xref: /openbmc/linux/fs/pipe.c (revision 1d1997db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30 
31 #include "internal.h"
32 
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38 
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44 
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61 
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64 	if (pipe->files)
65 		mutex_lock_nested(&pipe->mutex, subclass);
66 }
67 
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70 	/*
71 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
72 	 */
73 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76 
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79 	if (pipe->files)
80 		mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83 
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88 
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91 	mutex_unlock(&pipe->mutex);
92 }
93 
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95 		      struct pipe_inode_info *pipe2)
96 {
97 	BUG_ON(pipe1 == pipe2);
98 
99 	if (pipe1 < pipe2) {
100 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102 	} else {
103 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105 	}
106 }
107 
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111 	DEFINE_WAIT(wait);
112 
113 	/*
114 	 * Pipes are system-local resources, so sleeping on them
115 	 * is considered a noninteractive wait:
116 	 */
117 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118 	pipe_unlock(pipe);
119 	schedule();
120 	finish_wait(&pipe->wait, &wait);
121 	pipe_lock(pipe);
122 }
123 
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 				  struct pipe_buffer *buf)
126 {
127 	struct page *page = buf->page;
128 
129 	/*
130 	 * If nobody else uses this page, and we don't already have a
131 	 * temporary page, let's keep track of it as a one-deep
132 	 * allocation cache. (Otherwise just release our reference to it)
133 	 */
134 	if (page_count(page) == 1 && !pipe->tmp_page)
135 		pipe->tmp_page = page;
136 	else
137 		put_page(page);
138 }
139 
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141 			       struct pipe_buffer *buf)
142 {
143 	struct page *page = buf->page;
144 
145 	if (page_count(page) == 1) {
146 		memcg_kmem_uncharge(page, 0);
147 		__SetPageLocked(page);
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 /**
154  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:	the pipe that the buffer belongs to
156  * @buf:	the buffer to attempt to steal
157  *
158  * Description:
159  *	This function attempts to steal the &struct page attached to
160  *	@buf. If successful, this function returns 0 and returns with
161  *	the page locked. The caller may then reuse the page for whatever
162  *	he wishes; the typical use is insertion into a different file
163  *	page cache.
164  */
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166 			   struct pipe_buffer *buf)
167 {
168 	struct page *page = buf->page;
169 
170 	/*
171 	 * A reference of one is golden, that means that the owner of this
172 	 * page is the only one holding a reference to it. lock the page
173 	 * and return OK.
174 	 */
175 	if (page_count(page) == 1) {
176 		lock_page(page);
177 		return 0;
178 	}
179 
180 	return 1;
181 }
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
183 
184 /**
185  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186  * @pipe:	the pipe that the buffer belongs to
187  * @buf:	the buffer to get a reference to
188  *
189  * Description:
190  *	This function grabs an extra reference to @buf. It's used in
191  *	in the tee() system call, when we duplicate the buffers in one
192  *	pipe into another.
193  */
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 {
196 	return try_get_page(buf->page);
197 }
198 EXPORT_SYMBOL(generic_pipe_buf_get);
199 
200 /**
201  * generic_pipe_buf_confirm - verify contents of the pipe buffer
202  * @info:	the pipe that the buffer belongs to
203  * @buf:	the buffer to confirm
204  *
205  * Description:
206  *	This function does nothing, because the generic pipe code uses
207  *	pages that are always good when inserted into the pipe.
208  */
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210 			     struct pipe_buffer *buf)
211 {
212 	return 0;
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
215 
216 /**
217  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218  * @pipe:	the pipe that the buffer belongs to
219  * @buf:	the buffer to put a reference to
220  *
221  * Description:
222  *	This function releases a reference to @buf.
223  */
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225 			      struct pipe_buffer *buf)
226 {
227 	put_page(buf->page);
228 }
229 EXPORT_SYMBOL(generic_pipe_buf_release);
230 
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233 	.confirm = generic_pipe_buf_confirm,
234 	.release = anon_pipe_buf_release,
235 	.steal = anon_pipe_buf_steal,
236 	.get = generic_pipe_buf_get,
237 };
238 
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240 	.confirm = generic_pipe_buf_confirm,
241 	.release = anon_pipe_buf_release,
242 	.steal = anon_pipe_buf_steal,
243 	.get = generic_pipe_buf_get,
244 };
245 
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247 	.confirm = generic_pipe_buf_confirm,
248 	.release = anon_pipe_buf_release,
249 	.steal = anon_pipe_buf_steal,
250 	.get = generic_pipe_buf_get,
251 };
252 
253 /**
254  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255  * @buf:	the buffer to mark
256  *
257  * Description:
258  *	This function ensures that no future writes will be merged into the
259  *	given &struct pipe_buffer. This is necessary when multiple pipe buffers
260  *	share the same backing page.
261  */
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263 {
264 	if (buf->ops == &anon_pipe_buf_ops)
265 		buf->ops = &anon_pipe_buf_nomerge_ops;
266 }
267 
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269 {
270 	return buf->ops == &anon_pipe_buf_ops;
271 }
272 
273 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
274 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
275 {
276 	unsigned int head = READ_ONCE(pipe->head);
277 	unsigned int tail = READ_ONCE(pipe->tail);
278 	unsigned int writers = READ_ONCE(pipe->writers);
279 
280 	return !pipe_empty(head, tail) || !writers;
281 }
282 
283 static ssize_t
284 pipe_read(struct kiocb *iocb, struct iov_iter *to)
285 {
286 	size_t total_len = iov_iter_count(to);
287 	struct file *filp = iocb->ki_filp;
288 	struct pipe_inode_info *pipe = filp->private_data;
289 	bool was_full;
290 	ssize_t ret;
291 
292 	/* Null read succeeds. */
293 	if (unlikely(total_len == 0))
294 		return 0;
295 
296 	ret = 0;
297 	__pipe_lock(pipe);
298 
299 	/*
300 	 * We only wake up writers if the pipe was full when we started
301 	 * reading in order to avoid unnecessary wakeups.
302 	 *
303 	 * But when we do wake up writers, we do so using a sync wakeup
304 	 * (WF_SYNC), because we want them to get going and generate more
305 	 * data for us.
306 	 */
307 	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
308 	for (;;) {
309 		unsigned int head = pipe->head;
310 		unsigned int tail = pipe->tail;
311 		unsigned int mask = pipe->ring_size - 1;
312 
313 		if (!pipe_empty(head, tail)) {
314 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
315 			size_t chars = buf->len;
316 			size_t written;
317 			int error;
318 
319 			if (chars > total_len)
320 				chars = total_len;
321 
322 			error = pipe_buf_confirm(pipe, buf);
323 			if (error) {
324 				if (!ret)
325 					ret = error;
326 				break;
327 			}
328 
329 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
330 			if (unlikely(written < chars)) {
331 				if (!ret)
332 					ret = -EFAULT;
333 				break;
334 			}
335 			ret += chars;
336 			buf->offset += chars;
337 			buf->len -= chars;
338 
339 			/* Was it a packet buffer? Clean up and exit */
340 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
341 				total_len = chars;
342 				buf->len = 0;
343 			}
344 
345 			if (!buf->len) {
346 				pipe_buf_release(pipe, buf);
347 				spin_lock_irq(&pipe->wait.lock);
348 				tail++;
349 				pipe->tail = tail;
350 				spin_unlock_irq(&pipe->wait.lock);
351 			}
352 			total_len -= chars;
353 			if (!total_len)
354 				break;	/* common path: read succeeded */
355 			if (!pipe_empty(head, tail))	/* More to do? */
356 				continue;
357 		}
358 
359 		if (!pipe->writers)
360 			break;
361 		if (ret)
362 			break;
363 		if (filp->f_flags & O_NONBLOCK) {
364 			ret = -EAGAIN;
365 			break;
366 		}
367 		if (signal_pending(current)) {
368 			if (!ret)
369 				ret = -ERESTARTSYS;
370 			break;
371 		}
372 		__pipe_unlock(pipe);
373 		if (was_full) {
374 			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
375 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 		}
377 		wait_event_interruptible(pipe->wait, pipe_readable(pipe));
378 		__pipe_lock(pipe);
379 		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
380 	}
381 	__pipe_unlock(pipe);
382 
383 	if (was_full) {
384 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
385 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
386 	}
387 	if (ret > 0)
388 		file_accessed(filp);
389 	return ret;
390 }
391 
392 static inline int is_packetized(struct file *file)
393 {
394 	return (file->f_flags & O_DIRECT) != 0;
395 }
396 
397 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
398 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
399 {
400 	unsigned int head = READ_ONCE(pipe->head);
401 	unsigned int tail = READ_ONCE(pipe->tail);
402 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
403 
404 	return !pipe_full(head, tail, max_usage) ||
405 		!READ_ONCE(pipe->readers);
406 }
407 
408 static ssize_t
409 pipe_write(struct kiocb *iocb, struct iov_iter *from)
410 {
411 	struct file *filp = iocb->ki_filp;
412 	struct pipe_inode_info *pipe = filp->private_data;
413 	unsigned int head;
414 	ssize_t ret = 0;
415 	size_t total_len = iov_iter_count(from);
416 	ssize_t chars;
417 	bool was_empty = false;
418 
419 	/* Null write succeeds. */
420 	if (unlikely(total_len == 0))
421 		return 0;
422 
423 	__pipe_lock(pipe);
424 
425 	if (!pipe->readers) {
426 		send_sig(SIGPIPE, current, 0);
427 		ret = -EPIPE;
428 		goto out;
429 	}
430 
431 	/*
432 	 * Only wake up if the pipe started out empty, since
433 	 * otherwise there should be no readers waiting.
434 	 *
435 	 * If it wasn't empty we try to merge new data into
436 	 * the last buffer.
437 	 *
438 	 * That naturally merges small writes, but it also
439 	 * page-aligs the rest of the writes for large writes
440 	 * spanning multiple pages.
441 	 */
442 	head = pipe->head;
443 	was_empty = pipe_empty(head, pipe->tail);
444 	chars = total_len & (PAGE_SIZE-1);
445 	if (chars && !was_empty) {
446 		unsigned int mask = pipe->ring_size - 1;
447 		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
448 		int offset = buf->offset + buf->len;
449 
450 		if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
451 			ret = pipe_buf_confirm(pipe, buf);
452 			if (ret)
453 				goto out;
454 
455 			ret = copy_page_from_iter(buf->page, offset, chars, from);
456 			if (unlikely(ret < chars)) {
457 				ret = -EFAULT;
458 				goto out;
459 			}
460 
461 			buf->len += ret;
462 			if (!iov_iter_count(from))
463 				goto out;
464 		}
465 	}
466 
467 	for (;;) {
468 		if (!pipe->readers) {
469 			send_sig(SIGPIPE, current, 0);
470 			if (!ret)
471 				ret = -EPIPE;
472 			break;
473 		}
474 
475 		head = pipe->head;
476 		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
477 			unsigned int mask = pipe->ring_size - 1;
478 			struct pipe_buffer *buf = &pipe->bufs[head & mask];
479 			struct page *page = pipe->tmp_page;
480 			int copied;
481 
482 			if (!page) {
483 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
484 				if (unlikely(!page)) {
485 					ret = ret ? : -ENOMEM;
486 					break;
487 				}
488 				pipe->tmp_page = page;
489 			}
490 
491 			/* Allocate a slot in the ring in advance and attach an
492 			 * empty buffer.  If we fault or otherwise fail to use
493 			 * it, either the reader will consume it or it'll still
494 			 * be there for the next write.
495 			 */
496 			spin_lock_irq(&pipe->wait.lock);
497 
498 			head = pipe->head;
499 			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
500 				spin_unlock_irq(&pipe->wait.lock);
501 				continue;
502 			}
503 
504 			pipe->head = head + 1;
505 			spin_unlock_irq(&pipe->wait.lock);
506 
507 			/* Insert it into the buffer array */
508 			buf = &pipe->bufs[head & mask];
509 			buf->page = page;
510 			buf->ops = &anon_pipe_buf_ops;
511 			buf->offset = 0;
512 			buf->len = 0;
513 			buf->flags = 0;
514 			if (is_packetized(filp)) {
515 				buf->ops = &packet_pipe_buf_ops;
516 				buf->flags = PIPE_BUF_FLAG_PACKET;
517 			}
518 			pipe->tmp_page = NULL;
519 
520 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
521 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
522 				if (!ret)
523 					ret = -EFAULT;
524 				break;
525 			}
526 			ret += copied;
527 			buf->offset = 0;
528 			buf->len = copied;
529 
530 			if (!iov_iter_count(from))
531 				break;
532 		}
533 
534 		if (!pipe_full(head, pipe->tail, pipe->max_usage))
535 			continue;
536 
537 		/* Wait for buffer space to become available. */
538 		if (filp->f_flags & O_NONBLOCK) {
539 			if (!ret)
540 				ret = -EAGAIN;
541 			break;
542 		}
543 		if (signal_pending(current)) {
544 			if (!ret)
545 				ret = -ERESTARTSYS;
546 			break;
547 		}
548 
549 		/*
550 		 * We're going to release the pipe lock and wait for more
551 		 * space. We wake up any readers if necessary, and then
552 		 * after waiting we need to re-check whether the pipe
553 		 * become empty while we dropped the lock.
554 		 */
555 		__pipe_unlock(pipe);
556 		if (was_empty) {
557 			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
558 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559 		}
560 		wait_event_interruptible(pipe->wait, pipe_writable(pipe));
561 		__pipe_lock(pipe);
562 		was_empty = pipe_empty(head, pipe->tail);
563 	}
564 out:
565 	__pipe_unlock(pipe);
566 
567 	/*
568 	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
569 	 * want the reader to start processing things asap, rather than
570 	 * leave the data pending.
571 	 *
572 	 * This is particularly important for small writes, because of
573 	 * how (for example) the GNU make jobserver uses small writes to
574 	 * wake up pending jobs
575 	 */
576 	if (was_empty) {
577 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
578 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579 	}
580 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
581 		int err = file_update_time(filp);
582 		if (err)
583 			ret = err;
584 		sb_end_write(file_inode(filp)->i_sb);
585 	}
586 	return ret;
587 }
588 
589 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
590 {
591 	struct pipe_inode_info *pipe = filp->private_data;
592 	int count, head, tail, mask;
593 
594 	switch (cmd) {
595 		case FIONREAD:
596 			__pipe_lock(pipe);
597 			count = 0;
598 			head = pipe->head;
599 			tail = pipe->tail;
600 			mask = pipe->ring_size - 1;
601 
602 			while (tail != head) {
603 				count += pipe->bufs[tail & mask].len;
604 				tail++;
605 			}
606 			__pipe_unlock(pipe);
607 
608 			return put_user(count, (int __user *)arg);
609 		default:
610 			return -ENOIOCTLCMD;
611 	}
612 }
613 
614 /* No kernel lock held - fine */
615 static __poll_t
616 pipe_poll(struct file *filp, poll_table *wait)
617 {
618 	__poll_t mask;
619 	struct pipe_inode_info *pipe = filp->private_data;
620 	unsigned int head, tail;
621 
622 	/*
623 	 * Reading only -- no need for acquiring the semaphore.
624 	 *
625 	 * But because this is racy, the code has to add the
626 	 * entry to the poll table _first_ ..
627 	 */
628 	poll_wait(filp, &pipe->wait, wait);
629 
630 	/*
631 	 * .. and only then can you do the racy tests. That way,
632 	 * if something changes and you got it wrong, the poll
633 	 * table entry will wake you up and fix it.
634 	 */
635 	head = READ_ONCE(pipe->head);
636 	tail = READ_ONCE(pipe->tail);
637 
638 	mask = 0;
639 	if (filp->f_mode & FMODE_READ) {
640 		if (!pipe_empty(head, tail))
641 			mask |= EPOLLIN | EPOLLRDNORM;
642 		if (!pipe->writers && filp->f_version != pipe->w_counter)
643 			mask |= EPOLLHUP;
644 	}
645 
646 	if (filp->f_mode & FMODE_WRITE) {
647 		if (!pipe_full(head, tail, pipe->max_usage))
648 			mask |= EPOLLOUT | EPOLLWRNORM;
649 		/*
650 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
651 		 * behave exactly like pipes for poll().
652 		 */
653 		if (!pipe->readers)
654 			mask |= EPOLLERR;
655 	}
656 
657 	return mask;
658 }
659 
660 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
661 {
662 	int kill = 0;
663 
664 	spin_lock(&inode->i_lock);
665 	if (!--pipe->files) {
666 		inode->i_pipe = NULL;
667 		kill = 1;
668 	}
669 	spin_unlock(&inode->i_lock);
670 
671 	if (kill)
672 		free_pipe_info(pipe);
673 }
674 
675 static int
676 pipe_release(struct inode *inode, struct file *file)
677 {
678 	struct pipe_inode_info *pipe = file->private_data;
679 
680 	__pipe_lock(pipe);
681 	if (file->f_mode & FMODE_READ)
682 		pipe->readers--;
683 	if (file->f_mode & FMODE_WRITE)
684 		pipe->writers--;
685 
686 	if (pipe->readers || pipe->writers) {
687 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
688 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
689 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
690 	}
691 	__pipe_unlock(pipe);
692 
693 	put_pipe_info(inode, pipe);
694 	return 0;
695 }
696 
697 static int
698 pipe_fasync(int fd, struct file *filp, int on)
699 {
700 	struct pipe_inode_info *pipe = filp->private_data;
701 	int retval = 0;
702 
703 	__pipe_lock(pipe);
704 	if (filp->f_mode & FMODE_READ)
705 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
706 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
707 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
708 		if (retval < 0 && (filp->f_mode & FMODE_READ))
709 			/* this can happen only if on == T */
710 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
711 	}
712 	__pipe_unlock(pipe);
713 	return retval;
714 }
715 
716 static unsigned long account_pipe_buffers(struct user_struct *user,
717                                  unsigned long old, unsigned long new)
718 {
719 	return atomic_long_add_return(new - old, &user->pipe_bufs);
720 }
721 
722 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
723 {
724 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
725 
726 	return soft_limit && user_bufs > soft_limit;
727 }
728 
729 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
730 {
731 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
732 
733 	return hard_limit && user_bufs > hard_limit;
734 }
735 
736 static bool is_unprivileged_user(void)
737 {
738 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
739 }
740 
741 struct pipe_inode_info *alloc_pipe_info(void)
742 {
743 	struct pipe_inode_info *pipe;
744 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
745 	struct user_struct *user = get_current_user();
746 	unsigned long user_bufs;
747 	unsigned int max_size = READ_ONCE(pipe_max_size);
748 
749 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
750 	if (pipe == NULL)
751 		goto out_free_uid;
752 
753 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
754 		pipe_bufs = max_size >> PAGE_SHIFT;
755 
756 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
757 
758 	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
759 		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
760 		pipe_bufs = 1;
761 	}
762 
763 	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
764 		goto out_revert_acct;
765 
766 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
767 			     GFP_KERNEL_ACCOUNT);
768 
769 	if (pipe->bufs) {
770 		init_waitqueue_head(&pipe->wait);
771 		pipe->r_counter = pipe->w_counter = 1;
772 		pipe->max_usage = pipe_bufs;
773 		pipe->ring_size = pipe_bufs;
774 		pipe->user = user;
775 		mutex_init(&pipe->mutex);
776 		return pipe;
777 	}
778 
779 out_revert_acct:
780 	(void) account_pipe_buffers(user, pipe_bufs, 0);
781 	kfree(pipe);
782 out_free_uid:
783 	free_uid(user);
784 	return NULL;
785 }
786 
787 void free_pipe_info(struct pipe_inode_info *pipe)
788 {
789 	int i;
790 
791 	(void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
792 	free_uid(pipe->user);
793 	for (i = 0; i < pipe->ring_size; i++) {
794 		struct pipe_buffer *buf = pipe->bufs + i;
795 		if (buf->ops)
796 			pipe_buf_release(pipe, buf);
797 	}
798 	if (pipe->tmp_page)
799 		__free_page(pipe->tmp_page);
800 	kfree(pipe->bufs);
801 	kfree(pipe);
802 }
803 
804 static struct vfsmount *pipe_mnt __read_mostly;
805 
806 /*
807  * pipefs_dname() is called from d_path().
808  */
809 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
810 {
811 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
812 				d_inode(dentry)->i_ino);
813 }
814 
815 static const struct dentry_operations pipefs_dentry_operations = {
816 	.d_dname	= pipefs_dname,
817 };
818 
819 static struct inode * get_pipe_inode(void)
820 {
821 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
822 	struct pipe_inode_info *pipe;
823 
824 	if (!inode)
825 		goto fail_inode;
826 
827 	inode->i_ino = get_next_ino();
828 
829 	pipe = alloc_pipe_info();
830 	if (!pipe)
831 		goto fail_iput;
832 
833 	inode->i_pipe = pipe;
834 	pipe->files = 2;
835 	pipe->readers = pipe->writers = 1;
836 	inode->i_fop = &pipefifo_fops;
837 
838 	/*
839 	 * Mark the inode dirty from the very beginning,
840 	 * that way it will never be moved to the dirty
841 	 * list because "mark_inode_dirty()" will think
842 	 * that it already _is_ on the dirty list.
843 	 */
844 	inode->i_state = I_DIRTY;
845 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
846 	inode->i_uid = current_fsuid();
847 	inode->i_gid = current_fsgid();
848 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
849 
850 	return inode;
851 
852 fail_iput:
853 	iput(inode);
854 
855 fail_inode:
856 	return NULL;
857 }
858 
859 int create_pipe_files(struct file **res, int flags)
860 {
861 	struct inode *inode = get_pipe_inode();
862 	struct file *f;
863 
864 	if (!inode)
865 		return -ENFILE;
866 
867 	f = alloc_file_pseudo(inode, pipe_mnt, "",
868 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
869 				&pipefifo_fops);
870 	if (IS_ERR(f)) {
871 		free_pipe_info(inode->i_pipe);
872 		iput(inode);
873 		return PTR_ERR(f);
874 	}
875 
876 	f->private_data = inode->i_pipe;
877 
878 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
879 				  &pipefifo_fops);
880 	if (IS_ERR(res[0])) {
881 		put_pipe_info(inode, inode->i_pipe);
882 		fput(f);
883 		return PTR_ERR(res[0]);
884 	}
885 	res[0]->private_data = inode->i_pipe;
886 	res[1] = f;
887 	stream_open(inode, res[0]);
888 	stream_open(inode, res[1]);
889 	return 0;
890 }
891 
892 static int __do_pipe_flags(int *fd, struct file **files, int flags)
893 {
894 	int error;
895 	int fdw, fdr;
896 
897 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
898 		return -EINVAL;
899 
900 	error = create_pipe_files(files, flags);
901 	if (error)
902 		return error;
903 
904 	error = get_unused_fd_flags(flags);
905 	if (error < 0)
906 		goto err_read_pipe;
907 	fdr = error;
908 
909 	error = get_unused_fd_flags(flags);
910 	if (error < 0)
911 		goto err_fdr;
912 	fdw = error;
913 
914 	audit_fd_pair(fdr, fdw);
915 	fd[0] = fdr;
916 	fd[1] = fdw;
917 	return 0;
918 
919  err_fdr:
920 	put_unused_fd(fdr);
921  err_read_pipe:
922 	fput(files[0]);
923 	fput(files[1]);
924 	return error;
925 }
926 
927 int do_pipe_flags(int *fd, int flags)
928 {
929 	struct file *files[2];
930 	int error = __do_pipe_flags(fd, files, flags);
931 	if (!error) {
932 		fd_install(fd[0], files[0]);
933 		fd_install(fd[1], files[1]);
934 	}
935 	return error;
936 }
937 
938 /*
939  * sys_pipe() is the normal C calling standard for creating
940  * a pipe. It's not the way Unix traditionally does this, though.
941  */
942 static int do_pipe2(int __user *fildes, int flags)
943 {
944 	struct file *files[2];
945 	int fd[2];
946 	int error;
947 
948 	error = __do_pipe_flags(fd, files, flags);
949 	if (!error) {
950 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
951 			fput(files[0]);
952 			fput(files[1]);
953 			put_unused_fd(fd[0]);
954 			put_unused_fd(fd[1]);
955 			error = -EFAULT;
956 		} else {
957 			fd_install(fd[0], files[0]);
958 			fd_install(fd[1], files[1]);
959 		}
960 	}
961 	return error;
962 }
963 
964 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
965 {
966 	return do_pipe2(fildes, flags);
967 }
968 
969 SYSCALL_DEFINE1(pipe, int __user *, fildes)
970 {
971 	return do_pipe2(fildes, 0);
972 }
973 
974 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
975 {
976 	int cur = *cnt;
977 
978 	while (cur == *cnt) {
979 		pipe_wait(pipe);
980 		if (signal_pending(current))
981 			break;
982 	}
983 	return cur == *cnt ? -ERESTARTSYS : 0;
984 }
985 
986 static void wake_up_partner(struct pipe_inode_info *pipe)
987 {
988 	wake_up_interruptible(&pipe->wait);
989 }
990 
991 static int fifo_open(struct inode *inode, struct file *filp)
992 {
993 	struct pipe_inode_info *pipe;
994 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
995 	int ret;
996 
997 	filp->f_version = 0;
998 
999 	spin_lock(&inode->i_lock);
1000 	if (inode->i_pipe) {
1001 		pipe = inode->i_pipe;
1002 		pipe->files++;
1003 		spin_unlock(&inode->i_lock);
1004 	} else {
1005 		spin_unlock(&inode->i_lock);
1006 		pipe = alloc_pipe_info();
1007 		if (!pipe)
1008 			return -ENOMEM;
1009 		pipe->files = 1;
1010 		spin_lock(&inode->i_lock);
1011 		if (unlikely(inode->i_pipe)) {
1012 			inode->i_pipe->files++;
1013 			spin_unlock(&inode->i_lock);
1014 			free_pipe_info(pipe);
1015 			pipe = inode->i_pipe;
1016 		} else {
1017 			inode->i_pipe = pipe;
1018 			spin_unlock(&inode->i_lock);
1019 		}
1020 	}
1021 	filp->private_data = pipe;
1022 	/* OK, we have a pipe and it's pinned down */
1023 
1024 	__pipe_lock(pipe);
1025 
1026 	/* We can only do regular read/write on fifos */
1027 	stream_open(inode, filp);
1028 
1029 	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1030 	case FMODE_READ:
1031 	/*
1032 	 *  O_RDONLY
1033 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1034 	 *  opened, even when there is no process writing the FIFO.
1035 	 */
1036 		pipe->r_counter++;
1037 		if (pipe->readers++ == 0)
1038 			wake_up_partner(pipe);
1039 
1040 		if (!is_pipe && !pipe->writers) {
1041 			if ((filp->f_flags & O_NONBLOCK)) {
1042 				/* suppress EPOLLHUP until we have
1043 				 * seen a writer */
1044 				filp->f_version = pipe->w_counter;
1045 			} else {
1046 				if (wait_for_partner(pipe, &pipe->w_counter))
1047 					goto err_rd;
1048 			}
1049 		}
1050 		break;
1051 
1052 	case FMODE_WRITE:
1053 	/*
1054 	 *  O_WRONLY
1055 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1056 	 *  errno=ENXIO when there is no process reading the FIFO.
1057 	 */
1058 		ret = -ENXIO;
1059 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1060 			goto err;
1061 
1062 		pipe->w_counter++;
1063 		if (!pipe->writers++)
1064 			wake_up_partner(pipe);
1065 
1066 		if (!is_pipe && !pipe->readers) {
1067 			if (wait_for_partner(pipe, &pipe->r_counter))
1068 				goto err_wr;
1069 		}
1070 		break;
1071 
1072 	case FMODE_READ | FMODE_WRITE:
1073 	/*
1074 	 *  O_RDWR
1075 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1076 	 *  This implementation will NEVER block on a O_RDWR open, since
1077 	 *  the process can at least talk to itself.
1078 	 */
1079 
1080 		pipe->readers++;
1081 		pipe->writers++;
1082 		pipe->r_counter++;
1083 		pipe->w_counter++;
1084 		if (pipe->readers == 1 || pipe->writers == 1)
1085 			wake_up_partner(pipe);
1086 		break;
1087 
1088 	default:
1089 		ret = -EINVAL;
1090 		goto err;
1091 	}
1092 
1093 	/* Ok! */
1094 	__pipe_unlock(pipe);
1095 	return 0;
1096 
1097 err_rd:
1098 	if (!--pipe->readers)
1099 		wake_up_interruptible(&pipe->wait);
1100 	ret = -ERESTARTSYS;
1101 	goto err;
1102 
1103 err_wr:
1104 	if (!--pipe->writers)
1105 		wake_up_interruptible(&pipe->wait);
1106 	ret = -ERESTARTSYS;
1107 	goto err;
1108 
1109 err:
1110 	__pipe_unlock(pipe);
1111 
1112 	put_pipe_info(inode, pipe);
1113 	return ret;
1114 }
1115 
1116 const struct file_operations pipefifo_fops = {
1117 	.open		= fifo_open,
1118 	.llseek		= no_llseek,
1119 	.read_iter	= pipe_read,
1120 	.write_iter	= pipe_write,
1121 	.poll		= pipe_poll,
1122 	.unlocked_ioctl	= pipe_ioctl,
1123 	.release	= pipe_release,
1124 	.fasync		= pipe_fasync,
1125 };
1126 
1127 /*
1128  * Currently we rely on the pipe array holding a power-of-2 number
1129  * of pages. Returns 0 on error.
1130  */
1131 unsigned int round_pipe_size(unsigned long size)
1132 {
1133 	if (size > (1U << 31))
1134 		return 0;
1135 
1136 	/* Minimum pipe size, as required by POSIX */
1137 	if (size < PAGE_SIZE)
1138 		return PAGE_SIZE;
1139 
1140 	return roundup_pow_of_two(size);
1141 }
1142 
1143 /*
1144  * Allocate a new array of pipe buffers and copy the info over. Returns the
1145  * pipe size if successful, or return -ERROR on error.
1146  */
1147 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1148 {
1149 	struct pipe_buffer *bufs;
1150 	unsigned int size, nr_slots, head, tail, mask, n;
1151 	unsigned long user_bufs;
1152 	long ret = 0;
1153 
1154 	size = round_pipe_size(arg);
1155 	nr_slots = size >> PAGE_SHIFT;
1156 
1157 	if (!nr_slots)
1158 		return -EINVAL;
1159 
1160 	/*
1161 	 * If trying to increase the pipe capacity, check that an
1162 	 * unprivileged user is not trying to exceed various limits
1163 	 * (soft limit check here, hard limit check just below).
1164 	 * Decreasing the pipe capacity is always permitted, even
1165 	 * if the user is currently over a limit.
1166 	 */
1167 	if (nr_slots > pipe->ring_size &&
1168 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1169 		return -EPERM;
1170 
1171 	user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1172 
1173 	if (nr_slots > pipe->ring_size &&
1174 			(too_many_pipe_buffers_hard(user_bufs) ||
1175 			 too_many_pipe_buffers_soft(user_bufs)) &&
1176 			is_unprivileged_user()) {
1177 		ret = -EPERM;
1178 		goto out_revert_acct;
1179 	}
1180 
1181 	/*
1182 	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1183 	 * Since we don't expect a lot of shrink+grow operations, just free and
1184 	 * allocate again like we would do for growing.  If the pipe currently
1185 	 * contains more buffers than arg, then return busy.
1186 	 */
1187 	mask = pipe->ring_size - 1;
1188 	head = pipe->head;
1189 	tail = pipe->tail;
1190 	n = pipe_occupancy(pipe->head, pipe->tail);
1191 	if (nr_slots < n) {
1192 		ret = -EBUSY;
1193 		goto out_revert_acct;
1194 	}
1195 
1196 	bufs = kcalloc(nr_slots, sizeof(*bufs),
1197 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1198 	if (unlikely(!bufs)) {
1199 		ret = -ENOMEM;
1200 		goto out_revert_acct;
1201 	}
1202 
1203 	/*
1204 	 * The pipe array wraps around, so just start the new one at zero
1205 	 * and adjust the indices.
1206 	 */
1207 	if (n > 0) {
1208 		unsigned int h = head & mask;
1209 		unsigned int t = tail & mask;
1210 		if (h > t) {
1211 			memcpy(bufs, pipe->bufs + t,
1212 			       n * sizeof(struct pipe_buffer));
1213 		} else {
1214 			unsigned int tsize = pipe->ring_size - t;
1215 			if (h > 0)
1216 				memcpy(bufs + tsize, pipe->bufs,
1217 				       h * sizeof(struct pipe_buffer));
1218 			memcpy(bufs, pipe->bufs + t,
1219 			       tsize * sizeof(struct pipe_buffer));
1220 		}
1221 	}
1222 
1223 	head = n;
1224 	tail = 0;
1225 
1226 	kfree(pipe->bufs);
1227 	pipe->bufs = bufs;
1228 	pipe->ring_size = nr_slots;
1229 	pipe->max_usage = nr_slots;
1230 	pipe->tail = tail;
1231 	pipe->head = head;
1232 	wake_up_interruptible_all(&pipe->wait);
1233 	return pipe->max_usage * PAGE_SIZE;
1234 
1235 out_revert_acct:
1236 	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1237 	return ret;
1238 }
1239 
1240 /*
1241  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1242  * location, so checking ->i_pipe is not enough to verify that this is a
1243  * pipe.
1244  */
1245 struct pipe_inode_info *get_pipe_info(struct file *file)
1246 {
1247 	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1248 }
1249 
1250 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1251 {
1252 	struct pipe_inode_info *pipe;
1253 	long ret;
1254 
1255 	pipe = get_pipe_info(file);
1256 	if (!pipe)
1257 		return -EBADF;
1258 
1259 	__pipe_lock(pipe);
1260 
1261 	switch (cmd) {
1262 	case F_SETPIPE_SZ:
1263 		ret = pipe_set_size(pipe, arg);
1264 		break;
1265 	case F_GETPIPE_SZ:
1266 		ret = pipe->max_usage * PAGE_SIZE;
1267 		break;
1268 	default:
1269 		ret = -EINVAL;
1270 		break;
1271 	}
1272 
1273 	__pipe_unlock(pipe);
1274 	return ret;
1275 }
1276 
1277 static const struct super_operations pipefs_ops = {
1278 	.destroy_inode = free_inode_nonrcu,
1279 	.statfs = simple_statfs,
1280 };
1281 
1282 /*
1283  * pipefs should _never_ be mounted by userland - too much of security hassle,
1284  * no real gain from having the whole whorehouse mounted. So we don't need
1285  * any operations on the root directory. However, we need a non-trivial
1286  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1287  */
1288 
1289 static int pipefs_init_fs_context(struct fs_context *fc)
1290 {
1291 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1292 	if (!ctx)
1293 		return -ENOMEM;
1294 	ctx->ops = &pipefs_ops;
1295 	ctx->dops = &pipefs_dentry_operations;
1296 	return 0;
1297 }
1298 
1299 static struct file_system_type pipe_fs_type = {
1300 	.name		= "pipefs",
1301 	.init_fs_context = pipefs_init_fs_context,
1302 	.kill_sb	= kill_anon_super,
1303 };
1304 
1305 static int __init init_pipe_fs(void)
1306 {
1307 	int err = register_filesystem(&pipe_fs_type);
1308 
1309 	if (!err) {
1310 		pipe_mnt = kern_mount(&pipe_fs_type);
1311 		if (IS_ERR(pipe_mnt)) {
1312 			err = PTR_ERR(pipe_mnt);
1313 			unregister_filesystem(&pipe_fs_type);
1314 		}
1315 	}
1316 	return err;
1317 }
1318 
1319 fs_initcall(init_pipe_fs);
1320