1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 28 #include <linux/uaccess.h> 29 #include <asm/ioctls.h> 30 31 #include "internal.h" 32 33 /* 34 * The max size that a non-root user is allowed to grow the pipe. Can 35 * be set by root in /proc/sys/fs/pipe-max-size 36 */ 37 unsigned int pipe_max_size = 1048576; 38 39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 40 * matches default values. 41 */ 42 unsigned long pipe_user_pages_hard; 43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 44 45 /* 46 * We use head and tail indices that aren't masked off, except at the point of 47 * dereference, but rather they're allowed to wrap naturally. This means there 48 * isn't a dead spot in the buffer, but the ring has to be a power of two and 49 * <= 2^31. 50 * -- David Howells 2019-09-23. 51 * 52 * Reads with count = 0 should always return 0. 53 * -- Julian Bradfield 1999-06-07. 54 * 55 * FIFOs and Pipes now generate SIGIO for both readers and writers. 56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 57 * 58 * pipe_read & write cleanup 59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 60 */ 61 62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 63 { 64 if (pipe->files) 65 mutex_lock_nested(&pipe->mutex, subclass); 66 } 67 68 void pipe_lock(struct pipe_inode_info *pipe) 69 { 70 /* 71 * pipe_lock() nests non-pipe inode locks (for writing to a file) 72 */ 73 pipe_lock_nested(pipe, I_MUTEX_PARENT); 74 } 75 EXPORT_SYMBOL(pipe_lock); 76 77 void pipe_unlock(struct pipe_inode_info *pipe) 78 { 79 if (pipe->files) 80 mutex_unlock(&pipe->mutex); 81 } 82 EXPORT_SYMBOL(pipe_unlock); 83 84 static inline void __pipe_lock(struct pipe_inode_info *pipe) 85 { 86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); 87 } 88 89 static inline void __pipe_unlock(struct pipe_inode_info *pipe) 90 { 91 mutex_unlock(&pipe->mutex); 92 } 93 94 void pipe_double_lock(struct pipe_inode_info *pipe1, 95 struct pipe_inode_info *pipe2) 96 { 97 BUG_ON(pipe1 == pipe2); 98 99 if (pipe1 < pipe2) { 100 pipe_lock_nested(pipe1, I_MUTEX_PARENT); 101 pipe_lock_nested(pipe2, I_MUTEX_CHILD); 102 } else { 103 pipe_lock_nested(pipe2, I_MUTEX_PARENT); 104 pipe_lock_nested(pipe1, I_MUTEX_CHILD); 105 } 106 } 107 108 /* Drop the inode semaphore and wait for a pipe event, atomically */ 109 void pipe_wait(struct pipe_inode_info *pipe) 110 { 111 DEFINE_WAIT(wait); 112 113 /* 114 * Pipes are system-local resources, so sleeping on them 115 * is considered a noninteractive wait: 116 */ 117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); 118 pipe_unlock(pipe); 119 schedule(); 120 finish_wait(&pipe->wait, &wait); 121 pipe_lock(pipe); 122 } 123 124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 125 struct pipe_buffer *buf) 126 { 127 struct page *page = buf->page; 128 129 /* 130 * If nobody else uses this page, and we don't already have a 131 * temporary page, let's keep track of it as a one-deep 132 * allocation cache. (Otherwise just release our reference to it) 133 */ 134 if (page_count(page) == 1 && !pipe->tmp_page) 135 pipe->tmp_page = page; 136 else 137 put_page(page); 138 } 139 140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 141 struct pipe_buffer *buf) 142 { 143 struct page *page = buf->page; 144 145 if (page_count(page) == 1) { 146 memcg_kmem_uncharge(page, 0); 147 __SetPageLocked(page); 148 return 0; 149 } 150 return 1; 151 } 152 153 /** 154 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 155 * @pipe: the pipe that the buffer belongs to 156 * @buf: the buffer to attempt to steal 157 * 158 * Description: 159 * This function attempts to steal the &struct page attached to 160 * @buf. If successful, this function returns 0 and returns with 161 * the page locked. The caller may then reuse the page for whatever 162 * he wishes; the typical use is insertion into a different file 163 * page cache. 164 */ 165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 166 struct pipe_buffer *buf) 167 { 168 struct page *page = buf->page; 169 170 /* 171 * A reference of one is golden, that means that the owner of this 172 * page is the only one holding a reference to it. lock the page 173 * and return OK. 174 */ 175 if (page_count(page) == 1) { 176 lock_page(page); 177 return 0; 178 } 179 180 return 1; 181 } 182 EXPORT_SYMBOL(generic_pipe_buf_steal); 183 184 /** 185 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 186 * @pipe: the pipe that the buffer belongs to 187 * @buf: the buffer to get a reference to 188 * 189 * Description: 190 * This function grabs an extra reference to @buf. It's used in 191 * in the tee() system call, when we duplicate the buffers in one 192 * pipe into another. 193 */ 194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 195 { 196 return try_get_page(buf->page); 197 } 198 EXPORT_SYMBOL(generic_pipe_buf_get); 199 200 /** 201 * generic_pipe_buf_confirm - verify contents of the pipe buffer 202 * @info: the pipe that the buffer belongs to 203 * @buf: the buffer to confirm 204 * 205 * Description: 206 * This function does nothing, because the generic pipe code uses 207 * pages that are always good when inserted into the pipe. 208 */ 209 int generic_pipe_buf_confirm(struct pipe_inode_info *info, 210 struct pipe_buffer *buf) 211 { 212 return 0; 213 } 214 EXPORT_SYMBOL(generic_pipe_buf_confirm); 215 216 /** 217 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 218 * @pipe: the pipe that the buffer belongs to 219 * @buf: the buffer to put a reference to 220 * 221 * Description: 222 * This function releases a reference to @buf. 223 */ 224 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 225 struct pipe_buffer *buf) 226 { 227 put_page(buf->page); 228 } 229 EXPORT_SYMBOL(generic_pipe_buf_release); 230 231 /* New data written to a pipe may be appended to a buffer with this type. */ 232 static const struct pipe_buf_operations anon_pipe_buf_ops = { 233 .confirm = generic_pipe_buf_confirm, 234 .release = anon_pipe_buf_release, 235 .steal = anon_pipe_buf_steal, 236 .get = generic_pipe_buf_get, 237 }; 238 239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = { 240 .confirm = generic_pipe_buf_confirm, 241 .release = anon_pipe_buf_release, 242 .steal = anon_pipe_buf_steal, 243 .get = generic_pipe_buf_get, 244 }; 245 246 static const struct pipe_buf_operations packet_pipe_buf_ops = { 247 .confirm = generic_pipe_buf_confirm, 248 .release = anon_pipe_buf_release, 249 .steal = anon_pipe_buf_steal, 250 .get = generic_pipe_buf_get, 251 }; 252 253 /** 254 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable 255 * @buf: the buffer to mark 256 * 257 * Description: 258 * This function ensures that no future writes will be merged into the 259 * given &struct pipe_buffer. This is necessary when multiple pipe buffers 260 * share the same backing page. 261 */ 262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf) 263 { 264 if (buf->ops == &anon_pipe_buf_ops) 265 buf->ops = &anon_pipe_buf_nomerge_ops; 266 } 267 268 static bool pipe_buf_can_merge(struct pipe_buffer *buf) 269 { 270 return buf->ops == &anon_pipe_buf_ops; 271 } 272 273 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 274 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 275 { 276 unsigned int head = READ_ONCE(pipe->head); 277 unsigned int tail = READ_ONCE(pipe->tail); 278 unsigned int writers = READ_ONCE(pipe->writers); 279 280 return !pipe_empty(head, tail) || !writers; 281 } 282 283 static ssize_t 284 pipe_read(struct kiocb *iocb, struct iov_iter *to) 285 { 286 size_t total_len = iov_iter_count(to); 287 struct file *filp = iocb->ki_filp; 288 struct pipe_inode_info *pipe = filp->private_data; 289 bool was_full; 290 ssize_t ret; 291 292 /* Null read succeeds. */ 293 if (unlikely(total_len == 0)) 294 return 0; 295 296 ret = 0; 297 __pipe_lock(pipe); 298 299 /* 300 * We only wake up writers if the pipe was full when we started 301 * reading in order to avoid unnecessary wakeups. 302 * 303 * But when we do wake up writers, we do so using a sync wakeup 304 * (WF_SYNC), because we want them to get going and generate more 305 * data for us. 306 */ 307 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 308 for (;;) { 309 unsigned int head = pipe->head; 310 unsigned int tail = pipe->tail; 311 unsigned int mask = pipe->ring_size - 1; 312 313 if (!pipe_empty(head, tail)) { 314 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 315 size_t chars = buf->len; 316 size_t written; 317 int error; 318 319 if (chars > total_len) 320 chars = total_len; 321 322 error = pipe_buf_confirm(pipe, buf); 323 if (error) { 324 if (!ret) 325 ret = error; 326 break; 327 } 328 329 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 330 if (unlikely(written < chars)) { 331 if (!ret) 332 ret = -EFAULT; 333 break; 334 } 335 ret += chars; 336 buf->offset += chars; 337 buf->len -= chars; 338 339 /* Was it a packet buffer? Clean up and exit */ 340 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 341 total_len = chars; 342 buf->len = 0; 343 } 344 345 if (!buf->len) { 346 pipe_buf_release(pipe, buf); 347 spin_lock_irq(&pipe->wait.lock); 348 tail++; 349 pipe->tail = tail; 350 spin_unlock_irq(&pipe->wait.lock); 351 } 352 total_len -= chars; 353 if (!total_len) 354 break; /* common path: read succeeded */ 355 if (!pipe_empty(head, tail)) /* More to do? */ 356 continue; 357 } 358 359 if (!pipe->writers) 360 break; 361 if (ret) 362 break; 363 if (filp->f_flags & O_NONBLOCK) { 364 ret = -EAGAIN; 365 break; 366 } 367 if (signal_pending(current)) { 368 if (!ret) 369 ret = -ERESTARTSYS; 370 break; 371 } 372 __pipe_unlock(pipe); 373 if (was_full) { 374 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 375 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 376 } 377 wait_event_interruptible(pipe->wait, pipe_readable(pipe)); 378 __pipe_lock(pipe); 379 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 380 } 381 __pipe_unlock(pipe); 382 383 if (was_full) { 384 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM); 385 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 386 } 387 if (ret > 0) 388 file_accessed(filp); 389 return ret; 390 } 391 392 static inline int is_packetized(struct file *file) 393 { 394 return (file->f_flags & O_DIRECT) != 0; 395 } 396 397 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 398 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 399 { 400 unsigned int head = READ_ONCE(pipe->head); 401 unsigned int tail = READ_ONCE(pipe->tail); 402 unsigned int max_usage = READ_ONCE(pipe->max_usage); 403 404 return !pipe_full(head, tail, max_usage) || 405 !READ_ONCE(pipe->readers); 406 } 407 408 static ssize_t 409 pipe_write(struct kiocb *iocb, struct iov_iter *from) 410 { 411 struct file *filp = iocb->ki_filp; 412 struct pipe_inode_info *pipe = filp->private_data; 413 unsigned int head; 414 ssize_t ret = 0; 415 size_t total_len = iov_iter_count(from); 416 ssize_t chars; 417 bool was_empty = false; 418 419 /* Null write succeeds. */ 420 if (unlikely(total_len == 0)) 421 return 0; 422 423 __pipe_lock(pipe); 424 425 if (!pipe->readers) { 426 send_sig(SIGPIPE, current, 0); 427 ret = -EPIPE; 428 goto out; 429 } 430 431 /* 432 * Only wake up if the pipe started out empty, since 433 * otherwise there should be no readers waiting. 434 * 435 * If it wasn't empty we try to merge new data into 436 * the last buffer. 437 * 438 * That naturally merges small writes, but it also 439 * page-aligs the rest of the writes for large writes 440 * spanning multiple pages. 441 */ 442 head = pipe->head; 443 was_empty = pipe_empty(head, pipe->tail); 444 chars = total_len & (PAGE_SIZE-1); 445 if (chars && !was_empty) { 446 unsigned int mask = pipe->ring_size - 1; 447 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 448 int offset = buf->offset + buf->len; 449 450 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) { 451 ret = pipe_buf_confirm(pipe, buf); 452 if (ret) 453 goto out; 454 455 ret = copy_page_from_iter(buf->page, offset, chars, from); 456 if (unlikely(ret < chars)) { 457 ret = -EFAULT; 458 goto out; 459 } 460 461 buf->len += ret; 462 if (!iov_iter_count(from)) 463 goto out; 464 } 465 } 466 467 for (;;) { 468 if (!pipe->readers) { 469 send_sig(SIGPIPE, current, 0); 470 if (!ret) 471 ret = -EPIPE; 472 break; 473 } 474 475 head = pipe->head; 476 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 477 unsigned int mask = pipe->ring_size - 1; 478 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 479 struct page *page = pipe->tmp_page; 480 int copied; 481 482 if (!page) { 483 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 484 if (unlikely(!page)) { 485 ret = ret ? : -ENOMEM; 486 break; 487 } 488 pipe->tmp_page = page; 489 } 490 491 /* Allocate a slot in the ring in advance and attach an 492 * empty buffer. If we fault or otherwise fail to use 493 * it, either the reader will consume it or it'll still 494 * be there for the next write. 495 */ 496 spin_lock_irq(&pipe->wait.lock); 497 498 head = pipe->head; 499 if (pipe_full(head, pipe->tail, pipe->max_usage)) { 500 spin_unlock_irq(&pipe->wait.lock); 501 continue; 502 } 503 504 pipe->head = head + 1; 505 spin_unlock_irq(&pipe->wait.lock); 506 507 /* Insert it into the buffer array */ 508 buf = &pipe->bufs[head & mask]; 509 buf->page = page; 510 buf->ops = &anon_pipe_buf_ops; 511 buf->offset = 0; 512 buf->len = 0; 513 buf->flags = 0; 514 if (is_packetized(filp)) { 515 buf->ops = &packet_pipe_buf_ops; 516 buf->flags = PIPE_BUF_FLAG_PACKET; 517 } 518 pipe->tmp_page = NULL; 519 520 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 521 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 522 if (!ret) 523 ret = -EFAULT; 524 break; 525 } 526 ret += copied; 527 buf->offset = 0; 528 buf->len = copied; 529 530 if (!iov_iter_count(from)) 531 break; 532 } 533 534 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 535 continue; 536 537 /* Wait for buffer space to become available. */ 538 if (filp->f_flags & O_NONBLOCK) { 539 if (!ret) 540 ret = -EAGAIN; 541 break; 542 } 543 if (signal_pending(current)) { 544 if (!ret) 545 ret = -ERESTARTSYS; 546 break; 547 } 548 549 /* 550 * We're going to release the pipe lock and wait for more 551 * space. We wake up any readers if necessary, and then 552 * after waiting we need to re-check whether the pipe 553 * become empty while we dropped the lock. 554 */ 555 __pipe_unlock(pipe); 556 if (was_empty) { 557 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 558 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 559 } 560 wait_event_interruptible(pipe->wait, pipe_writable(pipe)); 561 __pipe_lock(pipe); 562 was_empty = pipe_empty(head, pipe->tail); 563 } 564 out: 565 __pipe_unlock(pipe); 566 567 /* 568 * If we do do a wakeup event, we do a 'sync' wakeup, because we 569 * want the reader to start processing things asap, rather than 570 * leave the data pending. 571 * 572 * This is particularly important for small writes, because of 573 * how (for example) the GNU make jobserver uses small writes to 574 * wake up pending jobs 575 */ 576 if (was_empty) { 577 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM); 578 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 579 } 580 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 581 int err = file_update_time(filp); 582 if (err) 583 ret = err; 584 sb_end_write(file_inode(filp)->i_sb); 585 } 586 return ret; 587 } 588 589 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 590 { 591 struct pipe_inode_info *pipe = filp->private_data; 592 int count, head, tail, mask; 593 594 switch (cmd) { 595 case FIONREAD: 596 __pipe_lock(pipe); 597 count = 0; 598 head = pipe->head; 599 tail = pipe->tail; 600 mask = pipe->ring_size - 1; 601 602 while (tail != head) { 603 count += pipe->bufs[tail & mask].len; 604 tail++; 605 } 606 __pipe_unlock(pipe); 607 608 return put_user(count, (int __user *)arg); 609 default: 610 return -ENOIOCTLCMD; 611 } 612 } 613 614 /* No kernel lock held - fine */ 615 static __poll_t 616 pipe_poll(struct file *filp, poll_table *wait) 617 { 618 __poll_t mask; 619 struct pipe_inode_info *pipe = filp->private_data; 620 unsigned int head, tail; 621 622 /* 623 * Reading only -- no need for acquiring the semaphore. 624 * 625 * But because this is racy, the code has to add the 626 * entry to the poll table _first_ .. 627 */ 628 poll_wait(filp, &pipe->wait, wait); 629 630 /* 631 * .. and only then can you do the racy tests. That way, 632 * if something changes and you got it wrong, the poll 633 * table entry will wake you up and fix it. 634 */ 635 head = READ_ONCE(pipe->head); 636 tail = READ_ONCE(pipe->tail); 637 638 mask = 0; 639 if (filp->f_mode & FMODE_READ) { 640 if (!pipe_empty(head, tail)) 641 mask |= EPOLLIN | EPOLLRDNORM; 642 if (!pipe->writers && filp->f_version != pipe->w_counter) 643 mask |= EPOLLHUP; 644 } 645 646 if (filp->f_mode & FMODE_WRITE) { 647 if (!pipe_full(head, tail, pipe->max_usage)) 648 mask |= EPOLLOUT | EPOLLWRNORM; 649 /* 650 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 651 * behave exactly like pipes for poll(). 652 */ 653 if (!pipe->readers) 654 mask |= EPOLLERR; 655 } 656 657 return mask; 658 } 659 660 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 661 { 662 int kill = 0; 663 664 spin_lock(&inode->i_lock); 665 if (!--pipe->files) { 666 inode->i_pipe = NULL; 667 kill = 1; 668 } 669 spin_unlock(&inode->i_lock); 670 671 if (kill) 672 free_pipe_info(pipe); 673 } 674 675 static int 676 pipe_release(struct inode *inode, struct file *file) 677 { 678 struct pipe_inode_info *pipe = file->private_data; 679 680 __pipe_lock(pipe); 681 if (file->f_mode & FMODE_READ) 682 pipe->readers--; 683 if (file->f_mode & FMODE_WRITE) 684 pipe->writers--; 685 686 if (pipe->readers || pipe->writers) { 687 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP); 688 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 689 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 690 } 691 __pipe_unlock(pipe); 692 693 put_pipe_info(inode, pipe); 694 return 0; 695 } 696 697 static int 698 pipe_fasync(int fd, struct file *filp, int on) 699 { 700 struct pipe_inode_info *pipe = filp->private_data; 701 int retval = 0; 702 703 __pipe_lock(pipe); 704 if (filp->f_mode & FMODE_READ) 705 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 706 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 707 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 708 if (retval < 0 && (filp->f_mode & FMODE_READ)) 709 /* this can happen only if on == T */ 710 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 711 } 712 __pipe_unlock(pipe); 713 return retval; 714 } 715 716 static unsigned long account_pipe_buffers(struct user_struct *user, 717 unsigned long old, unsigned long new) 718 { 719 return atomic_long_add_return(new - old, &user->pipe_bufs); 720 } 721 722 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 723 { 724 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 725 726 return soft_limit && user_bufs > soft_limit; 727 } 728 729 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 730 { 731 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 732 733 return hard_limit && user_bufs > hard_limit; 734 } 735 736 static bool is_unprivileged_user(void) 737 { 738 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 739 } 740 741 struct pipe_inode_info *alloc_pipe_info(void) 742 { 743 struct pipe_inode_info *pipe; 744 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 745 struct user_struct *user = get_current_user(); 746 unsigned long user_bufs; 747 unsigned int max_size = READ_ONCE(pipe_max_size); 748 749 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 750 if (pipe == NULL) 751 goto out_free_uid; 752 753 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 754 pipe_bufs = max_size >> PAGE_SHIFT; 755 756 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 757 758 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 759 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 760 pipe_bufs = 1; 761 } 762 763 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 764 goto out_revert_acct; 765 766 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 767 GFP_KERNEL_ACCOUNT); 768 769 if (pipe->bufs) { 770 init_waitqueue_head(&pipe->wait); 771 pipe->r_counter = pipe->w_counter = 1; 772 pipe->max_usage = pipe_bufs; 773 pipe->ring_size = pipe_bufs; 774 pipe->user = user; 775 mutex_init(&pipe->mutex); 776 return pipe; 777 } 778 779 out_revert_acct: 780 (void) account_pipe_buffers(user, pipe_bufs, 0); 781 kfree(pipe); 782 out_free_uid: 783 free_uid(user); 784 return NULL; 785 } 786 787 void free_pipe_info(struct pipe_inode_info *pipe) 788 { 789 int i; 790 791 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0); 792 free_uid(pipe->user); 793 for (i = 0; i < pipe->ring_size; i++) { 794 struct pipe_buffer *buf = pipe->bufs + i; 795 if (buf->ops) 796 pipe_buf_release(pipe, buf); 797 } 798 if (pipe->tmp_page) 799 __free_page(pipe->tmp_page); 800 kfree(pipe->bufs); 801 kfree(pipe); 802 } 803 804 static struct vfsmount *pipe_mnt __read_mostly; 805 806 /* 807 * pipefs_dname() is called from d_path(). 808 */ 809 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 810 { 811 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 812 d_inode(dentry)->i_ino); 813 } 814 815 static const struct dentry_operations pipefs_dentry_operations = { 816 .d_dname = pipefs_dname, 817 }; 818 819 static struct inode * get_pipe_inode(void) 820 { 821 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 822 struct pipe_inode_info *pipe; 823 824 if (!inode) 825 goto fail_inode; 826 827 inode->i_ino = get_next_ino(); 828 829 pipe = alloc_pipe_info(); 830 if (!pipe) 831 goto fail_iput; 832 833 inode->i_pipe = pipe; 834 pipe->files = 2; 835 pipe->readers = pipe->writers = 1; 836 inode->i_fop = &pipefifo_fops; 837 838 /* 839 * Mark the inode dirty from the very beginning, 840 * that way it will never be moved to the dirty 841 * list because "mark_inode_dirty()" will think 842 * that it already _is_ on the dirty list. 843 */ 844 inode->i_state = I_DIRTY; 845 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 846 inode->i_uid = current_fsuid(); 847 inode->i_gid = current_fsgid(); 848 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 849 850 return inode; 851 852 fail_iput: 853 iput(inode); 854 855 fail_inode: 856 return NULL; 857 } 858 859 int create_pipe_files(struct file **res, int flags) 860 { 861 struct inode *inode = get_pipe_inode(); 862 struct file *f; 863 864 if (!inode) 865 return -ENFILE; 866 867 f = alloc_file_pseudo(inode, pipe_mnt, "", 868 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 869 &pipefifo_fops); 870 if (IS_ERR(f)) { 871 free_pipe_info(inode->i_pipe); 872 iput(inode); 873 return PTR_ERR(f); 874 } 875 876 f->private_data = inode->i_pipe; 877 878 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 879 &pipefifo_fops); 880 if (IS_ERR(res[0])) { 881 put_pipe_info(inode, inode->i_pipe); 882 fput(f); 883 return PTR_ERR(res[0]); 884 } 885 res[0]->private_data = inode->i_pipe; 886 res[1] = f; 887 stream_open(inode, res[0]); 888 stream_open(inode, res[1]); 889 return 0; 890 } 891 892 static int __do_pipe_flags(int *fd, struct file **files, int flags) 893 { 894 int error; 895 int fdw, fdr; 896 897 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 898 return -EINVAL; 899 900 error = create_pipe_files(files, flags); 901 if (error) 902 return error; 903 904 error = get_unused_fd_flags(flags); 905 if (error < 0) 906 goto err_read_pipe; 907 fdr = error; 908 909 error = get_unused_fd_flags(flags); 910 if (error < 0) 911 goto err_fdr; 912 fdw = error; 913 914 audit_fd_pair(fdr, fdw); 915 fd[0] = fdr; 916 fd[1] = fdw; 917 return 0; 918 919 err_fdr: 920 put_unused_fd(fdr); 921 err_read_pipe: 922 fput(files[0]); 923 fput(files[1]); 924 return error; 925 } 926 927 int do_pipe_flags(int *fd, int flags) 928 { 929 struct file *files[2]; 930 int error = __do_pipe_flags(fd, files, flags); 931 if (!error) { 932 fd_install(fd[0], files[0]); 933 fd_install(fd[1], files[1]); 934 } 935 return error; 936 } 937 938 /* 939 * sys_pipe() is the normal C calling standard for creating 940 * a pipe. It's not the way Unix traditionally does this, though. 941 */ 942 static int do_pipe2(int __user *fildes, int flags) 943 { 944 struct file *files[2]; 945 int fd[2]; 946 int error; 947 948 error = __do_pipe_flags(fd, files, flags); 949 if (!error) { 950 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 951 fput(files[0]); 952 fput(files[1]); 953 put_unused_fd(fd[0]); 954 put_unused_fd(fd[1]); 955 error = -EFAULT; 956 } else { 957 fd_install(fd[0], files[0]); 958 fd_install(fd[1], files[1]); 959 } 960 } 961 return error; 962 } 963 964 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 965 { 966 return do_pipe2(fildes, flags); 967 } 968 969 SYSCALL_DEFINE1(pipe, int __user *, fildes) 970 { 971 return do_pipe2(fildes, 0); 972 } 973 974 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 975 { 976 int cur = *cnt; 977 978 while (cur == *cnt) { 979 pipe_wait(pipe); 980 if (signal_pending(current)) 981 break; 982 } 983 return cur == *cnt ? -ERESTARTSYS : 0; 984 } 985 986 static void wake_up_partner(struct pipe_inode_info *pipe) 987 { 988 wake_up_interruptible(&pipe->wait); 989 } 990 991 static int fifo_open(struct inode *inode, struct file *filp) 992 { 993 struct pipe_inode_info *pipe; 994 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 995 int ret; 996 997 filp->f_version = 0; 998 999 spin_lock(&inode->i_lock); 1000 if (inode->i_pipe) { 1001 pipe = inode->i_pipe; 1002 pipe->files++; 1003 spin_unlock(&inode->i_lock); 1004 } else { 1005 spin_unlock(&inode->i_lock); 1006 pipe = alloc_pipe_info(); 1007 if (!pipe) 1008 return -ENOMEM; 1009 pipe->files = 1; 1010 spin_lock(&inode->i_lock); 1011 if (unlikely(inode->i_pipe)) { 1012 inode->i_pipe->files++; 1013 spin_unlock(&inode->i_lock); 1014 free_pipe_info(pipe); 1015 pipe = inode->i_pipe; 1016 } else { 1017 inode->i_pipe = pipe; 1018 spin_unlock(&inode->i_lock); 1019 } 1020 } 1021 filp->private_data = pipe; 1022 /* OK, we have a pipe and it's pinned down */ 1023 1024 __pipe_lock(pipe); 1025 1026 /* We can only do regular read/write on fifos */ 1027 stream_open(inode, filp); 1028 1029 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1030 case FMODE_READ: 1031 /* 1032 * O_RDONLY 1033 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1034 * opened, even when there is no process writing the FIFO. 1035 */ 1036 pipe->r_counter++; 1037 if (pipe->readers++ == 0) 1038 wake_up_partner(pipe); 1039 1040 if (!is_pipe && !pipe->writers) { 1041 if ((filp->f_flags & O_NONBLOCK)) { 1042 /* suppress EPOLLHUP until we have 1043 * seen a writer */ 1044 filp->f_version = pipe->w_counter; 1045 } else { 1046 if (wait_for_partner(pipe, &pipe->w_counter)) 1047 goto err_rd; 1048 } 1049 } 1050 break; 1051 1052 case FMODE_WRITE: 1053 /* 1054 * O_WRONLY 1055 * POSIX.1 says that O_NONBLOCK means return -1 with 1056 * errno=ENXIO when there is no process reading the FIFO. 1057 */ 1058 ret = -ENXIO; 1059 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1060 goto err; 1061 1062 pipe->w_counter++; 1063 if (!pipe->writers++) 1064 wake_up_partner(pipe); 1065 1066 if (!is_pipe && !pipe->readers) { 1067 if (wait_for_partner(pipe, &pipe->r_counter)) 1068 goto err_wr; 1069 } 1070 break; 1071 1072 case FMODE_READ | FMODE_WRITE: 1073 /* 1074 * O_RDWR 1075 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1076 * This implementation will NEVER block on a O_RDWR open, since 1077 * the process can at least talk to itself. 1078 */ 1079 1080 pipe->readers++; 1081 pipe->writers++; 1082 pipe->r_counter++; 1083 pipe->w_counter++; 1084 if (pipe->readers == 1 || pipe->writers == 1) 1085 wake_up_partner(pipe); 1086 break; 1087 1088 default: 1089 ret = -EINVAL; 1090 goto err; 1091 } 1092 1093 /* Ok! */ 1094 __pipe_unlock(pipe); 1095 return 0; 1096 1097 err_rd: 1098 if (!--pipe->readers) 1099 wake_up_interruptible(&pipe->wait); 1100 ret = -ERESTARTSYS; 1101 goto err; 1102 1103 err_wr: 1104 if (!--pipe->writers) 1105 wake_up_interruptible(&pipe->wait); 1106 ret = -ERESTARTSYS; 1107 goto err; 1108 1109 err: 1110 __pipe_unlock(pipe); 1111 1112 put_pipe_info(inode, pipe); 1113 return ret; 1114 } 1115 1116 const struct file_operations pipefifo_fops = { 1117 .open = fifo_open, 1118 .llseek = no_llseek, 1119 .read_iter = pipe_read, 1120 .write_iter = pipe_write, 1121 .poll = pipe_poll, 1122 .unlocked_ioctl = pipe_ioctl, 1123 .release = pipe_release, 1124 .fasync = pipe_fasync, 1125 }; 1126 1127 /* 1128 * Currently we rely on the pipe array holding a power-of-2 number 1129 * of pages. Returns 0 on error. 1130 */ 1131 unsigned int round_pipe_size(unsigned long size) 1132 { 1133 if (size > (1U << 31)) 1134 return 0; 1135 1136 /* Minimum pipe size, as required by POSIX */ 1137 if (size < PAGE_SIZE) 1138 return PAGE_SIZE; 1139 1140 return roundup_pow_of_two(size); 1141 } 1142 1143 /* 1144 * Allocate a new array of pipe buffers and copy the info over. Returns the 1145 * pipe size if successful, or return -ERROR on error. 1146 */ 1147 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1148 { 1149 struct pipe_buffer *bufs; 1150 unsigned int size, nr_slots, head, tail, mask, n; 1151 unsigned long user_bufs; 1152 long ret = 0; 1153 1154 size = round_pipe_size(arg); 1155 nr_slots = size >> PAGE_SHIFT; 1156 1157 if (!nr_slots) 1158 return -EINVAL; 1159 1160 /* 1161 * If trying to increase the pipe capacity, check that an 1162 * unprivileged user is not trying to exceed various limits 1163 * (soft limit check here, hard limit check just below). 1164 * Decreasing the pipe capacity is always permitted, even 1165 * if the user is currently over a limit. 1166 */ 1167 if (nr_slots > pipe->ring_size && 1168 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1169 return -EPERM; 1170 1171 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots); 1172 1173 if (nr_slots > pipe->ring_size && 1174 (too_many_pipe_buffers_hard(user_bufs) || 1175 too_many_pipe_buffers_soft(user_bufs)) && 1176 is_unprivileged_user()) { 1177 ret = -EPERM; 1178 goto out_revert_acct; 1179 } 1180 1181 /* 1182 * We can shrink the pipe, if arg is greater than the ring occupancy. 1183 * Since we don't expect a lot of shrink+grow operations, just free and 1184 * allocate again like we would do for growing. If the pipe currently 1185 * contains more buffers than arg, then return busy. 1186 */ 1187 mask = pipe->ring_size - 1; 1188 head = pipe->head; 1189 tail = pipe->tail; 1190 n = pipe_occupancy(pipe->head, pipe->tail); 1191 if (nr_slots < n) { 1192 ret = -EBUSY; 1193 goto out_revert_acct; 1194 } 1195 1196 bufs = kcalloc(nr_slots, sizeof(*bufs), 1197 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1198 if (unlikely(!bufs)) { 1199 ret = -ENOMEM; 1200 goto out_revert_acct; 1201 } 1202 1203 /* 1204 * The pipe array wraps around, so just start the new one at zero 1205 * and adjust the indices. 1206 */ 1207 if (n > 0) { 1208 unsigned int h = head & mask; 1209 unsigned int t = tail & mask; 1210 if (h > t) { 1211 memcpy(bufs, pipe->bufs + t, 1212 n * sizeof(struct pipe_buffer)); 1213 } else { 1214 unsigned int tsize = pipe->ring_size - t; 1215 if (h > 0) 1216 memcpy(bufs + tsize, pipe->bufs, 1217 h * sizeof(struct pipe_buffer)); 1218 memcpy(bufs, pipe->bufs + t, 1219 tsize * sizeof(struct pipe_buffer)); 1220 } 1221 } 1222 1223 head = n; 1224 tail = 0; 1225 1226 kfree(pipe->bufs); 1227 pipe->bufs = bufs; 1228 pipe->ring_size = nr_slots; 1229 pipe->max_usage = nr_slots; 1230 pipe->tail = tail; 1231 pipe->head = head; 1232 wake_up_interruptible_all(&pipe->wait); 1233 return pipe->max_usage * PAGE_SIZE; 1234 1235 out_revert_acct: 1236 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size); 1237 return ret; 1238 } 1239 1240 /* 1241 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1242 * location, so checking ->i_pipe is not enough to verify that this is a 1243 * pipe. 1244 */ 1245 struct pipe_inode_info *get_pipe_info(struct file *file) 1246 { 1247 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1248 } 1249 1250 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1251 { 1252 struct pipe_inode_info *pipe; 1253 long ret; 1254 1255 pipe = get_pipe_info(file); 1256 if (!pipe) 1257 return -EBADF; 1258 1259 __pipe_lock(pipe); 1260 1261 switch (cmd) { 1262 case F_SETPIPE_SZ: 1263 ret = pipe_set_size(pipe, arg); 1264 break; 1265 case F_GETPIPE_SZ: 1266 ret = pipe->max_usage * PAGE_SIZE; 1267 break; 1268 default: 1269 ret = -EINVAL; 1270 break; 1271 } 1272 1273 __pipe_unlock(pipe); 1274 return ret; 1275 } 1276 1277 static const struct super_operations pipefs_ops = { 1278 .destroy_inode = free_inode_nonrcu, 1279 .statfs = simple_statfs, 1280 }; 1281 1282 /* 1283 * pipefs should _never_ be mounted by userland - too much of security hassle, 1284 * no real gain from having the whole whorehouse mounted. So we don't need 1285 * any operations on the root directory. However, we need a non-trivial 1286 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1287 */ 1288 1289 static int pipefs_init_fs_context(struct fs_context *fc) 1290 { 1291 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1292 if (!ctx) 1293 return -ENOMEM; 1294 ctx->ops = &pipefs_ops; 1295 ctx->dops = &pipefs_dentry_operations; 1296 return 0; 1297 } 1298 1299 static struct file_system_type pipe_fs_type = { 1300 .name = "pipefs", 1301 .init_fs_context = pipefs_init_fs_context, 1302 .kill_sb = kill_anon_super, 1303 }; 1304 1305 static int __init init_pipe_fs(void) 1306 { 1307 int err = register_filesystem(&pipe_fs_type); 1308 1309 if (!err) { 1310 pipe_mnt = kern_mount(&pipe_fs_type); 1311 if (IS_ERR(pipe_mnt)) { 1312 err = PTR_ERR(pipe_mnt); 1313 unregister_filesystem(&pipe_fs_type); 1314 } 1315 } 1316 return err; 1317 } 1318 1319 fs_initcall(init_pipe_fs); 1320