
574 	 *
575 	 * This is particularly important for small writes, because of
576 	 * how (for example) the GNU make jobserver uses small writes to
577 	 * wake up pending jobs
578 	 */
579 	if (was_empty) {
580 		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
581 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
582 	}
583 	if (wake_next_writer)
584 		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
585 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
586 		int err = file_update_time(filp);
587 		if (err)
588 			ret = err;
589 		sb_end_write(file_inode(filp)->i_sb);
590 	}
591 	return ret;
592 }
593 
594 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
595 {
596 	struct pipe_inode_info *pipe = filp->private_data;
597 	int count, head, tail, mask;
598 
599 	switch (cmd) {
600 	case FIONREAD:
601 		__pipe_lock(pipe);
602 		count = 0;
603 		head = pipe->head;
604 		tail = pipe->tail;
605 		mask = pipe->ring_size - 1;
606 
607 		while (tail != head) {
608 			count += pipe->bufs[tail & mask].len;
609 			tail++;
610 		}
611 		__pipe_unlock(pipe);
612 
613 		return put_user(count, (int __user *)arg);
614 
615 #ifdef CONFIG_WATCH_QUEUE
616 	case IOC_WATCH_QUEUE_SET_SIZE: {
617 		int ret;
618 		__pipe_lock(pipe);
619 		ret = watch_queue_set_size(pipe, arg);
620 		__pipe_unlock(pipe);
621 		return ret;
622 	}
623 
624 	case IOC_WATCH_QUEUE_SET_FILTER:
625 		return watch_queue_set_filter(
626 			pipe, (struct watch_notification_filter __user *)arg);
627 #endif
628 
629 	default:
630 		return -ENOIOCTLCMD;
631 	}
632 }
633 
634 /* No kernel lock held - fine */
635 static __poll_t
636 pipe_poll(struct file *filp, poll_table *wait)
637 {
638 	__poll_t mask;
639 	struct pipe_inode_info *pipe = filp->private_data;
640 	unsigned int head, tail;
641 
642 	/*
643 	 * Reading pipe state only -- no need for acquiring the semaphore.
644 	 *
645 	 * But because this is racy, the code has to add the
646 	 * entry to the poll table _first_ ..
647 	 */
648 	if (filp->f_mode & FMODE_READ)
649 		poll_wait(filp, &pipe->rd_wait, wait);
650 	if (filp->f_mode & FMODE_WRITE)
651 		poll_wait(filp, &pipe->wr_wait, wait);
652 
653 	/*
654 	 * .. and only then can you do the racy tests. That way,
655 	 * if something changes and you got it wrong, the poll
656 	 * table entry will wake you up and fix it.
657 	 */
658 	head = READ_ONCE(pipe->head);
659 	tail = READ_ONCE(pipe->tail);
660 
661 	mask = 0;
662 	if (filp->f_mode & FMODE_READ) {
663 		if (!pipe_empty(head, tail))
664 			mask |= EPOLLIN | EPOLLRDNORM;
665 		if (!pipe->writers && filp->f_version != pipe->w_counter)
666 			mask |= EPOLLHUP;
667 	}
668 
669 	if (filp->f_mode & FMODE_WRITE) {
670 		if (!pipe_full(head, tail, pipe->max_usage))
671 			mask |= EPOLLOUT | EPOLLWRNORM;
672 		/*
673 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
674 		 * behave exactly like pipes for poll().
675 		 */
676 		if (!pipe->readers)
677 			mask |= EPOLLERR;
678 	}
679 
680 	return mask;
681 }
682 
683 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
684 {
685 	int kill = 0;
686 
687 	spin_lock(&inode->i_lock);
688 	if (!--pipe->files) {
689 		inode->i_pipe = NULL;
690 		kill = 1;
691 	}
692 	spin_unlock(&inode->i_lock);
693 
694 	if (kill)
695 		free_pipe_info(pipe);
696 }
697 
698 static int
699 pipe_release(struct inode *inode, struct file *file)
700 {
701 	struct pipe_inode_info *pipe = file->private_data;
702 
703 	__pipe_lock(pipe);
704 	if (file->f_mode & FMODE_READ)
705 		pipe->readers--;
706 	if (file->f_mode & FMODE_WRITE)
707 		pipe->writers--;
708 
709 	/* Was that the last reader or writer, but not the other side? */
710 	if (!pipe->readers != !pipe->writers) {
711 		wake_up_interruptible_all(&pipe->rd_wait);
712 		wake_up_interruptible_all(&pipe->wr_wait);
713 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
714 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
715 	}
716 	__pipe_unlock(pipe);
717 
718 	put_pipe_info(inode, pipe);
719 	return 0;
720 }
721 
722 static int
723 pipe_fasync(int fd, struct file *filp, int on)
724 {
725 	struct pipe_inode_info *pipe = filp->private_data;
726 	int retval = 0;
727 
728 	__pipe_lock(pipe);
729 	if (filp->f_mode & FMODE_READ)
730 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
732 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 		if (retval < 0 && (filp->f_mode & FMODE_READ))
734 			/* this can happen only if on == T */
735 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
736 	}
737 	__pipe_unlock(pipe);
738 	return retval;
739 }
740 
741 unsigned long account_pipe_buffers(struct user_struct *user,
742 				   unsigned long old, unsigned long new)
743 {
744 	return atomic_long_add_return(new - old, &user->pipe_bufs);
745 }
746 
747 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
748 {
749 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
750 
751 	return soft_limit && user_bufs > soft_limit;
752 }
753 
754 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
755 {
756 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
757 
758 	return hard_limit && user_bufs > hard_limit;
759 }
760 
761 bool pipe_is_unprivileged_user(void)
762 {
763 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
764 }
765 
766 struct pipe_inode_info *alloc_pipe_info(void)
767 {
768 	struct pipe_inode_info *pipe;
769 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
770 	struct user_struct *user = get_current_user();
771 	unsigned long user_bufs;
772 	unsigned int max_size = READ_ONCE(pipe_max_size);
773 
774 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
775 	if (pipe == NULL)
776 		goto out_free_uid;
777 
778 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
779 		pipe_bufs = max_size >> PAGE_SHIFT;
780 
781 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
782 
783 	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
784 		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
785 		pipe_bufs = 1;
786 	}
787 
788 	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
789 		goto out_revert_acct;
790 
791 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
792 			     GFP_KERNEL_ACCOUNT);
793 
794 	if (pipe->bufs) {
795 		init_waitqueue_head(&pipe->rd_wait);
796 		init_waitqueue_head(&pipe->wr_wait);
797 		pipe->r_counter = pipe->w_counter = 1;
798 		pipe->max_usage = pipe_bufs;
799 		pipe->ring_size = pipe_bufs;
800 		pipe->nr_accounted = pipe_bufs;
801 		pipe->user = user;
802 		mutex_init(&pipe->mutex);
803 		return pipe;
804 	}
805 
806 out_revert_acct:
807 	(void) account_pipe_buffers(user, pipe_bufs, 0);
808 	kfree(pipe);
809 out_free_uid:
810 	free_uid(user);
811 	return NULL;
812 }
813 
814 void free_pipe_info(struct pipe_inode_info *pipe)
815 {
816 	int i;
817 
818 #ifdef CONFIG_WATCH_QUEUE
819 	if (pipe->watch_queue) {
820 		watch_queue_clear(pipe->watch_queue);
821 		put_watch_queue(pipe->watch_queue);
822 	}
823 #endif
824 
825 	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
826 	free_uid(pipe->user);
827 	for (i = 0; i < pipe->ring_size; i++) {
828 		struct pipe_buffer *buf = pipe->bufs + i;
829 		if (buf->ops)
830 			pipe_buf_release(pipe, buf);
831 	}
832 	if (pipe->tmp_page)
833 		__free_page(pipe->tmp_page);
834 	kfree(pipe->bufs);
835 	kfree(pipe);
836 }
837 
838 static struct vfsmount *pipe_mnt __read_mostly;
839 
840 /*
841  * pipefs_dname() is called from d_path().
842  */
843 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
844 {
845 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
846 				d_inode(dentry)->i_ino);
847 }
848 
849 static const struct dentry_operations pipefs_dentry_operations = {
850 	.d_dname	= pipefs_dname,
851 };
852 
853 static struct inode * get_pipe_inode(void)
854 {
855 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
856 	struct pipe_inode_info *pipe;
857 
858 	if (!inode)
859 		goto fail_inode;
860 
861 	inode->i_ino = get_next_ino();
862 
863 	pipe = alloc_pipe_info();
864 	if (!pipe)
865 		goto fail_iput;
866 
867 	inode->i_pipe = pipe;
868 	pipe->files = 2;
869 	pipe->readers = pipe->writers = 1;
870 	inode->i_fop = &pipefifo_fops;
871 
872 	/*
873 	 * Mark the inode dirty from the very beginning,
874 	 * that way it will never be moved to the dirty
875 	 * list because "mark_inode_dirty()" will think
876 	 * that it already _is_ on the dirty list.
877 	 */
878 	inode->i_state = I_DIRTY;
879 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
880 	inode->i_uid = current_fsuid();
881 	inode->i_gid = current_fsgid();
882 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
883 
884 	return inode;
885 
886 fail_iput:
887 	iput(inode);
888 
889 fail_inode:
890 	return NULL;
891 }
892 
893 int create_pipe_files(struct file **res, int flags)
894 {
895 	struct inode *inode = get_pipe_inode();
896 	struct file *f;
897 	int error;
898 
899 	if (!inode)
900 		return -ENFILE;
901 
902 	if (flags & O_NOTIFICATION_PIPE) {
903 		error = watch_queue_init(inode->i_pipe);
904 		if (error) {
905 			free_pipe_info(inode->i_pipe);
906 			iput(inode);
907 			return error;
908 		}
909 	}
910 
911 	f = alloc_file_pseudo(inode, pipe_mnt, "",
912 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
913 				&pipefifo_fops);
914 	if (IS_ERR(f)) {
915 		free_pipe_info(inode->i_pipe);
916 		iput(inode);
917 		return PTR_ERR(f);
918 	}
919 
920 	f->private_data = inode->i_pipe;
921 
922 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
923 				  &pipefifo_fops);
924 	if (IS_ERR(res[0])) {
925 		put_pipe_info(inode, inode->i_pipe);
926 		fput(f);
927 		return PTR_ERR(res[0]);
928 	}
929 	res[0]->private_data = inode->i_pipe;
930 	res[1] = f;
931 	stream_open(inode, res[0]);
932 	stream_open(inode, res[1]);
933 	return 0;
934 }
935 
936 static int __do_pipe_flags(int *fd, struct file **files, int flags)
937 {
938 	int error;
939 	int fdw, fdr;
940 
941 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
942 		return -EINVAL;
943 
944 	error = create_pipe_files(files, flags);
945 	if (error)
946 		return error;
947 
948 	error = get_unused_fd_flags(flags);
949 	if (error < 0)
950 		goto err_read_pipe;
951 	fdr = error;
952 
953 	error = get_unused_fd_flags(flags);
954 	if (error < 0)
955 		goto err_fdr;
956 	fdw = error;
957 
958 	audit_fd_pair(fdr, fdw);
959 	fd[0] = fdr;
960 	fd[1] = fdw;
961 	return 0;
962 
963  err_fdr:
964 	put_unused_fd(fdr);
965  err_read_pipe:
966 	fput(files[0]);
967 	fput(files[1]);
968 	return error;
969 }
970 
971 int do_pipe_flags(int *fd, int flags)
972 {
973 	struct file *files[2];
974 	int error = __do_pipe_flags(fd, files, flags);
975 	if (!error) {
976 		fd_install(fd[0], files[0]);
977 		fd_install(fd[1], files[1]);
978 	}
979 	return error;
980 }
981 
982 /*
983  * sys_pipe() is the normal C calling standard for creating
984  * a pipe. It's not the way Unix traditionally does this, though.
985  */
986 static int do_pipe2(int __user *fildes, int flags)
987 {
988 	struct file *files[2];
989 	int fd[2];
990 	int error;
991 
992 	error = __do_pipe_flags(fd, files, flags);
993 	if (!error) {
994 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
995 			fput(files[0]);
996 			fput(files[1]);
997 			put_unused_fd(fd[0]);
998 			put_unused_fd(fd[1]);
999 			error = -EFAULT;
1000 		} else {
1001 			fd_install(fd[0], files[0]);
1002 			fd_install(fd[1], files[1]);
1003 		}
1004 	}
1005 	return error;
1006 }
1007 
1008 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009 {
1010 	return do_pipe2(fildes, flags);
1011 }
1012 
1013 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014 {
1015 	return do_pipe2(fildes, 0);
1016 }
1017 
1018 /*
1019  * This is the stupid "wait for pipe to be readable or writable"
1020  * model.
1021  *
1022  * See pipe_read/write() for the proper kind of exclusive wait,
1023  * but that requires that we wake up any other readers/writers
1024  * if we then do not end up reading everything (ie the whole
1025  * "wake_next_reader/writer" logic in pipe_read/write()).
1026  */
1027 void pipe_wait_readable(struct pipe_inode_info *pipe)
1028 {
1029 	pipe_unlock(pipe);
1030 	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031 	pipe_lock(pipe);
1032 }
1033 
1034 void pipe_wait_writable(struct pipe_inode_info *pipe)
1035 {
1036 	pipe_unlock(pipe);
1037 	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038 	pipe_lock(pipe);
1039 }
1040 
1041 /*
1042  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044  * race with the count check and waitqueue prep.
1045  *
1046  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047  * then check the condition you're waiting for, and only then sleep. But
1048  * because of the pipe lock, we can check the condition before being on
1049  * the wait queue.
1050  *
1051  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052  */
1053 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054 {
1055 	DEFINE_WAIT(rdwait);
1056 	int cur = *cnt;
1057 
1058 	while (cur == *cnt) {
1059 		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060 		pipe_unlock(pipe);
1061 		schedule();
1062 		finish_wait(&pipe->rd_wait, &rdwait);
1063 		pipe_lock(pipe);
1064 		if (signal_pending(current))
1065 			break;
1066 	}
1067 	return cur == *cnt ? -ERESTARTSYS : 0;
1068 }
1069 
1070 static void wake_up_partner(struct pipe_inode_info *pipe)
1071 {
1072 	wake_up_interruptible_all(&pipe->rd_wait);
1073 }
1074 
1075 static int fifo_open(struct inode *inode, struct file *filp)
1076 {
1077 	struct pipe_inode_info *pipe;
1078 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079 	int ret;
1080 
1081 	filp->f_version = 0;
1082 
1083 	spin_lock(&inode->i_lock);
1084 	if (inode->i_pipe) {
1085 		pipe = inode->i_pipe;
1086 		pipe->files++;
1087 		spin_unlock(&inode->i_lock);
1088 	} else {
1089 		spin_unlock(&inode->i_lock);
1090 		pipe = alloc_pipe_info();
1091 		if (!pipe)
1092 			return -ENOMEM;
1093 		pipe->files = 1;
1094 		spin_lock(&inode->i_lock);
1095 		if (unlikely(inode->i_pipe)) {
1096 			inode->i_pipe->files++;
1097 			spin_unlock(&inode->i_lock);
1098 			free_pipe_info(pipe);
1099 			pipe = inode->i_pipe;
1100 		} else {
1101 			inode->i_pipe = pipe;
1102 			spin_unlock(&inode->i_lock);
1103 		}
1104 	}
1105 	filp->private_data = pipe;
1106 	/* OK, we have a pipe and it's pinned down */
1107 
1108 	__pipe_lock(pipe);
1109 
1110 	/* We can only do regular read/write on fifos */
1111 	stream_open(inode, filp);
1112 
1113 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114 	case FMODE_READ:
1115 	/*
1116 	 *  O_RDONLY
1117 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1118 	 *  opened, even when there is no process writing the FIFO.
1119 	 */
1120 		pipe->r_counter++;
1121 		if (pipe->readers++ == 0)
1122 			wake_up_partner(pipe);
1123 
1124 		if (!is_pipe && !pipe->writers) {
1125 			if ((filp->f_flags & O_NONBLOCK)) {
1126 				/* suppress EPOLLHUP until we have
1127 				 * seen a writer */
1128 				filp->f_version = pipe->w_counter;
1129 			} else {
1130 				if (wait_for_partner(pipe, &pipe->w_counter))
1131 					goto err_rd;
1132 			}
1133 		}
1134 		break;
1135 
1136 	case FMODE_WRITE:
1137 	/*
1138 	 *  O_WRONLY
1139 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1140 	 *  errno=ENXIO when there is no process reading the FIFO.
1141 	 */
1142 		ret = -ENXIO;
1143 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144 			goto err;
1145 
1146 		pipe->w_counter++;
1147 		if (!pipe->writers++)
1148 			wake_up_partner(pipe);
1149 
1150 		if (!is_pipe && !pipe->readers) {
1151 			if (wait_for_partner(pipe, &pipe->r_counter))
1152 				goto err_wr;
1153 		}
1154 		break;
1155 
1156 	case FMODE_READ | FMODE_WRITE:
1157 	/*
1158 	 *  O_RDWR
1159 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160 	 *  This implementation will NEVER block on a O_RDWR open, since
1161 	 *  the process can at least talk to itself.
1162 	 */
1163 
1164 		pipe->readers++;
1165 		pipe->writers++;
1166 		pipe->r_counter++;
1167 		pipe->w_counter++;
1168 		if (pipe->readers == 1 || pipe->writers == 1)
1169 			wake_up_partner(pipe);
1170 		break;
1171 
1172 	default:
1173 		ret = -EINVAL;
1174 		goto err;
1175 	}
1176 
1177 	/* Ok! */
1178 	__pipe_unlock(pipe);
1179 	return 0;
1180 
1181 err_rd:
1182 	if (!--pipe->readers)
1183 		wake_up_interruptible(&pipe->wr_wait);
1184 	ret = -ERESTARTSYS;
1185 	goto err;
1186 
1187 err_wr:
1188 	if (!--pipe->writers)
1189 		wake_up_interruptible_all(&pipe->rd_wait);
1190 	ret = -ERESTARTSYS;
1191 	goto err;
1192 
1193 err:
1194 	__pipe_unlock(pipe);
1195 
1196 	put_pipe_info(inode, pipe);
1197 	return ret;
1198 }
1199 
1200 const struct file_operations pipefifo_fops = {
1201 	.open		= fifo_open,
1202 	.llseek		= no_llseek,
1203 	.read_iter	= pipe_read,
1204 	.write_iter	= pipe_write,
1205 	.poll		= pipe_poll,
1206 	.unlocked_ioctl	= pipe_ioctl,
1207 	.release	= pipe_release,
1208 	.fasync		= pipe_fasync,
1209 	.splice_write	= iter_file_splice_write,
1210 };
1211 
1212 /*
1213  * Currently we rely on the pipe array holding a power-of-2 number
1214  * of pages. Returns 0 on error.
1215  */
1216 unsigned int round_pipe_size(unsigned long size)
1217 {
1218 	if (size > (1U << 31))
1219 		return 0;
1220 
1221 	/* Minimum pipe size, as required by POSIX */
1222 	if (size < PAGE_SIZE)
1223 		return PAGE_SIZE;
1224 
1225 	return roundup_pow_of_two(size);
1226 }
1227 
1228 /*
1229  * Resize the pipe ring to a number of slots.
1230  */
1231 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1232 {
1233 	struct pipe_buffer *bufs;
1234 	unsigned int head, tail, mask, n;
1235 
1236 	/*
1237 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1238 	 * Since we don't expect a lot of shrink+grow operations, just free and
1239 	 * allocate again like we would do for growing.  If the pipe currently
1240 	 * contains more buffers than arg, then return busy.
1241 	 */
1242 	mask = pipe->ring_size - 1;
1243 	head = pipe->head;
1244 	tail = pipe->tail;
1245 	n = pipe_occupancy(pipe->head, pipe->tail);
1246 	if (nr_slots < n)
1247 		return -EBUSY;
1248 
1249 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1250 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1251 	if (unlikely(!bufs))
1252 		return -ENOMEM;
1253 
1254 	/*
1255 	 * The pipe array wraps around, so just start the new one at zero
1256 	 * and adjust the indices.
1257 	 */
1258 	if (n > 0) {
1259 		unsigned int h = head & mask;
1260 		unsigned int t = tail & mask;
1261 		if (h > t) {
1262 			memcpy(bufs, pipe->bufs + t,
1263 			       n * sizeof(struct pipe_buffer));
1264 		} else {
1265 			unsigned int tsize = pipe->ring_size - t;
1266 			if (h > 0)
1267 				memcpy(bufs + tsize, pipe->bufs,
1268 				       h * sizeof(struct pipe_buffer));
1269 			memcpy(bufs, pipe->bufs + t,
1270 			       tsize * sizeof(struct pipe_buffer));
1271 		}
1272 	}
1273 
1274 	head = n;
1275 	tail = 0;
1276 
1277 	kfree(pipe->bufs);
1278 	pipe->bufs = bufs;
1279 	pipe->ring_size = nr_slots;
1280 	if (pipe->max_usage > nr_slots)
1281 		pipe->max_usage = nr_slots;
1282 	pipe->tail = tail;
1283 	pipe->head = head;
1284 
1285 	/* This might have made more room for writers */
1286 	wake_up_interruptible(&pipe->wr_wait);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Allocate a new array of pipe buffers and copy the info over. Returns the
1292  * pipe size if successful, or return -ERROR on error.
1293  */
1294 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1295 {
1296 	unsigned long user_bufs;
1297 	unsigned int nr_slots, size;
1298 	long ret = 0;
1299 
1300 #ifdef CONFIG_WATCH_QUEUE
1301 	if (pipe->watch_queue)
1302 		return -EBUSY;
1303 #endif
1304 
1305 	size = round_pipe_size(arg);
1306 	nr_slots = size >> PAGE_SHIFT;
1307 
1308 	if (!nr_slots)
1309 		return -EINVAL;
1310 
1311 	/*
1312 	 * If trying to increase the pipe capacity, check that an
1313 	 * unprivileged user is not trying to exceed various limits
1314 	 * (soft limit check here, hard limit check just below).
1315 	 * Decreasing the pipe capacity is always permitted, even
1316 	 * if the user is currently over a limit.
1317 	 */
1318 	if (nr_slots > pipe->max_usage &&
1319 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1320 		return -EPERM;
1321 
1322 	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1323 
1324 	if (nr_slots > pipe->max_usage &&
1325 			(too_many_pipe_buffers_hard(user_bufs) ||
1326 			 too_many_pipe_buffers_soft(user_bufs)) &&
1327 			pipe_is_unprivileged_user()) {
1328 		ret = -EPERM;
1329 		goto out_revert_acct;
1330 	}
1331 
1332 	ret = pipe_resize_ring(pipe, nr_slots);
1333 	if (ret < 0)
1334 		goto out_revert_acct;
1335 
1336 	pipe->max_usage = nr_slots;
1337 	pipe->nr_accounted = nr_slots;
1338 	return pipe->max_usage * PAGE_SIZE;
1339 
1340 out_revert_acct:
1341 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1342 	return ret;
1343 }
1344 
1345 /*
1346  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1347  * not enough to verify that this is a pipe.
1348  */
1349 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350 {
1351 	struct pipe_inode_info *pipe = file->private_data;
1352 
1353 	if (file->f_op != &pipefifo_fops || !pipe)
1354 		return NULL;
1355 #ifdef CONFIG_WATCH_QUEUE
1356 	if (for_splice && pipe->watch_queue)
1357 		return NULL;
1358 #endif
1359 	return pipe;
1360 }
1361 
1362 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363 {
1364 	struct pipe_inode_info *pipe;
1365 	long ret;
1366 
1367 	pipe = get_pipe_info(file, false);
1368 	if (!pipe)
1369 		return -EBADF;
1370 
1371 	__pipe_lock(pipe);
1372 
1373 	switch (cmd) {
1374 	case F_SETPIPE_SZ:
1375 		ret = pipe_set_size(pipe, arg);
1376 		break;
1377 	case F_GETPIPE_SZ:
1378 		ret = pipe->max_usage * PAGE_SIZE;
1379 		break;
1380 	default:
1381 		ret = -EINVAL;
1382 		break;
1383 	}
1384 
1385 	__pipe_unlock(pipe);
1386 	return ret;
1387 }
1388 
1389 static const struct super_operations pipefs_ops = {
1390 	.destroy_inode = free_inode_nonrcu,
1391 	.statfs = simple_statfs,
1392 };
1393 
1394 /*
1395  * pipefs should _never_ be mounted by userland - too much of security hassle,
1396  * no real gain from having the whole whorehouse mounted. So we don't need
1397  * any operations on the root directory. However, we need a non-trivial
1398  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399  */
1400 
1401 static int pipefs_init_fs_context(struct fs_context *fc)
1402 {
1403 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404 	if (!ctx)
1405 		return -ENOMEM;
1406 	ctx->ops = &pipefs_ops;
1407 	ctx->dops = &pipefs_dentry_operations;
1408 	return 0;
1409 }
1410 
1411 static struct file_system_type pipe_fs_type = {
1412 	.name		= "pipefs",
1413 	.init_fs_context = pipefs_init_fs_context,
1414 	.kill_sb	= kill_anon_super,
1415 };
1416 
1417 static int __init init_pipe_fs(void)
1418 {
1419 	int err = register_filesystem(&pipe_fs_type);
1420 
1421 	if (!err) {
1422 		pipe_mnt = kern_mount(&pipe_fs_type);
1423 		if (IS_ERR(pipe_mnt)) {
1424 			err = PTR_ERR(pipe_mnt);
1425 			unregister_filesystem(&pipe_fs_type);
1426 		}
1427 	}
1428 	return err;
1429 }
1430 
1431 fs_initcall(init_pipe_fs);
1432