xref: /openbmc/linux/fs/pipe.c (revision 36bccb11)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 #include <linux/aio.h>
25 
26 #include <asm/uaccess.h>
27 #include <asm/ioctls.h>
28 
29 #include "internal.h"
30 
31 /*
32  * The max size that a non-root user is allowed to grow the pipe. Can
33  * be set by root in /proc/sys/fs/pipe-max-size
34  */
35 unsigned int pipe_max_size = 1048576;
36 
37 /*
38  * Minimum pipe size, as required by POSIX
39  */
40 unsigned int pipe_min_size = PAGE_SIZE;
41 
42 /*
43  * We use a start+len construction, which provides full use of the
44  * allocated memory.
45  * -- Florian Coosmann (FGC)
46  *
47  * Reads with count = 0 should always return 0.
48  * -- Julian Bradfield 1999-06-07.
49  *
50  * FIFOs and Pipes now generate SIGIO for both readers and writers.
51  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
52  *
53  * pipe_read & write cleanup
54  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
55  */
56 
57 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
58 {
59 	if (pipe->files)
60 		mutex_lock_nested(&pipe->mutex, subclass);
61 }
62 
63 void pipe_lock(struct pipe_inode_info *pipe)
64 {
65 	/*
66 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
67 	 */
68 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
69 }
70 EXPORT_SYMBOL(pipe_lock);
71 
72 void pipe_unlock(struct pipe_inode_info *pipe)
73 {
74 	if (pipe->files)
75 		mutex_unlock(&pipe->mutex);
76 }
77 EXPORT_SYMBOL(pipe_unlock);
78 
79 static inline void __pipe_lock(struct pipe_inode_info *pipe)
80 {
81 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
82 }
83 
84 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
85 {
86 	mutex_unlock(&pipe->mutex);
87 }
88 
89 void pipe_double_lock(struct pipe_inode_info *pipe1,
90 		      struct pipe_inode_info *pipe2)
91 {
92 	BUG_ON(pipe1 == pipe2);
93 
94 	if (pipe1 < pipe2) {
95 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
96 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
97 	} else {
98 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
99 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
100 	}
101 }
102 
103 /* Drop the inode semaphore and wait for a pipe event, atomically */
104 void pipe_wait(struct pipe_inode_info *pipe)
105 {
106 	DEFINE_WAIT(wait);
107 
108 	/*
109 	 * Pipes are system-local resources, so sleeping on them
110 	 * is considered a noninteractive wait:
111 	 */
112 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
113 	pipe_unlock(pipe);
114 	schedule();
115 	finish_wait(&pipe->wait, &wait);
116 	pipe_lock(pipe);
117 }
118 
119 static int
120 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
121 			int atomic)
122 {
123 	unsigned long copy;
124 
125 	while (len > 0) {
126 		while (!iov->iov_len)
127 			iov++;
128 		copy = min_t(unsigned long, len, iov->iov_len);
129 
130 		if (atomic) {
131 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
132 				return -EFAULT;
133 		} else {
134 			if (copy_from_user(to, iov->iov_base, copy))
135 				return -EFAULT;
136 		}
137 		to += copy;
138 		len -= copy;
139 		iov->iov_base += copy;
140 		iov->iov_len -= copy;
141 	}
142 	return 0;
143 }
144 
145 /*
146  * Pre-fault in the user memory, so we can use atomic copies.
147  */
148 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
149 {
150 	while (!iov->iov_len)
151 		iov++;
152 
153 	while (len > 0) {
154 		unsigned long this_len;
155 
156 		this_len = min_t(unsigned long, len, iov->iov_len);
157 		fault_in_pages_readable(iov->iov_base, this_len);
158 		len -= this_len;
159 		iov++;
160 	}
161 }
162 
163 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
164 				  struct pipe_buffer *buf)
165 {
166 	struct page *page = buf->page;
167 
168 	/*
169 	 * If nobody else uses this page, and we don't already have a
170 	 * temporary page, let's keep track of it as a one-deep
171 	 * allocation cache. (Otherwise just release our reference to it)
172 	 */
173 	if (page_count(page) == 1 && !pipe->tmp_page)
174 		pipe->tmp_page = page;
175 	else
176 		page_cache_release(page);
177 }
178 
179 /**
180  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
181  * @pipe:	the pipe that the buffer belongs to
182  * @buf:	the buffer to attempt to steal
183  *
184  * Description:
185  *	This function attempts to steal the &struct page attached to
186  *	@buf. If successful, this function returns 0 and returns with
187  *	the page locked. The caller may then reuse the page for whatever
188  *	he wishes; the typical use is insertion into a different file
189  *	page cache.
190  */
191 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
192 			   struct pipe_buffer *buf)
193 {
194 	struct page *page = buf->page;
195 
196 	/*
197 	 * A reference of one is golden, that means that the owner of this
198 	 * page is the only one holding a reference to it. lock the page
199 	 * and return OK.
200 	 */
201 	if (page_count(page) == 1) {
202 		lock_page(page);
203 		return 0;
204 	}
205 
206 	return 1;
207 }
208 EXPORT_SYMBOL(generic_pipe_buf_steal);
209 
210 /**
211  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
212  * @pipe:	the pipe that the buffer belongs to
213  * @buf:	the buffer to get a reference to
214  *
215  * Description:
216  *	This function grabs an extra reference to @buf. It's used in
217  *	in the tee() system call, when we duplicate the buffers in one
218  *	pipe into another.
219  */
220 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
221 {
222 	page_cache_get(buf->page);
223 }
224 EXPORT_SYMBOL(generic_pipe_buf_get);
225 
226 /**
227  * generic_pipe_buf_confirm - verify contents of the pipe buffer
228  * @info:	the pipe that the buffer belongs to
229  * @buf:	the buffer to confirm
230  *
231  * Description:
232  *	This function does nothing, because the generic pipe code uses
233  *	pages that are always good when inserted into the pipe.
234  */
235 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
236 			     struct pipe_buffer *buf)
237 {
238 	return 0;
239 }
240 EXPORT_SYMBOL(generic_pipe_buf_confirm);
241 
242 /**
243  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
244  * @pipe:	the pipe that the buffer belongs to
245  * @buf:	the buffer to put a reference to
246  *
247  * Description:
248  *	This function releases a reference to @buf.
249  */
250 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
251 			      struct pipe_buffer *buf)
252 {
253 	page_cache_release(buf->page);
254 }
255 EXPORT_SYMBOL(generic_pipe_buf_release);
256 
257 static const struct pipe_buf_operations anon_pipe_buf_ops = {
258 	.can_merge = 1,
259 	.confirm = generic_pipe_buf_confirm,
260 	.release = anon_pipe_buf_release,
261 	.steal = generic_pipe_buf_steal,
262 	.get = generic_pipe_buf_get,
263 };
264 
265 static const struct pipe_buf_operations packet_pipe_buf_ops = {
266 	.can_merge = 0,
267 	.confirm = generic_pipe_buf_confirm,
268 	.release = anon_pipe_buf_release,
269 	.steal = generic_pipe_buf_steal,
270 	.get = generic_pipe_buf_get,
271 };
272 
273 static ssize_t
274 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
275 	   unsigned long nr_segs, loff_t pos)
276 {
277 	struct file *filp = iocb->ki_filp;
278 	struct pipe_inode_info *pipe = filp->private_data;
279 	int do_wakeup;
280 	ssize_t ret;
281 	struct iovec *iov = (struct iovec *)_iov;
282 	size_t total_len;
283 	struct iov_iter iter;
284 
285 	total_len = iov_length(iov, nr_segs);
286 	/* Null read succeeds. */
287 	if (unlikely(total_len == 0))
288 		return 0;
289 
290 	iov_iter_init(&iter, iov, nr_segs, total_len, 0);
291 
292 	do_wakeup = 0;
293 	ret = 0;
294 	__pipe_lock(pipe);
295 	for (;;) {
296 		int bufs = pipe->nrbufs;
297 		if (bufs) {
298 			int curbuf = pipe->curbuf;
299 			struct pipe_buffer *buf = pipe->bufs + curbuf;
300 			const struct pipe_buf_operations *ops = buf->ops;
301 			size_t chars = buf->len;
302 			size_t written;
303 			int error;
304 
305 			if (chars > total_len)
306 				chars = total_len;
307 
308 			error = ops->confirm(pipe, buf);
309 			if (error) {
310 				if (!ret)
311 					ret = error;
312 				break;
313 			}
314 
315 			written = copy_page_to_iter(buf->page, buf->offset, chars, &iter);
316 			if (unlikely(written < chars)) {
317 				if (!ret)
318 					ret = -EFAULT;
319 				break;
320 			}
321 			ret += chars;
322 			buf->offset += chars;
323 			buf->len -= chars;
324 
325 			/* Was it a packet buffer? Clean up and exit */
326 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
327 				total_len = chars;
328 				buf->len = 0;
329 			}
330 
331 			if (!buf->len) {
332 				buf->ops = NULL;
333 				ops->release(pipe, buf);
334 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
335 				pipe->curbuf = curbuf;
336 				pipe->nrbufs = --bufs;
337 				do_wakeup = 1;
338 			}
339 			total_len -= chars;
340 			if (!total_len)
341 				break;	/* common path: read succeeded */
342 		}
343 		if (bufs)	/* More to do? */
344 			continue;
345 		if (!pipe->writers)
346 			break;
347 		if (!pipe->waiting_writers) {
348 			/* syscall merging: Usually we must not sleep
349 			 * if O_NONBLOCK is set, or if we got some data.
350 			 * But if a writer sleeps in kernel space, then
351 			 * we can wait for that data without violating POSIX.
352 			 */
353 			if (ret)
354 				break;
355 			if (filp->f_flags & O_NONBLOCK) {
356 				ret = -EAGAIN;
357 				break;
358 			}
359 		}
360 		if (signal_pending(current)) {
361 			if (!ret)
362 				ret = -ERESTARTSYS;
363 			break;
364 		}
365 		if (do_wakeup) {
366 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
367  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
368 		}
369 		pipe_wait(pipe);
370 	}
371 	__pipe_unlock(pipe);
372 
373 	/* Signal writers asynchronously that there is more room. */
374 	if (do_wakeup) {
375 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
376 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
377 	}
378 	if (ret > 0)
379 		file_accessed(filp);
380 	return ret;
381 }
382 
383 static inline int is_packetized(struct file *file)
384 {
385 	return (file->f_flags & O_DIRECT) != 0;
386 }
387 
388 static ssize_t
389 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
390 	    unsigned long nr_segs, loff_t ppos)
391 {
392 	struct file *filp = iocb->ki_filp;
393 	struct pipe_inode_info *pipe = filp->private_data;
394 	ssize_t ret;
395 	int do_wakeup;
396 	struct iovec *iov = (struct iovec *)_iov;
397 	size_t total_len;
398 	ssize_t chars;
399 
400 	total_len = iov_length(iov, nr_segs);
401 	/* Null write succeeds. */
402 	if (unlikely(total_len == 0))
403 		return 0;
404 
405 	do_wakeup = 0;
406 	ret = 0;
407 	__pipe_lock(pipe);
408 
409 	if (!pipe->readers) {
410 		send_sig(SIGPIPE, current, 0);
411 		ret = -EPIPE;
412 		goto out;
413 	}
414 
415 	/* We try to merge small writes */
416 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
417 	if (pipe->nrbufs && chars != 0) {
418 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
419 							(pipe->buffers - 1);
420 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
421 		const struct pipe_buf_operations *ops = buf->ops;
422 		int offset = buf->offset + buf->len;
423 
424 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
425 			int error, atomic = 1;
426 			void *addr;
427 
428 			error = ops->confirm(pipe, buf);
429 			if (error)
430 				goto out;
431 
432 			iov_fault_in_pages_read(iov, chars);
433 redo1:
434 			if (atomic)
435 				addr = kmap_atomic(buf->page);
436 			else
437 				addr = kmap(buf->page);
438 			error = pipe_iov_copy_from_user(offset + addr, iov,
439 							chars, atomic);
440 			if (atomic)
441 				kunmap_atomic(addr);
442 			else
443 				kunmap(buf->page);
444 			ret = error;
445 			do_wakeup = 1;
446 			if (error) {
447 				if (atomic) {
448 					atomic = 0;
449 					goto redo1;
450 				}
451 				goto out;
452 			}
453 			buf->len += chars;
454 			total_len -= chars;
455 			ret = chars;
456 			if (!total_len)
457 				goto out;
458 		}
459 	}
460 
461 	for (;;) {
462 		int bufs;
463 
464 		if (!pipe->readers) {
465 			send_sig(SIGPIPE, current, 0);
466 			if (!ret)
467 				ret = -EPIPE;
468 			break;
469 		}
470 		bufs = pipe->nrbufs;
471 		if (bufs < pipe->buffers) {
472 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
473 			struct pipe_buffer *buf = pipe->bufs + newbuf;
474 			struct page *page = pipe->tmp_page;
475 			char *src;
476 			int error, atomic = 1;
477 
478 			if (!page) {
479 				page = alloc_page(GFP_HIGHUSER);
480 				if (unlikely(!page)) {
481 					ret = ret ? : -ENOMEM;
482 					break;
483 				}
484 				pipe->tmp_page = page;
485 			}
486 			/* Always wake up, even if the copy fails. Otherwise
487 			 * we lock up (O_NONBLOCK-)readers that sleep due to
488 			 * syscall merging.
489 			 * FIXME! Is this really true?
490 			 */
491 			do_wakeup = 1;
492 			chars = PAGE_SIZE;
493 			if (chars > total_len)
494 				chars = total_len;
495 
496 			iov_fault_in_pages_read(iov, chars);
497 redo2:
498 			if (atomic)
499 				src = kmap_atomic(page);
500 			else
501 				src = kmap(page);
502 
503 			error = pipe_iov_copy_from_user(src, iov, chars,
504 							atomic);
505 			if (atomic)
506 				kunmap_atomic(src);
507 			else
508 				kunmap(page);
509 
510 			if (unlikely(error)) {
511 				if (atomic) {
512 					atomic = 0;
513 					goto redo2;
514 				}
515 				if (!ret)
516 					ret = error;
517 				break;
518 			}
519 			ret += chars;
520 
521 			/* Insert it into the buffer array */
522 			buf->page = page;
523 			buf->ops = &anon_pipe_buf_ops;
524 			buf->offset = 0;
525 			buf->len = chars;
526 			buf->flags = 0;
527 			if (is_packetized(filp)) {
528 				buf->ops = &packet_pipe_buf_ops;
529 				buf->flags = PIPE_BUF_FLAG_PACKET;
530 			}
531 			pipe->nrbufs = ++bufs;
532 			pipe->tmp_page = NULL;
533 
534 			total_len -= chars;
535 			if (!total_len)
536 				break;
537 		}
538 		if (bufs < pipe->buffers)
539 			continue;
540 		if (filp->f_flags & O_NONBLOCK) {
541 			if (!ret)
542 				ret = -EAGAIN;
543 			break;
544 		}
545 		if (signal_pending(current)) {
546 			if (!ret)
547 				ret = -ERESTARTSYS;
548 			break;
549 		}
550 		if (do_wakeup) {
551 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
552 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
553 			do_wakeup = 0;
554 		}
555 		pipe->waiting_writers++;
556 		pipe_wait(pipe);
557 		pipe->waiting_writers--;
558 	}
559 out:
560 	__pipe_unlock(pipe);
561 	if (do_wakeup) {
562 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
563 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
564 	}
565 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
566 		int err = file_update_time(filp);
567 		if (err)
568 			ret = err;
569 		sb_end_write(file_inode(filp)->i_sb);
570 	}
571 	return ret;
572 }
573 
574 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
575 {
576 	struct pipe_inode_info *pipe = filp->private_data;
577 	int count, buf, nrbufs;
578 
579 	switch (cmd) {
580 		case FIONREAD:
581 			__pipe_lock(pipe);
582 			count = 0;
583 			buf = pipe->curbuf;
584 			nrbufs = pipe->nrbufs;
585 			while (--nrbufs >= 0) {
586 				count += pipe->bufs[buf].len;
587 				buf = (buf+1) & (pipe->buffers - 1);
588 			}
589 			__pipe_unlock(pipe);
590 
591 			return put_user(count, (int __user *)arg);
592 		default:
593 			return -ENOIOCTLCMD;
594 	}
595 }
596 
597 /* No kernel lock held - fine */
598 static unsigned int
599 pipe_poll(struct file *filp, poll_table *wait)
600 {
601 	unsigned int mask;
602 	struct pipe_inode_info *pipe = filp->private_data;
603 	int nrbufs;
604 
605 	poll_wait(filp, &pipe->wait, wait);
606 
607 	/* Reading only -- no need for acquiring the semaphore.  */
608 	nrbufs = pipe->nrbufs;
609 	mask = 0;
610 	if (filp->f_mode & FMODE_READ) {
611 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
612 		if (!pipe->writers && filp->f_version != pipe->w_counter)
613 			mask |= POLLHUP;
614 	}
615 
616 	if (filp->f_mode & FMODE_WRITE) {
617 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
618 		/*
619 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
620 		 * behave exactly like pipes for poll().
621 		 */
622 		if (!pipe->readers)
623 			mask |= POLLERR;
624 	}
625 
626 	return mask;
627 }
628 
629 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
630 {
631 	int kill = 0;
632 
633 	spin_lock(&inode->i_lock);
634 	if (!--pipe->files) {
635 		inode->i_pipe = NULL;
636 		kill = 1;
637 	}
638 	spin_unlock(&inode->i_lock);
639 
640 	if (kill)
641 		free_pipe_info(pipe);
642 }
643 
644 static int
645 pipe_release(struct inode *inode, struct file *file)
646 {
647 	struct pipe_inode_info *pipe = file->private_data;
648 
649 	__pipe_lock(pipe);
650 	if (file->f_mode & FMODE_READ)
651 		pipe->readers--;
652 	if (file->f_mode & FMODE_WRITE)
653 		pipe->writers--;
654 
655 	if (pipe->readers || pipe->writers) {
656 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
657 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
658 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
659 	}
660 	__pipe_unlock(pipe);
661 
662 	put_pipe_info(inode, pipe);
663 	return 0;
664 }
665 
666 static int
667 pipe_fasync(int fd, struct file *filp, int on)
668 {
669 	struct pipe_inode_info *pipe = filp->private_data;
670 	int retval = 0;
671 
672 	__pipe_lock(pipe);
673 	if (filp->f_mode & FMODE_READ)
674 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
675 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
676 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
677 		if (retval < 0 && (filp->f_mode & FMODE_READ))
678 			/* this can happen only if on == T */
679 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
680 	}
681 	__pipe_unlock(pipe);
682 	return retval;
683 }
684 
685 struct pipe_inode_info *alloc_pipe_info(void)
686 {
687 	struct pipe_inode_info *pipe;
688 
689 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
690 	if (pipe) {
691 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
692 		if (pipe->bufs) {
693 			init_waitqueue_head(&pipe->wait);
694 			pipe->r_counter = pipe->w_counter = 1;
695 			pipe->buffers = PIPE_DEF_BUFFERS;
696 			mutex_init(&pipe->mutex);
697 			return pipe;
698 		}
699 		kfree(pipe);
700 	}
701 
702 	return NULL;
703 }
704 
705 void free_pipe_info(struct pipe_inode_info *pipe)
706 {
707 	int i;
708 
709 	for (i = 0; i < pipe->buffers; i++) {
710 		struct pipe_buffer *buf = pipe->bufs + i;
711 		if (buf->ops)
712 			buf->ops->release(pipe, buf);
713 	}
714 	if (pipe->tmp_page)
715 		__free_page(pipe->tmp_page);
716 	kfree(pipe->bufs);
717 	kfree(pipe);
718 }
719 
720 static struct vfsmount *pipe_mnt __read_mostly;
721 
722 /*
723  * pipefs_dname() is called from d_path().
724  */
725 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
726 {
727 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
728 				dentry->d_inode->i_ino);
729 }
730 
731 static const struct dentry_operations pipefs_dentry_operations = {
732 	.d_dname	= pipefs_dname,
733 };
734 
735 static struct inode * get_pipe_inode(void)
736 {
737 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
738 	struct pipe_inode_info *pipe;
739 
740 	if (!inode)
741 		goto fail_inode;
742 
743 	inode->i_ino = get_next_ino();
744 
745 	pipe = alloc_pipe_info();
746 	if (!pipe)
747 		goto fail_iput;
748 
749 	inode->i_pipe = pipe;
750 	pipe->files = 2;
751 	pipe->readers = pipe->writers = 1;
752 	inode->i_fop = &pipefifo_fops;
753 
754 	/*
755 	 * Mark the inode dirty from the very beginning,
756 	 * that way it will never be moved to the dirty
757 	 * list because "mark_inode_dirty()" will think
758 	 * that it already _is_ on the dirty list.
759 	 */
760 	inode->i_state = I_DIRTY;
761 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
762 	inode->i_uid = current_fsuid();
763 	inode->i_gid = current_fsgid();
764 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
765 
766 	return inode;
767 
768 fail_iput:
769 	iput(inode);
770 
771 fail_inode:
772 	return NULL;
773 }
774 
775 int create_pipe_files(struct file **res, int flags)
776 {
777 	int err;
778 	struct inode *inode = get_pipe_inode();
779 	struct file *f;
780 	struct path path;
781 	static struct qstr name = { .name = "" };
782 
783 	if (!inode)
784 		return -ENFILE;
785 
786 	err = -ENOMEM;
787 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
788 	if (!path.dentry)
789 		goto err_inode;
790 	path.mnt = mntget(pipe_mnt);
791 
792 	d_instantiate(path.dentry, inode);
793 
794 	err = -ENFILE;
795 	f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
796 	if (IS_ERR(f))
797 		goto err_dentry;
798 
799 	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
800 	f->private_data = inode->i_pipe;
801 
802 	res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
803 	if (IS_ERR(res[0]))
804 		goto err_file;
805 
806 	path_get(&path);
807 	res[0]->private_data = inode->i_pipe;
808 	res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
809 	res[1] = f;
810 	return 0;
811 
812 err_file:
813 	put_filp(f);
814 err_dentry:
815 	free_pipe_info(inode->i_pipe);
816 	path_put(&path);
817 	return err;
818 
819 err_inode:
820 	free_pipe_info(inode->i_pipe);
821 	iput(inode);
822 	return err;
823 }
824 
825 static int __do_pipe_flags(int *fd, struct file **files, int flags)
826 {
827 	int error;
828 	int fdw, fdr;
829 
830 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
831 		return -EINVAL;
832 
833 	error = create_pipe_files(files, flags);
834 	if (error)
835 		return error;
836 
837 	error = get_unused_fd_flags(flags);
838 	if (error < 0)
839 		goto err_read_pipe;
840 	fdr = error;
841 
842 	error = get_unused_fd_flags(flags);
843 	if (error < 0)
844 		goto err_fdr;
845 	fdw = error;
846 
847 	audit_fd_pair(fdr, fdw);
848 	fd[0] = fdr;
849 	fd[1] = fdw;
850 	return 0;
851 
852  err_fdr:
853 	put_unused_fd(fdr);
854  err_read_pipe:
855 	fput(files[0]);
856 	fput(files[1]);
857 	return error;
858 }
859 
860 int do_pipe_flags(int *fd, int flags)
861 {
862 	struct file *files[2];
863 	int error = __do_pipe_flags(fd, files, flags);
864 	if (!error) {
865 		fd_install(fd[0], files[0]);
866 		fd_install(fd[1], files[1]);
867 	}
868 	return error;
869 }
870 
871 /*
872  * sys_pipe() is the normal C calling standard for creating
873  * a pipe. It's not the way Unix traditionally does this, though.
874  */
875 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
876 {
877 	struct file *files[2];
878 	int fd[2];
879 	int error;
880 
881 	error = __do_pipe_flags(fd, files, flags);
882 	if (!error) {
883 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
884 			fput(files[0]);
885 			fput(files[1]);
886 			put_unused_fd(fd[0]);
887 			put_unused_fd(fd[1]);
888 			error = -EFAULT;
889 		} else {
890 			fd_install(fd[0], files[0]);
891 			fd_install(fd[1], files[1]);
892 		}
893 	}
894 	return error;
895 }
896 
897 SYSCALL_DEFINE1(pipe, int __user *, fildes)
898 {
899 	return sys_pipe2(fildes, 0);
900 }
901 
902 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
903 {
904 	int cur = *cnt;
905 
906 	while (cur == *cnt) {
907 		pipe_wait(pipe);
908 		if (signal_pending(current))
909 			break;
910 	}
911 	return cur == *cnt ? -ERESTARTSYS : 0;
912 }
913 
914 static void wake_up_partner(struct pipe_inode_info *pipe)
915 {
916 	wake_up_interruptible(&pipe->wait);
917 }
918 
919 static int fifo_open(struct inode *inode, struct file *filp)
920 {
921 	struct pipe_inode_info *pipe;
922 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
923 	int ret;
924 
925 	filp->f_version = 0;
926 
927 	spin_lock(&inode->i_lock);
928 	if (inode->i_pipe) {
929 		pipe = inode->i_pipe;
930 		pipe->files++;
931 		spin_unlock(&inode->i_lock);
932 	} else {
933 		spin_unlock(&inode->i_lock);
934 		pipe = alloc_pipe_info();
935 		if (!pipe)
936 			return -ENOMEM;
937 		pipe->files = 1;
938 		spin_lock(&inode->i_lock);
939 		if (unlikely(inode->i_pipe)) {
940 			inode->i_pipe->files++;
941 			spin_unlock(&inode->i_lock);
942 			free_pipe_info(pipe);
943 			pipe = inode->i_pipe;
944 		} else {
945 			inode->i_pipe = pipe;
946 			spin_unlock(&inode->i_lock);
947 		}
948 	}
949 	filp->private_data = pipe;
950 	/* OK, we have a pipe and it's pinned down */
951 
952 	__pipe_lock(pipe);
953 
954 	/* We can only do regular read/write on fifos */
955 	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
956 
957 	switch (filp->f_mode) {
958 	case FMODE_READ:
959 	/*
960 	 *  O_RDONLY
961 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
962 	 *  opened, even when there is no process writing the FIFO.
963 	 */
964 		pipe->r_counter++;
965 		if (pipe->readers++ == 0)
966 			wake_up_partner(pipe);
967 
968 		if (!is_pipe && !pipe->writers) {
969 			if ((filp->f_flags & O_NONBLOCK)) {
970 				/* suppress POLLHUP until we have
971 				 * seen a writer */
972 				filp->f_version = pipe->w_counter;
973 			} else {
974 				if (wait_for_partner(pipe, &pipe->w_counter))
975 					goto err_rd;
976 			}
977 		}
978 		break;
979 
980 	case FMODE_WRITE:
981 	/*
982 	 *  O_WRONLY
983 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
984 	 *  errno=ENXIO when there is no process reading the FIFO.
985 	 */
986 		ret = -ENXIO;
987 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
988 			goto err;
989 
990 		pipe->w_counter++;
991 		if (!pipe->writers++)
992 			wake_up_partner(pipe);
993 
994 		if (!is_pipe && !pipe->readers) {
995 			if (wait_for_partner(pipe, &pipe->r_counter))
996 				goto err_wr;
997 		}
998 		break;
999 
1000 	case FMODE_READ | FMODE_WRITE:
1001 	/*
1002 	 *  O_RDWR
1003 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1004 	 *  This implementation will NEVER block on a O_RDWR open, since
1005 	 *  the process can at least talk to itself.
1006 	 */
1007 
1008 		pipe->readers++;
1009 		pipe->writers++;
1010 		pipe->r_counter++;
1011 		pipe->w_counter++;
1012 		if (pipe->readers == 1 || pipe->writers == 1)
1013 			wake_up_partner(pipe);
1014 		break;
1015 
1016 	default:
1017 		ret = -EINVAL;
1018 		goto err;
1019 	}
1020 
1021 	/* Ok! */
1022 	__pipe_unlock(pipe);
1023 	return 0;
1024 
1025 err_rd:
1026 	if (!--pipe->readers)
1027 		wake_up_interruptible(&pipe->wait);
1028 	ret = -ERESTARTSYS;
1029 	goto err;
1030 
1031 err_wr:
1032 	if (!--pipe->writers)
1033 		wake_up_interruptible(&pipe->wait);
1034 	ret = -ERESTARTSYS;
1035 	goto err;
1036 
1037 err:
1038 	__pipe_unlock(pipe);
1039 
1040 	put_pipe_info(inode, pipe);
1041 	return ret;
1042 }
1043 
1044 const struct file_operations pipefifo_fops = {
1045 	.open		= fifo_open,
1046 	.llseek		= no_llseek,
1047 	.read		= do_sync_read,
1048 	.aio_read	= pipe_read,
1049 	.write		= do_sync_write,
1050 	.aio_write	= pipe_write,
1051 	.poll		= pipe_poll,
1052 	.unlocked_ioctl	= pipe_ioctl,
1053 	.release	= pipe_release,
1054 	.fasync		= pipe_fasync,
1055 };
1056 
1057 /*
1058  * Allocate a new array of pipe buffers and copy the info over. Returns the
1059  * pipe size if successful, or return -ERROR on error.
1060  */
1061 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1062 {
1063 	struct pipe_buffer *bufs;
1064 
1065 	/*
1066 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1067 	 * expect a lot of shrink+grow operations, just free and allocate
1068 	 * again like we would do for growing. If the pipe currently
1069 	 * contains more buffers than arg, then return busy.
1070 	 */
1071 	if (nr_pages < pipe->nrbufs)
1072 		return -EBUSY;
1073 
1074 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1075 	if (unlikely(!bufs))
1076 		return -ENOMEM;
1077 
1078 	/*
1079 	 * The pipe array wraps around, so just start the new one at zero
1080 	 * and adjust the indexes.
1081 	 */
1082 	if (pipe->nrbufs) {
1083 		unsigned int tail;
1084 		unsigned int head;
1085 
1086 		tail = pipe->curbuf + pipe->nrbufs;
1087 		if (tail < pipe->buffers)
1088 			tail = 0;
1089 		else
1090 			tail &= (pipe->buffers - 1);
1091 
1092 		head = pipe->nrbufs - tail;
1093 		if (head)
1094 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1095 		if (tail)
1096 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1097 	}
1098 
1099 	pipe->curbuf = 0;
1100 	kfree(pipe->bufs);
1101 	pipe->bufs = bufs;
1102 	pipe->buffers = nr_pages;
1103 	return nr_pages * PAGE_SIZE;
1104 }
1105 
1106 /*
1107  * Currently we rely on the pipe array holding a power-of-2 number
1108  * of pages.
1109  */
1110 static inline unsigned int round_pipe_size(unsigned int size)
1111 {
1112 	unsigned long nr_pages;
1113 
1114 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1115 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1116 }
1117 
1118 /*
1119  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1120  * will return an error.
1121  */
1122 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1123 		 size_t *lenp, loff_t *ppos)
1124 {
1125 	int ret;
1126 
1127 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1128 	if (ret < 0 || !write)
1129 		return ret;
1130 
1131 	pipe_max_size = round_pipe_size(pipe_max_size);
1132 	return ret;
1133 }
1134 
1135 /*
1136  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1137  * location, so checking ->i_pipe is not enough to verify that this is a
1138  * pipe.
1139  */
1140 struct pipe_inode_info *get_pipe_info(struct file *file)
1141 {
1142 	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1143 }
1144 
1145 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1146 {
1147 	struct pipe_inode_info *pipe;
1148 	long ret;
1149 
1150 	pipe = get_pipe_info(file);
1151 	if (!pipe)
1152 		return -EBADF;
1153 
1154 	__pipe_lock(pipe);
1155 
1156 	switch (cmd) {
1157 	case F_SETPIPE_SZ: {
1158 		unsigned int size, nr_pages;
1159 
1160 		size = round_pipe_size(arg);
1161 		nr_pages = size >> PAGE_SHIFT;
1162 
1163 		ret = -EINVAL;
1164 		if (!nr_pages)
1165 			goto out;
1166 
1167 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1168 			ret = -EPERM;
1169 			goto out;
1170 		}
1171 		ret = pipe_set_size(pipe, nr_pages);
1172 		break;
1173 		}
1174 	case F_GETPIPE_SZ:
1175 		ret = pipe->buffers * PAGE_SIZE;
1176 		break;
1177 	default:
1178 		ret = -EINVAL;
1179 		break;
1180 	}
1181 
1182 out:
1183 	__pipe_unlock(pipe);
1184 	return ret;
1185 }
1186 
1187 static const struct super_operations pipefs_ops = {
1188 	.destroy_inode = free_inode_nonrcu,
1189 	.statfs = simple_statfs,
1190 };
1191 
1192 /*
1193  * pipefs should _never_ be mounted by userland - too much of security hassle,
1194  * no real gain from having the whole whorehouse mounted. So we don't need
1195  * any operations on the root directory. However, we need a non-trivial
1196  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1197  */
1198 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1199 			 int flags, const char *dev_name, void *data)
1200 {
1201 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1202 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1203 }
1204 
1205 static struct file_system_type pipe_fs_type = {
1206 	.name		= "pipefs",
1207 	.mount		= pipefs_mount,
1208 	.kill_sb	= kill_anon_super,
1209 };
1210 
1211 static int __init init_pipe_fs(void)
1212 {
1213 	int err = register_filesystem(&pipe_fs_type);
1214 
1215 	if (!err) {
1216 		pipe_mnt = kern_mount(&pipe_fs_type);
1217 		if (IS_ERR(pipe_mnt)) {
1218 			err = PTR_ERR(pipe_mnt);
1219 			unregister_filesystem(&pipe_fs_type);
1220 		}
1221 	}
1222 	return err;
1223 }
1224 
1225 fs_initcall(init_pipe_fs);
1226