xref: /openbmc/linux/fs/pipe.c (revision 54cbac81)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27 
28 /*
29  * The max size that a non-root user is allowed to grow the pipe. Can
30  * be set by root in /proc/sys/fs/pipe-max-size
31  */
32 unsigned int pipe_max_size = 1048576;
33 
34 /*
35  * Minimum pipe size, as required by POSIX
36  */
37 unsigned int pipe_min_size = PAGE_SIZE;
38 
39 /*
40  * We use a start+len construction, which provides full use of the
41  * allocated memory.
42  * -- Florian Coosmann (FGC)
43  *
44  * Reads with count = 0 should always return 0.
45  * -- Julian Bradfield 1999-06-07.
46  *
47  * FIFOs and Pipes now generate SIGIO for both readers and writers.
48  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49  *
50  * pipe_read & write cleanup
51  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
52  */
53 
54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
55 {
56 	if (pipe->inode)
57 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
58 }
59 
60 void pipe_lock(struct pipe_inode_info *pipe)
61 {
62 	/*
63 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 	 */
65 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 }
67 EXPORT_SYMBOL(pipe_lock);
68 
69 void pipe_unlock(struct pipe_inode_info *pipe)
70 {
71 	if (pipe->inode)
72 		mutex_unlock(&pipe->inode->i_mutex);
73 }
74 EXPORT_SYMBOL(pipe_unlock);
75 
76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 		      struct pipe_inode_info *pipe2)
78 {
79 	BUG_ON(pipe1 == pipe2);
80 
81 	if (pipe1 < pipe2) {
82 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84 	} else {
85 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
87 	}
88 }
89 
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info *pipe)
92 {
93 	DEFINE_WAIT(wait);
94 
95 	/*
96 	 * Pipes are system-local resources, so sleeping on them
97 	 * is considered a noninteractive wait:
98 	 */
99 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
100 	pipe_unlock(pipe);
101 	schedule();
102 	finish_wait(&pipe->wait, &wait);
103 	pipe_lock(pipe);
104 }
105 
106 static int
107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
108 			int atomic)
109 {
110 	unsigned long copy;
111 
112 	while (len > 0) {
113 		while (!iov->iov_len)
114 			iov++;
115 		copy = min_t(unsigned long, len, iov->iov_len);
116 
117 		if (atomic) {
118 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
119 				return -EFAULT;
120 		} else {
121 			if (copy_from_user(to, iov->iov_base, copy))
122 				return -EFAULT;
123 		}
124 		to += copy;
125 		len -= copy;
126 		iov->iov_base += copy;
127 		iov->iov_len -= copy;
128 	}
129 	return 0;
130 }
131 
132 static int
133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
134 		      int atomic)
135 {
136 	unsigned long copy;
137 
138 	while (len > 0) {
139 		while (!iov->iov_len)
140 			iov++;
141 		copy = min_t(unsigned long, len, iov->iov_len);
142 
143 		if (atomic) {
144 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
145 				return -EFAULT;
146 		} else {
147 			if (copy_to_user(iov->iov_base, from, copy))
148 				return -EFAULT;
149 		}
150 		from += copy;
151 		len -= copy;
152 		iov->iov_base += copy;
153 		iov->iov_len -= copy;
154 	}
155 	return 0;
156 }
157 
158 /*
159  * Attempt to pre-fault in the user memory, so we can use atomic copies.
160  * Returns the number of bytes not faulted in.
161  */
162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
163 {
164 	while (!iov->iov_len)
165 		iov++;
166 
167 	while (len > 0) {
168 		unsigned long this_len;
169 
170 		this_len = min_t(unsigned long, len, iov->iov_len);
171 		if (fault_in_pages_writeable(iov->iov_base, this_len))
172 			break;
173 
174 		len -= this_len;
175 		iov++;
176 	}
177 
178 	return len;
179 }
180 
181 /*
182  * Pre-fault in the user memory, so we can use atomic copies.
183  */
184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
185 {
186 	while (!iov->iov_len)
187 		iov++;
188 
189 	while (len > 0) {
190 		unsigned long this_len;
191 
192 		this_len = min_t(unsigned long, len, iov->iov_len);
193 		fault_in_pages_readable(iov->iov_base, this_len);
194 		len -= this_len;
195 		iov++;
196 	}
197 }
198 
199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200 				  struct pipe_buffer *buf)
201 {
202 	struct page *page = buf->page;
203 
204 	/*
205 	 * If nobody else uses this page, and we don't already have a
206 	 * temporary page, let's keep track of it as a one-deep
207 	 * allocation cache. (Otherwise just release our reference to it)
208 	 */
209 	if (page_count(page) == 1 && !pipe->tmp_page)
210 		pipe->tmp_page = page;
211 	else
212 		page_cache_release(page);
213 }
214 
215 /**
216  * generic_pipe_buf_map - virtually map a pipe buffer
217  * @pipe:	the pipe that the buffer belongs to
218  * @buf:	the buffer that should be mapped
219  * @atomic:	whether to use an atomic map
220  *
221  * Description:
222  *	This function returns a kernel virtual address mapping for the
223  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224  *	and the caller has to be careful not to fault before calling
225  *	the unmap function.
226  *
227  *	Note that this function calls kmap_atomic() if @atomic != 0.
228  */
229 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
230 			   struct pipe_buffer *buf, int atomic)
231 {
232 	if (atomic) {
233 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234 		return kmap_atomic(buf->page);
235 	}
236 
237 	return kmap(buf->page);
238 }
239 EXPORT_SYMBOL(generic_pipe_buf_map);
240 
241 /**
242  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243  * @pipe:	the pipe that the buffer belongs to
244  * @buf:	the buffer that should be unmapped
245  * @map_data:	the data that the mapping function returned
246  *
247  * Description:
248  *	This function undoes the mapping that ->map() provided.
249  */
250 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
251 			    struct pipe_buffer *buf, void *map_data)
252 {
253 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255 		kunmap_atomic(map_data);
256 	} else
257 		kunmap(buf->page);
258 }
259 EXPORT_SYMBOL(generic_pipe_buf_unmap);
260 
261 /**
262  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263  * @pipe:	the pipe that the buffer belongs to
264  * @buf:	the buffer to attempt to steal
265  *
266  * Description:
267  *	This function attempts to steal the &struct page attached to
268  *	@buf. If successful, this function returns 0 and returns with
269  *	the page locked. The caller may then reuse the page for whatever
270  *	he wishes; the typical use is insertion into a different file
271  *	page cache.
272  */
273 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
274 			   struct pipe_buffer *buf)
275 {
276 	struct page *page = buf->page;
277 
278 	/*
279 	 * A reference of one is golden, that means that the owner of this
280 	 * page is the only one holding a reference to it. lock the page
281 	 * and return OK.
282 	 */
283 	if (page_count(page) == 1) {
284 		lock_page(page);
285 		return 0;
286 	}
287 
288 	return 1;
289 }
290 EXPORT_SYMBOL(generic_pipe_buf_steal);
291 
292 /**
293  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294  * @pipe:	the pipe that the buffer belongs to
295  * @buf:	the buffer to get a reference to
296  *
297  * Description:
298  *	This function grabs an extra reference to @buf. It's used in
299  *	in the tee() system call, when we duplicate the buffers in one
300  *	pipe into another.
301  */
302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
303 {
304 	page_cache_get(buf->page);
305 }
306 EXPORT_SYMBOL(generic_pipe_buf_get);
307 
308 /**
309  * generic_pipe_buf_confirm - verify contents of the pipe buffer
310  * @info:	the pipe that the buffer belongs to
311  * @buf:	the buffer to confirm
312  *
313  * Description:
314  *	This function does nothing, because the generic pipe code uses
315  *	pages that are always good when inserted into the pipe.
316  */
317 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
318 			     struct pipe_buffer *buf)
319 {
320 	return 0;
321 }
322 EXPORT_SYMBOL(generic_pipe_buf_confirm);
323 
324 /**
325  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326  * @pipe:	the pipe that the buffer belongs to
327  * @buf:	the buffer to put a reference to
328  *
329  * Description:
330  *	This function releases a reference to @buf.
331  */
332 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
333 			      struct pipe_buffer *buf)
334 {
335 	page_cache_release(buf->page);
336 }
337 EXPORT_SYMBOL(generic_pipe_buf_release);
338 
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
340 	.can_merge = 1,
341 	.map = generic_pipe_buf_map,
342 	.unmap = generic_pipe_buf_unmap,
343 	.confirm = generic_pipe_buf_confirm,
344 	.release = anon_pipe_buf_release,
345 	.steal = generic_pipe_buf_steal,
346 	.get = generic_pipe_buf_get,
347 };
348 
349 static const struct pipe_buf_operations packet_pipe_buf_ops = {
350 	.can_merge = 0,
351 	.map = generic_pipe_buf_map,
352 	.unmap = generic_pipe_buf_unmap,
353 	.confirm = generic_pipe_buf_confirm,
354 	.release = anon_pipe_buf_release,
355 	.steal = generic_pipe_buf_steal,
356 	.get = generic_pipe_buf_get,
357 };
358 
359 static ssize_t
360 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
361 	   unsigned long nr_segs, loff_t pos)
362 {
363 	struct file *filp = iocb->ki_filp;
364 	struct inode *inode = filp->f_path.dentry->d_inode;
365 	struct pipe_inode_info *pipe;
366 	int do_wakeup;
367 	ssize_t ret;
368 	struct iovec *iov = (struct iovec *)_iov;
369 	size_t total_len;
370 
371 	total_len = iov_length(iov, nr_segs);
372 	/* Null read succeeds. */
373 	if (unlikely(total_len == 0))
374 		return 0;
375 
376 	do_wakeup = 0;
377 	ret = 0;
378 	mutex_lock(&inode->i_mutex);
379 	pipe = inode->i_pipe;
380 	for (;;) {
381 		int bufs = pipe->nrbufs;
382 		if (bufs) {
383 			int curbuf = pipe->curbuf;
384 			struct pipe_buffer *buf = pipe->bufs + curbuf;
385 			const struct pipe_buf_operations *ops = buf->ops;
386 			void *addr;
387 			size_t chars = buf->len;
388 			int error, atomic;
389 
390 			if (chars > total_len)
391 				chars = total_len;
392 
393 			error = ops->confirm(pipe, buf);
394 			if (error) {
395 				if (!ret)
396 					ret = error;
397 				break;
398 			}
399 
400 			atomic = !iov_fault_in_pages_write(iov, chars);
401 redo:
402 			addr = ops->map(pipe, buf, atomic);
403 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
404 			ops->unmap(pipe, buf, addr);
405 			if (unlikely(error)) {
406 				/*
407 				 * Just retry with the slow path if we failed.
408 				 */
409 				if (atomic) {
410 					atomic = 0;
411 					goto redo;
412 				}
413 				if (!ret)
414 					ret = error;
415 				break;
416 			}
417 			ret += chars;
418 			buf->offset += chars;
419 			buf->len -= chars;
420 
421 			/* Was it a packet buffer? Clean up and exit */
422 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
423 				total_len = chars;
424 				buf->len = 0;
425 			}
426 
427 			if (!buf->len) {
428 				buf->ops = NULL;
429 				ops->release(pipe, buf);
430 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
431 				pipe->curbuf = curbuf;
432 				pipe->nrbufs = --bufs;
433 				do_wakeup = 1;
434 			}
435 			total_len -= chars;
436 			if (!total_len)
437 				break;	/* common path: read succeeded */
438 		}
439 		if (bufs)	/* More to do? */
440 			continue;
441 		if (!pipe->writers)
442 			break;
443 		if (!pipe->waiting_writers) {
444 			/* syscall merging: Usually we must not sleep
445 			 * if O_NONBLOCK is set, or if we got some data.
446 			 * But if a writer sleeps in kernel space, then
447 			 * we can wait for that data without violating POSIX.
448 			 */
449 			if (ret)
450 				break;
451 			if (filp->f_flags & O_NONBLOCK) {
452 				ret = -EAGAIN;
453 				break;
454 			}
455 		}
456 		if (signal_pending(current)) {
457 			if (!ret)
458 				ret = -ERESTARTSYS;
459 			break;
460 		}
461 		if (do_wakeup) {
462 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
463  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
464 		}
465 		pipe_wait(pipe);
466 	}
467 	mutex_unlock(&inode->i_mutex);
468 
469 	/* Signal writers asynchronously that there is more room. */
470 	if (do_wakeup) {
471 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
472 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
473 	}
474 	if (ret > 0)
475 		file_accessed(filp);
476 	return ret;
477 }
478 
479 static inline int is_packetized(struct file *file)
480 {
481 	return (file->f_flags & O_DIRECT) != 0;
482 }
483 
484 static ssize_t
485 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
486 	    unsigned long nr_segs, loff_t ppos)
487 {
488 	struct file *filp = iocb->ki_filp;
489 	struct inode *inode = filp->f_path.dentry->d_inode;
490 	struct pipe_inode_info *pipe;
491 	ssize_t ret;
492 	int do_wakeup;
493 	struct iovec *iov = (struct iovec *)_iov;
494 	size_t total_len;
495 	ssize_t chars;
496 
497 	total_len = iov_length(iov, nr_segs);
498 	/* Null write succeeds. */
499 	if (unlikely(total_len == 0))
500 		return 0;
501 
502 	do_wakeup = 0;
503 	ret = 0;
504 	mutex_lock(&inode->i_mutex);
505 	pipe = inode->i_pipe;
506 
507 	if (!pipe->readers) {
508 		send_sig(SIGPIPE, current, 0);
509 		ret = -EPIPE;
510 		goto out;
511 	}
512 
513 	/* We try to merge small writes */
514 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
515 	if (pipe->nrbufs && chars != 0) {
516 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
517 							(pipe->buffers - 1);
518 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
519 		const struct pipe_buf_operations *ops = buf->ops;
520 		int offset = buf->offset + buf->len;
521 
522 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
523 			int error, atomic = 1;
524 			void *addr;
525 
526 			error = ops->confirm(pipe, buf);
527 			if (error)
528 				goto out;
529 
530 			iov_fault_in_pages_read(iov, chars);
531 redo1:
532 			addr = ops->map(pipe, buf, atomic);
533 			error = pipe_iov_copy_from_user(offset + addr, iov,
534 							chars, atomic);
535 			ops->unmap(pipe, buf, addr);
536 			ret = error;
537 			do_wakeup = 1;
538 			if (error) {
539 				if (atomic) {
540 					atomic = 0;
541 					goto redo1;
542 				}
543 				goto out;
544 			}
545 			buf->len += chars;
546 			total_len -= chars;
547 			ret = chars;
548 			if (!total_len)
549 				goto out;
550 		}
551 	}
552 
553 	for (;;) {
554 		int bufs;
555 
556 		if (!pipe->readers) {
557 			send_sig(SIGPIPE, current, 0);
558 			if (!ret)
559 				ret = -EPIPE;
560 			break;
561 		}
562 		bufs = pipe->nrbufs;
563 		if (bufs < pipe->buffers) {
564 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
565 			struct pipe_buffer *buf = pipe->bufs + newbuf;
566 			struct page *page = pipe->tmp_page;
567 			char *src;
568 			int error, atomic = 1;
569 
570 			if (!page) {
571 				page = alloc_page(GFP_HIGHUSER);
572 				if (unlikely(!page)) {
573 					ret = ret ? : -ENOMEM;
574 					break;
575 				}
576 				pipe->tmp_page = page;
577 			}
578 			/* Always wake up, even if the copy fails. Otherwise
579 			 * we lock up (O_NONBLOCK-)readers that sleep due to
580 			 * syscall merging.
581 			 * FIXME! Is this really true?
582 			 */
583 			do_wakeup = 1;
584 			chars = PAGE_SIZE;
585 			if (chars > total_len)
586 				chars = total_len;
587 
588 			iov_fault_in_pages_read(iov, chars);
589 redo2:
590 			if (atomic)
591 				src = kmap_atomic(page);
592 			else
593 				src = kmap(page);
594 
595 			error = pipe_iov_copy_from_user(src, iov, chars,
596 							atomic);
597 			if (atomic)
598 				kunmap_atomic(src);
599 			else
600 				kunmap(page);
601 
602 			if (unlikely(error)) {
603 				if (atomic) {
604 					atomic = 0;
605 					goto redo2;
606 				}
607 				if (!ret)
608 					ret = error;
609 				break;
610 			}
611 			ret += chars;
612 
613 			/* Insert it into the buffer array */
614 			buf->page = page;
615 			buf->ops = &anon_pipe_buf_ops;
616 			buf->offset = 0;
617 			buf->len = chars;
618 			buf->flags = 0;
619 			if (is_packetized(filp)) {
620 				buf->ops = &packet_pipe_buf_ops;
621 				buf->flags = PIPE_BUF_FLAG_PACKET;
622 			}
623 			pipe->nrbufs = ++bufs;
624 			pipe->tmp_page = NULL;
625 
626 			total_len -= chars;
627 			if (!total_len)
628 				break;
629 		}
630 		if (bufs < pipe->buffers)
631 			continue;
632 		if (filp->f_flags & O_NONBLOCK) {
633 			if (!ret)
634 				ret = -EAGAIN;
635 			break;
636 		}
637 		if (signal_pending(current)) {
638 			if (!ret)
639 				ret = -ERESTARTSYS;
640 			break;
641 		}
642 		if (do_wakeup) {
643 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
644 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
645 			do_wakeup = 0;
646 		}
647 		pipe->waiting_writers++;
648 		pipe_wait(pipe);
649 		pipe->waiting_writers--;
650 	}
651 out:
652 	mutex_unlock(&inode->i_mutex);
653 	if (do_wakeup) {
654 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
655 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
656 	}
657 	if (ret > 0) {
658 		int err = file_update_time(filp);
659 		if (err)
660 			ret = err;
661 	}
662 	return ret;
663 }
664 
665 static ssize_t
666 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
667 {
668 	return -EBADF;
669 }
670 
671 static ssize_t
672 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
673 	   loff_t *ppos)
674 {
675 	return -EBADF;
676 }
677 
678 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
679 {
680 	struct inode *inode = filp->f_path.dentry->d_inode;
681 	struct pipe_inode_info *pipe;
682 	int count, buf, nrbufs;
683 
684 	switch (cmd) {
685 		case FIONREAD:
686 			mutex_lock(&inode->i_mutex);
687 			pipe = inode->i_pipe;
688 			count = 0;
689 			buf = pipe->curbuf;
690 			nrbufs = pipe->nrbufs;
691 			while (--nrbufs >= 0) {
692 				count += pipe->bufs[buf].len;
693 				buf = (buf+1) & (pipe->buffers - 1);
694 			}
695 			mutex_unlock(&inode->i_mutex);
696 
697 			return put_user(count, (int __user *)arg);
698 		default:
699 			return -ENOIOCTLCMD;
700 	}
701 }
702 
703 /* No kernel lock held - fine */
704 static unsigned int
705 pipe_poll(struct file *filp, poll_table *wait)
706 {
707 	unsigned int mask;
708 	struct inode *inode = filp->f_path.dentry->d_inode;
709 	struct pipe_inode_info *pipe = inode->i_pipe;
710 	int nrbufs;
711 
712 	poll_wait(filp, &pipe->wait, wait);
713 
714 	/* Reading only -- no need for acquiring the semaphore.  */
715 	nrbufs = pipe->nrbufs;
716 	mask = 0;
717 	if (filp->f_mode & FMODE_READ) {
718 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
719 		if (!pipe->writers && filp->f_version != pipe->w_counter)
720 			mask |= POLLHUP;
721 	}
722 
723 	if (filp->f_mode & FMODE_WRITE) {
724 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
725 		/*
726 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
727 		 * behave exactly like pipes for poll().
728 		 */
729 		if (!pipe->readers)
730 			mask |= POLLERR;
731 	}
732 
733 	return mask;
734 }
735 
736 static int
737 pipe_release(struct inode *inode, int decr, int decw)
738 {
739 	struct pipe_inode_info *pipe;
740 
741 	mutex_lock(&inode->i_mutex);
742 	pipe = inode->i_pipe;
743 	pipe->readers -= decr;
744 	pipe->writers -= decw;
745 
746 	if (!pipe->readers && !pipe->writers) {
747 		free_pipe_info(inode);
748 	} else {
749 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
750 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
751 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
752 	}
753 	mutex_unlock(&inode->i_mutex);
754 
755 	return 0;
756 }
757 
758 static int
759 pipe_read_fasync(int fd, struct file *filp, int on)
760 {
761 	struct inode *inode = filp->f_path.dentry->d_inode;
762 	int retval;
763 
764 	mutex_lock(&inode->i_mutex);
765 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
766 	mutex_unlock(&inode->i_mutex);
767 
768 	return retval;
769 }
770 
771 
772 static int
773 pipe_write_fasync(int fd, struct file *filp, int on)
774 {
775 	struct inode *inode = filp->f_path.dentry->d_inode;
776 	int retval;
777 
778 	mutex_lock(&inode->i_mutex);
779 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
780 	mutex_unlock(&inode->i_mutex);
781 
782 	return retval;
783 }
784 
785 
786 static int
787 pipe_rdwr_fasync(int fd, struct file *filp, int on)
788 {
789 	struct inode *inode = filp->f_path.dentry->d_inode;
790 	struct pipe_inode_info *pipe = inode->i_pipe;
791 	int retval;
792 
793 	mutex_lock(&inode->i_mutex);
794 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
795 	if (retval >= 0) {
796 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
797 		if (retval < 0) /* this can happen only if on == T */
798 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
799 	}
800 	mutex_unlock(&inode->i_mutex);
801 	return retval;
802 }
803 
804 
805 static int
806 pipe_read_release(struct inode *inode, struct file *filp)
807 {
808 	return pipe_release(inode, 1, 0);
809 }
810 
811 static int
812 pipe_write_release(struct inode *inode, struct file *filp)
813 {
814 	return pipe_release(inode, 0, 1);
815 }
816 
817 static int
818 pipe_rdwr_release(struct inode *inode, struct file *filp)
819 {
820 	int decr, decw;
821 
822 	decr = (filp->f_mode & FMODE_READ) != 0;
823 	decw = (filp->f_mode & FMODE_WRITE) != 0;
824 	return pipe_release(inode, decr, decw);
825 }
826 
827 static int
828 pipe_read_open(struct inode *inode, struct file *filp)
829 {
830 	int ret = -ENOENT;
831 
832 	mutex_lock(&inode->i_mutex);
833 
834 	if (inode->i_pipe) {
835 		ret = 0;
836 		inode->i_pipe->readers++;
837 	}
838 
839 	mutex_unlock(&inode->i_mutex);
840 
841 	return ret;
842 }
843 
844 static int
845 pipe_write_open(struct inode *inode, struct file *filp)
846 {
847 	int ret = -ENOENT;
848 
849 	mutex_lock(&inode->i_mutex);
850 
851 	if (inode->i_pipe) {
852 		ret = 0;
853 		inode->i_pipe->writers++;
854 	}
855 
856 	mutex_unlock(&inode->i_mutex);
857 
858 	return ret;
859 }
860 
861 static int
862 pipe_rdwr_open(struct inode *inode, struct file *filp)
863 {
864 	int ret = -ENOENT;
865 
866 	mutex_lock(&inode->i_mutex);
867 
868 	if (inode->i_pipe) {
869 		ret = 0;
870 		if (filp->f_mode & FMODE_READ)
871 			inode->i_pipe->readers++;
872 		if (filp->f_mode & FMODE_WRITE)
873 			inode->i_pipe->writers++;
874 	}
875 
876 	mutex_unlock(&inode->i_mutex);
877 
878 	return ret;
879 }
880 
881 /*
882  * The file_operations structs are not static because they
883  * are also used in linux/fs/fifo.c to do operations on FIFOs.
884  *
885  * Pipes reuse fifos' file_operations structs.
886  */
887 const struct file_operations read_pipefifo_fops = {
888 	.llseek		= no_llseek,
889 	.read		= do_sync_read,
890 	.aio_read	= pipe_read,
891 	.write		= bad_pipe_w,
892 	.poll		= pipe_poll,
893 	.unlocked_ioctl	= pipe_ioctl,
894 	.open		= pipe_read_open,
895 	.release	= pipe_read_release,
896 	.fasync		= pipe_read_fasync,
897 };
898 
899 const struct file_operations write_pipefifo_fops = {
900 	.llseek		= no_llseek,
901 	.read		= bad_pipe_r,
902 	.write		= do_sync_write,
903 	.aio_write	= pipe_write,
904 	.poll		= pipe_poll,
905 	.unlocked_ioctl	= pipe_ioctl,
906 	.open		= pipe_write_open,
907 	.release	= pipe_write_release,
908 	.fasync		= pipe_write_fasync,
909 };
910 
911 const struct file_operations rdwr_pipefifo_fops = {
912 	.llseek		= no_llseek,
913 	.read		= do_sync_read,
914 	.aio_read	= pipe_read,
915 	.write		= do_sync_write,
916 	.aio_write	= pipe_write,
917 	.poll		= pipe_poll,
918 	.unlocked_ioctl	= pipe_ioctl,
919 	.open		= pipe_rdwr_open,
920 	.release	= pipe_rdwr_release,
921 	.fasync		= pipe_rdwr_fasync,
922 };
923 
924 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
925 {
926 	struct pipe_inode_info *pipe;
927 
928 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
929 	if (pipe) {
930 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
931 		if (pipe->bufs) {
932 			init_waitqueue_head(&pipe->wait);
933 			pipe->r_counter = pipe->w_counter = 1;
934 			pipe->inode = inode;
935 			pipe->buffers = PIPE_DEF_BUFFERS;
936 			return pipe;
937 		}
938 		kfree(pipe);
939 	}
940 
941 	return NULL;
942 }
943 
944 void __free_pipe_info(struct pipe_inode_info *pipe)
945 {
946 	int i;
947 
948 	for (i = 0; i < pipe->buffers; i++) {
949 		struct pipe_buffer *buf = pipe->bufs + i;
950 		if (buf->ops)
951 			buf->ops->release(pipe, buf);
952 	}
953 	if (pipe->tmp_page)
954 		__free_page(pipe->tmp_page);
955 	kfree(pipe->bufs);
956 	kfree(pipe);
957 }
958 
959 void free_pipe_info(struct inode *inode)
960 {
961 	__free_pipe_info(inode->i_pipe);
962 	inode->i_pipe = NULL;
963 }
964 
965 static struct vfsmount *pipe_mnt __read_mostly;
966 
967 /*
968  * pipefs_dname() is called from d_path().
969  */
970 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
971 {
972 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
973 				dentry->d_inode->i_ino);
974 }
975 
976 static const struct dentry_operations pipefs_dentry_operations = {
977 	.d_dname	= pipefs_dname,
978 };
979 
980 static struct inode * get_pipe_inode(void)
981 {
982 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
983 	struct pipe_inode_info *pipe;
984 
985 	if (!inode)
986 		goto fail_inode;
987 
988 	inode->i_ino = get_next_ino();
989 
990 	pipe = alloc_pipe_info(inode);
991 	if (!pipe)
992 		goto fail_iput;
993 	inode->i_pipe = pipe;
994 
995 	pipe->readers = pipe->writers = 1;
996 	inode->i_fop = &rdwr_pipefifo_fops;
997 
998 	/*
999 	 * Mark the inode dirty from the very beginning,
1000 	 * that way it will never be moved to the dirty
1001 	 * list because "mark_inode_dirty()" will think
1002 	 * that it already _is_ on the dirty list.
1003 	 */
1004 	inode->i_state = I_DIRTY;
1005 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1006 	inode->i_uid = current_fsuid();
1007 	inode->i_gid = current_fsgid();
1008 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1009 
1010 	return inode;
1011 
1012 fail_iput:
1013 	iput(inode);
1014 
1015 fail_inode:
1016 	return NULL;
1017 }
1018 
1019 int create_pipe_files(struct file **res, int flags)
1020 {
1021 	int err;
1022 	struct inode *inode = get_pipe_inode();
1023 	struct file *f;
1024 	struct path path;
1025 	static struct qstr name = { .name = "" };
1026 
1027 	if (!inode)
1028 		return -ENFILE;
1029 
1030 	err = -ENOMEM;
1031 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1032 	if (!path.dentry)
1033 		goto err_inode;
1034 	path.mnt = mntget(pipe_mnt);
1035 
1036 	d_instantiate(path.dentry, inode);
1037 
1038 	err = -ENFILE;
1039 	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1040 	if (!f)
1041 		goto err_dentry;
1042 
1043 	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1044 
1045 	res[0] = alloc_file(&path, FMODE_READ, &read_pipefifo_fops);
1046 	if (!res[0])
1047 		goto err_file;
1048 
1049 	path_get(&path);
1050 	res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1051 	res[1] = f;
1052 	return 0;
1053 
1054 err_file:
1055 	put_filp(f);
1056 err_dentry:
1057 	free_pipe_info(inode);
1058 	path_put(&path);
1059 	return err;
1060 
1061 err_inode:
1062 	free_pipe_info(inode);
1063 	iput(inode);
1064 	return err;
1065 }
1066 
1067 static int __do_pipe_flags(int *fd, struct file **files, int flags)
1068 {
1069 	int error;
1070 	int fdw, fdr;
1071 
1072 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1073 		return -EINVAL;
1074 
1075 	error = create_pipe_files(files, flags);
1076 	if (error)
1077 		return error;
1078 
1079 	error = get_unused_fd_flags(flags);
1080 	if (error < 0)
1081 		goto err_read_pipe;
1082 	fdr = error;
1083 
1084 	error = get_unused_fd_flags(flags);
1085 	if (error < 0)
1086 		goto err_fdr;
1087 	fdw = error;
1088 
1089 	audit_fd_pair(fdr, fdw);
1090 	fd[0] = fdr;
1091 	fd[1] = fdw;
1092 	return 0;
1093 
1094  err_fdr:
1095 	put_unused_fd(fdr);
1096  err_read_pipe:
1097 	fput(files[0]);
1098 	fput(files[1]);
1099 	return error;
1100 }
1101 
1102 int do_pipe_flags(int *fd, int flags)
1103 {
1104 	struct file *files[2];
1105 	int error = __do_pipe_flags(fd, files, flags);
1106 	if (!error) {
1107 		fd_install(fd[0], files[0]);
1108 		fd_install(fd[1], files[1]);
1109 	}
1110 	return error;
1111 }
1112 
1113 /*
1114  * sys_pipe() is the normal C calling standard for creating
1115  * a pipe. It's not the way Unix traditionally does this, though.
1116  */
1117 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1118 {
1119 	struct file *files[2];
1120 	int fd[2];
1121 	int error;
1122 
1123 	error = __do_pipe_flags(fd, files, flags);
1124 	if (!error) {
1125 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1126 			fput(files[0]);
1127 			fput(files[1]);
1128 			put_unused_fd(fd[0]);
1129 			put_unused_fd(fd[1]);
1130 			error = -EFAULT;
1131 		} else {
1132 			fd_install(fd[0], files[0]);
1133 			fd_install(fd[1], files[1]);
1134 		}
1135 	}
1136 	return error;
1137 }
1138 
1139 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1140 {
1141 	return sys_pipe2(fildes, 0);
1142 }
1143 
1144 /*
1145  * Allocate a new array of pipe buffers and copy the info over. Returns the
1146  * pipe size if successful, or return -ERROR on error.
1147  */
1148 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1149 {
1150 	struct pipe_buffer *bufs;
1151 
1152 	/*
1153 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1154 	 * expect a lot of shrink+grow operations, just free and allocate
1155 	 * again like we would do for growing. If the pipe currently
1156 	 * contains more buffers than arg, then return busy.
1157 	 */
1158 	if (nr_pages < pipe->nrbufs)
1159 		return -EBUSY;
1160 
1161 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1162 	if (unlikely(!bufs))
1163 		return -ENOMEM;
1164 
1165 	/*
1166 	 * The pipe array wraps around, so just start the new one at zero
1167 	 * and adjust the indexes.
1168 	 */
1169 	if (pipe->nrbufs) {
1170 		unsigned int tail;
1171 		unsigned int head;
1172 
1173 		tail = pipe->curbuf + pipe->nrbufs;
1174 		if (tail < pipe->buffers)
1175 			tail = 0;
1176 		else
1177 			tail &= (pipe->buffers - 1);
1178 
1179 		head = pipe->nrbufs - tail;
1180 		if (head)
1181 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1182 		if (tail)
1183 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1184 	}
1185 
1186 	pipe->curbuf = 0;
1187 	kfree(pipe->bufs);
1188 	pipe->bufs = bufs;
1189 	pipe->buffers = nr_pages;
1190 	return nr_pages * PAGE_SIZE;
1191 }
1192 
1193 /*
1194  * Currently we rely on the pipe array holding a power-of-2 number
1195  * of pages.
1196  */
1197 static inline unsigned int round_pipe_size(unsigned int size)
1198 {
1199 	unsigned long nr_pages;
1200 
1201 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1202 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1203 }
1204 
1205 /*
1206  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1207  * will return an error.
1208  */
1209 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1210 		 size_t *lenp, loff_t *ppos)
1211 {
1212 	int ret;
1213 
1214 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1215 	if (ret < 0 || !write)
1216 		return ret;
1217 
1218 	pipe_max_size = round_pipe_size(pipe_max_size);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1224  * location, so checking ->i_pipe is not enough to verify that this is a
1225  * pipe.
1226  */
1227 struct pipe_inode_info *get_pipe_info(struct file *file)
1228 {
1229 	struct inode *i = file->f_path.dentry->d_inode;
1230 
1231 	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1232 }
1233 
1234 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1235 {
1236 	struct pipe_inode_info *pipe;
1237 	long ret;
1238 
1239 	pipe = get_pipe_info(file);
1240 	if (!pipe)
1241 		return -EBADF;
1242 
1243 	mutex_lock(&pipe->inode->i_mutex);
1244 
1245 	switch (cmd) {
1246 	case F_SETPIPE_SZ: {
1247 		unsigned int size, nr_pages;
1248 
1249 		size = round_pipe_size(arg);
1250 		nr_pages = size >> PAGE_SHIFT;
1251 
1252 		ret = -EINVAL;
1253 		if (!nr_pages)
1254 			goto out;
1255 
1256 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1257 			ret = -EPERM;
1258 			goto out;
1259 		}
1260 		ret = pipe_set_size(pipe, nr_pages);
1261 		break;
1262 		}
1263 	case F_GETPIPE_SZ:
1264 		ret = pipe->buffers * PAGE_SIZE;
1265 		break;
1266 	default:
1267 		ret = -EINVAL;
1268 		break;
1269 	}
1270 
1271 out:
1272 	mutex_unlock(&pipe->inode->i_mutex);
1273 	return ret;
1274 }
1275 
1276 static const struct super_operations pipefs_ops = {
1277 	.destroy_inode = free_inode_nonrcu,
1278 	.statfs = simple_statfs,
1279 };
1280 
1281 /*
1282  * pipefs should _never_ be mounted by userland - too much of security hassle,
1283  * no real gain from having the whole whorehouse mounted. So we don't need
1284  * any operations on the root directory. However, we need a non-trivial
1285  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1286  */
1287 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1288 			 int flags, const char *dev_name, void *data)
1289 {
1290 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1291 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1292 }
1293 
1294 static struct file_system_type pipe_fs_type = {
1295 	.name		= "pipefs",
1296 	.mount		= pipefs_mount,
1297 	.kill_sb	= kill_anon_super,
1298 };
1299 
1300 static int __init init_pipe_fs(void)
1301 {
1302 	int err = register_filesystem(&pipe_fs_type);
1303 
1304 	if (!err) {
1305 		pipe_mnt = kern_mount(&pipe_fs_type);
1306 		if (IS_ERR(pipe_mnt)) {
1307 			err = PTR_ERR(pipe_mnt);
1308 			unregister_filesystem(&pipe_fs_type);
1309 		}
1310 	}
1311 	return err;
1312 }
1313 
1314 fs_initcall(init_pipe_fs);
1315