xref: /openbmc/linux/fs/pipe.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30 
31 #include "internal.h"
32 
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38 
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44 
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61 
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64 	if (pipe->files)
65 		mutex_lock_nested(&pipe->mutex, subclass);
66 }
67 
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70 	/*
71 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
72 	 */
73 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76 
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79 	if (pipe->files)
80 		mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83 
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88 
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91 	mutex_unlock(&pipe->mutex);
92 }
93 
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95 		      struct pipe_inode_info *pipe2)
96 {
97 	BUG_ON(pipe1 == pipe2);
98 
99 	if (pipe1 < pipe2) {
100 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102 	} else {
103 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105 	}
106 }
107 
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111 	DEFINE_WAIT(wait);
112 
113 	/*
114 	 * Pipes are system-local resources, so sleeping on them
115 	 * is considered a noninteractive wait:
116 	 */
117 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118 	pipe_unlock(pipe);
119 	schedule();
120 	finish_wait(&pipe->wait, &wait);
121 	pipe_lock(pipe);
122 }
123 
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 				  struct pipe_buffer *buf)
126 {
127 	struct page *page = buf->page;
128 
129 	/*
130 	 * If nobody else uses this page, and we don't already have a
131 	 * temporary page, let's keep track of it as a one-deep
132 	 * allocation cache. (Otherwise just release our reference to it)
133 	 */
134 	if (page_count(page) == 1 && !pipe->tmp_page)
135 		pipe->tmp_page = page;
136 	else
137 		put_page(page);
138 }
139 
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141 			       struct pipe_buffer *buf)
142 {
143 	struct page *page = buf->page;
144 
145 	if (page_count(page) == 1) {
146 		memcg_kmem_uncharge(page, 0);
147 		__SetPageLocked(page);
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 /**
154  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166 			   struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return 0;
178 	}
179 
180 	return 1;
181 }
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
183 
184 /**
185  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186  * @pipe:	the pipe that the buffer belongs to
187  * @buf:	the buffer to get a reference to
188  *
189  * Description:
190  *	This function grabs an extra reference to @buf. It's used in
191  *	in the tee() system call, when we duplicate the buffers in one
192  *	pipe into another.
193  */
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 {
196 	return try_get_page(buf->page);
197 }
198 EXPORT_SYMBOL(generic_pipe_buf_get);
199 
200 /**
201  * generic_pipe_buf_confirm - verify contents of the pipe buffer
202  * @info:	the pipe that the buffer belongs to
203  * @buf:	the buffer to confirm
204  *
205  * Description:
206  *	This function does nothing, because the generic pipe code uses
207  *	pages that are always good when inserted into the pipe.
208  */
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210 			     struct pipe_buffer *buf)
211 {
212 	return 0;
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
215 
216 /**
217  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218  * @pipe:	the pipe that the buffer belongs to
219  * @buf:	the buffer to put a reference to
220  *
221  * Description:
222  *	This function releases a reference to @buf.
223  */
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225 			      struct pipe_buffer *buf)
226 {
227 	put_page(buf->page);
228 }
229 EXPORT_SYMBOL(generic_pipe_buf_release);
230 
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233 	.confirm = generic_pipe_buf_confirm,
234 	.release = anon_pipe_buf_release,
235 	.steal = anon_pipe_buf_steal,
236 	.get = generic_pipe_buf_get,
237 };
238 
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240 	.confirm = generic_pipe_buf_confirm,
241 	.release = anon_pipe_buf_release,
242 	.steal = anon_pipe_buf_steal,
243 	.get = generic_pipe_buf_get,
244 };
245 
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247 	.confirm = generic_pipe_buf_confirm,
248 	.release = anon_pipe_buf_release,
249 	.steal = anon_pipe_buf_steal,
250 	.get = generic_pipe_buf_get,
251 };
252 
253 /**
254  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255  * @buf:	the buffer to mark
256  *
257  * Description:
258  *	This function ensures that no future writes will be merged into the
259  *	given &struct pipe_buffer. This is necessary when multiple pipe buffers
260  *	share the same backing page.
261  */
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263 {
264 	if (buf->ops == &anon_pipe_buf_ops)
265 		buf->ops = &anon_pipe_buf_nomerge_ops;
266 }
267 
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269 {
270 	return buf->ops == &anon_pipe_buf_ops;
271 }
272 
273 static ssize_t
274 pipe_read(struct kiocb *iocb, struct iov_iter *to)
275 {
276 	size_t total_len = iov_iter_count(to);
277 	struct file *filp = iocb->ki_filp;
278 	struct pipe_inode_info *pipe = filp->private_data;
279 	int do_wakeup;
280 	ssize_t ret;
281 
282 	/* Null read succeeds. */
283 	if (unlikely(total_len == 0))
284 		return 0;
285 
286 	do_wakeup = 0;
287 	ret = 0;
288 	__pipe_lock(pipe);
289 	for (;;) {
290 		unsigned int head = pipe->head;
291 		unsigned int tail = pipe->tail;
292 		unsigned int mask = pipe->ring_size - 1;
293 
294 		if (!pipe_empty(head, tail)) {
295 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
296 			size_t chars = buf->len;
297 			size_t written;
298 			int error;
299 
300 			if (chars > total_len)
301 				chars = total_len;
302 
303 			error = pipe_buf_confirm(pipe, buf);
304 			if (error) {
305 				if (!ret)
306 					ret = error;
307 				break;
308 			}
309 
310 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
311 			if (unlikely(written < chars)) {
312 				if (!ret)
313 					ret = -EFAULT;
314 				break;
315 			}
316 			ret += chars;
317 			buf->offset += chars;
318 			buf->len -= chars;
319 
320 			/* Was it a packet buffer? Clean up and exit */
321 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
322 				total_len = chars;
323 				buf->len = 0;
324 			}
325 
326 			if (!buf->len) {
327 				bool wake;
328 				pipe_buf_release(pipe, buf);
329 				spin_lock_irq(&pipe->wait.lock);
330 				tail++;
331 				pipe->tail = tail;
332 				do_wakeup = 1;
333 				wake = head - (tail - 1) == pipe->max_usage / 2;
334 				if (wake)
335 					wake_up_locked_poll(
336 						&pipe->wait, EPOLLOUT | EPOLLWRNORM);
337 				spin_unlock_irq(&pipe->wait.lock);
338 				if (wake)
339 					kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
340 			}
341 			total_len -= chars;
342 			if (!total_len)
343 				break;	/* common path: read succeeded */
344 			if (!pipe_empty(head, tail))	/* More to do? */
345 				continue;
346 		}
347 
348 		if (!pipe->writers)
349 			break;
350 		if (!pipe->waiting_writers) {
351 			/* syscall merging: Usually we must not sleep
352 			 * if O_NONBLOCK is set, or if we got some data.
353 			 * But if a writer sleeps in kernel space, then
354 			 * we can wait for that data without violating POSIX.
355 			 */
356 			if (ret)
357 				break;
358 			if (filp->f_flags & O_NONBLOCK) {
359 				ret = -EAGAIN;
360 				break;
361 			}
362 		}
363 		if (signal_pending(current)) {
364 			if (!ret)
365 				ret = -ERESTARTSYS;
366 			break;
367 		}
368 		pipe_wait(pipe);
369 	}
370 	__pipe_unlock(pipe);
371 
372 	/* Signal writers asynchronously that there is more room. */
373 	if (do_wakeup) {
374 		wake_up_interruptible_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
375 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 	}
377 	if (ret > 0)
378 		file_accessed(filp);
379 	return ret;
380 }
381 
382 static inline int is_packetized(struct file *file)
383 {
384 	return (file->f_flags & O_DIRECT) != 0;
385 }
386 
387 static ssize_t
388 pipe_write(struct kiocb *iocb, struct iov_iter *from)
389 {
390 	struct file *filp = iocb->ki_filp;
391 	struct pipe_inode_info *pipe = filp->private_data;
392 	unsigned int head, max_usage, mask;
393 	ssize_t ret = 0;
394 	int do_wakeup = 0;
395 	size_t total_len = iov_iter_count(from);
396 	ssize_t chars;
397 
398 	/* Null write succeeds. */
399 	if (unlikely(total_len == 0))
400 		return 0;
401 
402 	__pipe_lock(pipe);
403 
404 	if (!pipe->readers) {
405 		send_sig(SIGPIPE, current, 0);
406 		ret = -EPIPE;
407 		goto out;
408 	}
409 
410 	head = pipe->head;
411 	max_usage = pipe->max_usage;
412 	mask = pipe->ring_size - 1;
413 
414 	/* We try to merge small writes */
415 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
416 	if (!pipe_empty(head, pipe->tail) && chars != 0) {
417 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
418 		int offset = buf->offset + buf->len;
419 
420 		if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
421 			ret = pipe_buf_confirm(pipe, buf);
422 			if (ret)
423 				goto out;
424 
425 			ret = copy_page_from_iter(buf->page, offset, chars, from);
426 			if (unlikely(ret < chars)) {
427 				ret = -EFAULT;
428 				goto out;
429 			}
430 			do_wakeup = 1;
431 			buf->len += ret;
432 			if (!iov_iter_count(from))
433 				goto out;
434 		}
435 	}
436 
437 	for (;;) {
438 		if (!pipe->readers) {
439 			send_sig(SIGPIPE, current, 0);
440 			if (!ret)
441 				ret = -EPIPE;
442 			break;
443 		}
444 
445 		head = pipe->head;
446 		if (!pipe_full(head, pipe->tail, max_usage)) {
447 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
448 			struct page *page = pipe->tmp_page;
449 			int copied;
450 
451 			if (!page) {
452 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
453 				if (unlikely(!page)) {
454 					ret = ret ? : -ENOMEM;
455 					break;
456 				}
457 				pipe->tmp_page = page;
458 			}
459 
460 			/* Allocate a slot in the ring in advance and attach an
461 			 * empty buffer.  If we fault or otherwise fail to use
462 			 * it, either the reader will consume it or it'll still
463 			 * be there for the next write.
464 			 */
465 			spin_lock_irq(&pipe->wait.lock);
466 
467 			head = pipe->head;
468 			if (pipe_full(head, pipe->tail, max_usage)) {
469 				spin_unlock_irq(&pipe->wait.lock);
470 				continue;
471 			}
472 
473 			pipe->head = head + 1;
474 
475 			/* Always wake up, even if the copy fails. Otherwise
476 			 * we lock up (O_NONBLOCK-)readers that sleep due to
477 			 * syscall merging.
478 			 * FIXME! Is this really true?
479 			 */
480 			wake_up_locked_poll(
481 				&pipe->wait, EPOLLIN | EPOLLRDNORM);
482 
483 			spin_unlock_irq(&pipe->wait.lock);
484 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
485 
486 			/* Insert it into the buffer array */
487 			buf = &pipe->bufs[head & mask];
488 			buf->page = page;
489 			buf->ops = &anon_pipe_buf_ops;
490 			buf->offset = 0;
491 			buf->len = 0;
492 			buf->flags = 0;
493 			if (is_packetized(filp)) {
494 				buf->ops = &packet_pipe_buf_ops;
495 				buf->flags = PIPE_BUF_FLAG_PACKET;
496 			}
497 			pipe->tmp_page = NULL;
498 
499 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
500 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
501 				if (!ret)
502 					ret = -EFAULT;
503 				break;
504 			}
505 			ret += copied;
506 			buf->offset = 0;
507 			buf->len = copied;
508 
509 			if (!iov_iter_count(from))
510 				break;
511 		}
512 
513 		if (!pipe_full(head, pipe->tail, max_usage))
514 			continue;
515 
516 		/* Wait for buffer space to become available. */
517 		if (filp->f_flags & O_NONBLOCK) {
518 			if (!ret)
519 				ret = -EAGAIN;
520 			break;
521 		}
522 		if (signal_pending(current)) {
523 			if (!ret)
524 				ret = -ERESTARTSYS;
525 			break;
526 		}
527 		pipe->waiting_writers++;
528 		pipe_wait(pipe);
529 		pipe->waiting_writers--;
530 	}
531 out:
532 	__pipe_unlock(pipe);
533 	if (do_wakeup) {
534 		wake_up_interruptible_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
535 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
536 	}
537 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
538 		int err = file_update_time(filp);
539 		if (err)
540 			ret = err;
541 		sb_end_write(file_inode(filp)->i_sb);
542 	}
543 	return ret;
544 }
545 
546 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
547 {
548 	struct pipe_inode_info *pipe = filp->private_data;
549 	int count, head, tail, mask;
550 
551 	switch (cmd) {
552 		case FIONREAD:
553 			__pipe_lock(pipe);
554 			count = 0;
555 			head = pipe->head;
556 			tail = pipe->tail;
557 			mask = pipe->ring_size - 1;
558 
559 			while (tail != head) {
560 				count += pipe->bufs[tail & mask].len;
561 				tail++;
562 			}
563 			__pipe_unlock(pipe);
564 
565 			return put_user(count, (int __user *)arg);
566 		default:
567 			return -ENOIOCTLCMD;
568 	}
569 }
570 
571 /* No kernel lock held - fine */
572 static __poll_t
573 pipe_poll(struct file *filp, poll_table *wait)
574 {
575 	__poll_t mask;
576 	struct pipe_inode_info *pipe = filp->private_data;
577 	unsigned int head = READ_ONCE(pipe->head);
578 	unsigned int tail = READ_ONCE(pipe->tail);
579 
580 	poll_wait(filp, &pipe->wait, wait);
581 
582 	BUG_ON(pipe_occupancy(head, tail) > pipe->ring_size);
583 
584 	/* Reading only -- no need for acquiring the semaphore.  */
585 	mask = 0;
586 	if (filp->f_mode & FMODE_READ) {
587 		if (!pipe_empty(head, tail))
588 			mask |= EPOLLIN | EPOLLRDNORM;
589 		if (!pipe->writers && filp->f_version != pipe->w_counter)
590 			mask |= EPOLLHUP;
591 	}
592 
593 	if (filp->f_mode & FMODE_WRITE) {
594 		if (!pipe_full(head, tail, pipe->max_usage))
595 			mask |= EPOLLOUT | EPOLLWRNORM;
596 		/*
597 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
598 		 * behave exactly like pipes for poll().
599 		 */
600 		if (!pipe->readers)
601 			mask |= EPOLLERR;
602 	}
603 
604 	return mask;
605 }
606 
607 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
608 {
609 	int kill = 0;
610 
611 	spin_lock(&inode->i_lock);
612 	if (!--pipe->files) {
613 		inode->i_pipe = NULL;
614 		kill = 1;
615 	}
616 	spin_unlock(&inode->i_lock);
617 
618 	if (kill)
619 		free_pipe_info(pipe);
620 }
621 
622 static int
623 pipe_release(struct inode *inode, struct file *file)
624 {
625 	struct pipe_inode_info *pipe = file->private_data;
626 
627 	__pipe_lock(pipe);
628 	if (file->f_mode & FMODE_READ)
629 		pipe->readers--;
630 	if (file->f_mode & FMODE_WRITE)
631 		pipe->writers--;
632 
633 	if (pipe->readers || pipe->writers) {
634 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
635 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
636 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
637 	}
638 	__pipe_unlock(pipe);
639 
640 	put_pipe_info(inode, pipe);
641 	return 0;
642 }
643 
644 static int
645 pipe_fasync(int fd, struct file *filp, int on)
646 {
647 	struct pipe_inode_info *pipe = filp->private_data;
648 	int retval = 0;
649 
650 	__pipe_lock(pipe);
651 	if (filp->f_mode & FMODE_READ)
652 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
653 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
654 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
655 		if (retval < 0 && (filp->f_mode & FMODE_READ))
656 			/* this can happen only if on == T */
657 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
658 	}
659 	__pipe_unlock(pipe);
660 	return retval;
661 }
662 
663 static unsigned long account_pipe_buffers(struct user_struct *user,
664                                  unsigned long old, unsigned long new)
665 {
666 	return atomic_long_add_return(new - old, &user->pipe_bufs);
667 }
668 
669 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
670 {
671 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
672 
673 	return soft_limit && user_bufs > soft_limit;
674 }
675 
676 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
677 {
678 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
679 
680 	return hard_limit && user_bufs > hard_limit;
681 }
682 
683 static bool is_unprivileged_user(void)
684 {
685 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
686 }
687 
688 struct pipe_inode_info *alloc_pipe_info(void)
689 {
690 	struct pipe_inode_info *pipe;
691 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
692 	struct user_struct *user = get_current_user();
693 	unsigned long user_bufs;
694 	unsigned int max_size = READ_ONCE(pipe_max_size);
695 
696 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
697 	if (pipe == NULL)
698 		goto out_free_uid;
699 
700 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
701 		pipe_bufs = max_size >> PAGE_SHIFT;
702 
703 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
704 
705 	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
706 		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
707 		pipe_bufs = 1;
708 	}
709 
710 	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
711 		goto out_revert_acct;
712 
713 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
714 			     GFP_KERNEL_ACCOUNT);
715 
716 	if (pipe->bufs) {
717 		init_waitqueue_head(&pipe->wait);
718 		pipe->r_counter = pipe->w_counter = 1;
719 		pipe->max_usage = pipe_bufs;
720 		pipe->ring_size = pipe_bufs;
721 		pipe->user = user;
722 		mutex_init(&pipe->mutex);
723 		return pipe;
724 	}
725 
726 out_revert_acct:
727 	(void) account_pipe_buffers(user, pipe_bufs, 0);
728 	kfree(pipe);
729 out_free_uid:
730 	free_uid(user);
731 	return NULL;
732 }
733 
734 void free_pipe_info(struct pipe_inode_info *pipe)
735 {
736 	int i;
737 
738 	(void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
739 	free_uid(pipe->user);
740 	for (i = 0; i < pipe->ring_size; i++) {
741 		struct pipe_buffer *buf = pipe->bufs + i;
742 		if (buf->ops)
743 			pipe_buf_release(pipe, buf);
744 	}
745 	if (pipe->tmp_page)
746 		__free_page(pipe->tmp_page);
747 	kfree(pipe->bufs);
748 	kfree(pipe);
749 }
750 
751 static struct vfsmount *pipe_mnt __read_mostly;
752 
753 /*
754  * pipefs_dname() is called from d_path().
755  */
756 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
757 {
758 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
759 				d_inode(dentry)->i_ino);
760 }
761 
762 static const struct dentry_operations pipefs_dentry_operations = {
763 	.d_dname	= pipefs_dname,
764 };
765 
766 static struct inode * get_pipe_inode(void)
767 {
768 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
769 	struct pipe_inode_info *pipe;
770 
771 	if (!inode)
772 		goto fail_inode;
773 
774 	inode->i_ino = get_next_ino();
775 
776 	pipe = alloc_pipe_info();
777 	if (!pipe)
778 		goto fail_iput;
779 
780 	inode->i_pipe = pipe;
781 	pipe->files = 2;
782 	pipe->readers = pipe->writers = 1;
783 	inode->i_fop = &pipefifo_fops;
784 
785 	/*
786 	 * Mark the inode dirty from the very beginning,
787 	 * that way it will never be moved to the dirty
788 	 * list because "mark_inode_dirty()" will think
789 	 * that it already _is_ on the dirty list.
790 	 */
791 	inode->i_state = I_DIRTY;
792 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
793 	inode->i_uid = current_fsuid();
794 	inode->i_gid = current_fsgid();
795 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
796 
797 	return inode;
798 
799 fail_iput:
800 	iput(inode);
801 
802 fail_inode:
803 	return NULL;
804 }
805 
806 int create_pipe_files(struct file **res, int flags)
807 {
808 	struct inode *inode = get_pipe_inode();
809 	struct file *f;
810 
811 	if (!inode)
812 		return -ENFILE;
813 
814 	f = alloc_file_pseudo(inode, pipe_mnt, "",
815 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
816 				&pipefifo_fops);
817 	if (IS_ERR(f)) {
818 		free_pipe_info(inode->i_pipe);
819 		iput(inode);
820 		return PTR_ERR(f);
821 	}
822 
823 	f->private_data = inode->i_pipe;
824 
825 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
826 				  &pipefifo_fops);
827 	if (IS_ERR(res[0])) {
828 		put_pipe_info(inode, inode->i_pipe);
829 		fput(f);
830 		return PTR_ERR(res[0]);
831 	}
832 	res[0]->private_data = inode->i_pipe;
833 	res[1] = f;
834 	stream_open(inode, res[0]);
835 	stream_open(inode, res[1]);
836 	return 0;
837 }
838 
839 static int __do_pipe_flags(int *fd, struct file **files, int flags)
840 {
841 	int error;
842 	int fdw, fdr;
843 
844 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
845 		return -EINVAL;
846 
847 	error = create_pipe_files(files, flags);
848 	if (error)
849 		return error;
850 
851 	error = get_unused_fd_flags(flags);
852 	if (error < 0)
853 		goto err_read_pipe;
854 	fdr = error;
855 
856 	error = get_unused_fd_flags(flags);
857 	if (error < 0)
858 		goto err_fdr;
859 	fdw = error;
860 
861 	audit_fd_pair(fdr, fdw);
862 	fd[0] = fdr;
863 	fd[1] = fdw;
864 	return 0;
865 
866  err_fdr:
867 	put_unused_fd(fdr);
868  err_read_pipe:
869 	fput(files[0]);
870 	fput(files[1]);
871 	return error;
872 }
873 
874 int do_pipe_flags(int *fd, int flags)
875 {
876 	struct file *files[2];
877 	int error = __do_pipe_flags(fd, files, flags);
878 	if (!error) {
879 		fd_install(fd[0], files[0]);
880 		fd_install(fd[1], files[1]);
881 	}
882 	return error;
883 }
884 
885 /*
886  * sys_pipe() is the normal C calling standard for creating
887  * a pipe. It's not the way Unix traditionally does this, though.
888  */
889 static int do_pipe2(int __user *fildes, int flags)
890 {
891 	struct file *files[2];
892 	int fd[2];
893 	int error;
894 
895 	error = __do_pipe_flags(fd, files, flags);
896 	if (!error) {
897 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
898 			fput(files[0]);
899 			fput(files[1]);
900 			put_unused_fd(fd[0]);
901 			put_unused_fd(fd[1]);
902 			error = -EFAULT;
903 		} else {
904 			fd_install(fd[0], files[0]);
905 			fd_install(fd[1], files[1]);
906 		}
907 	}
908 	return error;
909 }
910 
911 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
912 {
913 	return do_pipe2(fildes, flags);
914 }
915 
916 SYSCALL_DEFINE1(pipe, int __user *, fildes)
917 {
918 	return do_pipe2(fildes, 0);
919 }
920 
921 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
922 {
923 	int cur = *cnt;
924 
925 	while (cur == *cnt) {
926 		pipe_wait(pipe);
927 		if (signal_pending(current))
928 			break;
929 	}
930 	return cur == *cnt ? -ERESTARTSYS : 0;
931 }
932 
933 static void wake_up_partner(struct pipe_inode_info *pipe)
934 {
935 	wake_up_interruptible(&pipe->wait);
936 }
937 
938 static int fifo_open(struct inode *inode, struct file *filp)
939 {
940 	struct pipe_inode_info *pipe;
941 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
942 	int ret;
943 
944 	filp->f_version = 0;
945 
946 	spin_lock(&inode->i_lock);
947 	if (inode->i_pipe) {
948 		pipe = inode->i_pipe;
949 		pipe->files++;
950 		spin_unlock(&inode->i_lock);
951 	} else {
952 		spin_unlock(&inode->i_lock);
953 		pipe = alloc_pipe_info();
954 		if (!pipe)
955 			return -ENOMEM;
956 		pipe->files = 1;
957 		spin_lock(&inode->i_lock);
958 		if (unlikely(inode->i_pipe)) {
959 			inode->i_pipe->files++;
960 			spin_unlock(&inode->i_lock);
961 			free_pipe_info(pipe);
962 			pipe = inode->i_pipe;
963 		} else {
964 			inode->i_pipe = pipe;
965 			spin_unlock(&inode->i_lock);
966 		}
967 	}
968 	filp->private_data = pipe;
969 	/* OK, we have a pipe and it's pinned down */
970 
971 	__pipe_lock(pipe);
972 
973 	/* We can only do regular read/write on fifos */
974 	stream_open(inode, filp);
975 
976 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
977 	case FMODE_READ:
978 	/*
979 	 *  O_RDONLY
980 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
981 	 *  opened, even when there is no process writing the FIFO.
982 	 */
983 		pipe->r_counter++;
984 		if (pipe->readers++ == 0)
985 			wake_up_partner(pipe);
986 
987 		if (!is_pipe && !pipe->writers) {
988 			if ((filp->f_flags & O_NONBLOCK)) {
989 				/* suppress EPOLLHUP until we have
990 				 * seen a writer */
991 				filp->f_version = pipe->w_counter;
992 			} else {
993 				if (wait_for_partner(pipe, &pipe->w_counter))
994 					goto err_rd;
995 			}
996 		}
997 		break;
998 
999 	case FMODE_WRITE:
1000 	/*
1001 	 *  O_WRONLY
1002 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1003 	 *  errno=ENXIO when there is no process reading the FIFO.
1004 	 */
1005 		ret = -ENXIO;
1006 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1007 			goto err;
1008 
1009 		pipe->w_counter++;
1010 		if (!pipe->writers++)
1011 			wake_up_partner(pipe);
1012 
1013 		if (!is_pipe && !pipe->readers) {
1014 			if (wait_for_partner(pipe, &pipe->r_counter))
1015 				goto err_wr;
1016 		}
1017 		break;
1018 
1019 	case FMODE_READ | FMODE_WRITE:
1020 	/*
1021 	 *  O_RDWR
1022 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1023 	 *  This implementation will NEVER block on a O_RDWR open, since
1024 	 *  the process can at least talk to itself.
1025 	 */
1026 
1027 		pipe->readers++;
1028 		pipe->writers++;
1029 		pipe->r_counter++;
1030 		pipe->w_counter++;
1031 		if (pipe->readers == 1 || pipe->writers == 1)
1032 			wake_up_partner(pipe);
1033 		break;
1034 
1035 	default:
1036 		ret = -EINVAL;
1037 		goto err;
1038 	}
1039 
1040 	/* Ok! */
1041 	__pipe_unlock(pipe);
1042 	return 0;
1043 
1044 err_rd:
1045 	if (!--pipe->readers)
1046 		wake_up_interruptible(&pipe->wait);
1047 	ret = -ERESTARTSYS;
1048 	goto err;
1049 
1050 err_wr:
1051 	if (!--pipe->writers)
1052 		wake_up_interruptible(&pipe->wait);
1053 	ret = -ERESTARTSYS;
1054 	goto err;
1055 
1056 err:
1057 	__pipe_unlock(pipe);
1058 
1059 	put_pipe_info(inode, pipe);
1060 	return ret;
1061 }
1062 
1063 const struct file_operations pipefifo_fops = {
1064 	.open		= fifo_open,
1065 	.llseek		= no_llseek,
1066 	.read_iter	= pipe_read,
1067 	.write_iter	= pipe_write,
1068 	.poll		= pipe_poll,
1069 	.unlocked_ioctl	= pipe_ioctl,
1070 	.release	= pipe_release,
1071 	.fasync		= pipe_fasync,
1072 };
1073 
1074 /*
1075  * Currently we rely on the pipe array holding a power-of-2 number
1076  * of pages. Returns 0 on error.
1077  */
1078 unsigned int round_pipe_size(unsigned long size)
1079 {
1080 	if (size > (1U << 31))
1081 		return 0;
1082 
1083 	/* Minimum pipe size, as required by POSIX */
1084 	if (size < PAGE_SIZE)
1085 		return PAGE_SIZE;
1086 
1087 	return roundup_pow_of_two(size);
1088 }
1089 
1090 /*
1091  * Allocate a new array of pipe buffers and copy the info over. Returns the
1092  * pipe size if successful, or return -ERROR on error.
1093  */
1094 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1095 {
1096 	struct pipe_buffer *bufs;
1097 	unsigned int size, nr_slots, head, tail, mask, n;
1098 	unsigned long user_bufs;
1099 	long ret = 0;
1100 
1101 	size = round_pipe_size(arg);
1102 	nr_slots = size >> PAGE_SHIFT;
1103 
1104 	if (!nr_slots)
1105 		return -EINVAL;
1106 
1107 	/*
1108 	 * If trying to increase the pipe capacity, check that an
1109 	 * unprivileged user is not trying to exceed various limits
1110 	 * (soft limit check here, hard limit check just below).
1111 	 * Decreasing the pipe capacity is always permitted, even
1112 	 * if the user is currently over a limit.
1113 	 */
1114 	if (nr_slots > pipe->ring_size &&
1115 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1116 		return -EPERM;
1117 
1118 	user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1119 
1120 	if (nr_slots > pipe->ring_size &&
1121 			(too_many_pipe_buffers_hard(user_bufs) ||
1122 			 too_many_pipe_buffers_soft(user_bufs)) &&
1123 			is_unprivileged_user()) {
1124 		ret = -EPERM;
1125 		goto out_revert_acct;
1126 	}
1127 
1128 	/*
1129 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1130 	 * Since we don't expect a lot of shrink+grow operations, just free and
1131 	 * allocate again like we would do for growing.  If the pipe currently
1132 	 * contains more buffers than arg, then return busy.
1133 	 */
1134 	mask = pipe->ring_size - 1;
1135 	head = pipe->head;
1136 	tail = pipe->tail;
1137 	n = pipe_occupancy(pipe->head, pipe->tail);
1138 	if (nr_slots < n) {
1139 		ret = -EBUSY;
1140 		goto out_revert_acct;
1141 	}
1142 
1143 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1144 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1145 	if (unlikely(!bufs)) {
1146 		ret = -ENOMEM;
1147 		goto out_revert_acct;
1148 	}
1149 
1150 	/*
1151 	 * The pipe array wraps around, so just start the new one at zero
1152 	 * and adjust the indices.
1153 	 */
1154 	if (n > 0) {
1155 		unsigned int h = head & mask;
1156 		unsigned int t = tail & mask;
1157 		if (h > t) {
1158 			memcpy(bufs, pipe->bufs + t,
1159 			       n * sizeof(struct pipe_buffer));
1160 		} else {
1161 			unsigned int tsize = pipe->ring_size - t;
1162 			if (h > 0)
1163 				memcpy(bufs + tsize, pipe->bufs,
1164 				       h * sizeof(struct pipe_buffer));
1165 			memcpy(bufs, pipe->bufs + t,
1166 			       tsize * sizeof(struct pipe_buffer));
1167 		}
1168 	}
1169 
1170 	head = n;
1171 	tail = 0;
1172 
1173 	kfree(pipe->bufs);
1174 	pipe->bufs = bufs;
1175 	pipe->ring_size = nr_slots;
1176 	pipe->max_usage = nr_slots;
1177 	pipe->tail = tail;
1178 	pipe->head = head;
1179 	return pipe->max_usage * PAGE_SIZE;
1180 
1181 out_revert_acct:
1182 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1183 	return ret;
1184 }
1185 
1186 /*
1187  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1188  * location, so checking ->i_pipe is not enough to verify that this is a
1189  * pipe.
1190  */
1191 struct pipe_inode_info *get_pipe_info(struct file *file)
1192 {
1193 	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1194 }
1195 
1196 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1197 {
1198 	struct pipe_inode_info *pipe;
1199 	long ret;
1200 
1201 	pipe = get_pipe_info(file);
1202 	if (!pipe)
1203 		return -EBADF;
1204 
1205 	__pipe_lock(pipe);
1206 
1207 	switch (cmd) {
1208 	case F_SETPIPE_SZ:
1209 		ret = pipe_set_size(pipe, arg);
1210 		break;
1211 	case F_GETPIPE_SZ:
1212 		ret = pipe->max_usage * PAGE_SIZE;
1213 		break;
1214 	default:
1215 		ret = -EINVAL;
1216 		break;
1217 	}
1218 
1219 	__pipe_unlock(pipe);
1220 	return ret;
1221 }
1222 
1223 static const struct super_operations pipefs_ops = {
1224 	.destroy_inode = free_inode_nonrcu,
1225 	.statfs = simple_statfs,
1226 };
1227 
1228 /*
1229  * pipefs should _never_ be mounted by userland - too much of security hassle,
1230  * no real gain from having the whole whorehouse mounted. So we don't need
1231  * any operations on the root directory. However, we need a non-trivial
1232  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1233  */
1234 
1235 static int pipefs_init_fs_context(struct fs_context *fc)
1236 {
1237 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1238 	if (!ctx)
1239 		return -ENOMEM;
1240 	ctx->ops = &pipefs_ops;
1241 	ctx->dops = &pipefs_dentry_operations;
1242 	return 0;
1243 }
1244 
1245 static struct file_system_type pipe_fs_type = {
1246 	.name		= "pipefs",
1247 	.init_fs_context = pipefs_init_fs_context,
1248 	.kill_sb	= kill_anon_super,
1249 };
1250 
1251 static int __init init_pipe_fs(void)
1252 {
1253 	int err = register_filesystem(&pipe_fs_type);
1254 
1255 	if (!err) {
1256 		pipe_mnt = kern_mount(&pipe_fs_type);
1257 		if (IS_ERR(pipe_mnt)) {
1258 			err = PTR_ERR(pipe_mnt);
1259 			unregister_filesystem(&pipe_fs_type);
1260 		}
1261 	}
1262 	return err;
1263 }
1264 
1265 fs_initcall(init_pipe_fs);
1266