xref: /openbmc/linux/fs/ocfs2/journal.c (revision ec20cec7)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 
54 #include "buffer_head_io.h"
55 
56 DEFINE_SPINLOCK(trans_inc_lock);
57 
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 			      int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 				      int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 				 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 				 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 					    int slot_num,
75 					    struct ocfs2_dinode *la_dinode,
76 					    struct ocfs2_dinode *tl_dinode,
77 					    struct ocfs2_quota_recovery *qrec);
78 
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 	return __ocfs2_wait_on_mount(osb, 0);
82 }
83 
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 1);
87 }
88 
89 /*
90  * This replay_map is to track online/offline slots, so we could recover
91  * offline slots during recovery and mount
92  */
93 
94 enum ocfs2_replay_state {
95 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
96 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
97 	REPLAY_DONE 		/* Replay was already queued */
98 };
99 
100 struct ocfs2_replay_map {
101 	unsigned int rm_slots;
102 	enum ocfs2_replay_state rm_state;
103 	unsigned char rm_replay_slots[0];
104 };
105 
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 	if (!osb->replay_map)
109 		return;
110 
111 	/* If we've already queued the replay, we don't have any more to do */
112 	if (osb->replay_map->rm_state == REPLAY_DONE)
113 		return;
114 
115 	osb->replay_map->rm_state = state;
116 }
117 
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 	struct ocfs2_replay_map *replay_map;
121 	int i, node_num;
122 
123 	/* If replay map is already set, we don't do it again */
124 	if (osb->replay_map)
125 		return 0;
126 
127 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
129 
130 	if (!replay_map) {
131 		mlog_errno(-ENOMEM);
132 		return -ENOMEM;
133 	}
134 
135 	spin_lock(&osb->osb_lock);
136 
137 	replay_map->rm_slots = osb->max_slots;
138 	replay_map->rm_state = REPLAY_UNNEEDED;
139 
140 	/* set rm_replay_slots for offline slot(s) */
141 	for (i = 0; i < replay_map->rm_slots; i++) {
142 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 			replay_map->rm_replay_slots[i] = 1;
144 	}
145 
146 	osb->replay_map = replay_map;
147 	spin_unlock(&osb->osb_lock);
148 	return 0;
149 }
150 
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 	struct ocfs2_replay_map *replay_map = osb->replay_map;
154 	int i;
155 
156 	if (!replay_map)
157 		return;
158 
159 	if (replay_map->rm_state != REPLAY_NEEDED)
160 		return;
161 
162 	for (i = 0; i < replay_map->rm_slots; i++)
163 		if (replay_map->rm_replay_slots[i])
164 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 							NULL, NULL);
166 	replay_map->rm_state = REPLAY_DONE;
167 }
168 
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 	struct ocfs2_replay_map *replay_map = osb->replay_map;
172 
173 	if (!osb->replay_map)
174 		return;
175 
176 	kfree(replay_map);
177 	osb->replay_map = NULL;
178 }
179 
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 	struct ocfs2_recovery_map *rm;
183 
184 	mutex_init(&osb->recovery_lock);
185 	osb->disable_recovery = 0;
186 	osb->recovery_thread_task = NULL;
187 	init_waitqueue_head(&osb->recovery_event);
188 
189 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 		     osb->max_slots * sizeof(unsigned int),
191 		     GFP_KERNEL);
192 	if (!rm) {
193 		mlog_errno(-ENOMEM);
194 		return -ENOMEM;
195 	}
196 
197 	rm->rm_entries = (unsigned int *)((char *)rm +
198 					  sizeof(struct ocfs2_recovery_map));
199 	osb->recovery_map = rm;
200 
201 	return 0;
202 }
203 
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205  * memory barriers to make sure that we'll see the null task before
206  * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 	mb();
210 	return osb->recovery_thread_task != NULL;
211 }
212 
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 	struct ocfs2_recovery_map *rm;
216 
217 	/* disable any new recovery threads and wait for any currently
218 	 * running ones to exit. Do this before setting the vol_state. */
219 	mutex_lock(&osb->recovery_lock);
220 	osb->disable_recovery = 1;
221 	mutex_unlock(&osb->recovery_lock);
222 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 
224 	/* At this point, we know that no more recovery threads can be
225 	 * launched, so wait for any recovery completion work to
226 	 * complete. */
227 	flush_workqueue(ocfs2_wq);
228 
229 	/*
230 	 * Now that recovery is shut down, and the osb is about to be
231 	 * freed,  the osb_lock is not taken here.
232 	 */
233 	rm = osb->recovery_map;
234 	/* XXX: Should we bug if there are dirty entries? */
235 
236 	kfree(rm);
237 }
238 
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 				     unsigned int node_num)
241 {
242 	int i;
243 	struct ocfs2_recovery_map *rm = osb->recovery_map;
244 
245 	assert_spin_locked(&osb->osb_lock);
246 
247 	for (i = 0; i < rm->rm_used; i++) {
248 		if (rm->rm_entries[i] == node_num)
249 			return 1;
250 	}
251 
252 	return 0;
253 }
254 
255 /* Behaves like test-and-set.  Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 				  unsigned int node_num)
258 {
259 	struct ocfs2_recovery_map *rm = osb->recovery_map;
260 
261 	spin_lock(&osb->osb_lock);
262 	if (__ocfs2_recovery_map_test(osb, node_num)) {
263 		spin_unlock(&osb->osb_lock);
264 		return 1;
265 	}
266 
267 	/* XXX: Can this be exploited? Not from o2dlm... */
268 	BUG_ON(rm->rm_used >= osb->max_slots);
269 
270 	rm->rm_entries[rm->rm_used] = node_num;
271 	rm->rm_used++;
272 	spin_unlock(&osb->osb_lock);
273 
274 	return 0;
275 }
276 
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 				     unsigned int node_num)
279 {
280 	int i;
281 	struct ocfs2_recovery_map *rm = osb->recovery_map;
282 
283 	spin_lock(&osb->osb_lock);
284 
285 	for (i = 0; i < rm->rm_used; i++) {
286 		if (rm->rm_entries[i] == node_num)
287 			break;
288 	}
289 
290 	if (i < rm->rm_used) {
291 		/* XXX: be careful with the pointer math */
292 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 			(rm->rm_used - i - 1) * sizeof(unsigned int));
294 		rm->rm_used--;
295 	}
296 
297 	spin_unlock(&osb->osb_lock);
298 }
299 
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 	int status = 0;
303 	unsigned int flushed;
304 	unsigned long old_id;
305 	struct ocfs2_journal *journal = NULL;
306 
307 	mlog_entry_void();
308 
309 	journal = osb->journal;
310 
311 	/* Flush all pending commits and checkpoint the journal. */
312 	down_write(&journal->j_trans_barrier);
313 
314 	if (atomic_read(&journal->j_num_trans) == 0) {
315 		up_write(&journal->j_trans_barrier);
316 		mlog(0, "No transactions for me to flush!\n");
317 		goto finally;
318 	}
319 
320 	jbd2_journal_lock_updates(journal->j_journal);
321 	status = jbd2_journal_flush(journal->j_journal);
322 	jbd2_journal_unlock_updates(journal->j_journal);
323 	if (status < 0) {
324 		up_write(&journal->j_trans_barrier);
325 		mlog_errno(status);
326 		goto finally;
327 	}
328 
329 	old_id = ocfs2_inc_trans_id(journal);
330 
331 	flushed = atomic_read(&journal->j_num_trans);
332 	atomic_set(&journal->j_num_trans, 0);
333 	up_write(&journal->j_trans_barrier);
334 
335 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 	     journal->j_trans_id, flushed);
337 
338 	ocfs2_wake_downconvert_thread(osb);
339 	wake_up(&journal->j_checkpointed);
340 finally:
341 	mlog_exit(status);
342 	return status;
343 }
344 
345 /* pass it NULL and it will allocate a new handle object for you.  If
346  * you pass it a handle however, it may still return error, in which
347  * case it has free'd the passed handle for you. */
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	down_read(&osb->journal->j_trans_barrier);
366 
367 	handle = jbd2_journal_start(journal, max_buffs);
368 	if (IS_ERR(handle)) {
369 		up_read(&osb->journal->j_trans_barrier);
370 
371 		mlog_errno(PTR_ERR(handle));
372 
373 		if (is_journal_aborted(journal)) {
374 			ocfs2_abort(osb->sb, "Detected aborted journal");
375 			handle = ERR_PTR(-EROFS);
376 		}
377 	} else {
378 		if (!ocfs2_mount_local(osb))
379 			atomic_inc(&(osb->journal->j_num_trans));
380 	}
381 
382 	return handle;
383 }
384 
385 int ocfs2_commit_trans(struct ocfs2_super *osb,
386 		       handle_t *handle)
387 {
388 	int ret, nested;
389 	struct ocfs2_journal *journal = osb->journal;
390 
391 	BUG_ON(!handle);
392 
393 	nested = handle->h_ref > 1;
394 	ret = jbd2_journal_stop(handle);
395 	if (ret < 0)
396 		mlog_errno(ret);
397 
398 	if (!nested)
399 		up_read(&journal->j_trans_barrier);
400 
401 	return ret;
402 }
403 
404 /*
405  * 'nblocks' is what you want to add to the current
406  * transaction. extend_trans will either extend the current handle by
407  * nblocks, or commit it and start a new one with nblocks credits.
408  *
409  * This might call jbd2_journal_restart() which will commit dirty buffers
410  * and then restart the transaction. Before calling
411  * ocfs2_extend_trans(), any changed blocks should have been
412  * dirtied. After calling it, all blocks which need to be changed must
413  * go through another set of journal_access/journal_dirty calls.
414  *
415  * WARNING: This will not release any semaphores or disk locks taken
416  * during the transaction, so make sure they were taken *before*
417  * start_trans or we'll have ordering deadlocks.
418  *
419  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
420  * good because transaction ids haven't yet been recorded on the
421  * cluster locks associated with this handle.
422  */
423 int ocfs2_extend_trans(handle_t *handle, int nblocks)
424 {
425 	int status;
426 
427 	BUG_ON(!handle);
428 	BUG_ON(!nblocks);
429 
430 	mlog_entry_void();
431 
432 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
433 
434 #ifdef CONFIG_OCFS2_DEBUG_FS
435 	status = 1;
436 #else
437 	status = jbd2_journal_extend(handle, nblocks);
438 	if (status < 0) {
439 		mlog_errno(status);
440 		goto bail;
441 	}
442 #endif
443 
444 	if (status > 0) {
445 		mlog(0,
446 		     "jbd2_journal_extend failed, trying "
447 		     "jbd2_journal_restart\n");
448 		status = jbd2_journal_restart(handle, nblocks);
449 		if (status < 0) {
450 			mlog_errno(status);
451 			goto bail;
452 		}
453 	}
454 
455 	status = 0;
456 bail:
457 
458 	mlog_exit(status);
459 	return status;
460 }
461 
462 struct ocfs2_triggers {
463 	struct jbd2_buffer_trigger_type	ot_triggers;
464 	int				ot_offset;
465 };
466 
467 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468 {
469 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
470 }
471 
472 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
473 				 struct buffer_head *bh,
474 				 void *data, size_t size)
475 {
476 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
477 
478 	/*
479 	 * We aren't guaranteed to have the superblock here, so we
480 	 * must unconditionally compute the ecc data.
481 	 * __ocfs2_journal_access() will only set the triggers if
482 	 * metaecc is enabled.
483 	 */
484 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
485 }
486 
487 /*
488  * Quota blocks have their own trigger because the struct ocfs2_block_check
489  * offset depends on the blocksize.
490  */
491 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
492 				 struct buffer_head *bh,
493 				 void *data, size_t size)
494 {
495 	struct ocfs2_disk_dqtrailer *dqt =
496 		ocfs2_block_dqtrailer(size, data);
497 
498 	/*
499 	 * We aren't guaranteed to have the superblock here, so we
500 	 * must unconditionally compute the ecc data.
501 	 * __ocfs2_journal_access() will only set the triggers if
502 	 * metaecc is enabled.
503 	 */
504 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
505 }
506 
507 /*
508  * Directory blocks also have their own trigger because the
509  * struct ocfs2_block_check offset depends on the blocksize.
510  */
511 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
512 				 struct buffer_head *bh,
513 				 void *data, size_t size)
514 {
515 	struct ocfs2_dir_block_trailer *trailer =
516 		ocfs2_dir_trailer_from_size(size, data);
517 
518 	/*
519 	 * We aren't guaranteed to have the superblock here, so we
520 	 * must unconditionally compute the ecc data.
521 	 * __ocfs2_journal_access() will only set the triggers if
522 	 * metaecc is enabled.
523 	 */
524 	ocfs2_block_check_compute(data, size, &trailer->db_check);
525 }
526 
527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528 				struct buffer_head *bh)
529 {
530 	mlog(ML_ERROR,
531 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
532 	     "bh->b_blocknr = %llu\n",
533 	     (unsigned long)bh,
534 	     (unsigned long long)bh->b_blocknr);
535 
536 	/* We aren't guaranteed to have the superblock here - but if we
537 	 * don't, it'll just crash. */
538 	ocfs2_error(bh->b_assoc_map->host->i_sb,
539 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
540 }
541 
542 static struct ocfs2_triggers di_triggers = {
543 	.ot_triggers = {
544 		.t_commit = ocfs2_commit_trigger,
545 		.t_abort = ocfs2_abort_trigger,
546 	},
547 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
548 };
549 
550 static struct ocfs2_triggers eb_triggers = {
551 	.ot_triggers = {
552 		.t_commit = ocfs2_commit_trigger,
553 		.t_abort = ocfs2_abort_trigger,
554 	},
555 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
556 };
557 
558 static struct ocfs2_triggers rb_triggers = {
559 	.ot_triggers = {
560 		.t_commit = ocfs2_commit_trigger,
561 		.t_abort = ocfs2_abort_trigger,
562 	},
563 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
564 };
565 
566 static struct ocfs2_triggers gd_triggers = {
567 	.ot_triggers = {
568 		.t_commit = ocfs2_commit_trigger,
569 		.t_abort = ocfs2_abort_trigger,
570 	},
571 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
572 };
573 
574 static struct ocfs2_triggers db_triggers = {
575 	.ot_triggers = {
576 		.t_commit = ocfs2_db_commit_trigger,
577 		.t_abort = ocfs2_abort_trigger,
578 	},
579 };
580 
581 static struct ocfs2_triggers xb_triggers = {
582 	.ot_triggers = {
583 		.t_commit = ocfs2_commit_trigger,
584 		.t_abort = ocfs2_abort_trigger,
585 	},
586 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
587 };
588 
589 static struct ocfs2_triggers dq_triggers = {
590 	.ot_triggers = {
591 		.t_commit = ocfs2_dq_commit_trigger,
592 		.t_abort = ocfs2_abort_trigger,
593 	},
594 };
595 
596 static struct ocfs2_triggers dr_triggers = {
597 	.ot_triggers = {
598 		.t_commit = ocfs2_commit_trigger,
599 		.t_abort = ocfs2_abort_trigger,
600 	},
601 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
602 };
603 
604 static struct ocfs2_triggers dl_triggers = {
605 	.ot_triggers = {
606 		.t_commit = ocfs2_commit_trigger,
607 		.t_abort = ocfs2_abort_trigger,
608 	},
609 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
610 };
611 
612 static int __ocfs2_journal_access(handle_t *handle,
613 				  struct ocfs2_caching_info *ci,
614 				  struct buffer_head *bh,
615 				  struct ocfs2_triggers *triggers,
616 				  int type)
617 {
618 	int status;
619 	struct ocfs2_super *osb =
620 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
621 
622 	BUG_ON(!ci || !ci->ci_ops);
623 	BUG_ON(!handle);
624 	BUG_ON(!bh);
625 
626 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627 		   (unsigned long long)bh->b_blocknr, type,
628 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
630 		   "OCFS2_JOURNAL_ACCESS_WRITE",
631 		   bh->b_size);
632 
633 	/* we can safely remove this assertion after testing. */
634 	if (!buffer_uptodate(bh)) {
635 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636 		mlog(ML_ERROR, "b_blocknr=%llu\n",
637 		     (unsigned long long)bh->b_blocknr);
638 		BUG();
639 	}
640 
641 	/* Set the current transaction information on the ci so
642 	 * that the locking code knows whether it can drop it's locks
643 	 * on this ci or not. We're protected from the commit
644 	 * thread updating the current transaction id until
645 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 	 * j_trans_barrier for us. */
647 	ocfs2_set_ci_lock_trans(osb->journal, ci);
648 
649 	ocfs2_metadata_cache_io_lock(ci);
650 	switch (type) {
651 	case OCFS2_JOURNAL_ACCESS_CREATE:
652 	case OCFS2_JOURNAL_ACCESS_WRITE:
653 		status = jbd2_journal_get_write_access(handle, bh);
654 		break;
655 
656 	case OCFS2_JOURNAL_ACCESS_UNDO:
657 		status = jbd2_journal_get_undo_access(handle, bh);
658 		break;
659 
660 	default:
661 		status = -EINVAL;
662 		mlog(ML_ERROR, "Unknown access type!\n");
663 	}
664 	if (!status && ocfs2_meta_ecc(osb) && triggers)
665 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
666 	ocfs2_metadata_cache_io_unlock(ci);
667 
668 	if (status < 0)
669 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670 		     status, type);
671 
672 	mlog_exit(status);
673 	return status;
674 }
675 
676 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677 			    struct buffer_head *bh, int type)
678 {
679 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
680 }
681 
682 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
683 			    struct buffer_head *bh, int type)
684 {
685 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
686 }
687 
688 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689 			    struct buffer_head *bh, int type)
690 {
691 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692 				      type);
693 }
694 
695 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
696 			    struct buffer_head *bh, int type)
697 {
698 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
699 }
700 
701 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
702 			    struct buffer_head *bh, int type)
703 {
704 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
705 }
706 
707 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
708 			    struct buffer_head *bh, int type)
709 {
710 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
711 }
712 
713 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
714 			    struct buffer_head *bh, int type)
715 {
716 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
717 }
718 
719 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
720 			    struct buffer_head *bh, int type)
721 {
722 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
723 }
724 
725 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
726 			    struct buffer_head *bh, int type)
727 {
728 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
729 }
730 
731 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
732 			 struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
735 }
736 
737 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
738 {
739 	int status;
740 
741 	mlog_entry("(bh->b_blocknr=%llu)\n",
742 		   (unsigned long long)bh->b_blocknr);
743 
744 	status = jbd2_journal_dirty_metadata(handle, bh);
745 	BUG_ON(status);
746 
747 	mlog_exit_void();
748 }
749 
750 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
751 
752 void ocfs2_set_journal_params(struct ocfs2_super *osb)
753 {
754 	journal_t *journal = osb->journal->j_journal;
755 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
756 
757 	if (osb->osb_commit_interval)
758 		commit_interval = osb->osb_commit_interval;
759 
760 	spin_lock(&journal->j_state_lock);
761 	journal->j_commit_interval = commit_interval;
762 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
763 		journal->j_flags |= JBD2_BARRIER;
764 	else
765 		journal->j_flags &= ~JBD2_BARRIER;
766 	spin_unlock(&journal->j_state_lock);
767 }
768 
769 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
770 {
771 	int status = -1;
772 	struct inode *inode = NULL; /* the journal inode */
773 	journal_t *j_journal = NULL;
774 	struct ocfs2_dinode *di = NULL;
775 	struct buffer_head *bh = NULL;
776 	struct ocfs2_super *osb;
777 	int inode_lock = 0;
778 
779 	mlog_entry_void();
780 
781 	BUG_ON(!journal);
782 
783 	osb = journal->j_osb;
784 
785 	/* already have the inode for our journal */
786 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
787 					    osb->slot_num);
788 	if (inode == NULL) {
789 		status = -EACCES;
790 		mlog_errno(status);
791 		goto done;
792 	}
793 	if (is_bad_inode(inode)) {
794 		mlog(ML_ERROR, "access error (bad inode)\n");
795 		iput(inode);
796 		inode = NULL;
797 		status = -EACCES;
798 		goto done;
799 	}
800 
801 	SET_INODE_JOURNAL(inode);
802 	OCFS2_I(inode)->ip_open_count++;
803 
804 	/* Skip recovery waits here - journal inode metadata never
805 	 * changes in a live cluster so it can be considered an
806 	 * exception to the rule. */
807 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
808 	if (status < 0) {
809 		if (status != -ERESTARTSYS)
810 			mlog(ML_ERROR, "Could not get lock on journal!\n");
811 		goto done;
812 	}
813 
814 	inode_lock = 1;
815 	di = (struct ocfs2_dinode *)bh->b_data;
816 
817 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
818 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
819 		     inode->i_size);
820 		status = -EINVAL;
821 		goto done;
822 	}
823 
824 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
825 	mlog(0, "inode->i_blocks = %llu\n",
826 			(unsigned long long)inode->i_blocks);
827 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
828 
829 	/* call the kernels journal init function now */
830 	j_journal = jbd2_journal_init_inode(inode);
831 	if (j_journal == NULL) {
832 		mlog(ML_ERROR, "Linux journal layer error\n");
833 		status = -EINVAL;
834 		goto done;
835 	}
836 
837 	mlog(0, "Returned from jbd2_journal_init_inode\n");
838 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
839 
840 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
841 		  OCFS2_JOURNAL_DIRTY_FL);
842 
843 	journal->j_journal = j_journal;
844 	journal->j_inode = inode;
845 	journal->j_bh = bh;
846 
847 	ocfs2_set_journal_params(osb);
848 
849 	journal->j_state = OCFS2_JOURNAL_LOADED;
850 
851 	status = 0;
852 done:
853 	if (status < 0) {
854 		if (inode_lock)
855 			ocfs2_inode_unlock(inode, 1);
856 		brelse(bh);
857 		if (inode) {
858 			OCFS2_I(inode)->ip_open_count--;
859 			iput(inode);
860 		}
861 	}
862 
863 	mlog_exit(status);
864 	return status;
865 }
866 
867 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
868 {
869 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
870 }
871 
872 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
873 {
874 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
875 }
876 
877 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
878 				      int dirty, int replayed)
879 {
880 	int status;
881 	unsigned int flags;
882 	struct ocfs2_journal *journal = osb->journal;
883 	struct buffer_head *bh = journal->j_bh;
884 	struct ocfs2_dinode *fe;
885 
886 	mlog_entry_void();
887 
888 	fe = (struct ocfs2_dinode *)bh->b_data;
889 
890 	/* The journal bh on the osb always comes from ocfs2_journal_init()
891 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
892 	 * code bug if we mess it up. */
893 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
894 
895 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
896 	if (dirty)
897 		flags |= OCFS2_JOURNAL_DIRTY_FL;
898 	else
899 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
900 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
901 
902 	if (replayed)
903 		ocfs2_bump_recovery_generation(fe);
904 
905 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
906 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
907 	if (status < 0)
908 		mlog_errno(status);
909 
910 	mlog_exit(status);
911 	return status;
912 }
913 
914 /*
915  * If the journal has been kmalloc'd it needs to be freed after this
916  * call.
917  */
918 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
919 {
920 	struct ocfs2_journal *journal = NULL;
921 	int status = 0;
922 	struct inode *inode = NULL;
923 	int num_running_trans = 0;
924 
925 	mlog_entry_void();
926 
927 	BUG_ON(!osb);
928 
929 	journal = osb->journal;
930 	if (!journal)
931 		goto done;
932 
933 	inode = journal->j_inode;
934 
935 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
936 		goto done;
937 
938 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
939 	if (!igrab(inode))
940 		BUG();
941 
942 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
943 	if (num_running_trans > 0)
944 		mlog(0, "Shutting down journal: must wait on %d "
945 		     "running transactions!\n",
946 		     num_running_trans);
947 
948 	/* Do a commit_cache here. It will flush our journal, *and*
949 	 * release any locks that are still held.
950 	 * set the SHUTDOWN flag and release the trans lock.
951 	 * the commit thread will take the trans lock for us below. */
952 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
953 
954 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
955 	 * drop the trans_lock (which we want to hold until we
956 	 * completely destroy the journal. */
957 	if (osb->commit_task) {
958 		/* Wait for the commit thread */
959 		mlog(0, "Waiting for ocfs2commit to exit....\n");
960 		kthread_stop(osb->commit_task);
961 		osb->commit_task = NULL;
962 	}
963 
964 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
965 
966 	if (ocfs2_mount_local(osb)) {
967 		jbd2_journal_lock_updates(journal->j_journal);
968 		status = jbd2_journal_flush(journal->j_journal);
969 		jbd2_journal_unlock_updates(journal->j_journal);
970 		if (status < 0)
971 			mlog_errno(status);
972 	}
973 
974 	if (status == 0) {
975 		/*
976 		 * Do not toggle if flush was unsuccessful otherwise
977 		 * will leave dirty metadata in a "clean" journal
978 		 */
979 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
980 		if (status < 0)
981 			mlog_errno(status);
982 	}
983 
984 	/* Shutdown the kernel journal system */
985 	jbd2_journal_destroy(journal->j_journal);
986 	journal->j_journal = NULL;
987 
988 	OCFS2_I(inode)->ip_open_count--;
989 
990 	/* unlock our journal */
991 	ocfs2_inode_unlock(inode, 1);
992 
993 	brelse(journal->j_bh);
994 	journal->j_bh = NULL;
995 
996 	journal->j_state = OCFS2_JOURNAL_FREE;
997 
998 //	up_write(&journal->j_trans_barrier);
999 done:
1000 	if (inode)
1001 		iput(inode);
1002 	mlog_exit_void();
1003 }
1004 
1005 static void ocfs2_clear_journal_error(struct super_block *sb,
1006 				      journal_t *journal,
1007 				      int slot)
1008 {
1009 	int olderr;
1010 
1011 	olderr = jbd2_journal_errno(journal);
1012 	if (olderr) {
1013 		mlog(ML_ERROR, "File system error %d recorded in "
1014 		     "journal %u.\n", olderr, slot);
1015 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1016 		     sb->s_id);
1017 
1018 		jbd2_journal_ack_err(journal);
1019 		jbd2_journal_clear_err(journal);
1020 	}
1021 }
1022 
1023 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1024 {
1025 	int status = 0;
1026 	struct ocfs2_super *osb;
1027 
1028 	mlog_entry_void();
1029 
1030 	BUG_ON(!journal);
1031 
1032 	osb = journal->j_osb;
1033 
1034 	status = jbd2_journal_load(journal->j_journal);
1035 	if (status < 0) {
1036 		mlog(ML_ERROR, "Failed to load journal!\n");
1037 		goto done;
1038 	}
1039 
1040 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1041 
1042 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1043 	if (status < 0) {
1044 		mlog_errno(status);
1045 		goto done;
1046 	}
1047 
1048 	/* Launch the commit thread */
1049 	if (!local) {
1050 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1051 					       "ocfs2cmt");
1052 		if (IS_ERR(osb->commit_task)) {
1053 			status = PTR_ERR(osb->commit_task);
1054 			osb->commit_task = NULL;
1055 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1056 			     "error=%d", status);
1057 			goto done;
1058 		}
1059 	} else
1060 		osb->commit_task = NULL;
1061 
1062 done:
1063 	mlog_exit(status);
1064 	return status;
1065 }
1066 
1067 
1068 /* 'full' flag tells us whether we clear out all blocks or if we just
1069  * mark the journal clean */
1070 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1071 {
1072 	int status;
1073 
1074 	mlog_entry_void();
1075 
1076 	BUG_ON(!journal);
1077 
1078 	status = jbd2_journal_wipe(journal->j_journal, full);
1079 	if (status < 0) {
1080 		mlog_errno(status);
1081 		goto bail;
1082 	}
1083 
1084 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1085 	if (status < 0)
1086 		mlog_errno(status);
1087 
1088 bail:
1089 	mlog_exit(status);
1090 	return status;
1091 }
1092 
1093 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1094 {
1095 	int empty;
1096 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1097 
1098 	spin_lock(&osb->osb_lock);
1099 	empty = (rm->rm_used == 0);
1100 	spin_unlock(&osb->osb_lock);
1101 
1102 	return empty;
1103 }
1104 
1105 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1106 {
1107 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1108 }
1109 
1110 /*
1111  * JBD Might read a cached version of another nodes journal file. We
1112  * don't want this as this file changes often and we get no
1113  * notification on those changes. The only way to be sure that we've
1114  * got the most up to date version of those blocks then is to force
1115  * read them off disk. Just searching through the buffer cache won't
1116  * work as there may be pages backing this file which are still marked
1117  * up to date. We know things can't change on this file underneath us
1118  * as we have the lock by now :)
1119  */
1120 static int ocfs2_force_read_journal(struct inode *inode)
1121 {
1122 	int status = 0;
1123 	int i;
1124 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1125 #define CONCURRENT_JOURNAL_FILL 32ULL
1126 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1127 
1128 	mlog_entry_void();
1129 
1130 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1131 
1132 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1133 	v_blkno = 0;
1134 	while (v_blkno < num_blocks) {
1135 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1136 						     &p_blkno, &p_blocks, NULL);
1137 		if (status < 0) {
1138 			mlog_errno(status);
1139 			goto bail;
1140 		}
1141 
1142 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1143 			p_blocks = CONCURRENT_JOURNAL_FILL;
1144 
1145 		/* We are reading journal data which should not
1146 		 * be put in the uptodate cache */
1147 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1148 						p_blkno, p_blocks, bhs);
1149 		if (status < 0) {
1150 			mlog_errno(status);
1151 			goto bail;
1152 		}
1153 
1154 		for(i = 0; i < p_blocks; i++) {
1155 			brelse(bhs[i]);
1156 			bhs[i] = NULL;
1157 		}
1158 
1159 		v_blkno += p_blocks;
1160 	}
1161 
1162 bail:
1163 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1164 		brelse(bhs[i]);
1165 	mlog_exit(status);
1166 	return status;
1167 }
1168 
1169 struct ocfs2_la_recovery_item {
1170 	struct list_head	lri_list;
1171 	int			lri_slot;
1172 	struct ocfs2_dinode	*lri_la_dinode;
1173 	struct ocfs2_dinode	*lri_tl_dinode;
1174 	struct ocfs2_quota_recovery *lri_qrec;
1175 };
1176 
1177 /* Does the second half of the recovery process. By this point, the
1178  * node is marked clean and can actually be considered recovered,
1179  * hence it's no longer in the recovery map, but there's still some
1180  * cleanup we can do which shouldn't happen within the recovery thread
1181  * as locking in that context becomes very difficult if we are to take
1182  * recovering nodes into account.
1183  *
1184  * NOTE: This function can and will sleep on recovery of other nodes
1185  * during cluster locking, just like any other ocfs2 process.
1186  */
1187 void ocfs2_complete_recovery(struct work_struct *work)
1188 {
1189 	int ret;
1190 	struct ocfs2_journal *journal =
1191 		container_of(work, struct ocfs2_journal, j_recovery_work);
1192 	struct ocfs2_super *osb = journal->j_osb;
1193 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1194 	struct ocfs2_la_recovery_item *item, *n;
1195 	struct ocfs2_quota_recovery *qrec;
1196 	LIST_HEAD(tmp_la_list);
1197 
1198 	mlog_entry_void();
1199 
1200 	mlog(0, "completing recovery from keventd\n");
1201 
1202 	spin_lock(&journal->j_lock);
1203 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1204 	spin_unlock(&journal->j_lock);
1205 
1206 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1207 		list_del_init(&item->lri_list);
1208 
1209 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1210 
1211 		ocfs2_wait_on_quotas(osb);
1212 
1213 		la_dinode = item->lri_la_dinode;
1214 		if (la_dinode) {
1215 			mlog(0, "Clean up local alloc %llu\n",
1216 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1217 
1218 			ret = ocfs2_complete_local_alloc_recovery(osb,
1219 								  la_dinode);
1220 			if (ret < 0)
1221 				mlog_errno(ret);
1222 
1223 			kfree(la_dinode);
1224 		}
1225 
1226 		tl_dinode = item->lri_tl_dinode;
1227 		if (tl_dinode) {
1228 			mlog(0, "Clean up truncate log %llu\n",
1229 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1230 
1231 			ret = ocfs2_complete_truncate_log_recovery(osb,
1232 								   tl_dinode);
1233 			if (ret < 0)
1234 				mlog_errno(ret);
1235 
1236 			kfree(tl_dinode);
1237 		}
1238 
1239 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1240 		if (ret < 0)
1241 			mlog_errno(ret);
1242 
1243 		qrec = item->lri_qrec;
1244 		if (qrec) {
1245 			mlog(0, "Recovering quota files");
1246 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1247 							  item->lri_slot);
1248 			if (ret < 0)
1249 				mlog_errno(ret);
1250 			/* Recovery info is already freed now */
1251 		}
1252 
1253 		kfree(item);
1254 	}
1255 
1256 	mlog(0, "Recovery completion\n");
1257 	mlog_exit_void();
1258 }
1259 
1260 /* NOTE: This function always eats your references to la_dinode and
1261  * tl_dinode, either manually on error, or by passing them to
1262  * ocfs2_complete_recovery */
1263 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1264 					    int slot_num,
1265 					    struct ocfs2_dinode *la_dinode,
1266 					    struct ocfs2_dinode *tl_dinode,
1267 					    struct ocfs2_quota_recovery *qrec)
1268 {
1269 	struct ocfs2_la_recovery_item *item;
1270 
1271 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1272 	if (!item) {
1273 		/* Though we wish to avoid it, we are in fact safe in
1274 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1275 		 * than capable of reclaiming unused space. */
1276 		if (la_dinode)
1277 			kfree(la_dinode);
1278 
1279 		if (tl_dinode)
1280 			kfree(tl_dinode);
1281 
1282 		if (qrec)
1283 			ocfs2_free_quota_recovery(qrec);
1284 
1285 		mlog_errno(-ENOMEM);
1286 		return;
1287 	}
1288 
1289 	INIT_LIST_HEAD(&item->lri_list);
1290 	item->lri_la_dinode = la_dinode;
1291 	item->lri_slot = slot_num;
1292 	item->lri_tl_dinode = tl_dinode;
1293 	item->lri_qrec = qrec;
1294 
1295 	spin_lock(&journal->j_lock);
1296 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1297 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1298 	spin_unlock(&journal->j_lock);
1299 }
1300 
1301 /* Called by the mount code to queue recovery the last part of
1302  * recovery for it's own and offline slot(s). */
1303 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1304 {
1305 	struct ocfs2_journal *journal = osb->journal;
1306 
1307 	/* No need to queue up our truncate_log as regular cleanup will catch
1308 	 * that */
1309 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1310 					osb->local_alloc_copy, NULL, NULL);
1311 	ocfs2_schedule_truncate_log_flush(osb, 0);
1312 
1313 	osb->local_alloc_copy = NULL;
1314 	osb->dirty = 0;
1315 
1316 	/* queue to recover orphan slots for all offline slots */
1317 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1318 	ocfs2_queue_replay_slots(osb);
1319 	ocfs2_free_replay_slots(osb);
1320 }
1321 
1322 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1323 {
1324 	if (osb->quota_rec) {
1325 		ocfs2_queue_recovery_completion(osb->journal,
1326 						osb->slot_num,
1327 						NULL,
1328 						NULL,
1329 						osb->quota_rec);
1330 		osb->quota_rec = NULL;
1331 	}
1332 }
1333 
1334 static int __ocfs2_recovery_thread(void *arg)
1335 {
1336 	int status, node_num, slot_num;
1337 	struct ocfs2_super *osb = arg;
1338 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1339 	int *rm_quota = NULL;
1340 	int rm_quota_used = 0, i;
1341 	struct ocfs2_quota_recovery *qrec;
1342 
1343 	mlog_entry_void();
1344 
1345 	status = ocfs2_wait_on_mount(osb);
1346 	if (status < 0) {
1347 		goto bail;
1348 	}
1349 
1350 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1351 	if (!rm_quota) {
1352 		status = -ENOMEM;
1353 		goto bail;
1354 	}
1355 restart:
1356 	status = ocfs2_super_lock(osb, 1);
1357 	if (status < 0) {
1358 		mlog_errno(status);
1359 		goto bail;
1360 	}
1361 
1362 	status = ocfs2_compute_replay_slots(osb);
1363 	if (status < 0)
1364 		mlog_errno(status);
1365 
1366 	/* queue recovery for our own slot */
1367 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1368 					NULL, NULL);
1369 
1370 	spin_lock(&osb->osb_lock);
1371 	while (rm->rm_used) {
1372 		/* It's always safe to remove entry zero, as we won't
1373 		 * clear it until ocfs2_recover_node() has succeeded. */
1374 		node_num = rm->rm_entries[0];
1375 		spin_unlock(&osb->osb_lock);
1376 		mlog(0, "checking node %d\n", node_num);
1377 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1378 		if (slot_num == -ENOENT) {
1379 			status = 0;
1380 			mlog(0, "no slot for this node, so no recovery"
1381 			     "required.\n");
1382 			goto skip_recovery;
1383 		}
1384 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1385 
1386 		/* It is a bit subtle with quota recovery. We cannot do it
1387 		 * immediately because we have to obtain cluster locks from
1388 		 * quota files and we also don't want to just skip it because
1389 		 * then quota usage would be out of sync until some node takes
1390 		 * the slot. So we remember which nodes need quota recovery
1391 		 * and when everything else is done, we recover quotas. */
1392 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1393 		if (i == rm_quota_used)
1394 			rm_quota[rm_quota_used++] = slot_num;
1395 
1396 		status = ocfs2_recover_node(osb, node_num, slot_num);
1397 skip_recovery:
1398 		if (!status) {
1399 			ocfs2_recovery_map_clear(osb, node_num);
1400 		} else {
1401 			mlog(ML_ERROR,
1402 			     "Error %d recovering node %d on device (%u,%u)!\n",
1403 			     status, node_num,
1404 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1405 			mlog(ML_ERROR, "Volume requires unmount.\n");
1406 		}
1407 
1408 		spin_lock(&osb->osb_lock);
1409 	}
1410 	spin_unlock(&osb->osb_lock);
1411 	mlog(0, "All nodes recovered\n");
1412 
1413 	/* Refresh all journal recovery generations from disk */
1414 	status = ocfs2_check_journals_nolocks(osb);
1415 	status = (status == -EROFS) ? 0 : status;
1416 	if (status < 0)
1417 		mlog_errno(status);
1418 
1419 	/* Now it is right time to recover quotas... We have to do this under
1420 	 * superblock lock so that noone can start using the slot (and crash)
1421 	 * before we recover it */
1422 	for (i = 0; i < rm_quota_used; i++) {
1423 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1424 		if (IS_ERR(qrec)) {
1425 			status = PTR_ERR(qrec);
1426 			mlog_errno(status);
1427 			continue;
1428 		}
1429 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1430 						NULL, NULL, qrec);
1431 	}
1432 
1433 	ocfs2_super_unlock(osb, 1);
1434 
1435 	/* queue recovery for offline slots */
1436 	ocfs2_queue_replay_slots(osb);
1437 
1438 bail:
1439 	mutex_lock(&osb->recovery_lock);
1440 	if (!status && !ocfs2_recovery_completed(osb)) {
1441 		mutex_unlock(&osb->recovery_lock);
1442 		goto restart;
1443 	}
1444 
1445 	ocfs2_free_replay_slots(osb);
1446 	osb->recovery_thread_task = NULL;
1447 	mb(); /* sync with ocfs2_recovery_thread_running */
1448 	wake_up(&osb->recovery_event);
1449 
1450 	mutex_unlock(&osb->recovery_lock);
1451 
1452 	if (rm_quota)
1453 		kfree(rm_quota);
1454 
1455 	mlog_exit(status);
1456 	/* no one is callint kthread_stop() for us so the kthread() api
1457 	 * requires that we call do_exit().  And it isn't exported, but
1458 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1459 	complete_and_exit(NULL, status);
1460 	return status;
1461 }
1462 
1463 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1464 {
1465 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1466 		   node_num, osb->node_num);
1467 
1468 	mutex_lock(&osb->recovery_lock);
1469 	if (osb->disable_recovery)
1470 		goto out;
1471 
1472 	/* People waiting on recovery will wait on
1473 	 * the recovery map to empty. */
1474 	if (ocfs2_recovery_map_set(osb, node_num))
1475 		mlog(0, "node %d already in recovery map.\n", node_num);
1476 
1477 	mlog(0, "starting recovery thread...\n");
1478 
1479 	if (osb->recovery_thread_task)
1480 		goto out;
1481 
1482 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1483 						 "ocfs2rec");
1484 	if (IS_ERR(osb->recovery_thread_task)) {
1485 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486 		osb->recovery_thread_task = NULL;
1487 	}
1488 
1489 out:
1490 	mutex_unlock(&osb->recovery_lock);
1491 	wake_up(&osb->recovery_event);
1492 
1493 	mlog_exit_void();
1494 }
1495 
1496 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1497 				    int slot_num,
1498 				    struct buffer_head **bh,
1499 				    struct inode **ret_inode)
1500 {
1501 	int status = -EACCES;
1502 	struct inode *inode = NULL;
1503 
1504 	BUG_ON(slot_num >= osb->max_slots);
1505 
1506 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1507 					    slot_num);
1508 	if (!inode || is_bad_inode(inode)) {
1509 		mlog_errno(status);
1510 		goto bail;
1511 	}
1512 	SET_INODE_JOURNAL(inode);
1513 
1514 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1515 	if (status < 0) {
1516 		mlog_errno(status);
1517 		goto bail;
1518 	}
1519 
1520 	status = 0;
1521 
1522 bail:
1523 	if (inode) {
1524 		if (status || !ret_inode)
1525 			iput(inode);
1526 		else
1527 			*ret_inode = inode;
1528 	}
1529 	return status;
1530 }
1531 
1532 /* Does the actual journal replay and marks the journal inode as
1533  * clean. Will only replay if the journal inode is marked dirty. */
1534 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1535 				int node_num,
1536 				int slot_num)
1537 {
1538 	int status;
1539 	int got_lock = 0;
1540 	unsigned int flags;
1541 	struct inode *inode = NULL;
1542 	struct ocfs2_dinode *fe;
1543 	journal_t *journal = NULL;
1544 	struct buffer_head *bh = NULL;
1545 	u32 slot_reco_gen;
1546 
1547 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1548 	if (status) {
1549 		mlog_errno(status);
1550 		goto done;
1551 	}
1552 
1553 	fe = (struct ocfs2_dinode *)bh->b_data;
1554 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1555 	brelse(bh);
1556 	bh = NULL;
1557 
1558 	/*
1559 	 * As the fs recovery is asynchronous, there is a small chance that
1560 	 * another node mounted (and recovered) the slot before the recovery
1561 	 * thread could get the lock. To handle that, we dirty read the journal
1562 	 * inode for that slot to get the recovery generation. If it is
1563 	 * different than what we expected, the slot has been recovered.
1564 	 * If not, it needs recovery.
1565 	 */
1566 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1567 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1568 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1569 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1570 		status = -EBUSY;
1571 		goto done;
1572 	}
1573 
1574 	/* Continue with recovery as the journal has not yet been recovered */
1575 
1576 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1577 	if (status < 0) {
1578 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1579 		if (status != -ERESTARTSYS)
1580 			mlog(ML_ERROR, "Could not lock journal!\n");
1581 		goto done;
1582 	}
1583 	got_lock = 1;
1584 
1585 	fe = (struct ocfs2_dinode *) bh->b_data;
1586 
1587 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1588 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1589 
1590 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1591 		mlog(0, "No recovery required for node %d\n", node_num);
1592 		/* Refresh recovery generation for the slot */
1593 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1594 		goto done;
1595 	}
1596 
1597 	/* we need to run complete recovery for offline orphan slots */
1598 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1599 
1600 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1601 	     node_num, slot_num,
1602 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1603 
1604 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1605 
1606 	status = ocfs2_force_read_journal(inode);
1607 	if (status < 0) {
1608 		mlog_errno(status);
1609 		goto done;
1610 	}
1611 
1612 	mlog(0, "calling journal_init_inode\n");
1613 	journal = jbd2_journal_init_inode(inode);
1614 	if (journal == NULL) {
1615 		mlog(ML_ERROR, "Linux journal layer error\n");
1616 		status = -EIO;
1617 		goto done;
1618 	}
1619 
1620 	status = jbd2_journal_load(journal);
1621 	if (status < 0) {
1622 		mlog_errno(status);
1623 		if (!igrab(inode))
1624 			BUG();
1625 		jbd2_journal_destroy(journal);
1626 		goto done;
1627 	}
1628 
1629 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1630 
1631 	/* wipe the journal */
1632 	mlog(0, "flushing the journal.\n");
1633 	jbd2_journal_lock_updates(journal);
1634 	status = jbd2_journal_flush(journal);
1635 	jbd2_journal_unlock_updates(journal);
1636 	if (status < 0)
1637 		mlog_errno(status);
1638 
1639 	/* This will mark the node clean */
1640 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1641 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1642 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1643 
1644 	/* Increment recovery generation to indicate successful recovery */
1645 	ocfs2_bump_recovery_generation(fe);
1646 	osb->slot_recovery_generations[slot_num] =
1647 					ocfs2_get_recovery_generation(fe);
1648 
1649 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1650 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1651 	if (status < 0)
1652 		mlog_errno(status);
1653 
1654 	if (!igrab(inode))
1655 		BUG();
1656 
1657 	jbd2_journal_destroy(journal);
1658 
1659 done:
1660 	/* drop the lock on this nodes journal */
1661 	if (got_lock)
1662 		ocfs2_inode_unlock(inode, 1);
1663 
1664 	if (inode)
1665 		iput(inode);
1666 
1667 	brelse(bh);
1668 
1669 	mlog_exit(status);
1670 	return status;
1671 }
1672 
1673 /*
1674  * Do the most important parts of node recovery:
1675  *  - Replay it's journal
1676  *  - Stamp a clean local allocator file
1677  *  - Stamp a clean truncate log
1678  *  - Mark the node clean
1679  *
1680  * If this function completes without error, a node in OCFS2 can be
1681  * said to have been safely recovered. As a result, failure during the
1682  * second part of a nodes recovery process (local alloc recovery) is
1683  * far less concerning.
1684  */
1685 static int ocfs2_recover_node(struct ocfs2_super *osb,
1686 			      int node_num, int slot_num)
1687 {
1688 	int status = 0;
1689 	struct ocfs2_dinode *la_copy = NULL;
1690 	struct ocfs2_dinode *tl_copy = NULL;
1691 
1692 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1693 		   node_num, slot_num, osb->node_num);
1694 
1695 	/* Should not ever be called to recover ourselves -- in that
1696 	 * case we should've called ocfs2_journal_load instead. */
1697 	BUG_ON(osb->node_num == node_num);
1698 
1699 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1700 	if (status < 0) {
1701 		if (status == -EBUSY) {
1702 			mlog(0, "Skipping recovery for slot %u (node %u) "
1703 			     "as another node has recovered it\n", slot_num,
1704 			     node_num);
1705 			status = 0;
1706 			goto done;
1707 		}
1708 		mlog_errno(status);
1709 		goto done;
1710 	}
1711 
1712 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1713 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1714 	if (status < 0) {
1715 		mlog_errno(status);
1716 		goto done;
1717 	}
1718 
1719 	/* An error from begin_truncate_log_recovery is not
1720 	 * serious enough to warrant halting the rest of
1721 	 * recovery. */
1722 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1723 	if (status < 0)
1724 		mlog_errno(status);
1725 
1726 	/* Likewise, this would be a strange but ultimately not so
1727 	 * harmful place to get an error... */
1728 	status = ocfs2_clear_slot(osb, slot_num);
1729 	if (status < 0)
1730 		mlog_errno(status);
1731 
1732 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1733 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1734 					tl_copy, NULL);
1735 
1736 	status = 0;
1737 done:
1738 
1739 	mlog_exit(status);
1740 	return status;
1741 }
1742 
1743 /* Test node liveness by trylocking his journal. If we get the lock,
1744  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1745  * still alive (we couldn't get the lock) and < 0 on error. */
1746 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1747 				 int slot_num)
1748 {
1749 	int status, flags;
1750 	struct inode *inode = NULL;
1751 
1752 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1753 					    slot_num);
1754 	if (inode == NULL) {
1755 		mlog(ML_ERROR, "access error\n");
1756 		status = -EACCES;
1757 		goto bail;
1758 	}
1759 	if (is_bad_inode(inode)) {
1760 		mlog(ML_ERROR, "access error (bad inode)\n");
1761 		iput(inode);
1762 		inode = NULL;
1763 		status = -EACCES;
1764 		goto bail;
1765 	}
1766 	SET_INODE_JOURNAL(inode);
1767 
1768 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1769 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1770 	if (status < 0) {
1771 		if (status != -EAGAIN)
1772 			mlog_errno(status);
1773 		goto bail;
1774 	}
1775 
1776 	ocfs2_inode_unlock(inode, 1);
1777 bail:
1778 	if (inode)
1779 		iput(inode);
1780 
1781 	return status;
1782 }
1783 
1784 /* Call this underneath ocfs2_super_lock. It also assumes that the
1785  * slot info struct has been updated from disk. */
1786 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1787 {
1788 	unsigned int node_num;
1789 	int status, i;
1790 	u32 gen;
1791 	struct buffer_head *bh = NULL;
1792 	struct ocfs2_dinode *di;
1793 
1794 	/* This is called with the super block cluster lock, so we
1795 	 * know that the slot map can't change underneath us. */
1796 
1797 	for (i = 0; i < osb->max_slots; i++) {
1798 		/* Read journal inode to get the recovery generation */
1799 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1800 		if (status) {
1801 			mlog_errno(status);
1802 			goto bail;
1803 		}
1804 		di = (struct ocfs2_dinode *)bh->b_data;
1805 		gen = ocfs2_get_recovery_generation(di);
1806 		brelse(bh);
1807 		bh = NULL;
1808 
1809 		spin_lock(&osb->osb_lock);
1810 		osb->slot_recovery_generations[i] = gen;
1811 
1812 		mlog(0, "Slot %u recovery generation is %u\n", i,
1813 		     osb->slot_recovery_generations[i]);
1814 
1815 		if (i == osb->slot_num) {
1816 			spin_unlock(&osb->osb_lock);
1817 			continue;
1818 		}
1819 
1820 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1821 		if (status == -ENOENT) {
1822 			spin_unlock(&osb->osb_lock);
1823 			continue;
1824 		}
1825 
1826 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1827 			spin_unlock(&osb->osb_lock);
1828 			continue;
1829 		}
1830 		spin_unlock(&osb->osb_lock);
1831 
1832 		/* Ok, we have a slot occupied by another node which
1833 		 * is not in the recovery map. We trylock his journal
1834 		 * file here to test if he's alive. */
1835 		status = ocfs2_trylock_journal(osb, i);
1836 		if (!status) {
1837 			/* Since we're called from mount, we know that
1838 			 * the recovery thread can't race us on
1839 			 * setting / checking the recovery bits. */
1840 			ocfs2_recovery_thread(osb, node_num);
1841 		} else if ((status < 0) && (status != -EAGAIN)) {
1842 			mlog_errno(status);
1843 			goto bail;
1844 		}
1845 	}
1846 
1847 	status = 0;
1848 bail:
1849 	mlog_exit(status);
1850 	return status;
1851 }
1852 
1853 /*
1854  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1855  * randomness to the timeout to minimize multple nodes firing the timer at the
1856  * same time.
1857  */
1858 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1859 {
1860 	unsigned long time;
1861 
1862 	get_random_bytes(&time, sizeof(time));
1863 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1864 	return msecs_to_jiffies(time);
1865 }
1866 
1867 /*
1868  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1869  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1870  * is done to catch any orphans that are left over in orphan directories.
1871  *
1872  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1873  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1874  * stored in LVB. If the sequence number has changed, it means some other
1875  * node has done the scan.  This node skips the scan and tracks the
1876  * sequence number.  If the sequence number didn't change, it means a scan
1877  * hasn't happened.  The node queues a scan and increments the
1878  * sequence number in the LVB.
1879  */
1880 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1881 {
1882 	struct ocfs2_orphan_scan *os;
1883 	int status, i;
1884 	u32 seqno = 0;
1885 
1886 	os = &osb->osb_orphan_scan;
1887 
1888 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1889 		goto out;
1890 
1891 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1892 	if (status < 0) {
1893 		if (status != -EAGAIN)
1894 			mlog_errno(status);
1895 		goto out;
1896 	}
1897 
1898 	/* Do no queue the tasks if the volume is being umounted */
1899 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1900 		goto unlock;
1901 
1902 	if (os->os_seqno != seqno) {
1903 		os->os_seqno = seqno;
1904 		goto unlock;
1905 	}
1906 
1907 	for (i = 0; i < osb->max_slots; i++)
1908 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1909 						NULL);
1910 	/*
1911 	 * We queued a recovery on orphan slots, increment the sequence
1912 	 * number and update LVB so other node will skip the scan for a while
1913 	 */
1914 	seqno++;
1915 	os->os_count++;
1916 	os->os_scantime = CURRENT_TIME;
1917 unlock:
1918 	ocfs2_orphan_scan_unlock(osb, seqno);
1919 out:
1920 	return;
1921 }
1922 
1923 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1924 void ocfs2_orphan_scan_work(struct work_struct *work)
1925 {
1926 	struct ocfs2_orphan_scan *os;
1927 	struct ocfs2_super *osb;
1928 
1929 	os = container_of(work, struct ocfs2_orphan_scan,
1930 			  os_orphan_scan_work.work);
1931 	osb = os->os_osb;
1932 
1933 	mutex_lock(&os->os_lock);
1934 	ocfs2_queue_orphan_scan(osb);
1935 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1936 		schedule_delayed_work(&os->os_orphan_scan_work,
1937 				      ocfs2_orphan_scan_timeout());
1938 	mutex_unlock(&os->os_lock);
1939 }
1940 
1941 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1942 {
1943 	struct ocfs2_orphan_scan *os;
1944 
1945 	os = &osb->osb_orphan_scan;
1946 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1947 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1948 		mutex_lock(&os->os_lock);
1949 		cancel_delayed_work(&os->os_orphan_scan_work);
1950 		mutex_unlock(&os->os_lock);
1951 	}
1952 }
1953 
1954 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1955 {
1956 	struct ocfs2_orphan_scan *os;
1957 
1958 	os = &osb->osb_orphan_scan;
1959 	os->os_osb = osb;
1960 	os->os_count = 0;
1961 	os->os_seqno = 0;
1962 	mutex_init(&os->os_lock);
1963 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1964 }
1965 
1966 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1967 {
1968 	struct ocfs2_orphan_scan *os;
1969 
1970 	os = &osb->osb_orphan_scan;
1971 	os->os_scantime = CURRENT_TIME;
1972 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1973 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1974 	else {
1975 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1976 		schedule_delayed_work(&os->os_orphan_scan_work,
1977 				      ocfs2_orphan_scan_timeout());
1978 	}
1979 }
1980 
1981 struct ocfs2_orphan_filldir_priv {
1982 	struct inode		*head;
1983 	struct ocfs2_super	*osb;
1984 };
1985 
1986 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1987 				loff_t pos, u64 ino, unsigned type)
1988 {
1989 	struct ocfs2_orphan_filldir_priv *p = priv;
1990 	struct inode *iter;
1991 
1992 	if (name_len == 1 && !strncmp(".", name, 1))
1993 		return 0;
1994 	if (name_len == 2 && !strncmp("..", name, 2))
1995 		return 0;
1996 
1997 	/* Skip bad inodes so that recovery can continue */
1998 	iter = ocfs2_iget(p->osb, ino,
1999 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2000 	if (IS_ERR(iter))
2001 		return 0;
2002 
2003 	mlog(0, "queue orphan %llu\n",
2004 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
2005 	/* No locking is required for the next_orphan queue as there
2006 	 * is only ever a single process doing orphan recovery. */
2007 	OCFS2_I(iter)->ip_next_orphan = p->head;
2008 	p->head = iter;
2009 
2010 	return 0;
2011 }
2012 
2013 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2014 			       int slot,
2015 			       struct inode **head)
2016 {
2017 	int status;
2018 	struct inode *orphan_dir_inode = NULL;
2019 	struct ocfs2_orphan_filldir_priv priv;
2020 	loff_t pos = 0;
2021 
2022 	priv.osb = osb;
2023 	priv.head = *head;
2024 
2025 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2026 						       ORPHAN_DIR_SYSTEM_INODE,
2027 						       slot);
2028 	if  (!orphan_dir_inode) {
2029 		status = -ENOENT;
2030 		mlog_errno(status);
2031 		return status;
2032 	}
2033 
2034 	mutex_lock(&orphan_dir_inode->i_mutex);
2035 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2036 	if (status < 0) {
2037 		mlog_errno(status);
2038 		goto out;
2039 	}
2040 
2041 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2042 				   ocfs2_orphan_filldir);
2043 	if (status) {
2044 		mlog_errno(status);
2045 		goto out_cluster;
2046 	}
2047 
2048 	*head = priv.head;
2049 
2050 out_cluster:
2051 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2052 out:
2053 	mutex_unlock(&orphan_dir_inode->i_mutex);
2054 	iput(orphan_dir_inode);
2055 	return status;
2056 }
2057 
2058 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2059 					      int slot)
2060 {
2061 	int ret;
2062 
2063 	spin_lock(&osb->osb_lock);
2064 	ret = !osb->osb_orphan_wipes[slot];
2065 	spin_unlock(&osb->osb_lock);
2066 	return ret;
2067 }
2068 
2069 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2070 					     int slot)
2071 {
2072 	spin_lock(&osb->osb_lock);
2073 	/* Mark ourselves such that new processes in delete_inode()
2074 	 * know to quit early. */
2075 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2076 	while (osb->osb_orphan_wipes[slot]) {
2077 		/* If any processes are already in the middle of an
2078 		 * orphan wipe on this dir, then we need to wait for
2079 		 * them. */
2080 		spin_unlock(&osb->osb_lock);
2081 		wait_event_interruptible(osb->osb_wipe_event,
2082 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2083 		spin_lock(&osb->osb_lock);
2084 	}
2085 	spin_unlock(&osb->osb_lock);
2086 }
2087 
2088 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2089 					      int slot)
2090 {
2091 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2092 }
2093 
2094 /*
2095  * Orphan recovery. Each mounted node has it's own orphan dir which we
2096  * must run during recovery. Our strategy here is to build a list of
2097  * the inodes in the orphan dir and iget/iput them. The VFS does
2098  * (most) of the rest of the work.
2099  *
2100  * Orphan recovery can happen at any time, not just mount so we have a
2101  * couple of extra considerations.
2102  *
2103  * - We grab as many inodes as we can under the orphan dir lock -
2104  *   doing iget() outside the orphan dir risks getting a reference on
2105  *   an invalid inode.
2106  * - We must be sure not to deadlock with other processes on the
2107  *   system wanting to run delete_inode(). This can happen when they go
2108  *   to lock the orphan dir and the orphan recovery process attempts to
2109  *   iget() inside the orphan dir lock. This can be avoided by
2110  *   advertising our state to ocfs2_delete_inode().
2111  */
2112 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2113 				 int slot)
2114 {
2115 	int ret = 0;
2116 	struct inode *inode = NULL;
2117 	struct inode *iter;
2118 	struct ocfs2_inode_info *oi;
2119 
2120 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2121 
2122 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2123 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2124 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2125 
2126 	/* Error here should be noted, but we want to continue with as
2127 	 * many queued inodes as we've got. */
2128 	if (ret)
2129 		mlog_errno(ret);
2130 
2131 	while (inode) {
2132 		oi = OCFS2_I(inode);
2133 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2134 
2135 		iter = oi->ip_next_orphan;
2136 
2137 		spin_lock(&oi->ip_lock);
2138 		/* The remote delete code may have set these on the
2139 		 * assumption that the other node would wipe them
2140 		 * successfully.  If they are still in the node's
2141 		 * orphan dir, we need to reset that state. */
2142 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2143 
2144 		/* Set the proper information to get us going into
2145 		 * ocfs2_delete_inode. */
2146 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2147 		spin_unlock(&oi->ip_lock);
2148 
2149 		iput(inode);
2150 
2151 		inode = iter;
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2158 {
2159 	/* This check is good because ocfs2 will wait on our recovery
2160 	 * thread before changing it to something other than MOUNTED
2161 	 * or DISABLED. */
2162 	wait_event(osb->osb_mount_event,
2163 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2164 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2165 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2166 
2167 	/* If there's an error on mount, then we may never get to the
2168 	 * MOUNTED flag, but this is set right before
2169 	 * dismount_volume() so we can trust it. */
2170 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2171 		mlog(0, "mount error, exiting!\n");
2172 		return -EBUSY;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static int ocfs2_commit_thread(void *arg)
2179 {
2180 	int status;
2181 	struct ocfs2_super *osb = arg;
2182 	struct ocfs2_journal *journal = osb->journal;
2183 
2184 	/* we can trust j_num_trans here because _should_stop() is only set in
2185 	 * shutdown and nobody other than ourselves should be able to start
2186 	 * transactions.  committing on shutdown might take a few iterations
2187 	 * as final transactions put deleted inodes on the list */
2188 	while (!(kthread_should_stop() &&
2189 		 atomic_read(&journal->j_num_trans) == 0)) {
2190 
2191 		wait_event_interruptible(osb->checkpoint_event,
2192 					 atomic_read(&journal->j_num_trans)
2193 					 || kthread_should_stop());
2194 
2195 		status = ocfs2_commit_cache(osb);
2196 		if (status < 0)
2197 			mlog_errno(status);
2198 
2199 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2200 			mlog(ML_KTHREAD,
2201 			     "commit_thread: %u transactions pending on "
2202 			     "shutdown\n",
2203 			     atomic_read(&journal->j_num_trans));
2204 		}
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 /* Reads all the journal inodes without taking any cluster locks. Used
2211  * for hard readonly access to determine whether any journal requires
2212  * recovery. Also used to refresh the recovery generation numbers after
2213  * a journal has been recovered by another node.
2214  */
2215 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2216 {
2217 	int ret = 0;
2218 	unsigned int slot;
2219 	struct buffer_head *di_bh = NULL;
2220 	struct ocfs2_dinode *di;
2221 	int journal_dirty = 0;
2222 
2223 	for(slot = 0; slot < osb->max_slots; slot++) {
2224 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2225 		if (ret) {
2226 			mlog_errno(ret);
2227 			goto out;
2228 		}
2229 
2230 		di = (struct ocfs2_dinode *) di_bh->b_data;
2231 
2232 		osb->slot_recovery_generations[slot] =
2233 					ocfs2_get_recovery_generation(di);
2234 
2235 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2236 		    OCFS2_JOURNAL_DIRTY_FL)
2237 			journal_dirty = 1;
2238 
2239 		brelse(di_bh);
2240 		di_bh = NULL;
2241 	}
2242 
2243 out:
2244 	if (journal_dirty)
2245 		ret = -EROFS;
2246 	return ret;
2247 }
2248