1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 34 #define MLOG_MASK_PREFIX ML_JOURNAL 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "quota.h" 52 53 #include "buffer_head_io.h" 54 55 DEFINE_SPINLOCK(trans_inc_lock); 56 57 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 58 59 static int ocfs2_force_read_journal(struct inode *inode); 60 static int ocfs2_recover_node(struct ocfs2_super *osb, 61 int node_num, int slot_num); 62 static int __ocfs2_recovery_thread(void *arg); 63 static int ocfs2_commit_cache(struct ocfs2_super *osb); 64 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 65 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 66 int dirty, int replayed); 67 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 68 int slot_num); 69 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 70 int slot); 71 static int ocfs2_commit_thread(void *arg); 72 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 73 int slot_num, 74 struct ocfs2_dinode *la_dinode, 75 struct ocfs2_dinode *tl_dinode, 76 struct ocfs2_quota_recovery *qrec); 77 78 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 79 { 80 return __ocfs2_wait_on_mount(osb, 0); 81 } 82 83 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 84 { 85 return __ocfs2_wait_on_mount(osb, 1); 86 } 87 88 /* 89 * This replay_map is to track online/offline slots, so we could recover 90 * offline slots during recovery and mount 91 */ 92 93 enum ocfs2_replay_state { 94 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 95 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 96 REPLAY_DONE /* Replay was already queued */ 97 }; 98 99 struct ocfs2_replay_map { 100 unsigned int rm_slots; 101 enum ocfs2_replay_state rm_state; 102 unsigned char rm_replay_slots[0]; 103 }; 104 105 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 106 { 107 if (!osb->replay_map) 108 return; 109 110 /* If we've already queued the replay, we don't have any more to do */ 111 if (osb->replay_map->rm_state == REPLAY_DONE) 112 return; 113 114 osb->replay_map->rm_state = state; 115 } 116 117 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 118 { 119 struct ocfs2_replay_map *replay_map; 120 int i, node_num; 121 122 /* If replay map is already set, we don't do it again */ 123 if (osb->replay_map) 124 return 0; 125 126 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 127 (osb->max_slots * sizeof(char)), GFP_KERNEL); 128 129 if (!replay_map) { 130 mlog_errno(-ENOMEM); 131 return -ENOMEM; 132 } 133 134 spin_lock(&osb->osb_lock); 135 136 replay_map->rm_slots = osb->max_slots; 137 replay_map->rm_state = REPLAY_UNNEEDED; 138 139 /* set rm_replay_slots for offline slot(s) */ 140 for (i = 0; i < replay_map->rm_slots; i++) { 141 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 142 replay_map->rm_replay_slots[i] = 1; 143 } 144 145 osb->replay_map = replay_map; 146 spin_unlock(&osb->osb_lock); 147 return 0; 148 } 149 150 void ocfs2_queue_replay_slots(struct ocfs2_super *osb) 151 { 152 struct ocfs2_replay_map *replay_map = osb->replay_map; 153 int i; 154 155 if (!replay_map) 156 return; 157 158 if (replay_map->rm_state != REPLAY_NEEDED) 159 return; 160 161 for (i = 0; i < replay_map->rm_slots; i++) 162 if (replay_map->rm_replay_slots[i]) 163 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 164 NULL, NULL); 165 replay_map->rm_state = REPLAY_DONE; 166 } 167 168 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 169 { 170 struct ocfs2_replay_map *replay_map = osb->replay_map; 171 172 if (!osb->replay_map) 173 return; 174 175 kfree(replay_map); 176 osb->replay_map = NULL; 177 } 178 179 int ocfs2_recovery_init(struct ocfs2_super *osb) 180 { 181 struct ocfs2_recovery_map *rm; 182 183 mutex_init(&osb->recovery_lock); 184 osb->disable_recovery = 0; 185 osb->recovery_thread_task = NULL; 186 init_waitqueue_head(&osb->recovery_event); 187 188 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 189 osb->max_slots * sizeof(unsigned int), 190 GFP_KERNEL); 191 if (!rm) { 192 mlog_errno(-ENOMEM); 193 return -ENOMEM; 194 } 195 196 rm->rm_entries = (unsigned int *)((char *)rm + 197 sizeof(struct ocfs2_recovery_map)); 198 osb->recovery_map = rm; 199 200 return 0; 201 } 202 203 /* we can't grab the goofy sem lock from inside wait_event, so we use 204 * memory barriers to make sure that we'll see the null task before 205 * being woken up */ 206 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 207 { 208 mb(); 209 return osb->recovery_thread_task != NULL; 210 } 211 212 void ocfs2_recovery_exit(struct ocfs2_super *osb) 213 { 214 struct ocfs2_recovery_map *rm; 215 216 /* disable any new recovery threads and wait for any currently 217 * running ones to exit. Do this before setting the vol_state. */ 218 mutex_lock(&osb->recovery_lock); 219 osb->disable_recovery = 1; 220 mutex_unlock(&osb->recovery_lock); 221 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 222 223 /* At this point, we know that no more recovery threads can be 224 * launched, so wait for any recovery completion work to 225 * complete. */ 226 flush_workqueue(ocfs2_wq); 227 228 /* 229 * Now that recovery is shut down, and the osb is about to be 230 * freed, the osb_lock is not taken here. 231 */ 232 rm = osb->recovery_map; 233 /* XXX: Should we bug if there are dirty entries? */ 234 235 kfree(rm); 236 } 237 238 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 239 unsigned int node_num) 240 { 241 int i; 242 struct ocfs2_recovery_map *rm = osb->recovery_map; 243 244 assert_spin_locked(&osb->osb_lock); 245 246 for (i = 0; i < rm->rm_used; i++) { 247 if (rm->rm_entries[i] == node_num) 248 return 1; 249 } 250 251 return 0; 252 } 253 254 /* Behaves like test-and-set. Returns the previous value */ 255 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 256 unsigned int node_num) 257 { 258 struct ocfs2_recovery_map *rm = osb->recovery_map; 259 260 spin_lock(&osb->osb_lock); 261 if (__ocfs2_recovery_map_test(osb, node_num)) { 262 spin_unlock(&osb->osb_lock); 263 return 1; 264 } 265 266 /* XXX: Can this be exploited? Not from o2dlm... */ 267 BUG_ON(rm->rm_used >= osb->max_slots); 268 269 rm->rm_entries[rm->rm_used] = node_num; 270 rm->rm_used++; 271 spin_unlock(&osb->osb_lock); 272 273 return 0; 274 } 275 276 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 277 unsigned int node_num) 278 { 279 int i; 280 struct ocfs2_recovery_map *rm = osb->recovery_map; 281 282 spin_lock(&osb->osb_lock); 283 284 for (i = 0; i < rm->rm_used; i++) { 285 if (rm->rm_entries[i] == node_num) 286 break; 287 } 288 289 if (i < rm->rm_used) { 290 /* XXX: be careful with the pointer math */ 291 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 292 (rm->rm_used - i - 1) * sizeof(unsigned int)); 293 rm->rm_used--; 294 } 295 296 spin_unlock(&osb->osb_lock); 297 } 298 299 static int ocfs2_commit_cache(struct ocfs2_super *osb) 300 { 301 int status = 0; 302 unsigned int flushed; 303 unsigned long old_id; 304 struct ocfs2_journal *journal = NULL; 305 306 mlog_entry_void(); 307 308 journal = osb->journal; 309 310 /* Flush all pending commits and checkpoint the journal. */ 311 down_write(&journal->j_trans_barrier); 312 313 if (atomic_read(&journal->j_num_trans) == 0) { 314 up_write(&journal->j_trans_barrier); 315 mlog(0, "No transactions for me to flush!\n"); 316 goto finally; 317 } 318 319 jbd2_journal_lock_updates(journal->j_journal); 320 status = jbd2_journal_flush(journal->j_journal); 321 jbd2_journal_unlock_updates(journal->j_journal); 322 if (status < 0) { 323 up_write(&journal->j_trans_barrier); 324 mlog_errno(status); 325 goto finally; 326 } 327 328 old_id = ocfs2_inc_trans_id(journal); 329 330 flushed = atomic_read(&journal->j_num_trans); 331 atomic_set(&journal->j_num_trans, 0); 332 up_write(&journal->j_trans_barrier); 333 334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 335 journal->j_trans_id, flushed); 336 337 ocfs2_wake_downconvert_thread(osb); 338 wake_up(&journal->j_checkpointed); 339 finally: 340 mlog_exit(status); 341 return status; 342 } 343 344 /* pass it NULL and it will allocate a new handle object for you. If 345 * you pass it a handle however, it may still return error, in which 346 * case it has free'd the passed handle for you. */ 347 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 348 { 349 journal_t *journal = osb->journal->j_journal; 350 handle_t *handle; 351 352 BUG_ON(!osb || !osb->journal->j_journal); 353 354 if (ocfs2_is_hard_readonly(osb)) 355 return ERR_PTR(-EROFS); 356 357 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 358 BUG_ON(max_buffs <= 0); 359 360 /* Nested transaction? Just return the handle... */ 361 if (journal_current_handle()) 362 return jbd2_journal_start(journal, max_buffs); 363 364 down_read(&osb->journal->j_trans_barrier); 365 366 handle = jbd2_journal_start(journal, max_buffs); 367 if (IS_ERR(handle)) { 368 up_read(&osb->journal->j_trans_barrier); 369 370 mlog_errno(PTR_ERR(handle)); 371 372 if (is_journal_aborted(journal)) { 373 ocfs2_abort(osb->sb, "Detected aborted journal"); 374 handle = ERR_PTR(-EROFS); 375 } 376 } else { 377 if (!ocfs2_mount_local(osb)) 378 atomic_inc(&(osb->journal->j_num_trans)); 379 } 380 381 return handle; 382 } 383 384 int ocfs2_commit_trans(struct ocfs2_super *osb, 385 handle_t *handle) 386 { 387 int ret, nested; 388 struct ocfs2_journal *journal = osb->journal; 389 390 BUG_ON(!handle); 391 392 nested = handle->h_ref > 1; 393 ret = jbd2_journal_stop(handle); 394 if (ret < 0) 395 mlog_errno(ret); 396 397 if (!nested) 398 up_read(&journal->j_trans_barrier); 399 400 return ret; 401 } 402 403 /* 404 * 'nblocks' is what you want to add to the current 405 * transaction. extend_trans will either extend the current handle by 406 * nblocks, or commit it and start a new one with nblocks credits. 407 * 408 * This might call jbd2_journal_restart() which will commit dirty buffers 409 * and then restart the transaction. Before calling 410 * ocfs2_extend_trans(), any changed blocks should have been 411 * dirtied. After calling it, all blocks which need to be changed must 412 * go through another set of journal_access/journal_dirty calls. 413 * 414 * WARNING: This will not release any semaphores or disk locks taken 415 * during the transaction, so make sure they were taken *before* 416 * start_trans or we'll have ordering deadlocks. 417 * 418 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 419 * good because transaction ids haven't yet been recorded on the 420 * cluster locks associated with this handle. 421 */ 422 int ocfs2_extend_trans(handle_t *handle, int nblocks) 423 { 424 int status; 425 426 BUG_ON(!handle); 427 BUG_ON(!nblocks); 428 429 mlog_entry_void(); 430 431 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 432 433 #ifdef CONFIG_OCFS2_DEBUG_FS 434 status = 1; 435 #else 436 status = jbd2_journal_extend(handle, nblocks); 437 if (status < 0) { 438 mlog_errno(status); 439 goto bail; 440 } 441 #endif 442 443 if (status > 0) { 444 mlog(0, 445 "jbd2_journal_extend failed, trying " 446 "jbd2_journal_restart\n"); 447 status = jbd2_journal_restart(handle, nblocks); 448 if (status < 0) { 449 mlog_errno(status); 450 goto bail; 451 } 452 } 453 454 status = 0; 455 bail: 456 457 mlog_exit(status); 458 return status; 459 } 460 461 struct ocfs2_triggers { 462 struct jbd2_buffer_trigger_type ot_triggers; 463 int ot_offset; 464 }; 465 466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 467 { 468 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 469 } 470 471 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 472 struct buffer_head *bh, 473 void *data, size_t size) 474 { 475 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 476 477 /* 478 * We aren't guaranteed to have the superblock here, so we 479 * must unconditionally compute the ecc data. 480 * __ocfs2_journal_access() will only set the triggers if 481 * metaecc is enabled. 482 */ 483 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 484 } 485 486 /* 487 * Quota blocks have their own trigger because the struct ocfs2_block_check 488 * offset depends on the blocksize. 489 */ 490 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 491 struct buffer_head *bh, 492 void *data, size_t size) 493 { 494 struct ocfs2_disk_dqtrailer *dqt = 495 ocfs2_block_dqtrailer(size, data); 496 497 /* 498 * We aren't guaranteed to have the superblock here, so we 499 * must unconditionally compute the ecc data. 500 * __ocfs2_journal_access() will only set the triggers if 501 * metaecc is enabled. 502 */ 503 ocfs2_block_check_compute(data, size, &dqt->dq_check); 504 } 505 506 /* 507 * Directory blocks also have their own trigger because the 508 * struct ocfs2_block_check offset depends on the blocksize. 509 */ 510 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 511 struct buffer_head *bh, 512 void *data, size_t size) 513 { 514 struct ocfs2_dir_block_trailer *trailer = 515 ocfs2_dir_trailer_from_size(size, data); 516 517 /* 518 * We aren't guaranteed to have the superblock here, so we 519 * must unconditionally compute the ecc data. 520 * __ocfs2_journal_access() will only set the triggers if 521 * metaecc is enabled. 522 */ 523 ocfs2_block_check_compute(data, size, &trailer->db_check); 524 } 525 526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 527 struct buffer_head *bh) 528 { 529 mlog(ML_ERROR, 530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 531 "bh->b_blocknr = %llu\n", 532 (unsigned long)bh, 533 (unsigned long long)bh->b_blocknr); 534 535 /* We aren't guaranteed to have the superblock here - but if we 536 * don't, it'll just crash. */ 537 ocfs2_error(bh->b_assoc_map->host->i_sb, 538 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 539 } 540 541 static struct ocfs2_triggers di_triggers = { 542 .ot_triggers = { 543 .t_commit = ocfs2_commit_trigger, 544 .t_abort = ocfs2_abort_trigger, 545 }, 546 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 547 }; 548 549 static struct ocfs2_triggers eb_triggers = { 550 .ot_triggers = { 551 .t_commit = ocfs2_commit_trigger, 552 .t_abort = ocfs2_abort_trigger, 553 }, 554 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 555 }; 556 557 static struct ocfs2_triggers gd_triggers = { 558 .ot_triggers = { 559 .t_commit = ocfs2_commit_trigger, 560 .t_abort = ocfs2_abort_trigger, 561 }, 562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 563 }; 564 565 static struct ocfs2_triggers db_triggers = { 566 .ot_triggers = { 567 .t_commit = ocfs2_db_commit_trigger, 568 .t_abort = ocfs2_abort_trigger, 569 }, 570 }; 571 572 static struct ocfs2_triggers xb_triggers = { 573 .ot_triggers = { 574 .t_commit = ocfs2_commit_trigger, 575 .t_abort = ocfs2_abort_trigger, 576 }, 577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 578 }; 579 580 static struct ocfs2_triggers dq_triggers = { 581 .ot_triggers = { 582 .t_commit = ocfs2_dq_commit_trigger, 583 .t_abort = ocfs2_abort_trigger, 584 }, 585 }; 586 587 static struct ocfs2_triggers dr_triggers = { 588 .ot_triggers = { 589 .t_commit = ocfs2_commit_trigger, 590 .t_abort = ocfs2_abort_trigger, 591 }, 592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 593 }; 594 595 static struct ocfs2_triggers dl_triggers = { 596 .ot_triggers = { 597 .t_commit = ocfs2_commit_trigger, 598 .t_abort = ocfs2_abort_trigger, 599 }, 600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 601 }; 602 603 static int __ocfs2_journal_access(handle_t *handle, 604 struct inode *inode, 605 struct buffer_head *bh, 606 struct ocfs2_triggers *triggers, 607 int type) 608 { 609 int status; 610 611 BUG_ON(!inode); 612 BUG_ON(!handle); 613 BUG_ON(!bh); 614 615 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 616 (unsigned long long)bh->b_blocknr, type, 617 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 618 "OCFS2_JOURNAL_ACCESS_CREATE" : 619 "OCFS2_JOURNAL_ACCESS_WRITE", 620 bh->b_size); 621 622 /* we can safely remove this assertion after testing. */ 623 if (!buffer_uptodate(bh)) { 624 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 625 mlog(ML_ERROR, "b_blocknr=%llu\n", 626 (unsigned long long)bh->b_blocknr); 627 BUG(); 628 } 629 630 /* Set the current transaction information on the inode so 631 * that the locking code knows whether it can drop it's locks 632 * on this inode or not. We're protected from the commit 633 * thread updating the current transaction id until 634 * ocfs2_commit_trans() because ocfs2_start_trans() took 635 * j_trans_barrier for us. */ 636 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 637 638 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 639 switch (type) { 640 case OCFS2_JOURNAL_ACCESS_CREATE: 641 case OCFS2_JOURNAL_ACCESS_WRITE: 642 status = jbd2_journal_get_write_access(handle, bh); 643 break; 644 645 case OCFS2_JOURNAL_ACCESS_UNDO: 646 status = jbd2_journal_get_undo_access(handle, bh); 647 break; 648 649 default: 650 status = -EINVAL; 651 mlog(ML_ERROR, "Uknown access type!\n"); 652 } 653 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers) 654 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 655 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 656 657 if (status < 0) 658 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 659 status, type); 660 661 mlog_exit(status); 662 return status; 663 } 664 665 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode, 666 struct buffer_head *bh, int type) 667 { 668 return __ocfs2_journal_access(handle, inode, bh, &di_triggers, 669 type); 670 } 671 672 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode, 673 struct buffer_head *bh, int type) 674 { 675 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers, 676 type); 677 } 678 679 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode, 680 struct buffer_head *bh, int type) 681 { 682 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers, 683 type); 684 } 685 686 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode, 687 struct buffer_head *bh, int type) 688 { 689 return __ocfs2_journal_access(handle, inode, bh, &db_triggers, 690 type); 691 } 692 693 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode, 694 struct buffer_head *bh, int type) 695 { 696 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers, 697 type); 698 } 699 700 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode, 701 struct buffer_head *bh, int type) 702 { 703 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers, 704 type); 705 } 706 707 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode, 708 struct buffer_head *bh, int type) 709 { 710 return __ocfs2_journal_access(handle, inode, bh, &dr_triggers, 711 type); 712 } 713 714 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode, 715 struct buffer_head *bh, int type) 716 { 717 return __ocfs2_journal_access(handle, inode, bh, &dl_triggers, 718 type); 719 } 720 721 int ocfs2_journal_access(handle_t *handle, struct inode *inode, 722 struct buffer_head *bh, int type) 723 { 724 return __ocfs2_journal_access(handle, inode, bh, NULL, type); 725 } 726 727 int ocfs2_journal_dirty(handle_t *handle, 728 struct buffer_head *bh) 729 { 730 int status; 731 732 mlog_entry("(bh->b_blocknr=%llu)\n", 733 (unsigned long long)bh->b_blocknr); 734 735 status = jbd2_journal_dirty_metadata(handle, bh); 736 if (status < 0) 737 mlog(ML_ERROR, "Could not dirty metadata buffer. " 738 "(bh->b_blocknr=%llu)\n", 739 (unsigned long long)bh->b_blocknr); 740 741 mlog_exit(status); 742 return status; 743 } 744 745 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 746 747 void ocfs2_set_journal_params(struct ocfs2_super *osb) 748 { 749 journal_t *journal = osb->journal->j_journal; 750 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 751 752 if (osb->osb_commit_interval) 753 commit_interval = osb->osb_commit_interval; 754 755 spin_lock(&journal->j_state_lock); 756 journal->j_commit_interval = commit_interval; 757 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 758 journal->j_flags |= JBD2_BARRIER; 759 else 760 journal->j_flags &= ~JBD2_BARRIER; 761 spin_unlock(&journal->j_state_lock); 762 } 763 764 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 765 { 766 int status = -1; 767 struct inode *inode = NULL; /* the journal inode */ 768 journal_t *j_journal = NULL; 769 struct ocfs2_dinode *di = NULL; 770 struct buffer_head *bh = NULL; 771 struct ocfs2_super *osb; 772 int inode_lock = 0; 773 774 mlog_entry_void(); 775 776 BUG_ON(!journal); 777 778 osb = journal->j_osb; 779 780 /* already have the inode for our journal */ 781 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 782 osb->slot_num); 783 if (inode == NULL) { 784 status = -EACCES; 785 mlog_errno(status); 786 goto done; 787 } 788 if (is_bad_inode(inode)) { 789 mlog(ML_ERROR, "access error (bad inode)\n"); 790 iput(inode); 791 inode = NULL; 792 status = -EACCES; 793 goto done; 794 } 795 796 SET_INODE_JOURNAL(inode); 797 OCFS2_I(inode)->ip_open_count++; 798 799 /* Skip recovery waits here - journal inode metadata never 800 * changes in a live cluster so it can be considered an 801 * exception to the rule. */ 802 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 803 if (status < 0) { 804 if (status != -ERESTARTSYS) 805 mlog(ML_ERROR, "Could not get lock on journal!\n"); 806 goto done; 807 } 808 809 inode_lock = 1; 810 di = (struct ocfs2_dinode *)bh->b_data; 811 812 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 813 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 814 inode->i_size); 815 status = -EINVAL; 816 goto done; 817 } 818 819 mlog(0, "inode->i_size = %lld\n", inode->i_size); 820 mlog(0, "inode->i_blocks = %llu\n", 821 (unsigned long long)inode->i_blocks); 822 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 823 824 /* call the kernels journal init function now */ 825 j_journal = jbd2_journal_init_inode(inode); 826 if (j_journal == NULL) { 827 mlog(ML_ERROR, "Linux journal layer error\n"); 828 status = -EINVAL; 829 goto done; 830 } 831 832 mlog(0, "Returned from jbd2_journal_init_inode\n"); 833 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 834 835 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 836 OCFS2_JOURNAL_DIRTY_FL); 837 838 journal->j_journal = j_journal; 839 journal->j_inode = inode; 840 journal->j_bh = bh; 841 842 ocfs2_set_journal_params(osb); 843 844 journal->j_state = OCFS2_JOURNAL_LOADED; 845 846 status = 0; 847 done: 848 if (status < 0) { 849 if (inode_lock) 850 ocfs2_inode_unlock(inode, 1); 851 brelse(bh); 852 if (inode) { 853 OCFS2_I(inode)->ip_open_count--; 854 iput(inode); 855 } 856 } 857 858 mlog_exit(status); 859 return status; 860 } 861 862 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 863 { 864 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 865 } 866 867 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 868 { 869 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 870 } 871 872 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 873 int dirty, int replayed) 874 { 875 int status; 876 unsigned int flags; 877 struct ocfs2_journal *journal = osb->journal; 878 struct buffer_head *bh = journal->j_bh; 879 struct ocfs2_dinode *fe; 880 881 mlog_entry_void(); 882 883 fe = (struct ocfs2_dinode *)bh->b_data; 884 885 /* The journal bh on the osb always comes from ocfs2_journal_init() 886 * and was validated there inside ocfs2_inode_lock_full(). It's a 887 * code bug if we mess it up. */ 888 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 889 890 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 891 if (dirty) 892 flags |= OCFS2_JOURNAL_DIRTY_FL; 893 else 894 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 895 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 896 897 if (replayed) 898 ocfs2_bump_recovery_generation(fe); 899 900 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 901 status = ocfs2_write_block(osb, bh, journal->j_inode); 902 if (status < 0) 903 mlog_errno(status); 904 905 mlog_exit(status); 906 return status; 907 } 908 909 /* 910 * If the journal has been kmalloc'd it needs to be freed after this 911 * call. 912 */ 913 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 914 { 915 struct ocfs2_journal *journal = NULL; 916 int status = 0; 917 struct inode *inode = NULL; 918 int num_running_trans = 0; 919 920 mlog_entry_void(); 921 922 BUG_ON(!osb); 923 924 journal = osb->journal; 925 if (!journal) 926 goto done; 927 928 inode = journal->j_inode; 929 930 if (journal->j_state != OCFS2_JOURNAL_LOADED) 931 goto done; 932 933 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 934 if (!igrab(inode)) 935 BUG(); 936 937 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 938 if (num_running_trans > 0) 939 mlog(0, "Shutting down journal: must wait on %d " 940 "running transactions!\n", 941 num_running_trans); 942 943 /* Do a commit_cache here. It will flush our journal, *and* 944 * release any locks that are still held. 945 * set the SHUTDOWN flag and release the trans lock. 946 * the commit thread will take the trans lock for us below. */ 947 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 948 949 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 950 * drop the trans_lock (which we want to hold until we 951 * completely destroy the journal. */ 952 if (osb->commit_task) { 953 /* Wait for the commit thread */ 954 mlog(0, "Waiting for ocfs2commit to exit....\n"); 955 kthread_stop(osb->commit_task); 956 osb->commit_task = NULL; 957 } 958 959 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 960 961 if (ocfs2_mount_local(osb)) { 962 jbd2_journal_lock_updates(journal->j_journal); 963 status = jbd2_journal_flush(journal->j_journal); 964 jbd2_journal_unlock_updates(journal->j_journal); 965 if (status < 0) 966 mlog_errno(status); 967 } 968 969 if (status == 0) { 970 /* 971 * Do not toggle if flush was unsuccessful otherwise 972 * will leave dirty metadata in a "clean" journal 973 */ 974 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 975 if (status < 0) 976 mlog_errno(status); 977 } 978 979 /* Shutdown the kernel journal system */ 980 jbd2_journal_destroy(journal->j_journal); 981 journal->j_journal = NULL; 982 983 OCFS2_I(inode)->ip_open_count--; 984 985 /* unlock our journal */ 986 ocfs2_inode_unlock(inode, 1); 987 988 brelse(journal->j_bh); 989 journal->j_bh = NULL; 990 991 journal->j_state = OCFS2_JOURNAL_FREE; 992 993 // up_write(&journal->j_trans_barrier); 994 done: 995 if (inode) 996 iput(inode); 997 mlog_exit_void(); 998 } 999 1000 static void ocfs2_clear_journal_error(struct super_block *sb, 1001 journal_t *journal, 1002 int slot) 1003 { 1004 int olderr; 1005 1006 olderr = jbd2_journal_errno(journal); 1007 if (olderr) { 1008 mlog(ML_ERROR, "File system error %d recorded in " 1009 "journal %u.\n", olderr, slot); 1010 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1011 sb->s_id); 1012 1013 jbd2_journal_ack_err(journal); 1014 jbd2_journal_clear_err(journal); 1015 } 1016 } 1017 1018 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1019 { 1020 int status = 0; 1021 struct ocfs2_super *osb; 1022 1023 mlog_entry_void(); 1024 1025 BUG_ON(!journal); 1026 1027 osb = journal->j_osb; 1028 1029 status = jbd2_journal_load(journal->j_journal); 1030 if (status < 0) { 1031 mlog(ML_ERROR, "Failed to load journal!\n"); 1032 goto done; 1033 } 1034 1035 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1036 1037 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1038 if (status < 0) { 1039 mlog_errno(status); 1040 goto done; 1041 } 1042 1043 /* Launch the commit thread */ 1044 if (!local) { 1045 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1046 "ocfs2cmt"); 1047 if (IS_ERR(osb->commit_task)) { 1048 status = PTR_ERR(osb->commit_task); 1049 osb->commit_task = NULL; 1050 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1051 "error=%d", status); 1052 goto done; 1053 } 1054 } else 1055 osb->commit_task = NULL; 1056 1057 done: 1058 mlog_exit(status); 1059 return status; 1060 } 1061 1062 1063 /* 'full' flag tells us whether we clear out all blocks or if we just 1064 * mark the journal clean */ 1065 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1066 { 1067 int status; 1068 1069 mlog_entry_void(); 1070 1071 BUG_ON(!journal); 1072 1073 status = jbd2_journal_wipe(journal->j_journal, full); 1074 if (status < 0) { 1075 mlog_errno(status); 1076 goto bail; 1077 } 1078 1079 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1080 if (status < 0) 1081 mlog_errno(status); 1082 1083 bail: 1084 mlog_exit(status); 1085 return status; 1086 } 1087 1088 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1089 { 1090 int empty; 1091 struct ocfs2_recovery_map *rm = osb->recovery_map; 1092 1093 spin_lock(&osb->osb_lock); 1094 empty = (rm->rm_used == 0); 1095 spin_unlock(&osb->osb_lock); 1096 1097 return empty; 1098 } 1099 1100 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1101 { 1102 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1103 } 1104 1105 /* 1106 * JBD Might read a cached version of another nodes journal file. We 1107 * don't want this as this file changes often and we get no 1108 * notification on those changes. The only way to be sure that we've 1109 * got the most up to date version of those blocks then is to force 1110 * read them off disk. Just searching through the buffer cache won't 1111 * work as there may be pages backing this file which are still marked 1112 * up to date. We know things can't change on this file underneath us 1113 * as we have the lock by now :) 1114 */ 1115 static int ocfs2_force_read_journal(struct inode *inode) 1116 { 1117 int status = 0; 1118 int i; 1119 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1120 #define CONCURRENT_JOURNAL_FILL 32ULL 1121 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1122 1123 mlog_entry_void(); 1124 1125 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1126 1127 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 1128 v_blkno = 0; 1129 while (v_blkno < num_blocks) { 1130 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1131 &p_blkno, &p_blocks, NULL); 1132 if (status < 0) { 1133 mlog_errno(status); 1134 goto bail; 1135 } 1136 1137 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1138 p_blocks = CONCURRENT_JOURNAL_FILL; 1139 1140 /* We are reading journal data which should not 1141 * be put in the uptodate cache */ 1142 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1143 p_blkno, p_blocks, bhs); 1144 if (status < 0) { 1145 mlog_errno(status); 1146 goto bail; 1147 } 1148 1149 for(i = 0; i < p_blocks; i++) { 1150 brelse(bhs[i]); 1151 bhs[i] = NULL; 1152 } 1153 1154 v_blkno += p_blocks; 1155 } 1156 1157 bail: 1158 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1159 brelse(bhs[i]); 1160 mlog_exit(status); 1161 return status; 1162 } 1163 1164 struct ocfs2_la_recovery_item { 1165 struct list_head lri_list; 1166 int lri_slot; 1167 struct ocfs2_dinode *lri_la_dinode; 1168 struct ocfs2_dinode *lri_tl_dinode; 1169 struct ocfs2_quota_recovery *lri_qrec; 1170 }; 1171 1172 /* Does the second half of the recovery process. By this point, the 1173 * node is marked clean and can actually be considered recovered, 1174 * hence it's no longer in the recovery map, but there's still some 1175 * cleanup we can do which shouldn't happen within the recovery thread 1176 * as locking in that context becomes very difficult if we are to take 1177 * recovering nodes into account. 1178 * 1179 * NOTE: This function can and will sleep on recovery of other nodes 1180 * during cluster locking, just like any other ocfs2 process. 1181 */ 1182 void ocfs2_complete_recovery(struct work_struct *work) 1183 { 1184 int ret; 1185 struct ocfs2_journal *journal = 1186 container_of(work, struct ocfs2_journal, j_recovery_work); 1187 struct ocfs2_super *osb = journal->j_osb; 1188 struct ocfs2_dinode *la_dinode, *tl_dinode; 1189 struct ocfs2_la_recovery_item *item, *n; 1190 struct ocfs2_quota_recovery *qrec; 1191 LIST_HEAD(tmp_la_list); 1192 1193 mlog_entry_void(); 1194 1195 mlog(0, "completing recovery from keventd\n"); 1196 1197 spin_lock(&journal->j_lock); 1198 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1199 spin_unlock(&journal->j_lock); 1200 1201 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1202 list_del_init(&item->lri_list); 1203 1204 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 1205 1206 ocfs2_wait_on_quotas(osb); 1207 1208 la_dinode = item->lri_la_dinode; 1209 if (la_dinode) { 1210 mlog(0, "Clean up local alloc %llu\n", 1211 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 1212 1213 ret = ocfs2_complete_local_alloc_recovery(osb, 1214 la_dinode); 1215 if (ret < 0) 1216 mlog_errno(ret); 1217 1218 kfree(la_dinode); 1219 } 1220 1221 tl_dinode = item->lri_tl_dinode; 1222 if (tl_dinode) { 1223 mlog(0, "Clean up truncate log %llu\n", 1224 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 1225 1226 ret = ocfs2_complete_truncate_log_recovery(osb, 1227 tl_dinode); 1228 if (ret < 0) 1229 mlog_errno(ret); 1230 1231 kfree(tl_dinode); 1232 } 1233 1234 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1235 if (ret < 0) 1236 mlog_errno(ret); 1237 1238 qrec = item->lri_qrec; 1239 if (qrec) { 1240 mlog(0, "Recovering quota files"); 1241 ret = ocfs2_finish_quota_recovery(osb, qrec, 1242 item->lri_slot); 1243 if (ret < 0) 1244 mlog_errno(ret); 1245 /* Recovery info is already freed now */ 1246 } 1247 1248 kfree(item); 1249 } 1250 1251 mlog(0, "Recovery completion\n"); 1252 mlog_exit_void(); 1253 } 1254 1255 /* NOTE: This function always eats your references to la_dinode and 1256 * tl_dinode, either manually on error, or by passing them to 1257 * ocfs2_complete_recovery */ 1258 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1259 int slot_num, 1260 struct ocfs2_dinode *la_dinode, 1261 struct ocfs2_dinode *tl_dinode, 1262 struct ocfs2_quota_recovery *qrec) 1263 { 1264 struct ocfs2_la_recovery_item *item; 1265 1266 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1267 if (!item) { 1268 /* Though we wish to avoid it, we are in fact safe in 1269 * skipping local alloc cleanup as fsck.ocfs2 is more 1270 * than capable of reclaiming unused space. */ 1271 if (la_dinode) 1272 kfree(la_dinode); 1273 1274 if (tl_dinode) 1275 kfree(tl_dinode); 1276 1277 if (qrec) 1278 ocfs2_free_quota_recovery(qrec); 1279 1280 mlog_errno(-ENOMEM); 1281 return; 1282 } 1283 1284 INIT_LIST_HEAD(&item->lri_list); 1285 item->lri_la_dinode = la_dinode; 1286 item->lri_slot = slot_num; 1287 item->lri_tl_dinode = tl_dinode; 1288 item->lri_qrec = qrec; 1289 1290 spin_lock(&journal->j_lock); 1291 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1292 queue_work(ocfs2_wq, &journal->j_recovery_work); 1293 spin_unlock(&journal->j_lock); 1294 } 1295 1296 /* Called by the mount code to queue recovery the last part of 1297 * recovery for it's own and offline slot(s). */ 1298 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1299 { 1300 struct ocfs2_journal *journal = osb->journal; 1301 1302 /* No need to queue up our truncate_log as regular cleanup will catch 1303 * that */ 1304 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1305 osb->local_alloc_copy, NULL, NULL); 1306 ocfs2_schedule_truncate_log_flush(osb, 0); 1307 1308 osb->local_alloc_copy = NULL; 1309 osb->dirty = 0; 1310 1311 /* queue to recover orphan slots for all offline slots */ 1312 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1313 ocfs2_queue_replay_slots(osb); 1314 ocfs2_free_replay_slots(osb); 1315 } 1316 1317 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1318 { 1319 if (osb->quota_rec) { 1320 ocfs2_queue_recovery_completion(osb->journal, 1321 osb->slot_num, 1322 NULL, 1323 NULL, 1324 osb->quota_rec); 1325 osb->quota_rec = NULL; 1326 } 1327 } 1328 1329 static int __ocfs2_recovery_thread(void *arg) 1330 { 1331 int status, node_num, slot_num; 1332 struct ocfs2_super *osb = arg; 1333 struct ocfs2_recovery_map *rm = osb->recovery_map; 1334 int *rm_quota = NULL; 1335 int rm_quota_used = 0, i; 1336 struct ocfs2_quota_recovery *qrec; 1337 1338 mlog_entry_void(); 1339 1340 status = ocfs2_wait_on_mount(osb); 1341 if (status < 0) { 1342 goto bail; 1343 } 1344 1345 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1346 if (!rm_quota) { 1347 status = -ENOMEM; 1348 goto bail; 1349 } 1350 restart: 1351 status = ocfs2_super_lock(osb, 1); 1352 if (status < 0) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 1357 status = ocfs2_compute_replay_slots(osb); 1358 if (status < 0) 1359 mlog_errno(status); 1360 1361 /* queue recovery for our own slot */ 1362 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1363 NULL, NULL); 1364 1365 spin_lock(&osb->osb_lock); 1366 while (rm->rm_used) { 1367 /* It's always safe to remove entry zero, as we won't 1368 * clear it until ocfs2_recover_node() has succeeded. */ 1369 node_num = rm->rm_entries[0]; 1370 spin_unlock(&osb->osb_lock); 1371 mlog(0, "checking node %d\n", node_num); 1372 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1373 if (slot_num == -ENOENT) { 1374 status = 0; 1375 mlog(0, "no slot for this node, so no recovery" 1376 "required.\n"); 1377 goto skip_recovery; 1378 } 1379 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1380 1381 /* It is a bit subtle with quota recovery. We cannot do it 1382 * immediately because we have to obtain cluster locks from 1383 * quota files and we also don't want to just skip it because 1384 * then quota usage would be out of sync until some node takes 1385 * the slot. So we remember which nodes need quota recovery 1386 * and when everything else is done, we recover quotas. */ 1387 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1388 if (i == rm_quota_used) 1389 rm_quota[rm_quota_used++] = slot_num; 1390 1391 status = ocfs2_recover_node(osb, node_num, slot_num); 1392 skip_recovery: 1393 if (!status) { 1394 ocfs2_recovery_map_clear(osb, node_num); 1395 } else { 1396 mlog(ML_ERROR, 1397 "Error %d recovering node %d on device (%u,%u)!\n", 1398 status, node_num, 1399 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1400 mlog(ML_ERROR, "Volume requires unmount.\n"); 1401 } 1402 1403 spin_lock(&osb->osb_lock); 1404 } 1405 spin_unlock(&osb->osb_lock); 1406 mlog(0, "All nodes recovered\n"); 1407 1408 /* Refresh all journal recovery generations from disk */ 1409 status = ocfs2_check_journals_nolocks(osb); 1410 status = (status == -EROFS) ? 0 : status; 1411 if (status < 0) 1412 mlog_errno(status); 1413 1414 /* Now it is right time to recover quotas... We have to do this under 1415 * superblock lock so that noone can start using the slot (and crash) 1416 * before we recover it */ 1417 for (i = 0; i < rm_quota_used; i++) { 1418 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1419 if (IS_ERR(qrec)) { 1420 status = PTR_ERR(qrec); 1421 mlog_errno(status); 1422 continue; 1423 } 1424 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1425 NULL, NULL, qrec); 1426 } 1427 1428 ocfs2_super_unlock(osb, 1); 1429 1430 /* queue recovery for offline slots */ 1431 ocfs2_queue_replay_slots(osb); 1432 1433 bail: 1434 mutex_lock(&osb->recovery_lock); 1435 if (!status && !ocfs2_recovery_completed(osb)) { 1436 mutex_unlock(&osb->recovery_lock); 1437 goto restart; 1438 } 1439 1440 ocfs2_free_replay_slots(osb); 1441 osb->recovery_thread_task = NULL; 1442 mb(); /* sync with ocfs2_recovery_thread_running */ 1443 wake_up(&osb->recovery_event); 1444 1445 mutex_unlock(&osb->recovery_lock); 1446 1447 if (rm_quota) 1448 kfree(rm_quota); 1449 1450 mlog_exit(status); 1451 /* no one is callint kthread_stop() for us so the kthread() api 1452 * requires that we call do_exit(). And it isn't exported, but 1453 * complete_and_exit() seems to be a minimal wrapper around it. */ 1454 complete_and_exit(NULL, status); 1455 return status; 1456 } 1457 1458 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1459 { 1460 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1461 node_num, osb->node_num); 1462 1463 mutex_lock(&osb->recovery_lock); 1464 if (osb->disable_recovery) 1465 goto out; 1466 1467 /* People waiting on recovery will wait on 1468 * the recovery map to empty. */ 1469 if (ocfs2_recovery_map_set(osb, node_num)) 1470 mlog(0, "node %d already in recovery map.\n", node_num); 1471 1472 mlog(0, "starting recovery thread...\n"); 1473 1474 if (osb->recovery_thread_task) 1475 goto out; 1476 1477 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1478 "ocfs2rec"); 1479 if (IS_ERR(osb->recovery_thread_task)) { 1480 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1481 osb->recovery_thread_task = NULL; 1482 } 1483 1484 out: 1485 mutex_unlock(&osb->recovery_lock); 1486 wake_up(&osb->recovery_event); 1487 1488 mlog_exit_void(); 1489 } 1490 1491 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1492 int slot_num, 1493 struct buffer_head **bh, 1494 struct inode **ret_inode) 1495 { 1496 int status = -EACCES; 1497 struct inode *inode = NULL; 1498 1499 BUG_ON(slot_num >= osb->max_slots); 1500 1501 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1502 slot_num); 1503 if (!inode || is_bad_inode(inode)) { 1504 mlog_errno(status); 1505 goto bail; 1506 } 1507 SET_INODE_JOURNAL(inode); 1508 1509 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1510 if (status < 0) { 1511 mlog_errno(status); 1512 goto bail; 1513 } 1514 1515 status = 0; 1516 1517 bail: 1518 if (inode) { 1519 if (status || !ret_inode) 1520 iput(inode); 1521 else 1522 *ret_inode = inode; 1523 } 1524 return status; 1525 } 1526 1527 /* Does the actual journal replay and marks the journal inode as 1528 * clean. Will only replay if the journal inode is marked dirty. */ 1529 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1530 int node_num, 1531 int slot_num) 1532 { 1533 int status; 1534 int got_lock = 0; 1535 unsigned int flags; 1536 struct inode *inode = NULL; 1537 struct ocfs2_dinode *fe; 1538 journal_t *journal = NULL; 1539 struct buffer_head *bh = NULL; 1540 u32 slot_reco_gen; 1541 1542 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1543 if (status) { 1544 mlog_errno(status); 1545 goto done; 1546 } 1547 1548 fe = (struct ocfs2_dinode *)bh->b_data; 1549 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1550 brelse(bh); 1551 bh = NULL; 1552 1553 /* 1554 * As the fs recovery is asynchronous, there is a small chance that 1555 * another node mounted (and recovered) the slot before the recovery 1556 * thread could get the lock. To handle that, we dirty read the journal 1557 * inode for that slot to get the recovery generation. If it is 1558 * different than what we expected, the slot has been recovered. 1559 * If not, it needs recovery. 1560 */ 1561 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1562 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1563 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1564 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1565 status = -EBUSY; 1566 goto done; 1567 } 1568 1569 /* Continue with recovery as the journal has not yet been recovered */ 1570 1571 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1572 if (status < 0) { 1573 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1574 if (status != -ERESTARTSYS) 1575 mlog(ML_ERROR, "Could not lock journal!\n"); 1576 goto done; 1577 } 1578 got_lock = 1; 1579 1580 fe = (struct ocfs2_dinode *) bh->b_data; 1581 1582 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1583 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1584 1585 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1586 mlog(0, "No recovery required for node %d\n", node_num); 1587 /* Refresh recovery generation for the slot */ 1588 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1589 goto done; 1590 } 1591 1592 /* we need to run complete recovery for offline orphan slots */ 1593 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1594 1595 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1596 node_num, slot_num, 1597 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1598 1599 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1600 1601 status = ocfs2_force_read_journal(inode); 1602 if (status < 0) { 1603 mlog_errno(status); 1604 goto done; 1605 } 1606 1607 mlog(0, "calling journal_init_inode\n"); 1608 journal = jbd2_journal_init_inode(inode); 1609 if (journal == NULL) { 1610 mlog(ML_ERROR, "Linux journal layer error\n"); 1611 status = -EIO; 1612 goto done; 1613 } 1614 1615 status = jbd2_journal_load(journal); 1616 if (status < 0) { 1617 mlog_errno(status); 1618 if (!igrab(inode)) 1619 BUG(); 1620 jbd2_journal_destroy(journal); 1621 goto done; 1622 } 1623 1624 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1625 1626 /* wipe the journal */ 1627 mlog(0, "flushing the journal.\n"); 1628 jbd2_journal_lock_updates(journal); 1629 status = jbd2_journal_flush(journal); 1630 jbd2_journal_unlock_updates(journal); 1631 if (status < 0) 1632 mlog_errno(status); 1633 1634 /* This will mark the node clean */ 1635 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1636 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1637 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1638 1639 /* Increment recovery generation to indicate successful recovery */ 1640 ocfs2_bump_recovery_generation(fe); 1641 osb->slot_recovery_generations[slot_num] = 1642 ocfs2_get_recovery_generation(fe); 1643 1644 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1645 status = ocfs2_write_block(osb, bh, inode); 1646 if (status < 0) 1647 mlog_errno(status); 1648 1649 if (!igrab(inode)) 1650 BUG(); 1651 1652 jbd2_journal_destroy(journal); 1653 1654 done: 1655 /* drop the lock on this nodes journal */ 1656 if (got_lock) 1657 ocfs2_inode_unlock(inode, 1); 1658 1659 if (inode) 1660 iput(inode); 1661 1662 brelse(bh); 1663 1664 mlog_exit(status); 1665 return status; 1666 } 1667 1668 /* 1669 * Do the most important parts of node recovery: 1670 * - Replay it's journal 1671 * - Stamp a clean local allocator file 1672 * - Stamp a clean truncate log 1673 * - Mark the node clean 1674 * 1675 * If this function completes without error, a node in OCFS2 can be 1676 * said to have been safely recovered. As a result, failure during the 1677 * second part of a nodes recovery process (local alloc recovery) is 1678 * far less concerning. 1679 */ 1680 static int ocfs2_recover_node(struct ocfs2_super *osb, 1681 int node_num, int slot_num) 1682 { 1683 int status = 0; 1684 struct ocfs2_dinode *la_copy = NULL; 1685 struct ocfs2_dinode *tl_copy = NULL; 1686 1687 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", 1688 node_num, slot_num, osb->node_num); 1689 1690 /* Should not ever be called to recover ourselves -- in that 1691 * case we should've called ocfs2_journal_load instead. */ 1692 BUG_ON(osb->node_num == node_num); 1693 1694 status = ocfs2_replay_journal(osb, node_num, slot_num); 1695 if (status < 0) { 1696 if (status == -EBUSY) { 1697 mlog(0, "Skipping recovery for slot %u (node %u) " 1698 "as another node has recovered it\n", slot_num, 1699 node_num); 1700 status = 0; 1701 goto done; 1702 } 1703 mlog_errno(status); 1704 goto done; 1705 } 1706 1707 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1708 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1709 if (status < 0) { 1710 mlog_errno(status); 1711 goto done; 1712 } 1713 1714 /* An error from begin_truncate_log_recovery is not 1715 * serious enough to warrant halting the rest of 1716 * recovery. */ 1717 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1718 if (status < 0) 1719 mlog_errno(status); 1720 1721 /* Likewise, this would be a strange but ultimately not so 1722 * harmful place to get an error... */ 1723 status = ocfs2_clear_slot(osb, slot_num); 1724 if (status < 0) 1725 mlog_errno(status); 1726 1727 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1728 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1729 tl_copy, NULL); 1730 1731 status = 0; 1732 done: 1733 1734 mlog_exit(status); 1735 return status; 1736 } 1737 1738 /* Test node liveness by trylocking his journal. If we get the lock, 1739 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1740 * still alive (we couldn't get the lock) and < 0 on error. */ 1741 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1742 int slot_num) 1743 { 1744 int status, flags; 1745 struct inode *inode = NULL; 1746 1747 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1748 slot_num); 1749 if (inode == NULL) { 1750 mlog(ML_ERROR, "access error\n"); 1751 status = -EACCES; 1752 goto bail; 1753 } 1754 if (is_bad_inode(inode)) { 1755 mlog(ML_ERROR, "access error (bad inode)\n"); 1756 iput(inode); 1757 inode = NULL; 1758 status = -EACCES; 1759 goto bail; 1760 } 1761 SET_INODE_JOURNAL(inode); 1762 1763 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1764 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1765 if (status < 0) { 1766 if (status != -EAGAIN) 1767 mlog_errno(status); 1768 goto bail; 1769 } 1770 1771 ocfs2_inode_unlock(inode, 1); 1772 bail: 1773 if (inode) 1774 iput(inode); 1775 1776 return status; 1777 } 1778 1779 /* Call this underneath ocfs2_super_lock. It also assumes that the 1780 * slot info struct has been updated from disk. */ 1781 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1782 { 1783 unsigned int node_num; 1784 int status, i; 1785 u32 gen; 1786 struct buffer_head *bh = NULL; 1787 struct ocfs2_dinode *di; 1788 1789 /* This is called with the super block cluster lock, so we 1790 * know that the slot map can't change underneath us. */ 1791 1792 for (i = 0; i < osb->max_slots; i++) { 1793 /* Read journal inode to get the recovery generation */ 1794 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1795 if (status) { 1796 mlog_errno(status); 1797 goto bail; 1798 } 1799 di = (struct ocfs2_dinode *)bh->b_data; 1800 gen = ocfs2_get_recovery_generation(di); 1801 brelse(bh); 1802 bh = NULL; 1803 1804 spin_lock(&osb->osb_lock); 1805 osb->slot_recovery_generations[i] = gen; 1806 1807 mlog(0, "Slot %u recovery generation is %u\n", i, 1808 osb->slot_recovery_generations[i]); 1809 1810 if (i == osb->slot_num) { 1811 spin_unlock(&osb->osb_lock); 1812 continue; 1813 } 1814 1815 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1816 if (status == -ENOENT) { 1817 spin_unlock(&osb->osb_lock); 1818 continue; 1819 } 1820 1821 if (__ocfs2_recovery_map_test(osb, node_num)) { 1822 spin_unlock(&osb->osb_lock); 1823 continue; 1824 } 1825 spin_unlock(&osb->osb_lock); 1826 1827 /* Ok, we have a slot occupied by another node which 1828 * is not in the recovery map. We trylock his journal 1829 * file here to test if he's alive. */ 1830 status = ocfs2_trylock_journal(osb, i); 1831 if (!status) { 1832 /* Since we're called from mount, we know that 1833 * the recovery thread can't race us on 1834 * setting / checking the recovery bits. */ 1835 ocfs2_recovery_thread(osb, node_num); 1836 } else if ((status < 0) && (status != -EAGAIN)) { 1837 mlog_errno(status); 1838 goto bail; 1839 } 1840 } 1841 1842 status = 0; 1843 bail: 1844 mlog_exit(status); 1845 return status; 1846 } 1847 1848 /* 1849 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1850 * randomness to the timeout to minimize multple nodes firing the timer at the 1851 * same time. 1852 */ 1853 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1854 { 1855 unsigned long time; 1856 1857 get_random_bytes(&time, sizeof(time)); 1858 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1859 return msecs_to_jiffies(time); 1860 } 1861 1862 /* 1863 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1864 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1865 * is done to catch any orphans that are left over in orphan directories. 1866 * 1867 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1868 * seconds. It gets an EX lock on os_lockres and checks sequence number 1869 * stored in LVB. If the sequence number has changed, it means some other 1870 * node has done the scan. This node skips the scan and tracks the 1871 * sequence number. If the sequence number didn't change, it means a scan 1872 * hasn't happened. The node queues a scan and increments the 1873 * sequence number in the LVB. 1874 */ 1875 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1876 { 1877 struct ocfs2_orphan_scan *os; 1878 int status, i; 1879 u32 seqno = 0; 1880 1881 os = &osb->osb_orphan_scan; 1882 1883 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1884 goto out; 1885 1886 status = ocfs2_orphan_scan_lock(osb, &seqno); 1887 if (status < 0) { 1888 if (status != -EAGAIN) 1889 mlog_errno(status); 1890 goto out; 1891 } 1892 1893 /* Do no queue the tasks if the volume is being umounted */ 1894 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1895 goto unlock; 1896 1897 if (os->os_seqno != seqno) { 1898 os->os_seqno = seqno; 1899 goto unlock; 1900 } 1901 1902 for (i = 0; i < osb->max_slots; i++) 1903 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1904 NULL); 1905 /* 1906 * We queued a recovery on orphan slots, increment the sequence 1907 * number and update LVB so other node will skip the scan for a while 1908 */ 1909 seqno++; 1910 os->os_count++; 1911 os->os_scantime = CURRENT_TIME; 1912 unlock: 1913 ocfs2_orphan_scan_unlock(osb, seqno); 1914 out: 1915 return; 1916 } 1917 1918 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1919 void ocfs2_orphan_scan_work(struct work_struct *work) 1920 { 1921 struct ocfs2_orphan_scan *os; 1922 struct ocfs2_super *osb; 1923 1924 os = container_of(work, struct ocfs2_orphan_scan, 1925 os_orphan_scan_work.work); 1926 osb = os->os_osb; 1927 1928 mutex_lock(&os->os_lock); 1929 ocfs2_queue_orphan_scan(osb); 1930 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1931 schedule_delayed_work(&os->os_orphan_scan_work, 1932 ocfs2_orphan_scan_timeout()); 1933 mutex_unlock(&os->os_lock); 1934 } 1935 1936 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1937 { 1938 struct ocfs2_orphan_scan *os; 1939 1940 os = &osb->osb_orphan_scan; 1941 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1942 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1943 mutex_lock(&os->os_lock); 1944 cancel_delayed_work(&os->os_orphan_scan_work); 1945 mutex_unlock(&os->os_lock); 1946 } 1947 } 1948 1949 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1950 { 1951 struct ocfs2_orphan_scan *os; 1952 1953 os = &osb->osb_orphan_scan; 1954 os->os_osb = osb; 1955 os->os_count = 0; 1956 os->os_seqno = 0; 1957 mutex_init(&os->os_lock); 1958 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 1959 } 1960 1961 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 1962 { 1963 struct ocfs2_orphan_scan *os; 1964 1965 os = &osb->osb_orphan_scan; 1966 os->os_scantime = CURRENT_TIME; 1967 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 1968 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1969 else { 1970 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 1971 schedule_delayed_work(&os->os_orphan_scan_work, 1972 ocfs2_orphan_scan_timeout()); 1973 } 1974 } 1975 1976 struct ocfs2_orphan_filldir_priv { 1977 struct inode *head; 1978 struct ocfs2_super *osb; 1979 }; 1980 1981 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1982 loff_t pos, u64 ino, unsigned type) 1983 { 1984 struct ocfs2_orphan_filldir_priv *p = priv; 1985 struct inode *iter; 1986 1987 if (name_len == 1 && !strncmp(".", name, 1)) 1988 return 0; 1989 if (name_len == 2 && !strncmp("..", name, 2)) 1990 return 0; 1991 1992 /* Skip bad inodes so that recovery can continue */ 1993 iter = ocfs2_iget(p->osb, ino, 1994 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1995 if (IS_ERR(iter)) 1996 return 0; 1997 1998 mlog(0, "queue orphan %llu\n", 1999 (unsigned long long)OCFS2_I(iter)->ip_blkno); 2000 /* No locking is required for the next_orphan queue as there 2001 * is only ever a single process doing orphan recovery. */ 2002 OCFS2_I(iter)->ip_next_orphan = p->head; 2003 p->head = iter; 2004 2005 return 0; 2006 } 2007 2008 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2009 int slot, 2010 struct inode **head) 2011 { 2012 int status; 2013 struct inode *orphan_dir_inode = NULL; 2014 struct ocfs2_orphan_filldir_priv priv; 2015 loff_t pos = 0; 2016 2017 priv.osb = osb; 2018 priv.head = *head; 2019 2020 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2021 ORPHAN_DIR_SYSTEM_INODE, 2022 slot); 2023 if (!orphan_dir_inode) { 2024 status = -ENOENT; 2025 mlog_errno(status); 2026 return status; 2027 } 2028 2029 mutex_lock(&orphan_dir_inode->i_mutex); 2030 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2031 if (status < 0) { 2032 mlog_errno(status); 2033 goto out; 2034 } 2035 2036 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 2037 ocfs2_orphan_filldir); 2038 if (status) { 2039 mlog_errno(status); 2040 goto out_cluster; 2041 } 2042 2043 *head = priv.head; 2044 2045 out_cluster: 2046 ocfs2_inode_unlock(orphan_dir_inode, 0); 2047 out: 2048 mutex_unlock(&orphan_dir_inode->i_mutex); 2049 iput(orphan_dir_inode); 2050 return status; 2051 } 2052 2053 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2054 int slot) 2055 { 2056 int ret; 2057 2058 spin_lock(&osb->osb_lock); 2059 ret = !osb->osb_orphan_wipes[slot]; 2060 spin_unlock(&osb->osb_lock); 2061 return ret; 2062 } 2063 2064 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2065 int slot) 2066 { 2067 spin_lock(&osb->osb_lock); 2068 /* Mark ourselves such that new processes in delete_inode() 2069 * know to quit early. */ 2070 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2071 while (osb->osb_orphan_wipes[slot]) { 2072 /* If any processes are already in the middle of an 2073 * orphan wipe on this dir, then we need to wait for 2074 * them. */ 2075 spin_unlock(&osb->osb_lock); 2076 wait_event_interruptible(osb->osb_wipe_event, 2077 ocfs2_orphan_recovery_can_continue(osb, slot)); 2078 spin_lock(&osb->osb_lock); 2079 } 2080 spin_unlock(&osb->osb_lock); 2081 } 2082 2083 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2084 int slot) 2085 { 2086 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2087 } 2088 2089 /* 2090 * Orphan recovery. Each mounted node has it's own orphan dir which we 2091 * must run during recovery. Our strategy here is to build a list of 2092 * the inodes in the orphan dir and iget/iput them. The VFS does 2093 * (most) of the rest of the work. 2094 * 2095 * Orphan recovery can happen at any time, not just mount so we have a 2096 * couple of extra considerations. 2097 * 2098 * - We grab as many inodes as we can under the orphan dir lock - 2099 * doing iget() outside the orphan dir risks getting a reference on 2100 * an invalid inode. 2101 * - We must be sure not to deadlock with other processes on the 2102 * system wanting to run delete_inode(). This can happen when they go 2103 * to lock the orphan dir and the orphan recovery process attempts to 2104 * iget() inside the orphan dir lock. This can be avoided by 2105 * advertising our state to ocfs2_delete_inode(). 2106 */ 2107 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2108 int slot) 2109 { 2110 int ret = 0; 2111 struct inode *inode = NULL; 2112 struct inode *iter; 2113 struct ocfs2_inode_info *oi; 2114 2115 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 2116 2117 ocfs2_mark_recovering_orphan_dir(osb, slot); 2118 ret = ocfs2_queue_orphans(osb, slot, &inode); 2119 ocfs2_clear_recovering_orphan_dir(osb, slot); 2120 2121 /* Error here should be noted, but we want to continue with as 2122 * many queued inodes as we've got. */ 2123 if (ret) 2124 mlog_errno(ret); 2125 2126 while (inode) { 2127 oi = OCFS2_I(inode); 2128 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 2129 2130 iter = oi->ip_next_orphan; 2131 2132 spin_lock(&oi->ip_lock); 2133 /* The remote delete code may have set these on the 2134 * assumption that the other node would wipe them 2135 * successfully. If they are still in the node's 2136 * orphan dir, we need to reset that state. */ 2137 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 2138 2139 /* Set the proper information to get us going into 2140 * ocfs2_delete_inode. */ 2141 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2142 spin_unlock(&oi->ip_lock); 2143 2144 iput(inode); 2145 2146 inode = iter; 2147 } 2148 2149 return ret; 2150 } 2151 2152 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2153 { 2154 /* This check is good because ocfs2 will wait on our recovery 2155 * thread before changing it to something other than MOUNTED 2156 * or DISABLED. */ 2157 wait_event(osb->osb_mount_event, 2158 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2159 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2160 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2161 2162 /* If there's an error on mount, then we may never get to the 2163 * MOUNTED flag, but this is set right before 2164 * dismount_volume() so we can trust it. */ 2165 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2166 mlog(0, "mount error, exiting!\n"); 2167 return -EBUSY; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int ocfs2_commit_thread(void *arg) 2174 { 2175 int status; 2176 struct ocfs2_super *osb = arg; 2177 struct ocfs2_journal *journal = osb->journal; 2178 2179 /* we can trust j_num_trans here because _should_stop() is only set in 2180 * shutdown and nobody other than ourselves should be able to start 2181 * transactions. committing on shutdown might take a few iterations 2182 * as final transactions put deleted inodes on the list */ 2183 while (!(kthread_should_stop() && 2184 atomic_read(&journal->j_num_trans) == 0)) { 2185 2186 wait_event_interruptible(osb->checkpoint_event, 2187 atomic_read(&journal->j_num_trans) 2188 || kthread_should_stop()); 2189 2190 status = ocfs2_commit_cache(osb); 2191 if (status < 0) 2192 mlog_errno(status); 2193 2194 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2195 mlog(ML_KTHREAD, 2196 "commit_thread: %u transactions pending on " 2197 "shutdown\n", 2198 atomic_read(&journal->j_num_trans)); 2199 } 2200 } 2201 2202 return 0; 2203 } 2204 2205 /* Reads all the journal inodes without taking any cluster locks. Used 2206 * for hard readonly access to determine whether any journal requires 2207 * recovery. Also used to refresh the recovery generation numbers after 2208 * a journal has been recovered by another node. 2209 */ 2210 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2211 { 2212 int ret = 0; 2213 unsigned int slot; 2214 struct buffer_head *di_bh = NULL; 2215 struct ocfs2_dinode *di; 2216 int journal_dirty = 0; 2217 2218 for(slot = 0; slot < osb->max_slots; slot++) { 2219 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2220 if (ret) { 2221 mlog_errno(ret); 2222 goto out; 2223 } 2224 2225 di = (struct ocfs2_dinode *) di_bh->b_data; 2226 2227 osb->slot_recovery_generations[slot] = 2228 ocfs2_get_recovery_generation(di); 2229 2230 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2231 OCFS2_JOURNAL_DIRTY_FL) 2232 journal_dirty = 1; 2233 2234 brelse(di_bh); 2235 di_bh = NULL; 2236 } 2237 2238 out: 2239 if (journal_dirty) 2240 ret = -EROFS; 2241 return ret; 2242 } 2243