1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 28 #include <linux/uaccess.h> 29 #include <asm/ioctls.h> 30 31 #include "internal.h" 32 33 /* 34 * The max size that a non-root user is allowed to grow the pipe. Can 35 * be set by root in /proc/sys/fs/pipe-max-size 36 */ 37 unsigned int pipe_max_size = 1048576; 38 39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 40 * matches default values. 41 */ 42 unsigned long pipe_user_pages_hard; 43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 44 45 /* 46 * We use head and tail indices that aren't masked off, except at the point of 47 * dereference, but rather they're allowed to wrap naturally. This means there 48 * isn't a dead spot in the buffer, but the ring has to be a power of two and 49 * <= 2^31. 50 * -- David Howells 2019-09-23. 51 * 52 * Reads with count = 0 should always return 0. 53 * -- Julian Bradfield 1999-06-07. 54 * 55 * FIFOs and Pipes now generate SIGIO for both readers and writers. 56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 57 * 58 * pipe_read & write cleanup 59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 60 */ 61 62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 63 { 64 if (pipe->files) 65 mutex_lock_nested(&pipe->mutex, subclass); 66 } 67 68 void pipe_lock(struct pipe_inode_info *pipe) 69 { 70 /* 71 * pipe_lock() nests non-pipe inode locks (for writing to a file) 72 */ 73 pipe_lock_nested(pipe, I_MUTEX_PARENT); 74 } 75 EXPORT_SYMBOL(pipe_lock); 76 77 void pipe_unlock(struct pipe_inode_info *pipe) 78 { 79 if (pipe->files) 80 mutex_unlock(&pipe->mutex); 81 } 82 EXPORT_SYMBOL(pipe_unlock); 83 84 static inline void __pipe_lock(struct pipe_inode_info *pipe) 85 { 86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 87 } 88 89 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 90 { 91 mutex_unlock(&pipe->mutex); 92 } 93 94 void pipe_double_lock(struct pipe_inode_info *pipe1, 95 struct pipe_inode_info *pipe2) 96 { 97 BUG_ON(pipe1 == pipe2); 98 99 if (pipe1 < pipe2) { 100 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 102 } else { 103 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 104 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 105 } 106 } 107 108 /* Drop the inode semaphore and wait for a pipe event, atomically */ 109 void pipe_wait(struct pipe_inode_info *pipe) 110 { 111 DEFINE_WAIT(wait); 112 113 /* 114 * Pipes are system-local resources, so sleeping on them 115 * is considered a noninteractive wait: 116 */ 117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 118 pipe_unlock(pipe); 119 schedule(); 120 finish_wait(&pipe->wait, &wait); 121 pipe_lock(pipe); 122 } 123 124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 125 struct pipe_buffer *buf) 126 { 127 struct page *page = buf->page; 128 129 /* 130 * If nobody else uses this page, and we don't already have a 131 * temporary page, let's keep track of it as a one-deep 132 * allocation cache. (Otherwise just release our reference to it) 133 */ 134 if (page_count(page) == 1 && !pipe->tmp_page) 135 pipe->tmp_page = page; 136 else 137 put_page(page); 138 } 139 140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 141 struct pipe_buffer *buf) 142 { 143 struct page *page = buf->page; 144 145 if (page_count(page) == 1) { 146 memcg_kmem_uncharge(page, 0); 147 __SetPageLocked(page); 148 return 0; 149 } 150 return 1; 151 } 152 153 /** 154 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return 0; 178 } 179 180 return 1; 181 } 182 EXPORT_SYMBOL(generic_pipe_buf_steal); 183 184 /** 185 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 186 * @pipe: the pipe that the buffer belongs to 187 * @buf: the buffer to get a reference to 188 * 189 * Description: 190 * This function grabs an extra reference to @buf. It's used in 191 * in the tee() system call, when we duplicate the buffers in one 192 * pipe into another. 193 */ 194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 195 { 196 return try_get_page(buf->page); 197 } 198 EXPORT_SYMBOL(generic_pipe_buf_get); 199 200 /** 201 * generic_pipe_buf_confirm - verify contents of the pipe buffer 202 * @info: the pipe that the buffer belongs to 203 * @buf: the buffer to confirm 204 * 205 * Description: 206 * This function does nothing, because the generic pipe code uses 207 * pages that are always good when inserted into the pipe. 208 */ 209 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 210 struct pipe_buffer *buf) 211 { 212 return 0; 213 } 214 EXPORT_SYMBOL(generic_pipe_buf_confirm); 215 216 /** 217 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 218 * @pipe: the pipe that the buffer belongs to 219 * @buf: the buffer to put a reference to 220 * 221 * Description: 222 * This function releases a reference to @buf. 223 */ 224 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 225 struct pipe_buffer *buf) 226 { 227 put_page(buf->page); 228 } 229 EXPORT_SYMBOL(generic_pipe_buf_release); 230 231 /* New data written to a pipe may be appended to a buffer with this type. */ 232 static const struct pipe_buf_operations anon_pipe_buf_ops = { 233 .confirm = generic_pipe_buf_confirm, 234 .release = anon_pipe_buf_release, 235 .steal = anon_pipe_buf_steal, 236 .get = generic_pipe_buf_get, 237 }; 238 239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = { 240 .confirm = generic_pipe_buf_confirm, 241 .release = anon_pipe_buf_release, 242 .steal = anon_pipe_buf_steal, 243 .get = generic_pipe_buf_get, 244 }; 245 246 static const struct pipe_buf_operations packet_pipe_buf_ops = { 247 .confirm = generic_pipe_buf_confirm, 248 .release = anon_pipe_buf_release, 249 .steal = anon_pipe_buf_steal, 250 .get = generic_pipe_buf_get, 251 }; 252 253 /** 254 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable 255 * @buf: the buffer to mark 256 * 257 * Description: 258 * This function ensures that no future writes will be merged into the 259 * given &struct pipe_buffer. This is necessary when multiple pipe buffers 260 * share the same backing page. 261 */ 262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf) 263 { 264 if (buf->ops == &anon_pipe_buf_ops) 265 buf->ops = &anon_pipe_buf_nomerge_ops; 266 } 267 268 static bool pipe_buf_can_merge(struct pipe_buffer *buf) 269 { 270 return buf->ops == &anon_pipe_buf_ops; 271 } 272 273 static ssize_t 274 pipe_read(struct kiocb *iocb, struct iov_iter *to) 275 { 276 size_t total_len = iov_iter_count(to); 277 struct file *filp = iocb->ki_filp; 278 struct pipe_inode_info *pipe = filp->private_data; 279 int do_wakeup; 280 ssize_t ret; 281 282 /* Null read succeeds. */ 283 if (unlikely(total_len == 0)) 284 return 0; 285 286 do_wakeup = 0; 287 ret = 0; 288 __pipe_lock(pipe); 289 for (;;) { 290 unsigned int head = pipe->head; 291 unsigned int tail = pipe->tail; 292 unsigned int mask = pipe->ring_size - 1; 293 294 if (!pipe_empty(head, tail)) { 295 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 296 size_t chars = buf->len; 297 size_t written; 298 int error; 299 300 if (chars > total_len) 301 chars = total_len; 302 303 error = pipe_buf_confirm(pipe, buf); 304 if (error) { 305 if (!ret) 306 ret = error; 307 break; 308 } 309 310 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 311 if (unlikely(written < chars)) { 312 if (!ret) 313 ret = -EFAULT; 314 break; 315 } 316 ret += chars; 317 buf->offset += chars; 318 buf->len -= chars; 319 320 /* Was it a packet buffer? Clean up and exit */ 321 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 322 total_len = chars; 323 buf->len = 0; 324 } 325 326 if (!buf->len) { 327 bool wake; 328 pipe_buf_release(pipe, buf); 329 spin_lock_irq(&pipe->wait.lock); 330 tail++; 331 pipe->tail = tail; 332 do_wakeup = 1; 333 wake = head - (tail - 1) == pipe->max_usage / 2; 334 if (wake) 335 wake_up_locked_poll( 336 &pipe->wait, EPOLLOUT | EPOLLWRNORM); 337 spin_unlock_irq(&pipe->wait.lock); 338 if (wake) 339 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 340 } 341 total_len -= chars; 342 if (!total_len) 343 break; /* common path: read succeeded */ 344 if (!pipe_empty(head, tail)) /* More to do? */ 345 continue; 346 } 347 348 if (!pipe->writers) 349 break; 350 if (!pipe->waiting_writers) { 351 /* syscall merging: Usually we must not sleep 352 * if O_NONBLOCK is set, or if we got some data. 353 * But if a writer sleeps in kernel space, then 354 * we can wait for that data without violating POSIX. 355 */ 356 if (ret) 357 break; 358 if (filp->f_flags & O_NONBLOCK) { 359 ret = -EAGAIN; 360 break; 361 } 362 } 363 if (signal_pending(current)) { 364 if (!ret) 365 ret = -ERESTARTSYS; 366 break; 367 } 368 pipe_wait(pipe); 369 } 370 __pipe_unlock(pipe); 371 372 /* Signal writers asynchronously that there is more room. */ 373 if (do_wakeup) { 374 wake_up_interruptible_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 375 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 376 } 377 if (ret > 0) 378 file_accessed(filp); 379 return ret; 380 } 381 382 static inline int is_packetized(struct file *file) 383 { 384 return (file->f_flags & O_DIRECT) != 0; 385 } 386 387 static ssize_t 388 pipe_write(struct kiocb *iocb, struct iov_iter *from) 389 { 390 struct file *filp = iocb->ki_filp; 391 struct pipe_inode_info *pipe = filp->private_data; 392 unsigned int head, max_usage, mask; 393 ssize_t ret = 0; 394 int do_wakeup = 0; 395 size_t total_len = iov_iter_count(from); 396 ssize_t chars; 397 398 /* Null write succeeds. */ 399 if (unlikely(total_len == 0)) 400 return 0; 401 402 __pipe_lock(pipe); 403 404 if (!pipe->readers) { 405 send_sig(SIGPIPE, current, 0); 406 ret = -EPIPE; 407 goto out; 408 } 409 410 head = pipe->head; 411 max_usage = pipe->max_usage; 412 mask = pipe->ring_size - 1; 413 414 /* We try to merge small writes */ 415 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */ 416 if (!pipe_empty(head, pipe->tail) && chars != 0) { 417 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 418 int offset = buf->offset + buf->len; 419 420 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) { 421 ret = pipe_buf_confirm(pipe, buf); 422 if (ret) 423 goto out; 424 425 ret = copy_page_from_iter(buf->page, offset, chars, from); 426 if (unlikely(ret < chars)) { 427 ret = -EFAULT; 428 goto out; 429 } 430 do_wakeup = 1; 431 buf->len += ret; 432 if (!iov_iter_count(from)) 433 goto out; 434 } 435 } 436 437 for (;;) { 438 if (!pipe->readers) { 439 send_sig(SIGPIPE, current, 0); 440 if (!ret) 441 ret = -EPIPE; 442 break; 443 } 444 445 head = pipe->head; 446 if (!pipe_full(head, pipe->tail, max_usage)) { 447 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 448 struct page *page = pipe->tmp_page; 449 int copied; 450 451 if (!page) { 452 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 453 if (unlikely(!page)) { 454 ret = ret ? : -ENOMEM; 455 break; 456 } 457 pipe->tmp_page = page; 458 } 459 460 /* Allocate a slot in the ring in advance and attach an 461 * empty buffer. If we fault or otherwise fail to use 462 * it, either the reader will consume it or it'll still 463 * be there for the next write. 464 */ 465 spin_lock_irq(&pipe->wait.lock); 466 467 head = pipe->head; 468 if (pipe_full(head, pipe->tail, max_usage)) { 469 spin_unlock_irq(&pipe->wait.lock); 470 continue; 471 } 472 473 pipe->head = head + 1; 474 475 /* Always wake up, even if the copy fails. Otherwise 476 * we lock up (O_NONBLOCK-)readers that sleep due to 477 * syscall merging. 478 * FIXME! Is this really true? 479 */ 480 wake_up_locked_poll( 481 &pipe->wait, EPOLLIN | EPOLLRDNORM); 482 483 spin_unlock_irq(&pipe->wait.lock); 484 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 485 486 /* Insert it into the buffer array */ 487 buf = &pipe->bufs[head & mask]; 488 buf->page = page; 489 buf->ops = &anon_pipe_buf_ops; 490 buf->offset = 0; 491 buf->len = 0; 492 buf->flags = 0; 493 if (is_packetized(filp)) { 494 buf->ops = &packet_pipe_buf_ops; 495 buf->flags = PIPE_BUF_FLAG_PACKET; 496 } 497 pipe->tmp_page = NULL; 498 499 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 500 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 501 if (!ret) 502 ret = -EFAULT; 503 break; 504 } 505 ret += copied; 506 buf->offset = 0; 507 buf->len = copied; 508 509 if (!iov_iter_count(from)) 510 break; 511 } 512 513 if (!pipe_full(head, pipe->tail, max_usage)) 514 continue; 515 516 /* Wait for buffer space to become available. */ 517 if (filp->f_flags & O_NONBLOCK) { 518 if (!ret) 519 ret = -EAGAIN; 520 break; 521 } 522 if (signal_pending(current)) { 523 if (!ret) 524 ret = -ERESTARTSYS; 525 break; 526 } 527 pipe->waiting_writers++; 528 pipe_wait(pipe); 529 pipe->waiting_writers--; 530 } 531 out: 532 __pipe_unlock(pipe); 533 if (do_wakeup) { 534 wake_up_interruptible_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 535 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 536 } 537 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 538 int err = file_update_time(filp); 539 if (err) 540 ret = err; 541 sb_end_write(file_inode(filp)->i_sb); 542 } 543 return ret; 544 } 545 546 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 547 { 548 struct pipe_inode_info *pipe = filp->private_data; 549 int count, head, tail, mask; 550 551 switch (cmd) { 552 case FIONREAD: 553 __pipe_lock(pipe); 554 count = 0; 555 head = pipe->head; 556 tail = pipe->tail; 557 mask = pipe->ring_size - 1; 558 559 while (tail != head) { 560 count += pipe->bufs[tail & mask].len; 561 tail++; 562 } 563 __pipe_unlock(pipe); 564 565 return put_user(count, (int __user *)arg); 566 default: 567 return -ENOIOCTLCMD; 568 } 569 } 570 571 /* No kernel lock held - fine */ 572 static __poll_t 573 pipe_poll(struct file *filp, poll_table *wait) 574 { 575 __poll_t mask; 576 struct pipe_inode_info *pipe = filp->private_data; 577 unsigned int head = READ_ONCE(pipe->head); 578 unsigned int tail = READ_ONCE(pipe->tail); 579 580 poll_wait(filp, &pipe->wait, wait); 581 582 BUG_ON(pipe_occupancy(head, tail) > pipe->ring_size); 583 584 /* Reading only -- no need for acquiring the semaphore. */ 585 mask = 0; 586 if (filp->f_mode & FMODE_READ) { 587 if (!pipe_empty(head, tail)) 588 mask |= EPOLLIN | EPOLLRDNORM; 589 if (!pipe->writers && filp->f_version != pipe->w_counter) 590 mask |= EPOLLHUP; 591 } 592 593 if (filp->f_mode & FMODE_WRITE) { 594 if (!pipe_full(head, tail, pipe->max_usage)) 595 mask |= EPOLLOUT | EPOLLWRNORM; 596 /* 597 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 598 * behave exactly like pipes for poll(). 599 */ 600 if (!pipe->readers) 601 mask |= EPOLLERR; 602 } 603 604 return mask; 605 } 606 607 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 608 { 609 int kill = 0; 610 611 spin_lock(&inode->i_lock); 612 if (!--pipe->files) { 613 inode->i_pipe = NULL; 614 kill = 1; 615 } 616 spin_unlock(&inode->i_lock); 617 618 if (kill) 619 free_pipe_info(pipe); 620 } 621 622 static int 623 pipe_release(struct inode *inode, struct file *file) 624 { 625 struct pipe_inode_info *pipe = file->private_data; 626 627 __pipe_lock(pipe); 628 if (file->f_mode & FMODE_READ) 629 pipe->readers--; 630 if (file->f_mode & FMODE_WRITE) 631 pipe->writers--; 632 633 if (pipe->readers || pipe->writers) { 634 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP); 635 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 636 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 637 } 638 __pipe_unlock(pipe); 639 640 put_pipe_info(inode, pipe); 641 return 0; 642 } 643 644 static int 645 pipe_fasync(int fd, struct file *filp, int on) 646 { 647 struct pipe_inode_info *pipe = filp->private_data; 648 int retval = 0; 649 650 __pipe_lock(pipe); 651 if (filp->f_mode & FMODE_READ) 652 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 653 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 654 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 655 if (retval < 0 && (filp->f_mode & FMODE_READ)) 656 /* this can happen only if on == T */ 657 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 658 } 659 __pipe_unlock(pipe); 660 return retval; 661 } 662 663 static unsigned long account_pipe_buffers(struct user_struct *user, 664 unsigned long old, unsigned long new) 665 { 666 return atomic_long_add_return(new - old, &user->pipe_bufs); 667 } 668 669 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 670 { 671 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 672 673 return soft_limit && user_bufs > soft_limit; 674 } 675 676 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 677 { 678 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 679 680 return hard_limit && user_bufs > hard_limit; 681 } 682 683 static bool is_unprivileged_user(void) 684 { 685 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 686 } 687 688 struct pipe_inode_info *alloc_pipe_info(void) 689 { 690 struct pipe_inode_info *pipe; 691 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 692 struct user_struct *user = get_current_user(); 693 unsigned long user_bufs; 694 unsigned int max_size = READ_ONCE(pipe_max_size); 695 696 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 697 if (pipe == NULL) 698 goto out_free_uid; 699 700 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 701 pipe_bufs = max_size >> PAGE_SHIFT; 702 703 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 704 705 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 706 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 707 pipe_bufs = 1; 708 } 709 710 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 711 goto out_revert_acct; 712 713 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 714 GFP_KERNEL_ACCOUNT); 715 716 if (pipe->bufs) { 717 init_waitqueue_head(&pipe->wait); 718 pipe->r_counter = pipe->w_counter = 1; 719 pipe->max_usage = pipe_bufs; 720 pipe->ring_size = pipe_bufs; 721 pipe->user = user; 722 mutex_init(&pipe->mutex); 723 return pipe; 724 } 725 726 out_revert_acct: 727 (void) account_pipe_buffers(user, pipe_bufs, 0); 728 kfree(pipe); 729 out_free_uid: 730 free_uid(user); 731 return NULL; 732 } 733 734 void free_pipe_info(struct pipe_inode_info *pipe) 735 { 736 int i; 737 738 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0); 739 free_uid(pipe->user); 740 for (i = 0; i < pipe->ring_size; i++) { 741 struct pipe_buffer *buf = pipe->bufs + i; 742 if (buf->ops) 743 pipe_buf_release(pipe, buf); 744 } 745 if (pipe->tmp_page) 746 __free_page(pipe->tmp_page); 747 kfree(pipe->bufs); 748 kfree(pipe); 749 } 750 751 static struct vfsmount *pipe_mnt __read_mostly; 752 753 /* 754 * pipefs_dname() is called from d_path(). 755 */ 756 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 757 { 758 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 759 d_inode(dentry)->i_ino); 760 } 761 762 static const struct dentry_operations pipefs_dentry_operations = { 763 .d_dname = pipefs_dname, 764 }; 765 766 static struct inode * get_pipe_inode(void) 767 { 768 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 769 struct pipe_inode_info *pipe; 770 771 if (!inode) 772 goto fail_inode; 773 774 inode->i_ino = get_next_ino(); 775 776 pipe = alloc_pipe_info(); 777 if (!pipe) 778 goto fail_iput; 779 780 inode->i_pipe = pipe; 781 pipe->files = 2; 782 pipe->readers = pipe->writers = 1; 783 inode->i_fop = &pipefifo_fops; 784 785 /* 786 * Mark the inode dirty from the very beginning, 787 * that way it will never be moved to the dirty 788 * list because "mark_inode_dirty()" will think 789 * that it already _is_ on the dirty list. 790 */ 791 inode->i_state = I_DIRTY; 792 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 793 inode->i_uid = current_fsuid(); 794 inode->i_gid = current_fsgid(); 795 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 796 797 return inode; 798 799 fail_iput: 800 iput(inode); 801 802 fail_inode: 803 return NULL; 804 } 805 806 int create_pipe_files(struct file **res, int flags) 807 { 808 struct inode *inode = get_pipe_inode(); 809 struct file *f; 810 811 if (!inode) 812 return -ENFILE; 813 814 f = alloc_file_pseudo(inode, pipe_mnt, "", 815 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 816 &pipefifo_fops); 817 if (IS_ERR(f)) { 818 free_pipe_info(inode->i_pipe); 819 iput(inode); 820 return PTR_ERR(f); 821 } 822 823 f->private_data = inode->i_pipe; 824 825 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 826 &pipefifo_fops); 827 if (IS_ERR(res[0])) { 828 put_pipe_info(inode, inode->i_pipe); 829 fput(f); 830 return PTR_ERR(res[0]); 831 } 832 res[0]->private_data = inode->i_pipe; 833 res[1] = f; 834 stream_open(inode, res[0]); 835 stream_open(inode, res[1]); 836 return 0; 837 } 838 839 static int __do_pipe_flags(int *fd, struct file **files, int flags) 840 { 841 int error; 842 int fdw, fdr; 843 844 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 845 return -EINVAL; 846 847 error = create_pipe_files(files, flags); 848 if (error) 849 return error; 850 851 error = get_unused_fd_flags(flags); 852 if (error < 0) 853 goto err_read_pipe; 854 fdr = error; 855 856 error = get_unused_fd_flags(flags); 857 if (error < 0) 858 goto err_fdr; 859 fdw = error; 860 861 audit_fd_pair(fdr, fdw); 862 fd[0] = fdr; 863 fd[1] = fdw; 864 return 0; 865 866 err_fdr: 867 put_unused_fd(fdr); 868 err_read_pipe: 869 fput(files[0]); 870 fput(files[1]); 871 return error; 872 } 873 874 int do_pipe_flags(int *fd, int flags) 875 { 876 struct file *files[2]; 877 int error = __do_pipe_flags(fd, files, flags); 878 if (!error) { 879 fd_install(fd[0], files[0]); 880 fd_install(fd[1], files[1]); 881 } 882 return error; 883 } 884 885 /* 886 * sys_pipe() is the normal C calling standard for creating 887 * a pipe. It's not the way Unix traditionally does this, though. 888 */ 889 static int do_pipe2(int __user *fildes, int flags) 890 { 891 struct file *files[2]; 892 int fd[2]; 893 int error; 894 895 error = __do_pipe_flags(fd, files, flags); 896 if (!error) { 897 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 898 fput(files[0]); 899 fput(files[1]); 900 put_unused_fd(fd[0]); 901 put_unused_fd(fd[1]); 902 error = -EFAULT; 903 } else { 904 fd_install(fd[0], files[0]); 905 fd_install(fd[1], files[1]); 906 } 907 } 908 return error; 909 } 910 911 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 912 { 913 return do_pipe2(fildes, flags); 914 } 915 916 SYSCALL_DEFINE1(pipe, int __user *, fildes) 917 { 918 return do_pipe2(fildes, 0); 919 } 920 921 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 922 { 923 int cur = *cnt; 924 925 while (cur == *cnt) { 926 pipe_wait(pipe); 927 if (signal_pending(current)) 928 break; 929 } 930 return cur == *cnt ? -ERESTARTSYS : 0; 931 } 932 933 static void wake_up_partner(struct pipe_inode_info *pipe) 934 { 935 wake_up_interruptible(&pipe->wait); 936 } 937 938 static int fifo_open(struct inode *inode, struct file *filp) 939 { 940 struct pipe_inode_info *pipe; 941 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 942 int ret; 943 944 filp->f_version = 0; 945 946 spin_lock(&inode->i_lock); 947 if (inode->i_pipe) { 948 pipe = inode->i_pipe; 949 pipe->files++; 950 spin_unlock(&inode->i_lock); 951 } else { 952 spin_unlock(&inode->i_lock); 953 pipe = alloc_pipe_info(); 954 if (!pipe) 955 return -ENOMEM; 956 pipe->files = 1; 957 spin_lock(&inode->i_lock); 958 if (unlikely(inode->i_pipe)) { 959 inode->i_pipe->files++; 960 spin_unlock(&inode->i_lock); 961 free_pipe_info(pipe); 962 pipe = inode->i_pipe; 963 } else { 964 inode->i_pipe = pipe; 965 spin_unlock(&inode->i_lock); 966 } 967 } 968 filp->private_data = pipe; 969 /* OK, we have a pipe and it's pinned down */ 970 971 __pipe_lock(pipe); 972 973 /* We can only do regular read/write on fifos */ 974 stream_open(inode, filp); 975 976 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 977 case FMODE_READ: 978 /* 979 * O_RDONLY 980 * POSIX.1 says that O_NONBLOCK means return with the FIFO 981 * opened, even when there is no process writing the FIFO. 982 */ 983 pipe->r_counter++; 984 if (pipe->readers++ == 0) 985 wake_up_partner(pipe); 986 987 if (!is_pipe && !pipe->writers) { 988 if ((filp->f_flags & O_NONBLOCK)) { 989 /* suppress EPOLLHUP until we have 990 * seen a writer */ 991 filp->f_version = pipe->w_counter; 992 } else { 993 if (wait_for_partner(pipe, &pipe->w_counter)) 994 goto err_rd; 995 } 996 } 997 break; 998 999 case FMODE_WRITE: 1000 /* 1001 * O_WRONLY 1002 * POSIX.1 says that O_NONBLOCK means return -1 with 1003 * errno=ENXIO when there is no process reading the FIFO. 1004 */ 1005 ret = -ENXIO; 1006 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1007 goto err; 1008 1009 pipe->w_counter++; 1010 if (!pipe->writers++) 1011 wake_up_partner(pipe); 1012 1013 if (!is_pipe && !pipe->readers) { 1014 if (wait_for_partner(pipe, &pipe->r_counter)) 1015 goto err_wr; 1016 } 1017 break; 1018 1019 case FMODE_READ | FMODE_WRITE: 1020 /* 1021 * O_RDWR 1022 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1023 * This implementation will NEVER block on a O_RDWR open, since 1024 * the process can at least talk to itself. 1025 */ 1026 1027 pipe->readers++; 1028 pipe->writers++; 1029 pipe->r_counter++; 1030 pipe->w_counter++; 1031 if (pipe->readers == 1 || pipe->writers == 1) 1032 wake_up_partner(pipe); 1033 break; 1034 1035 default: 1036 ret = -EINVAL; 1037 goto err; 1038 } 1039 1040 /* Ok! */ 1041 __pipe_unlock(pipe); 1042 return 0; 1043 1044 err_rd: 1045 if (!--pipe->readers) 1046 wake_up_interruptible(&pipe->wait); 1047 ret = -ERESTARTSYS; 1048 goto err; 1049 1050 err_wr: 1051 if (!--pipe->writers) 1052 wake_up_interruptible(&pipe->wait); 1053 ret = -ERESTARTSYS; 1054 goto err; 1055 1056 err: 1057 __pipe_unlock(pipe); 1058 1059 put_pipe_info(inode, pipe); 1060 return ret; 1061 } 1062 1063 const struct file_operations pipefifo_fops = { 1064 .open = fifo_open, 1065 .llseek = no_llseek, 1066 .read_iter = pipe_read, 1067 .write_iter = pipe_write, 1068 .poll = pipe_poll, 1069 .unlocked_ioctl = pipe_ioctl, 1070 .release = pipe_release, 1071 .fasync = pipe_fasync, 1072 }; 1073 1074 /* 1075 * Currently we rely on the pipe array holding a power-of-2 number 1076 * of pages. Returns 0 on error. 1077 */ 1078 unsigned int round_pipe_size(unsigned long size) 1079 { 1080 if (size > (1U << 31)) 1081 return 0; 1082 1083 /* Minimum pipe size, as required by POSIX */ 1084 if (size < PAGE_SIZE) 1085 return PAGE_SIZE; 1086 1087 return roundup_pow_of_two(size); 1088 } 1089 1090 /* 1091 * Allocate a new array of pipe buffers and copy the info over. Returns the 1092 * pipe size if successful, or return -ERROR on error. 1093 */ 1094 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1095 { 1096 struct pipe_buffer *bufs; 1097 unsigned int size, nr_slots, head, tail, mask, n; 1098 unsigned long user_bufs; 1099 long ret = 0; 1100 1101 size = round_pipe_size(arg); 1102 nr_slots = size >> PAGE_SHIFT; 1103 1104 if (!nr_slots) 1105 return -EINVAL; 1106 1107 /* 1108 * If trying to increase the pipe capacity, check that an 1109 * unprivileged user is not trying to exceed various limits 1110 * (soft limit check here, hard limit check just below). 1111 * Decreasing the pipe capacity is always permitted, even 1112 * if the user is currently over a limit. 1113 */ 1114 if (nr_slots > pipe->ring_size && 1115 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1116 return -EPERM; 1117 1118 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots); 1119 1120 if (nr_slots > pipe->ring_size && 1121 (too_many_pipe_buffers_hard(user_bufs) || 1122 too_many_pipe_buffers_soft(user_bufs)) && 1123 is_unprivileged_user()) { 1124 ret = -EPERM; 1125 goto out_revert_acct; 1126 } 1127 1128 /* 1129 * We can shrink the pipe, if arg is greater than the ring occupancy. 1130 * Since we don't expect a lot of shrink+grow operations, just free and 1131 * allocate again like we would do for growing. If the pipe currently 1132 * contains more buffers than arg, then return busy. 1133 */ 1134 mask = pipe->ring_size - 1; 1135 head = pipe->head; 1136 tail = pipe->tail; 1137 n = pipe_occupancy(pipe->head, pipe->tail); 1138 if (nr_slots < n) { 1139 ret = -EBUSY; 1140 goto out_revert_acct; 1141 } 1142 1143 bufs = kcalloc(nr_slots, sizeof(*bufs), 1144 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1145 if (unlikely(!bufs)) { 1146 ret = -ENOMEM; 1147 goto out_revert_acct; 1148 } 1149 1150 /* 1151 * The pipe array wraps around, so just start the new one at zero 1152 * and adjust the indices. 1153 */ 1154 if (n > 0) { 1155 unsigned int h = head & mask; 1156 unsigned int t = tail & mask; 1157 if (h > t) { 1158 memcpy(bufs, pipe->bufs + t, 1159 n * sizeof(struct pipe_buffer)); 1160 } else { 1161 unsigned int tsize = pipe->ring_size - t; 1162 if (h > 0) 1163 memcpy(bufs + tsize, pipe->bufs, 1164 h * sizeof(struct pipe_buffer)); 1165 memcpy(bufs, pipe->bufs + t, 1166 tsize * sizeof(struct pipe_buffer)); 1167 } 1168 } 1169 1170 head = n; 1171 tail = 0; 1172 1173 kfree(pipe->bufs); 1174 pipe->bufs = bufs; 1175 pipe->ring_size = nr_slots; 1176 pipe->max_usage = nr_slots; 1177 pipe->tail = tail; 1178 pipe->head = head; 1179 return pipe->max_usage * PAGE_SIZE; 1180 1181 out_revert_acct: 1182 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size); 1183 return ret; 1184 } 1185 1186 /* 1187 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1188 * location, so checking ->i_pipe is not enough to verify that this is a 1189 * pipe. 1190 */ 1191 struct pipe_inode_info *get_pipe_info(struct file *file) 1192 { 1193 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1194 } 1195 1196 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1197 { 1198 struct pipe_inode_info *pipe; 1199 long ret; 1200 1201 pipe = get_pipe_info(file); 1202 if (!pipe) 1203 return -EBADF; 1204 1205 __pipe_lock(pipe); 1206 1207 switch (cmd) { 1208 case F_SETPIPE_SZ: 1209 ret = pipe_set_size(pipe, arg); 1210 break; 1211 case F_GETPIPE_SZ: 1212 ret = pipe->max_usage * PAGE_SIZE; 1213 break; 1214 default: 1215 ret = -EINVAL; 1216 break; 1217 } 1218 1219 __pipe_unlock(pipe); 1220 return ret; 1221 } 1222 1223 static const struct super_operations pipefs_ops = { 1224 .destroy_inode = free_inode_nonrcu, 1225 .statfs = simple_statfs, 1226 }; 1227 1228 /* 1229 * pipefs should _never_ be mounted by userland - too much of security hassle, 1230 * no real gain from having the whole whorehouse mounted. So we don't need 1231 * any operations on the root directory. However, we need a non-trivial 1232 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1233 */ 1234 1235 static int pipefs_init_fs_context(struct fs_context *fc) 1236 { 1237 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1238 if (!ctx) 1239 return -ENOMEM; 1240 ctx->ops = &pipefs_ops; 1241 ctx->dops = &pipefs_dentry_operations; 1242 return 0; 1243 } 1244 1245 static struct file_system_type pipe_fs_type = { 1246 .name = "pipefs", 1247 .init_fs_context = pipefs_init_fs_context, 1248 .kill_sb = kill_anon_super, 1249 }; 1250 1251 static int __init init_pipe_fs(void) 1252 { 1253 int err = register_filesystem(&pipe_fs_type); 1254 1255 if (!err) { 1256 pipe_mnt = kern_mount(&pipe_fs_type); 1257 if (IS_ERR(pipe_mnt)) { 1258 err = PTR_ERR(pipe_mnt); 1259 unregister_filesystem(&pipe_fs_type); 1260 } 1261 } 1262 return err; 1263 } 1264 1265 fs_initcall(init_pipe_fs); 1266