xref: /openbmc/linux/fs/pipe.c (revision 25985edc)
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
23 
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
26 
27 /*
28  * The max size that a non-root user is allowed to grow the pipe. Can
29  * be set by root in /proc/sys/fs/pipe-max-size
30  */
31 unsigned int pipe_max_size = 1048576;
32 
33 /*
34  * Minimum pipe size, as required by POSIX
35  */
36 unsigned int pipe_min_size = PAGE_SIZE;
37 
38 /*
39  * We use a start+len construction, which provides full use of the
40  * allocated memory.
41  * -- Florian Coosmann (FGC)
42  *
43  * Reads with count = 0 should always return 0.
44  * -- Julian Bradfield 1999-06-07.
45  *
46  * FIFOs and Pipes now generate SIGIO for both readers and writers.
47  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
48  *
49  * pipe_read & write cleanup
50  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
51  */
52 
53 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
54 {
55 	if (pipe->inode)
56 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
57 }
58 
59 void pipe_lock(struct pipe_inode_info *pipe)
60 {
61 	/*
62 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
63 	 */
64 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
65 }
66 EXPORT_SYMBOL(pipe_lock);
67 
68 void pipe_unlock(struct pipe_inode_info *pipe)
69 {
70 	if (pipe->inode)
71 		mutex_unlock(&pipe->inode->i_mutex);
72 }
73 EXPORT_SYMBOL(pipe_unlock);
74 
75 void pipe_double_lock(struct pipe_inode_info *pipe1,
76 		      struct pipe_inode_info *pipe2)
77 {
78 	BUG_ON(pipe1 == pipe2);
79 
80 	if (pipe1 < pipe2) {
81 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
82 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
83 	} else {
84 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
85 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
86 	}
87 }
88 
89 /* Drop the inode semaphore and wait for a pipe event, atomically */
90 void pipe_wait(struct pipe_inode_info *pipe)
91 {
92 	DEFINE_WAIT(wait);
93 
94 	/*
95 	 * Pipes are system-local resources, so sleeping on them
96 	 * is considered a noninteractive wait:
97 	 */
98 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
99 	pipe_unlock(pipe);
100 	schedule();
101 	finish_wait(&pipe->wait, &wait);
102 	pipe_lock(pipe);
103 }
104 
105 static int
106 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
107 			int atomic)
108 {
109 	unsigned long copy;
110 
111 	while (len > 0) {
112 		while (!iov->iov_len)
113 			iov++;
114 		copy = min_t(unsigned long, len, iov->iov_len);
115 
116 		if (atomic) {
117 			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
118 				return -EFAULT;
119 		} else {
120 			if (copy_from_user(to, iov->iov_base, copy))
121 				return -EFAULT;
122 		}
123 		to += copy;
124 		len -= copy;
125 		iov->iov_base += copy;
126 		iov->iov_len -= copy;
127 	}
128 	return 0;
129 }
130 
131 static int
132 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
133 		      int atomic)
134 {
135 	unsigned long copy;
136 
137 	while (len > 0) {
138 		while (!iov->iov_len)
139 			iov++;
140 		copy = min_t(unsigned long, len, iov->iov_len);
141 
142 		if (atomic) {
143 			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
144 				return -EFAULT;
145 		} else {
146 			if (copy_to_user(iov->iov_base, from, copy))
147 				return -EFAULT;
148 		}
149 		from += copy;
150 		len -= copy;
151 		iov->iov_base += copy;
152 		iov->iov_len -= copy;
153 	}
154 	return 0;
155 }
156 
157 /*
158  * Attempt to pre-fault in the user memory, so we can use atomic copies.
159  * Returns the number of bytes not faulted in.
160  */
161 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
162 {
163 	while (!iov->iov_len)
164 		iov++;
165 
166 	while (len > 0) {
167 		unsigned long this_len;
168 
169 		this_len = min_t(unsigned long, len, iov->iov_len);
170 		if (fault_in_pages_writeable(iov->iov_base, this_len))
171 			break;
172 
173 		len -= this_len;
174 		iov++;
175 	}
176 
177 	return len;
178 }
179 
180 /*
181  * Pre-fault in the user memory, so we can use atomic copies.
182  */
183 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
184 {
185 	while (!iov->iov_len)
186 		iov++;
187 
188 	while (len > 0) {
189 		unsigned long this_len;
190 
191 		this_len = min_t(unsigned long, len, iov->iov_len);
192 		fault_in_pages_readable(iov->iov_base, this_len);
193 		len -= this_len;
194 		iov++;
195 	}
196 }
197 
198 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
199 				  struct pipe_buffer *buf)
200 {
201 	struct page *page = buf->page;
202 
203 	/*
204 	 * If nobody else uses this page, and we don't already have a
205 	 * temporary page, let's keep track of it as a one-deep
206 	 * allocation cache. (Otherwise just release our reference to it)
207 	 */
208 	if (page_count(page) == 1 && !pipe->tmp_page)
209 		pipe->tmp_page = page;
210 	else
211 		page_cache_release(page);
212 }
213 
214 /**
215  * generic_pipe_buf_map - virtually map a pipe buffer
216  * @pipe:	the pipe that the buffer belongs to
217  * @buf:	the buffer that should be mapped
218  * @atomic:	whether to use an atomic map
219  *
220  * Description:
221  *	This function returns a kernel virtual address mapping for the
222  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
223  *	and the caller has to be careful not to fault before calling
224  *	the unmap function.
225  *
226  *	Note that this function occupies KM_USER0 if @atomic != 0.
227  */
228 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
229 			   struct pipe_buffer *buf, int atomic)
230 {
231 	if (atomic) {
232 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
233 		return kmap_atomic(buf->page, KM_USER0);
234 	}
235 
236 	return kmap(buf->page);
237 }
238 EXPORT_SYMBOL(generic_pipe_buf_map);
239 
240 /**
241  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
242  * @pipe:	the pipe that the buffer belongs to
243  * @buf:	the buffer that should be unmapped
244  * @map_data:	the data that the mapping function returned
245  *
246  * Description:
247  *	This function undoes the mapping that ->map() provided.
248  */
249 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
250 			    struct pipe_buffer *buf, void *map_data)
251 {
252 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
253 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
254 		kunmap_atomic(map_data, KM_USER0);
255 	} else
256 		kunmap(buf->page);
257 }
258 EXPORT_SYMBOL(generic_pipe_buf_unmap);
259 
260 /**
261  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
262  * @pipe:	the pipe that the buffer belongs to
263  * @buf:	the buffer to attempt to steal
264  *
265  * Description:
266  *	This function attempts to steal the &struct page attached to
267  *	@buf. If successful, this function returns 0 and returns with
268  *	the page locked. The caller may then reuse the page for whatever
269  *	he wishes; the typical use is insertion into a different file
270  *	page cache.
271  */
272 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
273 			   struct pipe_buffer *buf)
274 {
275 	struct page *page = buf->page;
276 
277 	/*
278 	 * A reference of one is golden, that means that the owner of this
279 	 * page is the only one holding a reference to it. lock the page
280 	 * and return OK.
281 	 */
282 	if (page_count(page) == 1) {
283 		lock_page(page);
284 		return 0;
285 	}
286 
287 	return 1;
288 }
289 EXPORT_SYMBOL(generic_pipe_buf_steal);
290 
291 /**
292  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
293  * @pipe:	the pipe that the buffer belongs to
294  * @buf:	the buffer to get a reference to
295  *
296  * Description:
297  *	This function grabs an extra reference to @buf. It's used in
298  *	in the tee() system call, when we duplicate the buffers in one
299  *	pipe into another.
300  */
301 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
302 {
303 	page_cache_get(buf->page);
304 }
305 EXPORT_SYMBOL(generic_pipe_buf_get);
306 
307 /**
308  * generic_pipe_buf_confirm - verify contents of the pipe buffer
309  * @info:	the pipe that the buffer belongs to
310  * @buf:	the buffer to confirm
311  *
312  * Description:
313  *	This function does nothing, because the generic pipe code uses
314  *	pages that are always good when inserted into the pipe.
315  */
316 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
317 			     struct pipe_buffer *buf)
318 {
319 	return 0;
320 }
321 EXPORT_SYMBOL(generic_pipe_buf_confirm);
322 
323 /**
324  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
325  * @pipe:	the pipe that the buffer belongs to
326  * @buf:	the buffer to put a reference to
327  *
328  * Description:
329  *	This function releases a reference to @buf.
330  */
331 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
332 			      struct pipe_buffer *buf)
333 {
334 	page_cache_release(buf->page);
335 }
336 EXPORT_SYMBOL(generic_pipe_buf_release);
337 
338 static const struct pipe_buf_operations anon_pipe_buf_ops = {
339 	.can_merge = 1,
340 	.map = generic_pipe_buf_map,
341 	.unmap = generic_pipe_buf_unmap,
342 	.confirm = generic_pipe_buf_confirm,
343 	.release = anon_pipe_buf_release,
344 	.steal = generic_pipe_buf_steal,
345 	.get = generic_pipe_buf_get,
346 };
347 
348 static ssize_t
349 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
350 	   unsigned long nr_segs, loff_t pos)
351 {
352 	struct file *filp = iocb->ki_filp;
353 	struct inode *inode = filp->f_path.dentry->d_inode;
354 	struct pipe_inode_info *pipe;
355 	int do_wakeup;
356 	ssize_t ret;
357 	struct iovec *iov = (struct iovec *)_iov;
358 	size_t total_len;
359 
360 	total_len = iov_length(iov, nr_segs);
361 	/* Null read succeeds. */
362 	if (unlikely(total_len == 0))
363 		return 0;
364 
365 	do_wakeup = 0;
366 	ret = 0;
367 	mutex_lock(&inode->i_mutex);
368 	pipe = inode->i_pipe;
369 	for (;;) {
370 		int bufs = pipe->nrbufs;
371 		if (bufs) {
372 			int curbuf = pipe->curbuf;
373 			struct pipe_buffer *buf = pipe->bufs + curbuf;
374 			const struct pipe_buf_operations *ops = buf->ops;
375 			void *addr;
376 			size_t chars = buf->len;
377 			int error, atomic;
378 
379 			if (chars > total_len)
380 				chars = total_len;
381 
382 			error = ops->confirm(pipe, buf);
383 			if (error) {
384 				if (!ret)
385 					ret = error;
386 				break;
387 			}
388 
389 			atomic = !iov_fault_in_pages_write(iov, chars);
390 redo:
391 			addr = ops->map(pipe, buf, atomic);
392 			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
393 			ops->unmap(pipe, buf, addr);
394 			if (unlikely(error)) {
395 				/*
396 				 * Just retry with the slow path if we failed.
397 				 */
398 				if (atomic) {
399 					atomic = 0;
400 					goto redo;
401 				}
402 				if (!ret)
403 					ret = error;
404 				break;
405 			}
406 			ret += chars;
407 			buf->offset += chars;
408 			buf->len -= chars;
409 			if (!buf->len) {
410 				buf->ops = NULL;
411 				ops->release(pipe, buf);
412 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
413 				pipe->curbuf = curbuf;
414 				pipe->nrbufs = --bufs;
415 				do_wakeup = 1;
416 			}
417 			total_len -= chars;
418 			if (!total_len)
419 				break;	/* common path: read succeeded */
420 		}
421 		if (bufs)	/* More to do? */
422 			continue;
423 		if (!pipe->writers)
424 			break;
425 		if (!pipe->waiting_writers) {
426 			/* syscall merging: Usually we must not sleep
427 			 * if O_NONBLOCK is set, or if we got some data.
428 			 * But if a writer sleeps in kernel space, then
429 			 * we can wait for that data without violating POSIX.
430 			 */
431 			if (ret)
432 				break;
433 			if (filp->f_flags & O_NONBLOCK) {
434 				ret = -EAGAIN;
435 				break;
436 			}
437 		}
438 		if (signal_pending(current)) {
439 			if (!ret)
440 				ret = -ERESTARTSYS;
441 			break;
442 		}
443 		if (do_wakeup) {
444 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
445  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
446 		}
447 		pipe_wait(pipe);
448 	}
449 	mutex_unlock(&inode->i_mutex);
450 
451 	/* Signal writers asynchronously that there is more room. */
452 	if (do_wakeup) {
453 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
454 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
455 	}
456 	if (ret > 0)
457 		file_accessed(filp);
458 	return ret;
459 }
460 
461 static ssize_t
462 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
463 	    unsigned long nr_segs, loff_t ppos)
464 {
465 	struct file *filp = iocb->ki_filp;
466 	struct inode *inode = filp->f_path.dentry->d_inode;
467 	struct pipe_inode_info *pipe;
468 	ssize_t ret;
469 	int do_wakeup;
470 	struct iovec *iov = (struct iovec *)_iov;
471 	size_t total_len;
472 	ssize_t chars;
473 
474 	total_len = iov_length(iov, nr_segs);
475 	/* Null write succeeds. */
476 	if (unlikely(total_len == 0))
477 		return 0;
478 
479 	do_wakeup = 0;
480 	ret = 0;
481 	mutex_lock(&inode->i_mutex);
482 	pipe = inode->i_pipe;
483 
484 	if (!pipe->readers) {
485 		send_sig(SIGPIPE, current, 0);
486 		ret = -EPIPE;
487 		goto out;
488 	}
489 
490 	/* We try to merge small writes */
491 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
492 	if (pipe->nrbufs && chars != 0) {
493 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
494 							(pipe->buffers - 1);
495 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
496 		const struct pipe_buf_operations *ops = buf->ops;
497 		int offset = buf->offset + buf->len;
498 
499 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
500 			int error, atomic = 1;
501 			void *addr;
502 
503 			error = ops->confirm(pipe, buf);
504 			if (error)
505 				goto out;
506 
507 			iov_fault_in_pages_read(iov, chars);
508 redo1:
509 			addr = ops->map(pipe, buf, atomic);
510 			error = pipe_iov_copy_from_user(offset + addr, iov,
511 							chars, atomic);
512 			ops->unmap(pipe, buf, addr);
513 			ret = error;
514 			do_wakeup = 1;
515 			if (error) {
516 				if (atomic) {
517 					atomic = 0;
518 					goto redo1;
519 				}
520 				goto out;
521 			}
522 			buf->len += chars;
523 			total_len -= chars;
524 			ret = chars;
525 			if (!total_len)
526 				goto out;
527 		}
528 	}
529 
530 	for (;;) {
531 		int bufs;
532 
533 		if (!pipe->readers) {
534 			send_sig(SIGPIPE, current, 0);
535 			if (!ret)
536 				ret = -EPIPE;
537 			break;
538 		}
539 		bufs = pipe->nrbufs;
540 		if (bufs < pipe->buffers) {
541 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
542 			struct pipe_buffer *buf = pipe->bufs + newbuf;
543 			struct page *page = pipe->tmp_page;
544 			char *src;
545 			int error, atomic = 1;
546 
547 			if (!page) {
548 				page = alloc_page(GFP_HIGHUSER);
549 				if (unlikely(!page)) {
550 					ret = ret ? : -ENOMEM;
551 					break;
552 				}
553 				pipe->tmp_page = page;
554 			}
555 			/* Always wake up, even if the copy fails. Otherwise
556 			 * we lock up (O_NONBLOCK-)readers that sleep due to
557 			 * syscall merging.
558 			 * FIXME! Is this really true?
559 			 */
560 			do_wakeup = 1;
561 			chars = PAGE_SIZE;
562 			if (chars > total_len)
563 				chars = total_len;
564 
565 			iov_fault_in_pages_read(iov, chars);
566 redo2:
567 			if (atomic)
568 				src = kmap_atomic(page, KM_USER0);
569 			else
570 				src = kmap(page);
571 
572 			error = pipe_iov_copy_from_user(src, iov, chars,
573 							atomic);
574 			if (atomic)
575 				kunmap_atomic(src, KM_USER0);
576 			else
577 				kunmap(page);
578 
579 			if (unlikely(error)) {
580 				if (atomic) {
581 					atomic = 0;
582 					goto redo2;
583 				}
584 				if (!ret)
585 					ret = error;
586 				break;
587 			}
588 			ret += chars;
589 
590 			/* Insert it into the buffer array */
591 			buf->page = page;
592 			buf->ops = &anon_pipe_buf_ops;
593 			buf->offset = 0;
594 			buf->len = chars;
595 			pipe->nrbufs = ++bufs;
596 			pipe->tmp_page = NULL;
597 
598 			total_len -= chars;
599 			if (!total_len)
600 				break;
601 		}
602 		if (bufs < pipe->buffers)
603 			continue;
604 		if (filp->f_flags & O_NONBLOCK) {
605 			if (!ret)
606 				ret = -EAGAIN;
607 			break;
608 		}
609 		if (signal_pending(current)) {
610 			if (!ret)
611 				ret = -ERESTARTSYS;
612 			break;
613 		}
614 		if (do_wakeup) {
615 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
616 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
617 			do_wakeup = 0;
618 		}
619 		pipe->waiting_writers++;
620 		pipe_wait(pipe);
621 		pipe->waiting_writers--;
622 	}
623 out:
624 	mutex_unlock(&inode->i_mutex);
625 	if (do_wakeup) {
626 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
627 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
628 	}
629 	if (ret > 0)
630 		file_update_time(filp);
631 	return ret;
632 }
633 
634 static ssize_t
635 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
636 {
637 	return -EBADF;
638 }
639 
640 static ssize_t
641 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
642 	   loff_t *ppos)
643 {
644 	return -EBADF;
645 }
646 
647 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
648 {
649 	struct inode *inode = filp->f_path.dentry->d_inode;
650 	struct pipe_inode_info *pipe;
651 	int count, buf, nrbufs;
652 
653 	switch (cmd) {
654 		case FIONREAD:
655 			mutex_lock(&inode->i_mutex);
656 			pipe = inode->i_pipe;
657 			count = 0;
658 			buf = pipe->curbuf;
659 			nrbufs = pipe->nrbufs;
660 			while (--nrbufs >= 0) {
661 				count += pipe->bufs[buf].len;
662 				buf = (buf+1) & (pipe->buffers - 1);
663 			}
664 			mutex_unlock(&inode->i_mutex);
665 
666 			return put_user(count, (int __user *)arg);
667 		default:
668 			return -EINVAL;
669 	}
670 }
671 
672 /* No kernel lock held - fine */
673 static unsigned int
674 pipe_poll(struct file *filp, poll_table *wait)
675 {
676 	unsigned int mask;
677 	struct inode *inode = filp->f_path.dentry->d_inode;
678 	struct pipe_inode_info *pipe = inode->i_pipe;
679 	int nrbufs;
680 
681 	poll_wait(filp, &pipe->wait, wait);
682 
683 	/* Reading only -- no need for acquiring the semaphore.  */
684 	nrbufs = pipe->nrbufs;
685 	mask = 0;
686 	if (filp->f_mode & FMODE_READ) {
687 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
688 		if (!pipe->writers && filp->f_version != pipe->w_counter)
689 			mask |= POLLHUP;
690 	}
691 
692 	if (filp->f_mode & FMODE_WRITE) {
693 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
694 		/*
695 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
696 		 * behave exactly like pipes for poll().
697 		 */
698 		if (!pipe->readers)
699 			mask |= POLLERR;
700 	}
701 
702 	return mask;
703 }
704 
705 static int
706 pipe_release(struct inode *inode, int decr, int decw)
707 {
708 	struct pipe_inode_info *pipe;
709 
710 	mutex_lock(&inode->i_mutex);
711 	pipe = inode->i_pipe;
712 	pipe->readers -= decr;
713 	pipe->writers -= decw;
714 
715 	if (!pipe->readers && !pipe->writers) {
716 		free_pipe_info(inode);
717 	} else {
718 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
719 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
720 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
721 	}
722 	mutex_unlock(&inode->i_mutex);
723 
724 	return 0;
725 }
726 
727 static int
728 pipe_read_fasync(int fd, struct file *filp, int on)
729 {
730 	struct inode *inode = filp->f_path.dentry->d_inode;
731 	int retval;
732 
733 	mutex_lock(&inode->i_mutex);
734 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
735 	mutex_unlock(&inode->i_mutex);
736 
737 	return retval;
738 }
739 
740 
741 static int
742 pipe_write_fasync(int fd, struct file *filp, int on)
743 {
744 	struct inode *inode = filp->f_path.dentry->d_inode;
745 	int retval;
746 
747 	mutex_lock(&inode->i_mutex);
748 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
749 	mutex_unlock(&inode->i_mutex);
750 
751 	return retval;
752 }
753 
754 
755 static int
756 pipe_rdwr_fasync(int fd, struct file *filp, int on)
757 {
758 	struct inode *inode = filp->f_path.dentry->d_inode;
759 	struct pipe_inode_info *pipe = inode->i_pipe;
760 	int retval;
761 
762 	mutex_lock(&inode->i_mutex);
763 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
764 	if (retval >= 0) {
765 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
766 		if (retval < 0) /* this can happen only if on == T */
767 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
768 	}
769 	mutex_unlock(&inode->i_mutex);
770 	return retval;
771 }
772 
773 
774 static int
775 pipe_read_release(struct inode *inode, struct file *filp)
776 {
777 	return pipe_release(inode, 1, 0);
778 }
779 
780 static int
781 pipe_write_release(struct inode *inode, struct file *filp)
782 {
783 	return pipe_release(inode, 0, 1);
784 }
785 
786 static int
787 pipe_rdwr_release(struct inode *inode, struct file *filp)
788 {
789 	int decr, decw;
790 
791 	decr = (filp->f_mode & FMODE_READ) != 0;
792 	decw = (filp->f_mode & FMODE_WRITE) != 0;
793 	return pipe_release(inode, decr, decw);
794 }
795 
796 static int
797 pipe_read_open(struct inode *inode, struct file *filp)
798 {
799 	int ret = -ENOENT;
800 
801 	mutex_lock(&inode->i_mutex);
802 
803 	if (inode->i_pipe) {
804 		ret = 0;
805 		inode->i_pipe->readers++;
806 	}
807 
808 	mutex_unlock(&inode->i_mutex);
809 
810 	return ret;
811 }
812 
813 static int
814 pipe_write_open(struct inode *inode, struct file *filp)
815 {
816 	int ret = -ENOENT;
817 
818 	mutex_lock(&inode->i_mutex);
819 
820 	if (inode->i_pipe) {
821 		ret = 0;
822 		inode->i_pipe->writers++;
823 	}
824 
825 	mutex_unlock(&inode->i_mutex);
826 
827 	return ret;
828 }
829 
830 static int
831 pipe_rdwr_open(struct inode *inode, struct file *filp)
832 {
833 	int ret = -ENOENT;
834 
835 	mutex_lock(&inode->i_mutex);
836 
837 	if (inode->i_pipe) {
838 		ret = 0;
839 		if (filp->f_mode & FMODE_READ)
840 			inode->i_pipe->readers++;
841 		if (filp->f_mode & FMODE_WRITE)
842 			inode->i_pipe->writers++;
843 	}
844 
845 	mutex_unlock(&inode->i_mutex);
846 
847 	return ret;
848 }
849 
850 /*
851  * The file_operations structs are not static because they
852  * are also used in linux/fs/fifo.c to do operations on FIFOs.
853  *
854  * Pipes reuse fifos' file_operations structs.
855  */
856 const struct file_operations read_pipefifo_fops = {
857 	.llseek		= no_llseek,
858 	.read		= do_sync_read,
859 	.aio_read	= pipe_read,
860 	.write		= bad_pipe_w,
861 	.poll		= pipe_poll,
862 	.unlocked_ioctl	= pipe_ioctl,
863 	.open		= pipe_read_open,
864 	.release	= pipe_read_release,
865 	.fasync		= pipe_read_fasync,
866 };
867 
868 const struct file_operations write_pipefifo_fops = {
869 	.llseek		= no_llseek,
870 	.read		= bad_pipe_r,
871 	.write		= do_sync_write,
872 	.aio_write	= pipe_write,
873 	.poll		= pipe_poll,
874 	.unlocked_ioctl	= pipe_ioctl,
875 	.open		= pipe_write_open,
876 	.release	= pipe_write_release,
877 	.fasync		= pipe_write_fasync,
878 };
879 
880 const struct file_operations rdwr_pipefifo_fops = {
881 	.llseek		= no_llseek,
882 	.read		= do_sync_read,
883 	.aio_read	= pipe_read,
884 	.write		= do_sync_write,
885 	.aio_write	= pipe_write,
886 	.poll		= pipe_poll,
887 	.unlocked_ioctl	= pipe_ioctl,
888 	.open		= pipe_rdwr_open,
889 	.release	= pipe_rdwr_release,
890 	.fasync		= pipe_rdwr_fasync,
891 };
892 
893 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
894 {
895 	struct pipe_inode_info *pipe;
896 
897 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
898 	if (pipe) {
899 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
900 		if (pipe->bufs) {
901 			init_waitqueue_head(&pipe->wait);
902 			pipe->r_counter = pipe->w_counter = 1;
903 			pipe->inode = inode;
904 			pipe->buffers = PIPE_DEF_BUFFERS;
905 			return pipe;
906 		}
907 		kfree(pipe);
908 	}
909 
910 	return NULL;
911 }
912 
913 void __free_pipe_info(struct pipe_inode_info *pipe)
914 {
915 	int i;
916 
917 	for (i = 0; i < pipe->buffers; i++) {
918 		struct pipe_buffer *buf = pipe->bufs + i;
919 		if (buf->ops)
920 			buf->ops->release(pipe, buf);
921 	}
922 	if (pipe->tmp_page)
923 		__free_page(pipe->tmp_page);
924 	kfree(pipe->bufs);
925 	kfree(pipe);
926 }
927 
928 void free_pipe_info(struct inode *inode)
929 {
930 	__free_pipe_info(inode->i_pipe);
931 	inode->i_pipe = NULL;
932 }
933 
934 static struct vfsmount *pipe_mnt __read_mostly;
935 
936 /*
937  * pipefs_dname() is called from d_path().
938  */
939 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
940 {
941 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
942 				dentry->d_inode->i_ino);
943 }
944 
945 static const struct dentry_operations pipefs_dentry_operations = {
946 	.d_dname	= pipefs_dname,
947 };
948 
949 static struct inode * get_pipe_inode(void)
950 {
951 	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
952 	struct pipe_inode_info *pipe;
953 
954 	if (!inode)
955 		goto fail_inode;
956 
957 	inode->i_ino = get_next_ino();
958 
959 	pipe = alloc_pipe_info(inode);
960 	if (!pipe)
961 		goto fail_iput;
962 	inode->i_pipe = pipe;
963 
964 	pipe->readers = pipe->writers = 1;
965 	inode->i_fop = &rdwr_pipefifo_fops;
966 
967 	/*
968 	 * Mark the inode dirty from the very beginning,
969 	 * that way it will never be moved to the dirty
970 	 * list because "mark_inode_dirty()" will think
971 	 * that it already _is_ on the dirty list.
972 	 */
973 	inode->i_state = I_DIRTY;
974 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
975 	inode->i_uid = current_fsuid();
976 	inode->i_gid = current_fsgid();
977 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
978 
979 	return inode;
980 
981 fail_iput:
982 	iput(inode);
983 
984 fail_inode:
985 	return NULL;
986 }
987 
988 struct file *create_write_pipe(int flags)
989 {
990 	int err;
991 	struct inode *inode;
992 	struct file *f;
993 	struct path path;
994 	struct qstr name = { .name = "" };
995 
996 	err = -ENFILE;
997 	inode = get_pipe_inode();
998 	if (!inode)
999 		goto err;
1000 
1001 	err = -ENOMEM;
1002 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1003 	if (!path.dentry)
1004 		goto err_inode;
1005 	path.mnt = mntget(pipe_mnt);
1006 
1007 	d_instantiate(path.dentry, inode);
1008 
1009 	err = -ENFILE;
1010 	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1011 	if (!f)
1012 		goto err_dentry;
1013 	f->f_mapping = inode->i_mapping;
1014 
1015 	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1016 	f->f_version = 0;
1017 
1018 	return f;
1019 
1020  err_dentry:
1021 	free_pipe_info(inode);
1022 	path_put(&path);
1023 	return ERR_PTR(err);
1024 
1025  err_inode:
1026 	free_pipe_info(inode);
1027 	iput(inode);
1028  err:
1029 	return ERR_PTR(err);
1030 }
1031 
1032 void free_write_pipe(struct file *f)
1033 {
1034 	free_pipe_info(f->f_dentry->d_inode);
1035 	path_put(&f->f_path);
1036 	put_filp(f);
1037 }
1038 
1039 struct file *create_read_pipe(struct file *wrf, int flags)
1040 {
1041 	/* Grab pipe from the writer */
1042 	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1043 				    &read_pipefifo_fops);
1044 	if (!f)
1045 		return ERR_PTR(-ENFILE);
1046 
1047 	path_get(&wrf->f_path);
1048 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1049 
1050 	return f;
1051 }
1052 
1053 int do_pipe_flags(int *fd, int flags)
1054 {
1055 	struct file *fw, *fr;
1056 	int error;
1057 	int fdw, fdr;
1058 
1059 	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1060 		return -EINVAL;
1061 
1062 	fw = create_write_pipe(flags);
1063 	if (IS_ERR(fw))
1064 		return PTR_ERR(fw);
1065 	fr = create_read_pipe(fw, flags);
1066 	error = PTR_ERR(fr);
1067 	if (IS_ERR(fr))
1068 		goto err_write_pipe;
1069 
1070 	error = get_unused_fd_flags(flags);
1071 	if (error < 0)
1072 		goto err_read_pipe;
1073 	fdr = error;
1074 
1075 	error = get_unused_fd_flags(flags);
1076 	if (error < 0)
1077 		goto err_fdr;
1078 	fdw = error;
1079 
1080 	audit_fd_pair(fdr, fdw);
1081 	fd_install(fdr, fr);
1082 	fd_install(fdw, fw);
1083 	fd[0] = fdr;
1084 	fd[1] = fdw;
1085 
1086 	return 0;
1087 
1088  err_fdr:
1089 	put_unused_fd(fdr);
1090  err_read_pipe:
1091 	path_put(&fr->f_path);
1092 	put_filp(fr);
1093  err_write_pipe:
1094 	free_write_pipe(fw);
1095 	return error;
1096 }
1097 
1098 /*
1099  * sys_pipe() is the normal C calling standard for creating
1100  * a pipe. It's not the way Unix traditionally does this, though.
1101  */
1102 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1103 {
1104 	int fd[2];
1105 	int error;
1106 
1107 	error = do_pipe_flags(fd, flags);
1108 	if (!error) {
1109 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1110 			sys_close(fd[0]);
1111 			sys_close(fd[1]);
1112 			error = -EFAULT;
1113 		}
1114 	}
1115 	return error;
1116 }
1117 
1118 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1119 {
1120 	return sys_pipe2(fildes, 0);
1121 }
1122 
1123 /*
1124  * Allocate a new array of pipe buffers and copy the info over. Returns the
1125  * pipe size if successful, or return -ERROR on error.
1126  */
1127 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1128 {
1129 	struct pipe_buffer *bufs;
1130 
1131 	/*
1132 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1133 	 * expect a lot of shrink+grow operations, just free and allocate
1134 	 * again like we would do for growing. If the pipe currently
1135 	 * contains more buffers than arg, then return busy.
1136 	 */
1137 	if (nr_pages < pipe->nrbufs)
1138 		return -EBUSY;
1139 
1140 	bufs = kcalloc(nr_pages, sizeof(struct pipe_buffer), GFP_KERNEL);
1141 	if (unlikely(!bufs))
1142 		return -ENOMEM;
1143 
1144 	/*
1145 	 * The pipe array wraps around, so just start the new one at zero
1146 	 * and adjust the indexes.
1147 	 */
1148 	if (pipe->nrbufs) {
1149 		unsigned int tail;
1150 		unsigned int head;
1151 
1152 		tail = pipe->curbuf + pipe->nrbufs;
1153 		if (tail < pipe->buffers)
1154 			tail = 0;
1155 		else
1156 			tail &= (pipe->buffers - 1);
1157 
1158 		head = pipe->nrbufs - tail;
1159 		if (head)
1160 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1161 		if (tail)
1162 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1163 	}
1164 
1165 	pipe->curbuf = 0;
1166 	kfree(pipe->bufs);
1167 	pipe->bufs = bufs;
1168 	pipe->buffers = nr_pages;
1169 	return nr_pages * PAGE_SIZE;
1170 }
1171 
1172 /*
1173  * Currently we rely on the pipe array holding a power-of-2 number
1174  * of pages.
1175  */
1176 static inline unsigned int round_pipe_size(unsigned int size)
1177 {
1178 	unsigned long nr_pages;
1179 
1180 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1182 }
1183 
1184 /*
1185  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1186  * will return an error.
1187  */
1188 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1189 		 size_t *lenp, loff_t *ppos)
1190 {
1191 	int ret;
1192 
1193 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1194 	if (ret < 0 || !write)
1195 		return ret;
1196 
1197 	pipe_max_size = round_pipe_size(pipe_max_size);
1198 	return ret;
1199 }
1200 
1201 /*
1202  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1203  * location, so checking ->i_pipe is not enough to verify that this is a
1204  * pipe.
1205  */
1206 struct pipe_inode_info *get_pipe_info(struct file *file)
1207 {
1208 	struct inode *i = file->f_path.dentry->d_inode;
1209 
1210 	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1211 }
1212 
1213 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1214 {
1215 	struct pipe_inode_info *pipe;
1216 	long ret;
1217 
1218 	pipe = get_pipe_info(file);
1219 	if (!pipe)
1220 		return -EBADF;
1221 
1222 	mutex_lock(&pipe->inode->i_mutex);
1223 
1224 	switch (cmd) {
1225 	case F_SETPIPE_SZ: {
1226 		unsigned int size, nr_pages;
1227 
1228 		size = round_pipe_size(arg);
1229 		nr_pages = size >> PAGE_SHIFT;
1230 
1231 		ret = -EINVAL;
1232 		if (!nr_pages)
1233 			goto out;
1234 
1235 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1236 			ret = -EPERM;
1237 			goto out;
1238 		}
1239 		ret = pipe_set_size(pipe, nr_pages);
1240 		break;
1241 		}
1242 	case F_GETPIPE_SZ:
1243 		ret = pipe->buffers * PAGE_SIZE;
1244 		break;
1245 	default:
1246 		ret = -EINVAL;
1247 		break;
1248 	}
1249 
1250 out:
1251 	mutex_unlock(&pipe->inode->i_mutex);
1252 	return ret;
1253 }
1254 
1255 static const struct super_operations pipefs_ops = {
1256 	.destroy_inode = free_inode_nonrcu,
1257 };
1258 
1259 /*
1260  * pipefs should _never_ be mounted by userland - too much of security hassle,
1261  * no real gain from having the whole whorehouse mounted. So we don't need
1262  * any operations on the root directory. However, we need a non-trivial
1263  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1264  */
1265 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1266 			 int flags, const char *dev_name, void *data)
1267 {
1268 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1269 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1270 }
1271 
1272 static struct file_system_type pipe_fs_type = {
1273 	.name		= "pipefs",
1274 	.mount		= pipefs_mount,
1275 	.kill_sb	= kill_anon_super,
1276 };
1277 
1278 static int __init init_pipe_fs(void)
1279 {
1280 	int err = register_filesystem(&pipe_fs_type);
1281 
1282 	if (!err) {
1283 		pipe_mnt = kern_mount(&pipe_fs_type);
1284 		if (IS_ERR(pipe_mnt)) {
1285 			err = PTR_ERR(pipe_mnt);
1286 			unregister_filesystem(&pipe_fs_type);
1287 		}
1288 	}
1289 	return err;
1290 }
1291 
1292 static void __exit exit_pipe_fs(void)
1293 {
1294 	unregister_filesystem(&pipe_fs_type);
1295 	mntput(pipe_mnt);
1296 }
1297 
1298 fs_initcall(init_pipe_fs);
1299 module_exit(exit_pipe_fs);
1300