xref: /openbmc/linux/fs/pipe.c (revision 49042c220b3a31e25902b36df71b23dc10efa0b8)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/pipe.c
4   *
5   *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6   */
7  
8  #include <linux/mm.h>
9  #include <linux/file.h>
10  #include <linux/poll.h>
11  #include <linux/slab.h>
12  #include <linux/module.h>
13  #include <linux/init.h>
14  #include <linux/fs.h>
15  #include <linux/log2.h>
16  #include <linux/mount.h>
17  #include <linux/pseudo_fs.h>
18  #include <linux/magic.h>
19  #include <linux/pipe_fs_i.h>
20  #include <linux/uio.h>
21  #include <linux/highmem.h>
22  #include <linux/pagemap.h>
23  #include <linux/audit.h>
24  #include <linux/syscalls.h>
25  #include <linux/fcntl.h>
26  #include <linux/memcontrol.h>
27  #include <linux/watch_queue.h>
28  
29  #include <linux/uaccess.h>
30  #include <asm/ioctls.h>
31  
32  #include "internal.h"
33  
34  /*
35   * The max size that a non-root user is allowed to grow the pipe. Can
36   * be set by root in /proc/sys/fs/pipe-max-size
37   */
38  unsigned int pipe_max_size = 1048576;
39  
40  /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41   * matches default values.
42   */
43  unsigned long pipe_user_pages_hard;
44  unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45  
46  /*
47   * We use head and tail indices that aren't masked off, except at the point of
48   * dereference, but rather they're allowed to wrap naturally.  This means there
49   * isn't a dead spot in the buffer, but the ring has to be a power of two and
50   * <= 2^31.
51   * -- David Howells 2019-09-23.
52   *
53   * Reads with count = 0 should always return 0.
54   * -- Julian Bradfield 1999-06-07.
55   *
56   * FIFOs and Pipes now generate SIGIO for both readers and writers.
57   * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58   *
59   * pipe_read & write cleanup
60   * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61   */
62  
63  static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64  {
65  	if (pipe->files)
66  		mutex_lock_nested(&pipe->mutex, subclass);
67  }
68  
69  void pipe_lock(struct pipe_inode_info *pipe)
70  {
71  	/*
72  	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73  	 */
74  	pipe_lock_nested(pipe, I_MUTEX_PARENT);
75  }
76  EXPORT_SYMBOL(pipe_lock);
77  
78  void pipe_unlock(struct pipe_inode_info *pipe)
79  {
80  	if (pipe->files)
81  		mutex_unlock(&pipe->mutex);
82  }
83  EXPORT_SYMBOL(pipe_unlock);
84  
85  static inline void __pipe_lock(struct pipe_inode_info *pipe)
86  {
87  	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88  }
89  
90  static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91  {
92  	mutex_unlock(&pipe->mutex);
93  }
94  
95  void pipe_double_lock(struct pipe_inode_info *pipe1,
96  		      struct pipe_inode_info *pipe2)
97  {
98  	BUG_ON(pipe1 == pipe2);
99  
100  	if (pipe1 < pipe2) {
101  		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102  		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103  	} else {
104  		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105  		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106  	}
107  }
108  
109  /* Drop the inode semaphore and wait for a pipe event, atomically */
110  void pipe_wait(struct pipe_inode_info *pipe)
111  {
112  	DEFINE_WAIT(rdwait);
113  	DEFINE_WAIT(wrwait);
114  
115  	/*
116  	 * Pipes are system-local resources, so sleeping on them
117  	 * is considered a noninteractive wait:
118  	 */
119  	prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
120  	prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
121  	pipe_unlock(pipe);
122  	schedule();
123  	finish_wait(&pipe->rd_wait, &rdwait);
124  	finish_wait(&pipe->wr_wait, &wrwait);
125  	pipe_lock(pipe);
126  }
127  
128  static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
129  				  struct pipe_buffer *buf)
130  {
131  	struct page *page = buf->page;
132  
133  	/*
134  	 * If nobody else uses this page, and we don't already have a
135  	 * temporary page, let's keep track of it as a one-deep
136  	 * allocation cache. (Otherwise just release our reference to it)
137  	 */
138  	if (page_count(page) == 1 && !pipe->tmp_page)
139  		pipe->tmp_page = page;
140  	else
141  		put_page(page);
142  }
143  
144  static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
145  		struct pipe_buffer *buf)
146  {
147  	struct page *page = buf->page;
148  
149  	if (page_count(page) != 1)
150  		return false;
151  	memcg_kmem_uncharge_page(page, 0);
152  	__SetPageLocked(page);
153  	return true;
154  }
155  
156  /**
157   * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
158   * @pipe:	the pipe that the buffer belongs to
159   * @buf:	the buffer to attempt to steal
160   *
161   * Description:
162   *	This function attempts to steal the &struct page attached to
163   *	@buf. If successful, this function returns 0 and returns with
164   *	the page locked. The caller may then reuse the page for whatever
165   *	he wishes; the typical use is insertion into a different file
166   *	page cache.
167   */
168  bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
169  		struct pipe_buffer *buf)
170  {
171  	struct page *page = buf->page;
172  
173  	/*
174  	 * A reference of one is golden, that means that the owner of this
175  	 * page is the only one holding a reference to it. lock the page
176  	 * and return OK.
177  	 */
178  	if (page_count(page) == 1) {
179  		lock_page(page);
180  		return true;
181  	}
182  	return false;
183  }
184  EXPORT_SYMBOL(generic_pipe_buf_try_steal);
185  
186  /**
187   * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188   * @pipe:	the pipe that the buffer belongs to
189   * @buf:	the buffer to get a reference to
190   *
191   * Description:
192   *	This function grabs an extra reference to @buf. It's used in
193   *	in the tee() system call, when we duplicate the buffers in one
194   *	pipe into another.
195   */
196  bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
197  {
198  	return try_get_page(buf->page);
199  }
200  EXPORT_SYMBOL(generic_pipe_buf_get);
201  
202  /**
203   * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
204   * @pipe:	the pipe that the buffer belongs to
205   * @buf:	the buffer to put a reference to
206   *
207   * Description:
208   *	This function releases a reference to @buf.
209   */
210  void generic_pipe_buf_release(struct pipe_inode_info *pipe,
211  			      struct pipe_buffer *buf)
212  {
213  	put_page(buf->page);
214  }
215  EXPORT_SYMBOL(generic_pipe_buf_release);
216  
217  static const struct pipe_buf_operations anon_pipe_buf_ops = {
218  	.release	= anon_pipe_buf_release,
219  	.try_steal	= anon_pipe_buf_try_steal,
220  	.get		= generic_pipe_buf_get,
221  };
222  
223  /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
224  static inline bool pipe_readable(const struct pipe_inode_info *pipe)
225  {
226  	unsigned int head = READ_ONCE(pipe->head);
227  	unsigned int tail = READ_ONCE(pipe->tail);
228  	unsigned int writers = READ_ONCE(pipe->writers);
229  
230  	return !pipe_empty(head, tail) || !writers;
231  }
232  
233  static ssize_t
234  pipe_read(struct kiocb *iocb, struct iov_iter *to)
235  {
236  	size_t total_len = iov_iter_count(to);
237  	struct file *filp = iocb->ki_filp;
238  	struct pipe_inode_info *pipe = filp->private_data;
239  	bool was_full, wake_next_reader = false;
240  	ssize_t ret;
241  
242  	/* Null read succeeds. */
243  	if (unlikely(total_len == 0))
244  		return 0;
245  
246  	ret = 0;
247  	__pipe_lock(pipe);
248  
249  	/*
250  	 * We only wake up writers if the pipe was full when we started
251  	 * reading in order to avoid unnecessary wakeups.
252  	 *
253  	 * But when we do wake up writers, we do so using a sync wakeup
254  	 * (WF_SYNC), because we want them to get going and generate more
255  	 * data for us.
256  	 */
257  	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
258  	for (;;) {
259  		unsigned int head = pipe->head;
260  		unsigned int tail = pipe->tail;
261  		unsigned int mask = pipe->ring_size - 1;
262  
263  #ifdef CONFIG_WATCH_QUEUE
264  		if (pipe->note_loss) {
265  			struct watch_notification n;
266  
267  			if (total_len < 8) {
268  				if (ret == 0)
269  					ret = -ENOBUFS;
270  				break;
271  			}
272  
273  			n.type = WATCH_TYPE_META;
274  			n.subtype = WATCH_META_LOSS_NOTIFICATION;
275  			n.info = watch_sizeof(n);
276  			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
277  				if (ret == 0)
278  					ret = -EFAULT;
279  				break;
280  			}
281  			ret += sizeof(n);
282  			total_len -= sizeof(n);
283  			pipe->note_loss = false;
284  		}
285  #endif
286  
287  		if (!pipe_empty(head, tail)) {
288  			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
289  			size_t chars = buf->len;
290  			size_t written;
291  			int error;
292  
293  			if (chars > total_len) {
294  				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
295  					if (ret == 0)
296  						ret = -ENOBUFS;
297  					break;
298  				}
299  				chars = total_len;
300  			}
301  
302  			error = pipe_buf_confirm(pipe, buf);
303  			if (error) {
304  				if (!ret)
305  					ret = error;
306  				break;
307  			}
308  
309  			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
310  			if (unlikely(written < chars)) {
311  				if (!ret)
312  					ret = -EFAULT;
313  				break;
314  			}
315  			ret += chars;
316  			buf->offset += chars;
317  			buf->len -= chars;
318  
319  			/* Was it a packet buffer? Clean up and exit */
320  			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
321  				total_len = chars;
322  				buf->len = 0;
323  			}
324  
325  			if (!buf->len) {
326  				pipe_buf_release(pipe, buf);
327  				spin_lock_irq(&pipe->rd_wait.lock);
328  #ifdef CONFIG_WATCH_QUEUE
329  				if (buf->flags & PIPE_BUF_FLAG_LOSS)
330  					pipe->note_loss = true;
331  #endif
332  				tail++;
333  				pipe->tail = tail;
334  				spin_unlock_irq(&pipe->rd_wait.lock);
335  			}
336  			total_len -= chars;
337  			if (!total_len)
338  				break;	/* common path: read succeeded */
339  			if (!pipe_empty(head, tail))	/* More to do? */
340  				continue;
341  		}
342  
343  		if (!pipe->writers)
344  			break;
345  		if (ret)
346  			break;
347  		if (filp->f_flags & O_NONBLOCK) {
348  			ret = -EAGAIN;
349  			break;
350  		}
351  		__pipe_unlock(pipe);
352  
353  		/*
354  		 * We only get here if we didn't actually read anything.
355  		 *
356  		 * However, we could have seen (and removed) a zero-sized
357  		 * pipe buffer, and might have made space in the buffers
358  		 * that way.
359  		 *
360  		 * You can't make zero-sized pipe buffers by doing an empty
361  		 * write (not even in packet mode), but they can happen if
362  		 * the writer gets an EFAULT when trying to fill a buffer
363  		 * that already got allocated and inserted in the buffer
364  		 * array.
365  		 *
366  		 * So we still need to wake up any pending writers in the
367  		 * _very_ unlikely case that the pipe was full, but we got
368  		 * no data.
369  		 */
370  		if (unlikely(was_full)) {
371  			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
372  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
373  		}
374  
375  		/*
376  		 * But because we didn't read anything, at this point we can
377  		 * just return directly with -ERESTARTSYS if we're interrupted,
378  		 * since we've done any required wakeups and there's no need
379  		 * to mark anything accessed. And we've dropped the lock.
380  		 */
381  		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
382  			return -ERESTARTSYS;
383  
384  		__pipe_lock(pipe);
385  		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
386  		wake_next_reader = true;
387  	}
388  	if (pipe_empty(pipe->head, pipe->tail))
389  		wake_next_reader = false;
390  	__pipe_unlock(pipe);
391  
392  	if (was_full) {
393  		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
394  		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395  	}
396  	if (wake_next_reader)
397  		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
398  	if (ret > 0)
399  		file_accessed(filp);
400  	return ret;
401  }
402  
403  static inline int is_packetized(struct file *file)
404  {
405  	return (file->f_flags & O_DIRECT) != 0;
406  }
407  
408  /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
409  static inline bool pipe_writable(const struct pipe_inode_info *pipe)
410  {
411  	unsigned int head = READ_ONCE(pipe->head);
412  	unsigned int tail = READ_ONCE(pipe->tail);
413  	unsigned int max_usage = READ_ONCE(pipe->max_usage);
414  
415  	return !pipe_full(head, tail, max_usage) ||
416  		!READ_ONCE(pipe->readers);
417  }
418  
419  static ssize_t
420  pipe_write(struct kiocb *iocb, struct iov_iter *from)
421  {
422  	struct file *filp = iocb->ki_filp;
423  	struct pipe_inode_info *pipe = filp->private_data;
424  	unsigned int head;
425  	ssize_t ret = 0;
426  	size_t total_len = iov_iter_count(from);
427  	ssize_t chars;
428  	bool was_empty = false;
429  	bool wake_next_writer = false;
430  
431  	/* Null write succeeds. */
432  	if (unlikely(total_len == 0))
433  		return 0;
434  
435  	__pipe_lock(pipe);
436  
437  	if (!pipe->readers) {
438  		send_sig(SIGPIPE, current, 0);
439  		ret = -EPIPE;
440  		goto out;
441  	}
442  
443  #ifdef CONFIG_WATCH_QUEUE
444  	if (pipe->watch_queue) {
445  		ret = -EXDEV;
446  		goto out;
447  	}
448  #endif
449  
450  	/*
451  	 * Only wake up if the pipe started out empty, since
452  	 * otherwise there should be no readers waiting.
453  	 *
454  	 * If it wasn't empty we try to merge new data into
455  	 * the last buffer.
456  	 *
457  	 * That naturally merges small writes, but it also
458  	 * page-aligs the rest of the writes for large writes
459  	 * spanning multiple pages.
460  	 */
461  	head = pipe->head;
462  	was_empty = pipe_empty(head, pipe->tail);
463  	chars = total_len & (PAGE_SIZE-1);
464  	if (chars && !was_empty) {
465  		unsigned int mask = pipe->ring_size - 1;
466  		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
467  		int offset = buf->offset + buf->len;
468  
469  		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
470  		    offset + chars <= PAGE_SIZE) {
471  			ret = pipe_buf_confirm(pipe, buf);
472  			if (ret)
473  				goto out;
474  
475  			ret = copy_page_from_iter(buf->page, offset, chars, from);
476  			if (unlikely(ret < chars)) {
477  				ret = -EFAULT;
478  				goto out;
479  			}
480  
481  			buf->len += ret;
482  			if (!iov_iter_count(from))
483  				goto out;
484  		}
485  	}
486  
487  	for (;;) {
488  		if (!pipe->readers) {
489  			send_sig(SIGPIPE, current, 0);
490  			if (!ret)
491  				ret = -EPIPE;
492  			break;
493  		}
494  
495  		head = pipe->head;
496  		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
497  			unsigned int mask = pipe->ring_size - 1;
498  			struct pipe_buffer *buf = &pipe->bufs[head & mask];
499  			struct page *page = pipe->tmp_page;
500  			int copied;
501  
502  			if (!page) {
503  				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
504  				if (unlikely(!page)) {
505  					ret = ret ? : -ENOMEM;
506  					break;
507  				}
508  				pipe->tmp_page = page;
509  			}
510  
511  			/* Allocate a slot in the ring in advance and attach an
512  			 * empty buffer.  If we fault or otherwise fail to use
513  			 * it, either the reader will consume it or it'll still
514  			 * be there for the next write.
515  			 */
516  			spin_lock_irq(&pipe->rd_wait.lock);
517  
518  			head = pipe->head;
519  			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
520  				spin_unlock_irq(&pipe->rd_wait.lock);
521  				continue;
522  			}
523  
524  			pipe->head = head + 1;
525  			spin_unlock_irq(&pipe->rd_wait.lock);
526  
527  			/* Insert it into the buffer array */
528  			buf = &pipe->bufs[head & mask];
529  			buf->page = page;
530  			buf->ops = &anon_pipe_buf_ops;
531  			buf->offset = 0;
532  			buf->len = 0;
533  			if (is_packetized(filp))
534  				buf->flags = PIPE_BUF_FLAG_PACKET;
535  			else
536  				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
537  			pipe->tmp_page = NULL;
538  
539  			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
540  			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541  				if (!ret)
542  					ret = -EFAULT;
543  				break;
544  			}
545  			ret += copied;
546  			buf->offset = 0;
547  			buf->len = copied;
548  
549  			if (!iov_iter_count(from))
550  				break;
551  		}
552  
553  		if (!pipe_full(head, pipe->tail, pipe->max_usage))
554  			continue;
555  
556  		/* Wait for buffer space to become available. */
557  		if (filp->f_flags & O_NONBLOCK) {
558  			if (!ret)
559  				ret = -EAGAIN;
560  			break;
561  		}
562  		if (signal_pending(current)) {
563  			if (!ret)
564  				ret = -ERESTARTSYS;
565  			break;
566  		}
567  
568  		/*
569  		 * We're going to release the pipe lock and wait for more
570  		 * space. We wake up any readers if necessary, and then
571  		 * after waiting we need to re-check whether the pipe
572  		 * become empty while we dropped the lock.
573  		 */
574  		__pipe_unlock(pipe);
575  		if (was_empty) {
576  			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
577  			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
578  		}
579  		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580  		__pipe_lock(pipe);
581  		was_empty = pipe_empty(pipe->head, pipe->tail);
582  		wake_next_writer = true;
583  	}
584  out:
585  	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586  		wake_next_writer = false;
587  	__pipe_unlock(pipe);
588  
589  	/*
590  	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591  	 * want the reader to start processing things asap, rather than
592  	 * leave the data pending.
593  	 *
594  	 * This is particularly important for small writes, because of
595  	 * how (for example) the GNU make jobserver uses small writes to
596  	 * wake up pending jobs
597  	 */
598  	if (was_empty) {
599  		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
600  		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
601  	}
602  	if (wake_next_writer)
603  		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
604  	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
605  		int err = file_update_time(filp);
606  		if (err)
607  			ret = err;
608  		sb_end_write(file_inode(filp)->i_sb);
609  	}
610  	return ret;
611  }
612  
613  static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
614  {
615  	struct pipe_inode_info *pipe = filp->private_data;
616  	int count, head, tail, mask;
617  
618  	switch (cmd) {
619  	case FIONREAD:
620  		__pipe_lock(pipe);
621  		count = 0;
622  		head = pipe->head;
623  		tail = pipe->tail;
624  		mask = pipe->ring_size - 1;
625  
626  		while (tail != head) {
627  			count += pipe->bufs[tail & mask].len;
628  			tail++;
629  		}
630  		__pipe_unlock(pipe);
631  
632  		return put_user(count, (int __user *)arg);
633  
634  #ifdef CONFIG_WATCH_QUEUE
635  	case IOC_WATCH_QUEUE_SET_SIZE: {
636  		int ret;
637  		__pipe_lock(pipe);
638  		ret = watch_queue_set_size(pipe, arg);
639  		__pipe_unlock(pipe);
640  		return ret;
641  	}
642  
643  	case IOC_WATCH_QUEUE_SET_FILTER:
644  		return watch_queue_set_filter(
645  			pipe, (struct watch_notification_filter __user *)arg);
646  #endif
647  
648  	default:
649  		return -ENOIOCTLCMD;
650  	}
651  }
652  
653  /* No kernel lock held - fine */
654  static __poll_t
655  pipe_poll(struct file *filp, poll_table *wait)
656  {
657  	__poll_t mask;
658  	struct pipe_inode_info *pipe = filp->private_data;
659  	unsigned int head, tail;
660  
661  	/*
662  	 * Reading pipe state only -- no need for acquiring the semaphore.
663  	 *
664  	 * But because this is racy, the code has to add the
665  	 * entry to the poll table _first_ ..
666  	 */
667  	if (filp->f_mode & FMODE_READ)
668  		poll_wait(filp, &pipe->rd_wait, wait);
669  	if (filp->f_mode & FMODE_WRITE)
670  		poll_wait(filp, &pipe->wr_wait, wait);
671  
672  	/*
673  	 * .. and only then can you do the racy tests. That way,
674  	 * if something changes and you got it wrong, the poll
675  	 * table entry will wake you up and fix it.
676  	 */
677  	head = READ_ONCE(pipe->head);
678  	tail = READ_ONCE(pipe->tail);
679  
680  	mask = 0;
681  	if (filp->f_mode & FMODE_READ) {
682  		if (!pipe_empty(head, tail))
683  			mask |= EPOLLIN | EPOLLRDNORM;
684  		if (!pipe->writers && filp->f_version != pipe->w_counter)
685  			mask |= EPOLLHUP;
686  	}
687  
688  	if (filp->f_mode & FMODE_WRITE) {
689  		if (!pipe_full(head, tail, pipe->max_usage))
690  			mask |= EPOLLOUT | EPOLLWRNORM;
691  		/*
692  		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
693  		 * behave exactly like pipes for poll().
694  		 */
695  		if (!pipe->readers)
696  			mask |= EPOLLERR;
697  	}
698  
699  	return mask;
700  }
701  
702  static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
703  {
704  	int kill = 0;
705  
706  	spin_lock(&inode->i_lock);
707  	if (!--pipe->files) {
708  		inode->i_pipe = NULL;
709  		kill = 1;
710  	}
711  	spin_unlock(&inode->i_lock);
712  
713  	if (kill)
714  		free_pipe_info(pipe);
715  }
716  
717  static int
718  pipe_release(struct inode *inode, struct file *file)
719  {
720  	struct pipe_inode_info *pipe = file->private_data;
721  
722  	__pipe_lock(pipe);
723  	if (file->f_mode & FMODE_READ)
724  		pipe->readers--;
725  	if (file->f_mode & FMODE_WRITE)
726  		pipe->writers--;
727  
728  	/* Was that the last reader or writer, but not the other side? */
729  	if (!pipe->readers != !pipe->writers) {
730  		wake_up_interruptible_all(&pipe->rd_wait);
731  		wake_up_interruptible_all(&pipe->wr_wait);
732  		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
733  		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734  	}
735  	__pipe_unlock(pipe);
736  
737  	put_pipe_info(inode, pipe);
738  	return 0;
739  }
740  
741  static int
742  pipe_fasync(int fd, struct file *filp, int on)
743  {
744  	struct pipe_inode_info *pipe = filp->private_data;
745  	int retval = 0;
746  
747  	__pipe_lock(pipe);
748  	if (filp->f_mode & FMODE_READ)
749  		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
750  	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
751  		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
752  		if (retval < 0 && (filp->f_mode & FMODE_READ))
753  			/* this can happen only if on == T */
754  			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
755  	}
756  	__pipe_unlock(pipe);
757  	return retval;
758  }
759  
760  unsigned long account_pipe_buffers(struct user_struct *user,
761  				   unsigned long old, unsigned long new)
762  {
763  	return atomic_long_add_return(new - old, &user->pipe_bufs);
764  }
765  
766  bool too_many_pipe_buffers_soft(unsigned long user_bufs)
767  {
768  	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
769  
770  	return soft_limit && user_bufs > soft_limit;
771  }
772  
773  bool too_many_pipe_buffers_hard(unsigned long user_bufs)
774  {
775  	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
776  
777  	return hard_limit && user_bufs > hard_limit;
778  }
779  
780  bool pipe_is_unprivileged_user(void)
781  {
782  	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
783  }
784  
785  struct pipe_inode_info *alloc_pipe_info(void)
786  {
787  	struct pipe_inode_info *pipe;
788  	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
789  	struct user_struct *user = get_current_user();
790  	unsigned long user_bufs;
791  	unsigned int max_size = READ_ONCE(pipe_max_size);
792  
793  	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
794  	if (pipe == NULL)
795  		goto out_free_uid;
796  
797  	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
798  		pipe_bufs = max_size >> PAGE_SHIFT;
799  
800  	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
801  
802  	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
803  		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
804  		pipe_bufs = 1;
805  	}
806  
807  	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
808  		goto out_revert_acct;
809  
810  	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
811  			     GFP_KERNEL_ACCOUNT);
812  
813  	if (pipe->bufs) {
814  		init_waitqueue_head(&pipe->rd_wait);
815  		init_waitqueue_head(&pipe->wr_wait);
816  		pipe->r_counter = pipe->w_counter = 1;
817  		pipe->max_usage = pipe_bufs;
818  		pipe->ring_size = pipe_bufs;
819  		pipe->nr_accounted = pipe_bufs;
820  		pipe->user = user;
821  		mutex_init(&pipe->mutex);
822  		return pipe;
823  	}
824  
825  out_revert_acct:
826  	(void) account_pipe_buffers(user, pipe_bufs, 0);
827  	kfree(pipe);
828  out_free_uid:
829  	free_uid(user);
830  	return NULL;
831  }
832  
833  void free_pipe_info(struct pipe_inode_info *pipe)
834  {
835  	int i;
836  
837  #ifdef CONFIG_WATCH_QUEUE
838  	if (pipe->watch_queue) {
839  		watch_queue_clear(pipe->watch_queue);
840  		put_watch_queue(pipe->watch_queue);
841  	}
842  #endif
843  
844  	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
845  	free_uid(pipe->user);
846  	for (i = 0; i < pipe->ring_size; i++) {
847  		struct pipe_buffer *buf = pipe->bufs + i;
848  		if (buf->ops)
849  			pipe_buf_release(pipe, buf);
850  	}
851  	if (pipe->tmp_page)
852  		__free_page(pipe->tmp_page);
853  	kfree(pipe->bufs);
854  	kfree(pipe);
855  }
856  
857  static struct vfsmount *pipe_mnt __read_mostly;
858  
859  /*
860   * pipefs_dname() is called from d_path().
861   */
862  static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
863  {
864  	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
865  				d_inode(dentry)->i_ino);
866  }
867  
868  static const struct dentry_operations pipefs_dentry_operations = {
869  	.d_dname	= pipefs_dname,
870  };
871  
872  static struct inode * get_pipe_inode(void)
873  {
874  	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
875  	struct pipe_inode_info *pipe;
876  
877  	if (!inode)
878  		goto fail_inode;
879  
880  	inode->i_ino = get_next_ino();
881  
882  	pipe = alloc_pipe_info();
883  	if (!pipe)
884  		goto fail_iput;
885  
886  	inode->i_pipe = pipe;
887  	pipe->files = 2;
888  	pipe->readers = pipe->writers = 1;
889  	inode->i_fop = &pipefifo_fops;
890  
891  	/*
892  	 * Mark the inode dirty from the very beginning,
893  	 * that way it will never be moved to the dirty
894  	 * list because "mark_inode_dirty()" will think
895  	 * that it already _is_ on the dirty list.
896  	 */
897  	inode->i_state = I_DIRTY;
898  	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
899  	inode->i_uid = current_fsuid();
900  	inode->i_gid = current_fsgid();
901  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
902  
903  	return inode;
904  
905  fail_iput:
906  	iput(inode);
907  
908  fail_inode:
909  	return NULL;
910  }
911  
912  int create_pipe_files(struct file **res, int flags)
913  {
914  	struct inode *inode = get_pipe_inode();
915  	struct file *f;
916  
917  	if (!inode)
918  		return -ENFILE;
919  
920  	if (flags & O_NOTIFICATION_PIPE) {
921  #ifdef CONFIG_WATCH_QUEUE
922  		if (watch_queue_init(inode->i_pipe) < 0) {
923  			iput(inode);
924  			return -ENOMEM;
925  		}
926  #else
927  		return -ENOPKG;
928  #endif
929  	}
930  
931  	f = alloc_file_pseudo(inode, pipe_mnt, "",
932  				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933  				&pipefifo_fops);
934  	if (IS_ERR(f)) {
935  		free_pipe_info(inode->i_pipe);
936  		iput(inode);
937  		return PTR_ERR(f);
938  	}
939  
940  	f->private_data = inode->i_pipe;
941  
942  	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943  				  &pipefifo_fops);
944  	if (IS_ERR(res[0])) {
945  		put_pipe_info(inode, inode->i_pipe);
946  		fput(f);
947  		return PTR_ERR(res[0]);
948  	}
949  	res[0]->private_data = inode->i_pipe;
950  	res[1] = f;
951  	stream_open(inode, res[0]);
952  	stream_open(inode, res[1]);
953  	return 0;
954  }
955  
956  static int __do_pipe_flags(int *fd, struct file **files, int flags)
957  {
958  	int error;
959  	int fdw, fdr;
960  
961  	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962  		return -EINVAL;
963  
964  	error = create_pipe_files(files, flags);
965  	if (error)
966  		return error;
967  
968  	error = get_unused_fd_flags(flags);
969  	if (error < 0)
970  		goto err_read_pipe;
971  	fdr = error;
972  
973  	error = get_unused_fd_flags(flags);
974  	if (error < 0)
975  		goto err_fdr;
976  	fdw = error;
977  
978  	audit_fd_pair(fdr, fdw);
979  	fd[0] = fdr;
980  	fd[1] = fdw;
981  	return 0;
982  
983   err_fdr:
984  	put_unused_fd(fdr);
985   err_read_pipe:
986  	fput(files[0]);
987  	fput(files[1]);
988  	return error;
989  }
990  
991  int do_pipe_flags(int *fd, int flags)
992  {
993  	struct file *files[2];
994  	int error = __do_pipe_flags(fd, files, flags);
995  	if (!error) {
996  		fd_install(fd[0], files[0]);
997  		fd_install(fd[1], files[1]);
998  	}
999  	return error;
1000  }
1001  
1002  /*
1003   * sys_pipe() is the normal C calling standard for creating
1004   * a pipe. It's not the way Unix traditionally does this, though.
1005   */
1006  static int do_pipe2(int __user *fildes, int flags)
1007  {
1008  	struct file *files[2];
1009  	int fd[2];
1010  	int error;
1011  
1012  	error = __do_pipe_flags(fd, files, flags);
1013  	if (!error) {
1014  		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015  			fput(files[0]);
1016  			fput(files[1]);
1017  			put_unused_fd(fd[0]);
1018  			put_unused_fd(fd[1]);
1019  			error = -EFAULT;
1020  		} else {
1021  			fd_install(fd[0], files[0]);
1022  			fd_install(fd[1], files[1]);
1023  		}
1024  	}
1025  	return error;
1026  }
1027  
1028  SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1029  {
1030  	return do_pipe2(fildes, flags);
1031  }
1032  
1033  SYSCALL_DEFINE1(pipe, int __user *, fildes)
1034  {
1035  	return do_pipe2(fildes, 0);
1036  }
1037  
1038  static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1039  {
1040  	int cur = *cnt;
1041  
1042  	while (cur == *cnt) {
1043  		pipe_wait(pipe);
1044  		if (signal_pending(current))
1045  			break;
1046  	}
1047  	return cur == *cnt ? -ERESTARTSYS : 0;
1048  }
1049  
1050  static void wake_up_partner(struct pipe_inode_info *pipe)
1051  {
1052  	wake_up_interruptible_all(&pipe->rd_wait);
1053  	wake_up_interruptible_all(&pipe->wr_wait);
1054  }
1055  
1056  static int fifo_open(struct inode *inode, struct file *filp)
1057  {
1058  	struct pipe_inode_info *pipe;
1059  	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1060  	int ret;
1061  
1062  	filp->f_version = 0;
1063  
1064  	spin_lock(&inode->i_lock);
1065  	if (inode->i_pipe) {
1066  		pipe = inode->i_pipe;
1067  		pipe->files++;
1068  		spin_unlock(&inode->i_lock);
1069  	} else {
1070  		spin_unlock(&inode->i_lock);
1071  		pipe = alloc_pipe_info();
1072  		if (!pipe)
1073  			return -ENOMEM;
1074  		pipe->files = 1;
1075  		spin_lock(&inode->i_lock);
1076  		if (unlikely(inode->i_pipe)) {
1077  			inode->i_pipe->files++;
1078  			spin_unlock(&inode->i_lock);
1079  			free_pipe_info(pipe);
1080  			pipe = inode->i_pipe;
1081  		} else {
1082  			inode->i_pipe = pipe;
1083  			spin_unlock(&inode->i_lock);
1084  		}
1085  	}
1086  	filp->private_data = pipe;
1087  	/* OK, we have a pipe and it's pinned down */
1088  
1089  	__pipe_lock(pipe);
1090  
1091  	/* We can only do regular read/write on fifos */
1092  	stream_open(inode, filp);
1093  
1094  	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1095  	case FMODE_READ:
1096  	/*
1097  	 *  O_RDONLY
1098  	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1099  	 *  opened, even when there is no process writing the FIFO.
1100  	 */
1101  		pipe->r_counter++;
1102  		if (pipe->readers++ == 0)
1103  			wake_up_partner(pipe);
1104  
1105  		if (!is_pipe && !pipe->writers) {
1106  			if ((filp->f_flags & O_NONBLOCK)) {
1107  				/* suppress EPOLLHUP until we have
1108  				 * seen a writer */
1109  				filp->f_version = pipe->w_counter;
1110  			} else {
1111  				if (wait_for_partner(pipe, &pipe->w_counter))
1112  					goto err_rd;
1113  			}
1114  		}
1115  		break;
1116  
1117  	case FMODE_WRITE:
1118  	/*
1119  	 *  O_WRONLY
1120  	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1121  	 *  errno=ENXIO when there is no process reading the FIFO.
1122  	 */
1123  		ret = -ENXIO;
1124  		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1125  			goto err;
1126  
1127  		pipe->w_counter++;
1128  		if (!pipe->writers++)
1129  			wake_up_partner(pipe);
1130  
1131  		if (!is_pipe && !pipe->readers) {
1132  			if (wait_for_partner(pipe, &pipe->r_counter))
1133  				goto err_wr;
1134  		}
1135  		break;
1136  
1137  	case FMODE_READ | FMODE_WRITE:
1138  	/*
1139  	 *  O_RDWR
1140  	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1141  	 *  This implementation will NEVER block on a O_RDWR open, since
1142  	 *  the process can at least talk to itself.
1143  	 */
1144  
1145  		pipe->readers++;
1146  		pipe->writers++;
1147  		pipe->r_counter++;
1148  		pipe->w_counter++;
1149  		if (pipe->readers == 1 || pipe->writers == 1)
1150  			wake_up_partner(pipe);
1151  		break;
1152  
1153  	default:
1154  		ret = -EINVAL;
1155  		goto err;
1156  	}
1157  
1158  	/* Ok! */
1159  	__pipe_unlock(pipe);
1160  	return 0;
1161  
1162  err_rd:
1163  	if (!--pipe->readers)
1164  		wake_up_interruptible(&pipe->wr_wait);
1165  	ret = -ERESTARTSYS;
1166  	goto err;
1167  
1168  err_wr:
1169  	if (!--pipe->writers)
1170  		wake_up_interruptible_all(&pipe->rd_wait);
1171  	ret = -ERESTARTSYS;
1172  	goto err;
1173  
1174  err:
1175  	__pipe_unlock(pipe);
1176  
1177  	put_pipe_info(inode, pipe);
1178  	return ret;
1179  }
1180  
1181  const struct file_operations pipefifo_fops = {
1182  	.open		= fifo_open,
1183  	.llseek		= no_llseek,
1184  	.read_iter	= pipe_read,
1185  	.write_iter	= pipe_write,
1186  	.poll		= pipe_poll,
1187  	.unlocked_ioctl	= pipe_ioctl,
1188  	.release	= pipe_release,
1189  	.fasync		= pipe_fasync,
1190  };
1191  
1192  /*
1193   * Currently we rely on the pipe array holding a power-of-2 number
1194   * of pages. Returns 0 on error.
1195   */
1196  unsigned int round_pipe_size(unsigned long size)
1197  {
1198  	if (size > (1U << 31))
1199  		return 0;
1200  
1201  	/* Minimum pipe size, as required by POSIX */
1202  	if (size < PAGE_SIZE)
1203  		return PAGE_SIZE;
1204  
1205  	return roundup_pow_of_two(size);
1206  }
1207  
1208  /*
1209   * Resize the pipe ring to a number of slots.
1210   */
1211  int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1212  {
1213  	struct pipe_buffer *bufs;
1214  	unsigned int head, tail, mask, n;
1215  
1216  	/*
1217  	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1218  	 * Since we don't expect a lot of shrink+grow operations, just free and
1219  	 * allocate again like we would do for growing.  If the pipe currently
1220  	 * contains more buffers than arg, then return busy.
1221  	 */
1222  	mask = pipe->ring_size - 1;
1223  	head = pipe->head;
1224  	tail = pipe->tail;
1225  	n = pipe_occupancy(pipe->head, pipe->tail);
1226  	if (nr_slots < n)
1227  		return -EBUSY;
1228  
1229  	bufs = kcalloc(nr_slots, sizeof(*bufs),
1230  		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1231  	if (unlikely(!bufs))
1232  		return -ENOMEM;
1233  
1234  	/*
1235  	 * The pipe array wraps around, so just start the new one at zero
1236  	 * and adjust the indices.
1237  	 */
1238  	if (n > 0) {
1239  		unsigned int h = head & mask;
1240  		unsigned int t = tail & mask;
1241  		if (h > t) {
1242  			memcpy(bufs, pipe->bufs + t,
1243  			       n * sizeof(struct pipe_buffer));
1244  		} else {
1245  			unsigned int tsize = pipe->ring_size - t;
1246  			if (h > 0)
1247  				memcpy(bufs + tsize, pipe->bufs,
1248  				       h * sizeof(struct pipe_buffer));
1249  			memcpy(bufs, pipe->bufs + t,
1250  			       tsize * sizeof(struct pipe_buffer));
1251  		}
1252  	}
1253  
1254  	head = n;
1255  	tail = 0;
1256  
1257  	kfree(pipe->bufs);
1258  	pipe->bufs = bufs;
1259  	pipe->ring_size = nr_slots;
1260  	if (pipe->max_usage > nr_slots)
1261  		pipe->max_usage = nr_slots;
1262  	pipe->tail = tail;
1263  	pipe->head = head;
1264  
1265  	/* This might have made more room for writers */
1266  	wake_up_interruptible(&pipe->wr_wait);
1267  	return 0;
1268  }
1269  
1270  /*
1271   * Allocate a new array of pipe buffers and copy the info over. Returns the
1272   * pipe size if successful, or return -ERROR on error.
1273   */
1274  static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1275  {
1276  	unsigned long user_bufs;
1277  	unsigned int nr_slots, size;
1278  	long ret = 0;
1279  
1280  #ifdef CONFIG_WATCH_QUEUE
1281  	if (pipe->watch_queue)
1282  		return -EBUSY;
1283  #endif
1284  
1285  	size = round_pipe_size(arg);
1286  	nr_slots = size >> PAGE_SHIFT;
1287  
1288  	if (!nr_slots)
1289  		return -EINVAL;
1290  
1291  	/*
1292  	 * If trying to increase the pipe capacity, check that an
1293  	 * unprivileged user is not trying to exceed various limits
1294  	 * (soft limit check here, hard limit check just below).
1295  	 * Decreasing the pipe capacity is always permitted, even
1296  	 * if the user is currently over a limit.
1297  	 */
1298  	if (nr_slots > pipe->max_usage &&
1299  			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1300  		return -EPERM;
1301  
1302  	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1303  
1304  	if (nr_slots > pipe->max_usage &&
1305  			(too_many_pipe_buffers_hard(user_bufs) ||
1306  			 too_many_pipe_buffers_soft(user_bufs)) &&
1307  			pipe_is_unprivileged_user()) {
1308  		ret = -EPERM;
1309  		goto out_revert_acct;
1310  	}
1311  
1312  	ret = pipe_resize_ring(pipe, nr_slots);
1313  	if (ret < 0)
1314  		goto out_revert_acct;
1315  
1316  	pipe->max_usage = nr_slots;
1317  	pipe->nr_accounted = nr_slots;
1318  	return pipe->max_usage * PAGE_SIZE;
1319  
1320  out_revert_acct:
1321  	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1322  	return ret;
1323  }
1324  
1325  /*
1326   * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327   * location, so checking ->i_pipe is not enough to verify that this is a
1328   * pipe.
1329   */
1330  struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1331  {
1332  	struct pipe_inode_info *pipe = file->private_data;
1333  
1334  	if (file->f_op != &pipefifo_fops || !pipe)
1335  		return NULL;
1336  #ifdef CONFIG_WATCH_QUEUE
1337  	if (for_splice && pipe->watch_queue)
1338  		return NULL;
1339  #endif
1340  	return pipe;
1341  }
1342  
1343  long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1344  {
1345  	struct pipe_inode_info *pipe;
1346  	long ret;
1347  
1348  	pipe = get_pipe_info(file, false);
1349  	if (!pipe)
1350  		return -EBADF;
1351  
1352  	__pipe_lock(pipe);
1353  
1354  	switch (cmd) {
1355  	case F_SETPIPE_SZ:
1356  		ret = pipe_set_size(pipe, arg);
1357  		break;
1358  	case F_GETPIPE_SZ:
1359  		ret = pipe->max_usage * PAGE_SIZE;
1360  		break;
1361  	default:
1362  		ret = -EINVAL;
1363  		break;
1364  	}
1365  
1366  	__pipe_unlock(pipe);
1367  	return ret;
1368  }
1369  
1370  static const struct super_operations pipefs_ops = {
1371  	.destroy_inode = free_inode_nonrcu,
1372  	.statfs = simple_statfs,
1373  };
1374  
1375  /*
1376   * pipefs should _never_ be mounted by userland - too much of security hassle,
1377   * no real gain from having the whole whorehouse mounted. So we don't need
1378   * any operations on the root directory. However, we need a non-trivial
1379   * d_name - pipe: will go nicely and kill the special-casing in procfs.
1380   */
1381  
1382  static int pipefs_init_fs_context(struct fs_context *fc)
1383  {
1384  	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1385  	if (!ctx)
1386  		return -ENOMEM;
1387  	ctx->ops = &pipefs_ops;
1388  	ctx->dops = &pipefs_dentry_operations;
1389  	return 0;
1390  }
1391  
1392  static struct file_system_type pipe_fs_type = {
1393  	.name		= "pipefs",
1394  	.init_fs_context = pipefs_init_fs_context,
1395  	.kill_sb	= kill_anon_super,
1396  };
1397  
1398  static int __init init_pipe_fs(void)
1399  {
1400  	int err = register_filesystem(&pipe_fs_type);
1401  
1402  	if (!err) {
1403  		pipe_mnt = kern_mount(&pipe_fs_type);
1404  		if (IS_ERR(pipe_mnt)) {
1405  			err = PTR_ERR(pipe_mnt);
1406  			unregister_filesystem(&pipe_fs_type);
1407  		}
1408  	}
1409  	return err;
1410  }
1411  
1412  fs_initcall(init_pipe_fs);
1413