xref: /openbmc/linux/fs/ocfs2/journal.c (revision e8f6f3b4)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 
54 #include "buffer_head_io.h"
55 #include "ocfs2_trace.h"
56 
57 DEFINE_SPINLOCK(trans_inc_lock);
58 
59 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 
61 static int ocfs2_force_read_journal(struct inode *inode);
62 static int ocfs2_recover_node(struct ocfs2_super *osb,
63 			      int node_num, int slot_num);
64 static int __ocfs2_recovery_thread(void *arg);
65 static int ocfs2_commit_cache(struct ocfs2_super *osb);
66 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
67 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
68 				      int dirty, int replayed);
69 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
70 				 int slot_num);
71 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
72 				 int slot);
73 static int ocfs2_commit_thread(void *arg);
74 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
75 					    int slot_num,
76 					    struct ocfs2_dinode *la_dinode,
77 					    struct ocfs2_dinode *tl_dinode,
78 					    struct ocfs2_quota_recovery *qrec);
79 
80 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
81 {
82 	return __ocfs2_wait_on_mount(osb, 0);
83 }
84 
85 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
86 {
87 	return __ocfs2_wait_on_mount(osb, 1);
88 }
89 
90 /*
91  * This replay_map is to track online/offline slots, so we could recover
92  * offline slots during recovery and mount
93  */
94 
95 enum ocfs2_replay_state {
96 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
97 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
98 	REPLAY_DONE 		/* Replay was already queued */
99 };
100 
101 struct ocfs2_replay_map {
102 	unsigned int rm_slots;
103 	enum ocfs2_replay_state rm_state;
104 	unsigned char rm_replay_slots[0];
105 };
106 
107 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
108 {
109 	if (!osb->replay_map)
110 		return;
111 
112 	/* If we've already queued the replay, we don't have any more to do */
113 	if (osb->replay_map->rm_state == REPLAY_DONE)
114 		return;
115 
116 	osb->replay_map->rm_state = state;
117 }
118 
119 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
120 {
121 	struct ocfs2_replay_map *replay_map;
122 	int i, node_num;
123 
124 	/* If replay map is already set, we don't do it again */
125 	if (osb->replay_map)
126 		return 0;
127 
128 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
129 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
130 
131 	if (!replay_map) {
132 		mlog_errno(-ENOMEM);
133 		return -ENOMEM;
134 	}
135 
136 	spin_lock(&osb->osb_lock);
137 
138 	replay_map->rm_slots = osb->max_slots;
139 	replay_map->rm_state = REPLAY_UNNEEDED;
140 
141 	/* set rm_replay_slots for offline slot(s) */
142 	for (i = 0; i < replay_map->rm_slots; i++) {
143 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
144 			replay_map->rm_replay_slots[i] = 1;
145 	}
146 
147 	osb->replay_map = replay_map;
148 	spin_unlock(&osb->osb_lock);
149 	return 0;
150 }
151 
152 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
153 {
154 	struct ocfs2_replay_map *replay_map = osb->replay_map;
155 	int i;
156 
157 	if (!replay_map)
158 		return;
159 
160 	if (replay_map->rm_state != REPLAY_NEEDED)
161 		return;
162 
163 	for (i = 0; i < replay_map->rm_slots; i++)
164 		if (replay_map->rm_replay_slots[i])
165 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
166 							NULL, NULL);
167 	replay_map->rm_state = REPLAY_DONE;
168 }
169 
170 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
171 {
172 	struct ocfs2_replay_map *replay_map = osb->replay_map;
173 
174 	if (!osb->replay_map)
175 		return;
176 
177 	kfree(replay_map);
178 	osb->replay_map = NULL;
179 }
180 
181 int ocfs2_recovery_init(struct ocfs2_super *osb)
182 {
183 	struct ocfs2_recovery_map *rm;
184 
185 	mutex_init(&osb->recovery_lock);
186 	osb->disable_recovery = 0;
187 	osb->recovery_thread_task = NULL;
188 	init_waitqueue_head(&osb->recovery_event);
189 
190 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
191 		     osb->max_slots * sizeof(unsigned int),
192 		     GFP_KERNEL);
193 	if (!rm) {
194 		mlog_errno(-ENOMEM);
195 		return -ENOMEM;
196 	}
197 
198 	rm->rm_entries = (unsigned int *)((char *)rm +
199 					  sizeof(struct ocfs2_recovery_map));
200 	osb->recovery_map = rm;
201 
202 	return 0;
203 }
204 
205 /* we can't grab the goofy sem lock from inside wait_event, so we use
206  * memory barriers to make sure that we'll see the null task before
207  * being woken up */
208 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
209 {
210 	mb();
211 	return osb->recovery_thread_task != NULL;
212 }
213 
214 void ocfs2_recovery_exit(struct ocfs2_super *osb)
215 {
216 	struct ocfs2_recovery_map *rm;
217 
218 	/* disable any new recovery threads and wait for any currently
219 	 * running ones to exit. Do this before setting the vol_state. */
220 	mutex_lock(&osb->recovery_lock);
221 	osb->disable_recovery = 1;
222 	mutex_unlock(&osb->recovery_lock);
223 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
224 
225 	/* At this point, we know that no more recovery threads can be
226 	 * launched, so wait for any recovery completion work to
227 	 * complete. */
228 	flush_workqueue(ocfs2_wq);
229 
230 	/*
231 	 * Now that recovery is shut down, and the osb is about to be
232 	 * freed,  the osb_lock is not taken here.
233 	 */
234 	rm = osb->recovery_map;
235 	/* XXX: Should we bug if there are dirty entries? */
236 
237 	kfree(rm);
238 }
239 
240 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
241 				     unsigned int node_num)
242 {
243 	int i;
244 	struct ocfs2_recovery_map *rm = osb->recovery_map;
245 
246 	assert_spin_locked(&osb->osb_lock);
247 
248 	for (i = 0; i < rm->rm_used; i++) {
249 		if (rm->rm_entries[i] == node_num)
250 			return 1;
251 	}
252 
253 	return 0;
254 }
255 
256 /* Behaves like test-and-set.  Returns the previous value */
257 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
258 				  unsigned int node_num)
259 {
260 	struct ocfs2_recovery_map *rm = osb->recovery_map;
261 
262 	spin_lock(&osb->osb_lock);
263 	if (__ocfs2_recovery_map_test(osb, node_num)) {
264 		spin_unlock(&osb->osb_lock);
265 		return 1;
266 	}
267 
268 	/* XXX: Can this be exploited? Not from o2dlm... */
269 	BUG_ON(rm->rm_used >= osb->max_slots);
270 
271 	rm->rm_entries[rm->rm_used] = node_num;
272 	rm->rm_used++;
273 	spin_unlock(&osb->osb_lock);
274 
275 	return 0;
276 }
277 
278 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
279 				     unsigned int node_num)
280 {
281 	int i;
282 	struct ocfs2_recovery_map *rm = osb->recovery_map;
283 
284 	spin_lock(&osb->osb_lock);
285 
286 	for (i = 0; i < rm->rm_used; i++) {
287 		if (rm->rm_entries[i] == node_num)
288 			break;
289 	}
290 
291 	if (i < rm->rm_used) {
292 		/* XXX: be careful with the pointer math */
293 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
294 			(rm->rm_used - i - 1) * sizeof(unsigned int));
295 		rm->rm_used--;
296 	}
297 
298 	spin_unlock(&osb->osb_lock);
299 }
300 
301 static int ocfs2_commit_cache(struct ocfs2_super *osb)
302 {
303 	int status = 0;
304 	unsigned int flushed;
305 	struct ocfs2_journal *journal = NULL;
306 
307 	journal = osb->journal;
308 
309 	/* Flush all pending commits and checkpoint the journal. */
310 	down_write(&journal->j_trans_barrier);
311 
312 	flushed = atomic_read(&journal->j_num_trans);
313 	trace_ocfs2_commit_cache_begin(flushed);
314 	if (flushed == 0) {
315 		up_write(&journal->j_trans_barrier);
316 		goto finally;
317 	}
318 
319 	jbd2_journal_lock_updates(journal->j_journal);
320 	status = jbd2_journal_flush(journal->j_journal);
321 	jbd2_journal_unlock_updates(journal->j_journal);
322 	if (status < 0) {
323 		up_write(&journal->j_trans_barrier);
324 		mlog_errno(status);
325 		goto finally;
326 	}
327 
328 	ocfs2_inc_trans_id(journal);
329 
330 	flushed = atomic_read(&journal->j_num_trans);
331 	atomic_set(&journal->j_num_trans, 0);
332 	up_write(&journal->j_trans_barrier);
333 
334 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
335 
336 	ocfs2_wake_downconvert_thread(osb);
337 	wake_up(&journal->j_checkpointed);
338 finally:
339 	return status;
340 }
341 
342 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
343 {
344 	journal_t *journal = osb->journal->j_journal;
345 	handle_t *handle;
346 
347 	BUG_ON(!osb || !osb->journal->j_journal);
348 
349 	if (ocfs2_is_hard_readonly(osb))
350 		return ERR_PTR(-EROFS);
351 
352 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
353 	BUG_ON(max_buffs <= 0);
354 
355 	/* Nested transaction? Just return the handle... */
356 	if (journal_current_handle())
357 		return jbd2_journal_start(journal, max_buffs);
358 
359 	sb_start_intwrite(osb->sb);
360 
361 	down_read(&osb->journal->j_trans_barrier);
362 
363 	handle = jbd2_journal_start(journal, max_buffs);
364 	if (IS_ERR(handle)) {
365 		up_read(&osb->journal->j_trans_barrier);
366 		sb_end_intwrite(osb->sb);
367 
368 		mlog_errno(PTR_ERR(handle));
369 
370 		if (is_journal_aborted(journal)) {
371 			ocfs2_abort(osb->sb, "Detected aborted journal");
372 			handle = ERR_PTR(-EROFS);
373 		}
374 	} else {
375 		if (!ocfs2_mount_local(osb))
376 			atomic_inc(&(osb->journal->j_num_trans));
377 	}
378 
379 	return handle;
380 }
381 
382 int ocfs2_commit_trans(struct ocfs2_super *osb,
383 		       handle_t *handle)
384 {
385 	int ret, nested;
386 	struct ocfs2_journal *journal = osb->journal;
387 
388 	BUG_ON(!handle);
389 
390 	nested = handle->h_ref > 1;
391 	ret = jbd2_journal_stop(handle);
392 	if (ret < 0)
393 		mlog_errno(ret);
394 
395 	if (!nested) {
396 		up_read(&journal->j_trans_barrier);
397 		sb_end_intwrite(osb->sb);
398 	}
399 
400 	return ret;
401 }
402 
403 /*
404  * 'nblocks' is what you want to add to the current transaction.
405  *
406  * This might call jbd2_journal_restart() which will commit dirty buffers
407  * and then restart the transaction. Before calling
408  * ocfs2_extend_trans(), any changed blocks should have been
409  * dirtied. After calling it, all blocks which need to be changed must
410  * go through another set of journal_access/journal_dirty calls.
411  *
412  * WARNING: This will not release any semaphores or disk locks taken
413  * during the transaction, so make sure they were taken *before*
414  * start_trans or we'll have ordering deadlocks.
415  *
416  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
417  * good because transaction ids haven't yet been recorded on the
418  * cluster locks associated with this handle.
419  */
420 int ocfs2_extend_trans(handle_t *handle, int nblocks)
421 {
422 	int status, old_nblocks;
423 
424 	BUG_ON(!handle);
425 	BUG_ON(nblocks < 0);
426 
427 	if (!nblocks)
428 		return 0;
429 
430 	old_nblocks = handle->h_buffer_credits;
431 
432 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
433 
434 #ifdef CONFIG_OCFS2_DEBUG_FS
435 	status = 1;
436 #else
437 	status = jbd2_journal_extend(handle, nblocks);
438 	if (status < 0) {
439 		mlog_errno(status);
440 		goto bail;
441 	}
442 #endif
443 
444 	if (status > 0) {
445 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
446 		status = jbd2_journal_restart(handle,
447 					      old_nblocks + nblocks);
448 		if (status < 0) {
449 			mlog_errno(status);
450 			goto bail;
451 		}
452 	}
453 
454 	status = 0;
455 bail:
456 	return status;
457 }
458 
459 /*
460  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
461  * If that fails, restart the transaction & regain write access for the
462  * buffer head which is used for metadata modifications.
463  * Taken from Ext4: extend_or_restart_transaction()
464  */
465 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
466 {
467 	int status, old_nblks;
468 
469 	BUG_ON(!handle);
470 
471 	old_nblks = handle->h_buffer_credits;
472 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
473 
474 	if (old_nblks < thresh)
475 		return 0;
476 
477 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
478 	if (status < 0) {
479 		mlog_errno(status);
480 		goto bail;
481 	}
482 
483 	if (status > 0) {
484 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
485 		if (status < 0)
486 			mlog_errno(status);
487 	}
488 
489 bail:
490 	return status;
491 }
492 
493 
494 struct ocfs2_triggers {
495 	struct jbd2_buffer_trigger_type	ot_triggers;
496 	int				ot_offset;
497 };
498 
499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500 {
501 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502 }
503 
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 				 struct buffer_head *bh,
506 				 void *data, size_t size)
507 {
508 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509 
510 	/*
511 	 * We aren't guaranteed to have the superblock here, so we
512 	 * must unconditionally compute the ecc data.
513 	 * __ocfs2_journal_access() will only set the triggers if
514 	 * metaecc is enabled.
515 	 */
516 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517 }
518 
519 /*
520  * Quota blocks have their own trigger because the struct ocfs2_block_check
521  * offset depends on the blocksize.
522  */
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 				 struct buffer_head *bh,
525 				 void *data, size_t size)
526 {
527 	struct ocfs2_disk_dqtrailer *dqt =
528 		ocfs2_block_dqtrailer(size, data);
529 
530 	/*
531 	 * We aren't guaranteed to have the superblock here, so we
532 	 * must unconditionally compute the ecc data.
533 	 * __ocfs2_journal_access() will only set the triggers if
534 	 * metaecc is enabled.
535 	 */
536 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
537 }
538 
539 /*
540  * Directory blocks also have their own trigger because the
541  * struct ocfs2_block_check offset depends on the blocksize.
542  */
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 				 struct buffer_head *bh,
545 				 void *data, size_t size)
546 {
547 	struct ocfs2_dir_block_trailer *trailer =
548 		ocfs2_dir_trailer_from_size(size, data);
549 
550 	/*
551 	 * We aren't guaranteed to have the superblock here, so we
552 	 * must unconditionally compute the ecc data.
553 	 * __ocfs2_journal_access() will only set the triggers if
554 	 * metaecc is enabled.
555 	 */
556 	ocfs2_block_check_compute(data, size, &trailer->db_check);
557 }
558 
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 				struct buffer_head *bh)
561 {
562 	mlog(ML_ERROR,
563 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
564 	     "bh->b_blocknr = %llu\n",
565 	     (unsigned long)bh,
566 	     (unsigned long long)bh->b_blocknr);
567 
568 	/* We aren't guaranteed to have the superblock here - but if we
569 	 * don't, it'll just crash. */
570 	ocfs2_error(bh->b_assoc_map->host->i_sb,
571 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572 }
573 
574 static struct ocfs2_triggers di_triggers = {
575 	.ot_triggers = {
576 		.t_frozen = ocfs2_frozen_trigger,
577 		.t_abort = ocfs2_abort_trigger,
578 	},
579 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
580 };
581 
582 static struct ocfs2_triggers eb_triggers = {
583 	.ot_triggers = {
584 		.t_frozen = ocfs2_frozen_trigger,
585 		.t_abort = ocfs2_abort_trigger,
586 	},
587 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
588 };
589 
590 static struct ocfs2_triggers rb_triggers = {
591 	.ot_triggers = {
592 		.t_frozen = ocfs2_frozen_trigger,
593 		.t_abort = ocfs2_abort_trigger,
594 	},
595 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
596 };
597 
598 static struct ocfs2_triggers gd_triggers = {
599 	.ot_triggers = {
600 		.t_frozen = ocfs2_frozen_trigger,
601 		.t_abort = ocfs2_abort_trigger,
602 	},
603 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
604 };
605 
606 static struct ocfs2_triggers db_triggers = {
607 	.ot_triggers = {
608 		.t_frozen = ocfs2_db_frozen_trigger,
609 		.t_abort = ocfs2_abort_trigger,
610 	},
611 };
612 
613 static struct ocfs2_triggers xb_triggers = {
614 	.ot_triggers = {
615 		.t_frozen = ocfs2_frozen_trigger,
616 		.t_abort = ocfs2_abort_trigger,
617 	},
618 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
619 };
620 
621 static struct ocfs2_triggers dq_triggers = {
622 	.ot_triggers = {
623 		.t_frozen = ocfs2_dq_frozen_trigger,
624 		.t_abort = ocfs2_abort_trigger,
625 	},
626 };
627 
628 static struct ocfs2_triggers dr_triggers = {
629 	.ot_triggers = {
630 		.t_frozen = ocfs2_frozen_trigger,
631 		.t_abort = ocfs2_abort_trigger,
632 	},
633 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
634 };
635 
636 static struct ocfs2_triggers dl_triggers = {
637 	.ot_triggers = {
638 		.t_frozen = ocfs2_frozen_trigger,
639 		.t_abort = ocfs2_abort_trigger,
640 	},
641 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
642 };
643 
644 static int __ocfs2_journal_access(handle_t *handle,
645 				  struct ocfs2_caching_info *ci,
646 				  struct buffer_head *bh,
647 				  struct ocfs2_triggers *triggers,
648 				  int type)
649 {
650 	int status;
651 	struct ocfs2_super *osb =
652 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
653 
654 	BUG_ON(!ci || !ci->ci_ops);
655 	BUG_ON(!handle);
656 	BUG_ON(!bh);
657 
658 	trace_ocfs2_journal_access(
659 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
660 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
661 
662 	/* we can safely remove this assertion after testing. */
663 	if (!buffer_uptodate(bh)) {
664 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
665 		mlog(ML_ERROR, "b_blocknr=%llu\n",
666 		     (unsigned long long)bh->b_blocknr);
667 		BUG();
668 	}
669 
670 	/* Set the current transaction information on the ci so
671 	 * that the locking code knows whether it can drop it's locks
672 	 * on this ci or not. We're protected from the commit
673 	 * thread updating the current transaction id until
674 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
675 	 * j_trans_barrier for us. */
676 	ocfs2_set_ci_lock_trans(osb->journal, ci);
677 
678 	ocfs2_metadata_cache_io_lock(ci);
679 	switch (type) {
680 	case OCFS2_JOURNAL_ACCESS_CREATE:
681 	case OCFS2_JOURNAL_ACCESS_WRITE:
682 		status = jbd2_journal_get_write_access(handle, bh);
683 		break;
684 
685 	case OCFS2_JOURNAL_ACCESS_UNDO:
686 		status = jbd2_journal_get_undo_access(handle, bh);
687 		break;
688 
689 	default:
690 		status = -EINVAL;
691 		mlog(ML_ERROR, "Unknown access type!\n");
692 	}
693 	if (!status && ocfs2_meta_ecc(osb) && triggers)
694 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
695 	ocfs2_metadata_cache_io_unlock(ci);
696 
697 	if (status < 0)
698 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
699 		     status, type);
700 
701 	return status;
702 }
703 
704 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
705 			    struct buffer_head *bh, int type)
706 {
707 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
708 }
709 
710 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
714 }
715 
716 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
717 			    struct buffer_head *bh, int type)
718 {
719 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
720 				      type);
721 }
722 
723 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
724 			    struct buffer_head *bh, int type)
725 {
726 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
727 }
728 
729 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
730 			    struct buffer_head *bh, int type)
731 {
732 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
733 }
734 
735 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
736 			    struct buffer_head *bh, int type)
737 {
738 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
739 }
740 
741 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
742 			    struct buffer_head *bh, int type)
743 {
744 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
745 }
746 
747 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
748 			    struct buffer_head *bh, int type)
749 {
750 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
751 }
752 
753 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
754 			    struct buffer_head *bh, int type)
755 {
756 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
757 }
758 
759 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
760 			 struct buffer_head *bh, int type)
761 {
762 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
763 }
764 
765 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
766 {
767 	int status;
768 
769 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
770 
771 	status = jbd2_journal_dirty_metadata(handle, bh);
772 	BUG_ON(status);
773 }
774 
775 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
776 
777 void ocfs2_set_journal_params(struct ocfs2_super *osb)
778 {
779 	journal_t *journal = osb->journal->j_journal;
780 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
781 
782 	if (osb->osb_commit_interval)
783 		commit_interval = osb->osb_commit_interval;
784 
785 	write_lock(&journal->j_state_lock);
786 	journal->j_commit_interval = commit_interval;
787 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
788 		journal->j_flags |= JBD2_BARRIER;
789 	else
790 		journal->j_flags &= ~JBD2_BARRIER;
791 	write_unlock(&journal->j_state_lock);
792 }
793 
794 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
795 {
796 	int status = -1;
797 	struct inode *inode = NULL; /* the journal inode */
798 	journal_t *j_journal = NULL;
799 	struct ocfs2_dinode *di = NULL;
800 	struct buffer_head *bh = NULL;
801 	struct ocfs2_super *osb;
802 	int inode_lock = 0;
803 
804 	BUG_ON(!journal);
805 
806 	osb = journal->j_osb;
807 
808 	/* already have the inode for our journal */
809 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
810 					    osb->slot_num);
811 	if (inode == NULL) {
812 		status = -EACCES;
813 		mlog_errno(status);
814 		goto done;
815 	}
816 	if (is_bad_inode(inode)) {
817 		mlog(ML_ERROR, "access error (bad inode)\n");
818 		iput(inode);
819 		inode = NULL;
820 		status = -EACCES;
821 		goto done;
822 	}
823 
824 	SET_INODE_JOURNAL(inode);
825 	OCFS2_I(inode)->ip_open_count++;
826 
827 	/* Skip recovery waits here - journal inode metadata never
828 	 * changes in a live cluster so it can be considered an
829 	 * exception to the rule. */
830 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
831 	if (status < 0) {
832 		if (status != -ERESTARTSYS)
833 			mlog(ML_ERROR, "Could not get lock on journal!\n");
834 		goto done;
835 	}
836 
837 	inode_lock = 1;
838 	di = (struct ocfs2_dinode *)bh->b_data;
839 
840 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
841 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
842 		     i_size_read(inode));
843 		status = -EINVAL;
844 		goto done;
845 	}
846 
847 	trace_ocfs2_journal_init(i_size_read(inode),
848 				 (unsigned long long)inode->i_blocks,
849 				 OCFS2_I(inode)->ip_clusters);
850 
851 	/* call the kernels journal init function now */
852 	j_journal = jbd2_journal_init_inode(inode);
853 	if (j_journal == NULL) {
854 		mlog(ML_ERROR, "Linux journal layer error\n");
855 		status = -EINVAL;
856 		goto done;
857 	}
858 
859 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
860 
861 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
862 		  OCFS2_JOURNAL_DIRTY_FL);
863 
864 	journal->j_journal = j_journal;
865 	journal->j_inode = inode;
866 	journal->j_bh = bh;
867 
868 	ocfs2_set_journal_params(osb);
869 
870 	journal->j_state = OCFS2_JOURNAL_LOADED;
871 
872 	status = 0;
873 done:
874 	if (status < 0) {
875 		if (inode_lock)
876 			ocfs2_inode_unlock(inode, 1);
877 		brelse(bh);
878 		if (inode) {
879 			OCFS2_I(inode)->ip_open_count--;
880 			iput(inode);
881 		}
882 	}
883 
884 	return status;
885 }
886 
887 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
888 {
889 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
890 }
891 
892 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
893 {
894 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
895 }
896 
897 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
898 				      int dirty, int replayed)
899 {
900 	int status;
901 	unsigned int flags;
902 	struct ocfs2_journal *journal = osb->journal;
903 	struct buffer_head *bh = journal->j_bh;
904 	struct ocfs2_dinode *fe;
905 
906 	fe = (struct ocfs2_dinode *)bh->b_data;
907 
908 	/* The journal bh on the osb always comes from ocfs2_journal_init()
909 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
910 	 * code bug if we mess it up. */
911 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
912 
913 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
914 	if (dirty)
915 		flags |= OCFS2_JOURNAL_DIRTY_FL;
916 	else
917 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
918 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
919 
920 	if (replayed)
921 		ocfs2_bump_recovery_generation(fe);
922 
923 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
924 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
925 	if (status < 0)
926 		mlog_errno(status);
927 
928 	return status;
929 }
930 
931 /*
932  * If the journal has been kmalloc'd it needs to be freed after this
933  * call.
934  */
935 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
936 {
937 	struct ocfs2_journal *journal = NULL;
938 	int status = 0;
939 	struct inode *inode = NULL;
940 	int num_running_trans = 0;
941 
942 	BUG_ON(!osb);
943 
944 	journal = osb->journal;
945 	if (!journal)
946 		goto done;
947 
948 	inode = journal->j_inode;
949 
950 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
951 		goto done;
952 
953 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
954 	if (!igrab(inode))
955 		BUG();
956 
957 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
958 	trace_ocfs2_journal_shutdown(num_running_trans);
959 
960 	/* Do a commit_cache here. It will flush our journal, *and*
961 	 * release any locks that are still held.
962 	 * set the SHUTDOWN flag and release the trans lock.
963 	 * the commit thread will take the trans lock for us below. */
964 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
965 
966 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
967 	 * drop the trans_lock (which we want to hold until we
968 	 * completely destroy the journal. */
969 	if (osb->commit_task) {
970 		/* Wait for the commit thread */
971 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
972 		kthread_stop(osb->commit_task);
973 		osb->commit_task = NULL;
974 	}
975 
976 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
977 
978 	if (ocfs2_mount_local(osb)) {
979 		jbd2_journal_lock_updates(journal->j_journal);
980 		status = jbd2_journal_flush(journal->j_journal);
981 		jbd2_journal_unlock_updates(journal->j_journal);
982 		if (status < 0)
983 			mlog_errno(status);
984 	}
985 
986 	if (status == 0) {
987 		/*
988 		 * Do not toggle if flush was unsuccessful otherwise
989 		 * will leave dirty metadata in a "clean" journal
990 		 */
991 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
992 		if (status < 0)
993 			mlog_errno(status);
994 	}
995 
996 	/* Shutdown the kernel journal system */
997 	jbd2_journal_destroy(journal->j_journal);
998 	journal->j_journal = NULL;
999 
1000 	OCFS2_I(inode)->ip_open_count--;
1001 
1002 	/* unlock our journal */
1003 	ocfs2_inode_unlock(inode, 1);
1004 
1005 	brelse(journal->j_bh);
1006 	journal->j_bh = NULL;
1007 
1008 	journal->j_state = OCFS2_JOURNAL_FREE;
1009 
1010 //	up_write(&journal->j_trans_barrier);
1011 done:
1012 	if (inode)
1013 		iput(inode);
1014 }
1015 
1016 static void ocfs2_clear_journal_error(struct super_block *sb,
1017 				      journal_t *journal,
1018 				      int slot)
1019 {
1020 	int olderr;
1021 
1022 	olderr = jbd2_journal_errno(journal);
1023 	if (olderr) {
1024 		mlog(ML_ERROR, "File system error %d recorded in "
1025 		     "journal %u.\n", olderr, slot);
1026 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1027 		     sb->s_id);
1028 
1029 		jbd2_journal_ack_err(journal);
1030 		jbd2_journal_clear_err(journal);
1031 	}
1032 }
1033 
1034 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1035 {
1036 	int status = 0;
1037 	struct ocfs2_super *osb;
1038 
1039 	BUG_ON(!journal);
1040 
1041 	osb = journal->j_osb;
1042 
1043 	status = jbd2_journal_load(journal->j_journal);
1044 	if (status < 0) {
1045 		mlog(ML_ERROR, "Failed to load journal!\n");
1046 		goto done;
1047 	}
1048 
1049 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1050 
1051 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1052 	if (status < 0) {
1053 		mlog_errno(status);
1054 		goto done;
1055 	}
1056 
1057 	/* Launch the commit thread */
1058 	if (!local) {
1059 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1060 					       "ocfs2cmt");
1061 		if (IS_ERR(osb->commit_task)) {
1062 			status = PTR_ERR(osb->commit_task);
1063 			osb->commit_task = NULL;
1064 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1065 			     "error=%d", status);
1066 			goto done;
1067 		}
1068 	} else
1069 		osb->commit_task = NULL;
1070 
1071 done:
1072 	return status;
1073 }
1074 
1075 
1076 /* 'full' flag tells us whether we clear out all blocks or if we just
1077  * mark the journal clean */
1078 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1079 {
1080 	int status;
1081 
1082 	BUG_ON(!journal);
1083 
1084 	status = jbd2_journal_wipe(journal->j_journal, full);
1085 	if (status < 0) {
1086 		mlog_errno(status);
1087 		goto bail;
1088 	}
1089 
1090 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1091 	if (status < 0)
1092 		mlog_errno(status);
1093 
1094 bail:
1095 	return status;
1096 }
1097 
1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1099 {
1100 	int empty;
1101 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1102 
1103 	spin_lock(&osb->osb_lock);
1104 	empty = (rm->rm_used == 0);
1105 	spin_unlock(&osb->osb_lock);
1106 
1107 	return empty;
1108 }
1109 
1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1111 {
1112 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1113 }
1114 
1115 /*
1116  * JBD Might read a cached version of another nodes journal file. We
1117  * don't want this as this file changes often and we get no
1118  * notification on those changes. The only way to be sure that we've
1119  * got the most up to date version of those blocks then is to force
1120  * read them off disk. Just searching through the buffer cache won't
1121  * work as there may be pages backing this file which are still marked
1122  * up to date. We know things can't change on this file underneath us
1123  * as we have the lock by now :)
1124  */
1125 static int ocfs2_force_read_journal(struct inode *inode)
1126 {
1127 	int status = 0;
1128 	int i;
1129 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1132 
1133 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1134 
1135 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1136 	v_blkno = 0;
1137 	while (v_blkno < num_blocks) {
1138 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1139 						     &p_blkno, &p_blocks, NULL);
1140 		if (status < 0) {
1141 			mlog_errno(status);
1142 			goto bail;
1143 		}
1144 
1145 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1146 			p_blocks = CONCURRENT_JOURNAL_FILL;
1147 
1148 		/* We are reading journal data which should not
1149 		 * be put in the uptodate cache */
1150 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1151 						p_blkno, p_blocks, bhs);
1152 		if (status < 0) {
1153 			mlog_errno(status);
1154 			goto bail;
1155 		}
1156 
1157 		for(i = 0; i < p_blocks; i++) {
1158 			brelse(bhs[i]);
1159 			bhs[i] = NULL;
1160 		}
1161 
1162 		v_blkno += p_blocks;
1163 	}
1164 
1165 bail:
1166 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1167 		brelse(bhs[i]);
1168 	return status;
1169 }
1170 
1171 struct ocfs2_la_recovery_item {
1172 	struct list_head	lri_list;
1173 	int			lri_slot;
1174 	struct ocfs2_dinode	*lri_la_dinode;
1175 	struct ocfs2_dinode	*lri_tl_dinode;
1176 	struct ocfs2_quota_recovery *lri_qrec;
1177 };
1178 
1179 /* Does the second half of the recovery process. By this point, the
1180  * node is marked clean and can actually be considered recovered,
1181  * hence it's no longer in the recovery map, but there's still some
1182  * cleanup we can do which shouldn't happen within the recovery thread
1183  * as locking in that context becomes very difficult if we are to take
1184  * recovering nodes into account.
1185  *
1186  * NOTE: This function can and will sleep on recovery of other nodes
1187  * during cluster locking, just like any other ocfs2 process.
1188  */
1189 void ocfs2_complete_recovery(struct work_struct *work)
1190 {
1191 	int ret = 0;
1192 	struct ocfs2_journal *journal =
1193 		container_of(work, struct ocfs2_journal, j_recovery_work);
1194 	struct ocfs2_super *osb = journal->j_osb;
1195 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1196 	struct ocfs2_la_recovery_item *item, *n;
1197 	struct ocfs2_quota_recovery *qrec;
1198 	LIST_HEAD(tmp_la_list);
1199 
1200 	trace_ocfs2_complete_recovery(
1201 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1202 
1203 	spin_lock(&journal->j_lock);
1204 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1205 	spin_unlock(&journal->j_lock);
1206 
1207 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1208 		list_del_init(&item->lri_list);
1209 
1210 		ocfs2_wait_on_quotas(osb);
1211 
1212 		la_dinode = item->lri_la_dinode;
1213 		tl_dinode = item->lri_tl_dinode;
1214 		qrec = item->lri_qrec;
1215 
1216 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1217 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1218 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1219 			qrec);
1220 
1221 		if (la_dinode) {
1222 			ret = ocfs2_complete_local_alloc_recovery(osb,
1223 								  la_dinode);
1224 			if (ret < 0)
1225 				mlog_errno(ret);
1226 
1227 			kfree(la_dinode);
1228 		}
1229 
1230 		if (tl_dinode) {
1231 			ret = ocfs2_complete_truncate_log_recovery(osb,
1232 								   tl_dinode);
1233 			if (ret < 0)
1234 				mlog_errno(ret);
1235 
1236 			kfree(tl_dinode);
1237 		}
1238 
1239 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1240 		if (ret < 0)
1241 			mlog_errno(ret);
1242 
1243 		if (qrec) {
1244 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1245 							  item->lri_slot);
1246 			if (ret < 0)
1247 				mlog_errno(ret);
1248 			/* Recovery info is already freed now */
1249 		}
1250 
1251 		kfree(item);
1252 	}
1253 
1254 	trace_ocfs2_complete_recovery_end(ret);
1255 }
1256 
1257 /* NOTE: This function always eats your references to la_dinode and
1258  * tl_dinode, either manually on error, or by passing them to
1259  * ocfs2_complete_recovery */
1260 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1261 					    int slot_num,
1262 					    struct ocfs2_dinode *la_dinode,
1263 					    struct ocfs2_dinode *tl_dinode,
1264 					    struct ocfs2_quota_recovery *qrec)
1265 {
1266 	struct ocfs2_la_recovery_item *item;
1267 
1268 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1269 	if (!item) {
1270 		/* Though we wish to avoid it, we are in fact safe in
1271 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1272 		 * than capable of reclaiming unused space. */
1273 		kfree(la_dinode);
1274 		kfree(tl_dinode);
1275 
1276 		if (qrec)
1277 			ocfs2_free_quota_recovery(qrec);
1278 
1279 		mlog_errno(-ENOMEM);
1280 		return;
1281 	}
1282 
1283 	INIT_LIST_HEAD(&item->lri_list);
1284 	item->lri_la_dinode = la_dinode;
1285 	item->lri_slot = slot_num;
1286 	item->lri_tl_dinode = tl_dinode;
1287 	item->lri_qrec = qrec;
1288 
1289 	spin_lock(&journal->j_lock);
1290 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1291 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1292 	spin_unlock(&journal->j_lock);
1293 }
1294 
1295 /* Called by the mount code to queue recovery the last part of
1296  * recovery for it's own and offline slot(s). */
1297 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1298 {
1299 	struct ocfs2_journal *journal = osb->journal;
1300 
1301 	if (ocfs2_is_hard_readonly(osb))
1302 		return;
1303 
1304 	/* No need to queue up our truncate_log as regular cleanup will catch
1305 	 * that */
1306 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1307 					osb->local_alloc_copy, NULL, NULL);
1308 	ocfs2_schedule_truncate_log_flush(osb, 0);
1309 
1310 	osb->local_alloc_copy = NULL;
1311 	osb->dirty = 0;
1312 
1313 	/* queue to recover orphan slots for all offline slots */
1314 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1315 	ocfs2_queue_replay_slots(osb);
1316 	ocfs2_free_replay_slots(osb);
1317 }
1318 
1319 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1320 {
1321 	if (osb->quota_rec) {
1322 		ocfs2_queue_recovery_completion(osb->journal,
1323 						osb->slot_num,
1324 						NULL,
1325 						NULL,
1326 						osb->quota_rec);
1327 		osb->quota_rec = NULL;
1328 	}
1329 }
1330 
1331 static int __ocfs2_recovery_thread(void *arg)
1332 {
1333 	int status, node_num, slot_num;
1334 	struct ocfs2_super *osb = arg;
1335 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1336 	int *rm_quota = NULL;
1337 	int rm_quota_used = 0, i;
1338 	struct ocfs2_quota_recovery *qrec;
1339 
1340 	status = ocfs2_wait_on_mount(osb);
1341 	if (status < 0) {
1342 		goto bail;
1343 	}
1344 
1345 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1346 	if (!rm_quota) {
1347 		status = -ENOMEM;
1348 		goto bail;
1349 	}
1350 restart:
1351 	status = ocfs2_super_lock(osb, 1);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	status = ocfs2_compute_replay_slots(osb);
1358 	if (status < 0)
1359 		mlog_errno(status);
1360 
1361 	/* queue recovery for our own slot */
1362 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1363 					NULL, NULL);
1364 
1365 	spin_lock(&osb->osb_lock);
1366 	while (rm->rm_used) {
1367 		/* It's always safe to remove entry zero, as we won't
1368 		 * clear it until ocfs2_recover_node() has succeeded. */
1369 		node_num = rm->rm_entries[0];
1370 		spin_unlock(&osb->osb_lock);
1371 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1372 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1373 		if (slot_num == -ENOENT) {
1374 			status = 0;
1375 			goto skip_recovery;
1376 		}
1377 
1378 		/* It is a bit subtle with quota recovery. We cannot do it
1379 		 * immediately because we have to obtain cluster locks from
1380 		 * quota files and we also don't want to just skip it because
1381 		 * then quota usage would be out of sync until some node takes
1382 		 * the slot. So we remember which nodes need quota recovery
1383 		 * and when everything else is done, we recover quotas. */
1384 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1385 		if (i == rm_quota_used)
1386 			rm_quota[rm_quota_used++] = slot_num;
1387 
1388 		status = ocfs2_recover_node(osb, node_num, slot_num);
1389 skip_recovery:
1390 		if (!status) {
1391 			ocfs2_recovery_map_clear(osb, node_num);
1392 		} else {
1393 			mlog(ML_ERROR,
1394 			     "Error %d recovering node %d on device (%u,%u)!\n",
1395 			     status, node_num,
1396 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1397 			mlog(ML_ERROR, "Volume requires unmount.\n");
1398 		}
1399 
1400 		spin_lock(&osb->osb_lock);
1401 	}
1402 	spin_unlock(&osb->osb_lock);
1403 	trace_ocfs2_recovery_thread_end(status);
1404 
1405 	/* Refresh all journal recovery generations from disk */
1406 	status = ocfs2_check_journals_nolocks(osb);
1407 	status = (status == -EROFS) ? 0 : status;
1408 	if (status < 0)
1409 		mlog_errno(status);
1410 
1411 	/* Now it is right time to recover quotas... We have to do this under
1412 	 * superblock lock so that no one can start using the slot (and crash)
1413 	 * before we recover it */
1414 	for (i = 0; i < rm_quota_used; i++) {
1415 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1416 		if (IS_ERR(qrec)) {
1417 			status = PTR_ERR(qrec);
1418 			mlog_errno(status);
1419 			continue;
1420 		}
1421 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1422 						NULL, NULL, qrec);
1423 	}
1424 
1425 	ocfs2_super_unlock(osb, 1);
1426 
1427 	/* queue recovery for offline slots */
1428 	ocfs2_queue_replay_slots(osb);
1429 
1430 bail:
1431 	mutex_lock(&osb->recovery_lock);
1432 	if (!status && !ocfs2_recovery_completed(osb)) {
1433 		mutex_unlock(&osb->recovery_lock);
1434 		goto restart;
1435 	}
1436 
1437 	ocfs2_free_replay_slots(osb);
1438 	osb->recovery_thread_task = NULL;
1439 	mb(); /* sync with ocfs2_recovery_thread_running */
1440 	wake_up(&osb->recovery_event);
1441 
1442 	mutex_unlock(&osb->recovery_lock);
1443 
1444 	kfree(rm_quota);
1445 
1446 	/* no one is callint kthread_stop() for us so the kthread() api
1447 	 * requires that we call do_exit().  And it isn't exported, but
1448 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1449 	complete_and_exit(NULL, status);
1450 	return status;
1451 }
1452 
1453 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1454 {
1455 	mutex_lock(&osb->recovery_lock);
1456 
1457 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1458 		osb->disable_recovery, osb->recovery_thread_task,
1459 		osb->disable_recovery ?
1460 		-1 : ocfs2_recovery_map_set(osb, node_num));
1461 
1462 	if (osb->disable_recovery)
1463 		goto out;
1464 
1465 	if (osb->recovery_thread_task)
1466 		goto out;
1467 
1468 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1469 						 "ocfs2rec");
1470 	if (IS_ERR(osb->recovery_thread_task)) {
1471 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1472 		osb->recovery_thread_task = NULL;
1473 	}
1474 
1475 out:
1476 	mutex_unlock(&osb->recovery_lock);
1477 	wake_up(&osb->recovery_event);
1478 }
1479 
1480 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1481 				    int slot_num,
1482 				    struct buffer_head **bh,
1483 				    struct inode **ret_inode)
1484 {
1485 	int status = -EACCES;
1486 	struct inode *inode = NULL;
1487 
1488 	BUG_ON(slot_num >= osb->max_slots);
1489 
1490 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1491 					    slot_num);
1492 	if (!inode || is_bad_inode(inode)) {
1493 		mlog_errno(status);
1494 		goto bail;
1495 	}
1496 	SET_INODE_JOURNAL(inode);
1497 
1498 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1499 	if (status < 0) {
1500 		mlog_errno(status);
1501 		goto bail;
1502 	}
1503 
1504 	status = 0;
1505 
1506 bail:
1507 	if (inode) {
1508 		if (status || !ret_inode)
1509 			iput(inode);
1510 		else
1511 			*ret_inode = inode;
1512 	}
1513 	return status;
1514 }
1515 
1516 /* Does the actual journal replay and marks the journal inode as
1517  * clean. Will only replay if the journal inode is marked dirty. */
1518 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1519 				int node_num,
1520 				int slot_num)
1521 {
1522 	int status;
1523 	int got_lock = 0;
1524 	unsigned int flags;
1525 	struct inode *inode = NULL;
1526 	struct ocfs2_dinode *fe;
1527 	journal_t *journal = NULL;
1528 	struct buffer_head *bh = NULL;
1529 	u32 slot_reco_gen;
1530 
1531 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1532 	if (status) {
1533 		mlog_errno(status);
1534 		goto done;
1535 	}
1536 
1537 	fe = (struct ocfs2_dinode *)bh->b_data;
1538 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1539 	brelse(bh);
1540 	bh = NULL;
1541 
1542 	/*
1543 	 * As the fs recovery is asynchronous, there is a small chance that
1544 	 * another node mounted (and recovered) the slot before the recovery
1545 	 * thread could get the lock. To handle that, we dirty read the journal
1546 	 * inode for that slot to get the recovery generation. If it is
1547 	 * different than what we expected, the slot has been recovered.
1548 	 * If not, it needs recovery.
1549 	 */
1550 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1551 		trace_ocfs2_replay_journal_recovered(slot_num,
1552 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1553 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1554 		status = -EBUSY;
1555 		goto done;
1556 	}
1557 
1558 	/* Continue with recovery as the journal has not yet been recovered */
1559 
1560 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1561 	if (status < 0) {
1562 		trace_ocfs2_replay_journal_lock_err(status);
1563 		if (status != -ERESTARTSYS)
1564 			mlog(ML_ERROR, "Could not lock journal!\n");
1565 		goto done;
1566 	}
1567 	got_lock = 1;
1568 
1569 	fe = (struct ocfs2_dinode *) bh->b_data;
1570 
1571 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1572 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1573 
1574 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1575 		trace_ocfs2_replay_journal_skip(node_num);
1576 		/* Refresh recovery generation for the slot */
1577 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1578 		goto done;
1579 	}
1580 
1581 	/* we need to run complete recovery for offline orphan slots */
1582 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1583 
1584 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1585 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1586 	       MINOR(osb->sb->s_dev));
1587 
1588 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1589 
1590 	status = ocfs2_force_read_journal(inode);
1591 	if (status < 0) {
1592 		mlog_errno(status);
1593 		goto done;
1594 	}
1595 
1596 	journal = jbd2_journal_init_inode(inode);
1597 	if (journal == NULL) {
1598 		mlog(ML_ERROR, "Linux journal layer error\n");
1599 		status = -EIO;
1600 		goto done;
1601 	}
1602 
1603 	status = jbd2_journal_load(journal);
1604 	if (status < 0) {
1605 		mlog_errno(status);
1606 		if (!igrab(inode))
1607 			BUG();
1608 		jbd2_journal_destroy(journal);
1609 		goto done;
1610 	}
1611 
1612 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1613 
1614 	/* wipe the journal */
1615 	jbd2_journal_lock_updates(journal);
1616 	status = jbd2_journal_flush(journal);
1617 	jbd2_journal_unlock_updates(journal);
1618 	if (status < 0)
1619 		mlog_errno(status);
1620 
1621 	/* This will mark the node clean */
1622 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1623 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1624 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1625 
1626 	/* Increment recovery generation to indicate successful recovery */
1627 	ocfs2_bump_recovery_generation(fe);
1628 	osb->slot_recovery_generations[slot_num] =
1629 					ocfs2_get_recovery_generation(fe);
1630 
1631 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1632 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1633 	if (status < 0)
1634 		mlog_errno(status);
1635 
1636 	if (!igrab(inode))
1637 		BUG();
1638 
1639 	jbd2_journal_destroy(journal);
1640 
1641 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1642 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1643 	       MINOR(osb->sb->s_dev));
1644 done:
1645 	/* drop the lock on this nodes journal */
1646 	if (got_lock)
1647 		ocfs2_inode_unlock(inode, 1);
1648 
1649 	if (inode)
1650 		iput(inode);
1651 
1652 	brelse(bh);
1653 
1654 	return status;
1655 }
1656 
1657 /*
1658  * Do the most important parts of node recovery:
1659  *  - Replay it's journal
1660  *  - Stamp a clean local allocator file
1661  *  - Stamp a clean truncate log
1662  *  - Mark the node clean
1663  *
1664  * If this function completes without error, a node in OCFS2 can be
1665  * said to have been safely recovered. As a result, failure during the
1666  * second part of a nodes recovery process (local alloc recovery) is
1667  * far less concerning.
1668  */
1669 static int ocfs2_recover_node(struct ocfs2_super *osb,
1670 			      int node_num, int slot_num)
1671 {
1672 	int status = 0;
1673 	struct ocfs2_dinode *la_copy = NULL;
1674 	struct ocfs2_dinode *tl_copy = NULL;
1675 
1676 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1677 
1678 	/* Should not ever be called to recover ourselves -- in that
1679 	 * case we should've called ocfs2_journal_load instead. */
1680 	BUG_ON(osb->node_num == node_num);
1681 
1682 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1683 	if (status < 0) {
1684 		if (status == -EBUSY) {
1685 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1686 			status = 0;
1687 			goto done;
1688 		}
1689 		mlog_errno(status);
1690 		goto done;
1691 	}
1692 
1693 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1694 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1695 	if (status < 0) {
1696 		mlog_errno(status);
1697 		goto done;
1698 	}
1699 
1700 	/* An error from begin_truncate_log_recovery is not
1701 	 * serious enough to warrant halting the rest of
1702 	 * recovery. */
1703 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1704 	if (status < 0)
1705 		mlog_errno(status);
1706 
1707 	/* Likewise, this would be a strange but ultimately not so
1708 	 * harmful place to get an error... */
1709 	status = ocfs2_clear_slot(osb, slot_num);
1710 	if (status < 0)
1711 		mlog_errno(status);
1712 
1713 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1714 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1715 					tl_copy, NULL);
1716 
1717 	status = 0;
1718 done:
1719 
1720 	return status;
1721 }
1722 
1723 /* Test node liveness by trylocking his journal. If we get the lock,
1724  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1725  * still alive (we couldn't get the lock) and < 0 on error. */
1726 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1727 				 int slot_num)
1728 {
1729 	int status, flags;
1730 	struct inode *inode = NULL;
1731 
1732 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1733 					    slot_num);
1734 	if (inode == NULL) {
1735 		mlog(ML_ERROR, "access error\n");
1736 		status = -EACCES;
1737 		goto bail;
1738 	}
1739 	if (is_bad_inode(inode)) {
1740 		mlog(ML_ERROR, "access error (bad inode)\n");
1741 		iput(inode);
1742 		inode = NULL;
1743 		status = -EACCES;
1744 		goto bail;
1745 	}
1746 	SET_INODE_JOURNAL(inode);
1747 
1748 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1749 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1750 	if (status < 0) {
1751 		if (status != -EAGAIN)
1752 			mlog_errno(status);
1753 		goto bail;
1754 	}
1755 
1756 	ocfs2_inode_unlock(inode, 1);
1757 bail:
1758 	if (inode)
1759 		iput(inode);
1760 
1761 	return status;
1762 }
1763 
1764 /* Call this underneath ocfs2_super_lock. It also assumes that the
1765  * slot info struct has been updated from disk. */
1766 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1767 {
1768 	unsigned int node_num;
1769 	int status, i;
1770 	u32 gen;
1771 	struct buffer_head *bh = NULL;
1772 	struct ocfs2_dinode *di;
1773 
1774 	/* This is called with the super block cluster lock, so we
1775 	 * know that the slot map can't change underneath us. */
1776 
1777 	for (i = 0; i < osb->max_slots; i++) {
1778 		/* Read journal inode to get the recovery generation */
1779 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1780 		if (status) {
1781 			mlog_errno(status);
1782 			goto bail;
1783 		}
1784 		di = (struct ocfs2_dinode *)bh->b_data;
1785 		gen = ocfs2_get_recovery_generation(di);
1786 		brelse(bh);
1787 		bh = NULL;
1788 
1789 		spin_lock(&osb->osb_lock);
1790 		osb->slot_recovery_generations[i] = gen;
1791 
1792 		trace_ocfs2_mark_dead_nodes(i,
1793 					    osb->slot_recovery_generations[i]);
1794 
1795 		if (i == osb->slot_num) {
1796 			spin_unlock(&osb->osb_lock);
1797 			continue;
1798 		}
1799 
1800 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1801 		if (status == -ENOENT) {
1802 			spin_unlock(&osb->osb_lock);
1803 			continue;
1804 		}
1805 
1806 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1807 			spin_unlock(&osb->osb_lock);
1808 			continue;
1809 		}
1810 		spin_unlock(&osb->osb_lock);
1811 
1812 		/* Ok, we have a slot occupied by another node which
1813 		 * is not in the recovery map. We trylock his journal
1814 		 * file here to test if he's alive. */
1815 		status = ocfs2_trylock_journal(osb, i);
1816 		if (!status) {
1817 			/* Since we're called from mount, we know that
1818 			 * the recovery thread can't race us on
1819 			 * setting / checking the recovery bits. */
1820 			ocfs2_recovery_thread(osb, node_num);
1821 		} else if ((status < 0) && (status != -EAGAIN)) {
1822 			mlog_errno(status);
1823 			goto bail;
1824 		}
1825 	}
1826 
1827 	status = 0;
1828 bail:
1829 	return status;
1830 }
1831 
1832 /*
1833  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1834  * randomness to the timeout to minimize multple nodes firing the timer at the
1835  * same time.
1836  */
1837 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1838 {
1839 	unsigned long time;
1840 
1841 	get_random_bytes(&time, sizeof(time));
1842 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1843 	return msecs_to_jiffies(time);
1844 }
1845 
1846 /*
1847  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1848  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1849  * is done to catch any orphans that are left over in orphan directories.
1850  *
1851  * It scans all slots, even ones that are in use. It does so to handle the
1852  * case described below:
1853  *
1854  *   Node 1 has an inode it was using. The dentry went away due to memory
1855  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1856  *   has the open lock.
1857  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1858  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1859  *   open lock, sees that another node has a PR, and does nothing.
1860  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1861  *   open lock, sees the PR still, and does nothing.
1862  *   Basically, we have to trigger an orphan iput on node 1. The only way
1863  *   for this to happen is if node 1 runs node 2's orphan dir.
1864  *
1865  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1866  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1867  * stored in LVB. If the sequence number has changed, it means some other
1868  * node has done the scan.  This node skips the scan and tracks the
1869  * sequence number.  If the sequence number didn't change, it means a scan
1870  * hasn't happened.  The node queues a scan and increments the
1871  * sequence number in the LVB.
1872  */
1873 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1874 {
1875 	struct ocfs2_orphan_scan *os;
1876 	int status, i;
1877 	u32 seqno = 0;
1878 
1879 	os = &osb->osb_orphan_scan;
1880 
1881 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1882 		goto out;
1883 
1884 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1885 					    atomic_read(&os->os_state));
1886 
1887 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1888 	if (status < 0) {
1889 		if (status != -EAGAIN)
1890 			mlog_errno(status);
1891 		goto out;
1892 	}
1893 
1894 	/* Do no queue the tasks if the volume is being umounted */
1895 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1896 		goto unlock;
1897 
1898 	if (os->os_seqno != seqno) {
1899 		os->os_seqno = seqno;
1900 		goto unlock;
1901 	}
1902 
1903 	for (i = 0; i < osb->max_slots; i++)
1904 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1905 						NULL);
1906 	/*
1907 	 * We queued a recovery on orphan slots, increment the sequence
1908 	 * number and update LVB so other node will skip the scan for a while
1909 	 */
1910 	seqno++;
1911 	os->os_count++;
1912 	os->os_scantime = CURRENT_TIME;
1913 unlock:
1914 	ocfs2_orphan_scan_unlock(osb, seqno);
1915 out:
1916 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1917 					  atomic_read(&os->os_state));
1918 	return;
1919 }
1920 
1921 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1922 void ocfs2_orphan_scan_work(struct work_struct *work)
1923 {
1924 	struct ocfs2_orphan_scan *os;
1925 	struct ocfs2_super *osb;
1926 
1927 	os = container_of(work, struct ocfs2_orphan_scan,
1928 			  os_orphan_scan_work.work);
1929 	osb = os->os_osb;
1930 
1931 	mutex_lock(&os->os_lock);
1932 	ocfs2_queue_orphan_scan(osb);
1933 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1934 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1935 				      ocfs2_orphan_scan_timeout());
1936 	mutex_unlock(&os->os_lock);
1937 }
1938 
1939 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1940 {
1941 	struct ocfs2_orphan_scan *os;
1942 
1943 	os = &osb->osb_orphan_scan;
1944 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1945 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1946 		mutex_lock(&os->os_lock);
1947 		cancel_delayed_work(&os->os_orphan_scan_work);
1948 		mutex_unlock(&os->os_lock);
1949 	}
1950 }
1951 
1952 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1953 {
1954 	struct ocfs2_orphan_scan *os;
1955 
1956 	os = &osb->osb_orphan_scan;
1957 	os->os_osb = osb;
1958 	os->os_count = 0;
1959 	os->os_seqno = 0;
1960 	mutex_init(&os->os_lock);
1961 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1962 }
1963 
1964 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1965 {
1966 	struct ocfs2_orphan_scan *os;
1967 
1968 	os = &osb->osb_orphan_scan;
1969 	os->os_scantime = CURRENT_TIME;
1970 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1971 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1972 	else {
1973 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1974 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1975 				   ocfs2_orphan_scan_timeout());
1976 	}
1977 }
1978 
1979 struct ocfs2_orphan_filldir_priv {
1980 	struct dir_context	ctx;
1981 	struct inode		*head;
1982 	struct ocfs2_super	*osb;
1983 };
1984 
1985 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
1986 				int name_len, loff_t pos, u64 ino,
1987 				unsigned type)
1988 {
1989 	struct ocfs2_orphan_filldir_priv *p =
1990 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
1991 	struct inode *iter;
1992 
1993 	if (name_len == 1 && !strncmp(".", name, 1))
1994 		return 0;
1995 	if (name_len == 2 && !strncmp("..", name, 2))
1996 		return 0;
1997 
1998 	/* Skip bad inodes so that recovery can continue */
1999 	iter = ocfs2_iget(p->osb, ino,
2000 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2001 	if (IS_ERR(iter))
2002 		return 0;
2003 
2004 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2005 	/* No locking is required for the next_orphan queue as there
2006 	 * is only ever a single process doing orphan recovery. */
2007 	OCFS2_I(iter)->ip_next_orphan = p->head;
2008 	p->head = iter;
2009 
2010 	return 0;
2011 }
2012 
2013 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2014 			       int slot,
2015 			       struct inode **head)
2016 {
2017 	int status;
2018 	struct inode *orphan_dir_inode = NULL;
2019 	struct ocfs2_orphan_filldir_priv priv = {
2020 		.ctx.actor = ocfs2_orphan_filldir,
2021 		.osb = osb,
2022 		.head = *head
2023 	};
2024 
2025 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2026 						       ORPHAN_DIR_SYSTEM_INODE,
2027 						       slot);
2028 	if  (!orphan_dir_inode) {
2029 		status = -ENOENT;
2030 		mlog_errno(status);
2031 		return status;
2032 	}
2033 
2034 	mutex_lock(&orphan_dir_inode->i_mutex);
2035 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2036 	if (status < 0) {
2037 		mlog_errno(status);
2038 		goto out;
2039 	}
2040 
2041 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2042 	if (status) {
2043 		mlog_errno(status);
2044 		goto out_cluster;
2045 	}
2046 
2047 	*head = priv.head;
2048 
2049 out_cluster:
2050 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2051 out:
2052 	mutex_unlock(&orphan_dir_inode->i_mutex);
2053 	iput(orphan_dir_inode);
2054 	return status;
2055 }
2056 
2057 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2058 					      int slot)
2059 {
2060 	int ret;
2061 
2062 	spin_lock(&osb->osb_lock);
2063 	ret = !osb->osb_orphan_wipes[slot];
2064 	spin_unlock(&osb->osb_lock);
2065 	return ret;
2066 }
2067 
2068 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2069 					     int slot)
2070 {
2071 	spin_lock(&osb->osb_lock);
2072 	/* Mark ourselves such that new processes in delete_inode()
2073 	 * know to quit early. */
2074 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2075 	while (osb->osb_orphan_wipes[slot]) {
2076 		/* If any processes are already in the middle of an
2077 		 * orphan wipe on this dir, then we need to wait for
2078 		 * them. */
2079 		spin_unlock(&osb->osb_lock);
2080 		wait_event_interruptible(osb->osb_wipe_event,
2081 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2082 		spin_lock(&osb->osb_lock);
2083 	}
2084 	spin_unlock(&osb->osb_lock);
2085 }
2086 
2087 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2088 					      int slot)
2089 {
2090 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2091 }
2092 
2093 /*
2094  * Orphan recovery. Each mounted node has it's own orphan dir which we
2095  * must run during recovery. Our strategy here is to build a list of
2096  * the inodes in the orphan dir and iget/iput them. The VFS does
2097  * (most) of the rest of the work.
2098  *
2099  * Orphan recovery can happen at any time, not just mount so we have a
2100  * couple of extra considerations.
2101  *
2102  * - We grab as many inodes as we can under the orphan dir lock -
2103  *   doing iget() outside the orphan dir risks getting a reference on
2104  *   an invalid inode.
2105  * - We must be sure not to deadlock with other processes on the
2106  *   system wanting to run delete_inode(). This can happen when they go
2107  *   to lock the orphan dir and the orphan recovery process attempts to
2108  *   iget() inside the orphan dir lock. This can be avoided by
2109  *   advertising our state to ocfs2_delete_inode().
2110  */
2111 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2112 				 int slot)
2113 {
2114 	int ret = 0;
2115 	struct inode *inode = NULL;
2116 	struct inode *iter;
2117 	struct ocfs2_inode_info *oi;
2118 
2119 	trace_ocfs2_recover_orphans(slot);
2120 
2121 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2122 	ret = ocfs2_queue_orphans(osb, slot, &inode);
2123 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2124 
2125 	/* Error here should be noted, but we want to continue with as
2126 	 * many queued inodes as we've got. */
2127 	if (ret)
2128 		mlog_errno(ret);
2129 
2130 	while (inode) {
2131 		oi = OCFS2_I(inode);
2132 		trace_ocfs2_recover_orphans_iput(
2133 					(unsigned long long)oi->ip_blkno);
2134 
2135 		iter = oi->ip_next_orphan;
2136 
2137 		spin_lock(&oi->ip_lock);
2138 		/* Set the proper information to get us going into
2139 		 * ocfs2_delete_inode. */
2140 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2141 		spin_unlock(&oi->ip_lock);
2142 
2143 		iput(inode);
2144 
2145 		inode = iter;
2146 	}
2147 
2148 	return ret;
2149 }
2150 
2151 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2152 {
2153 	/* This check is good because ocfs2 will wait on our recovery
2154 	 * thread before changing it to something other than MOUNTED
2155 	 * or DISABLED. */
2156 	wait_event(osb->osb_mount_event,
2157 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2158 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2159 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2160 
2161 	/* If there's an error on mount, then we may never get to the
2162 	 * MOUNTED flag, but this is set right before
2163 	 * dismount_volume() so we can trust it. */
2164 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2165 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2166 		mlog(0, "mount error, exiting!\n");
2167 		return -EBUSY;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static int ocfs2_commit_thread(void *arg)
2174 {
2175 	int status;
2176 	struct ocfs2_super *osb = arg;
2177 	struct ocfs2_journal *journal = osb->journal;
2178 
2179 	/* we can trust j_num_trans here because _should_stop() is only set in
2180 	 * shutdown and nobody other than ourselves should be able to start
2181 	 * transactions.  committing on shutdown might take a few iterations
2182 	 * as final transactions put deleted inodes on the list */
2183 	while (!(kthread_should_stop() &&
2184 		 atomic_read(&journal->j_num_trans) == 0)) {
2185 
2186 		wait_event_interruptible(osb->checkpoint_event,
2187 					 atomic_read(&journal->j_num_trans)
2188 					 || kthread_should_stop());
2189 
2190 		status = ocfs2_commit_cache(osb);
2191 		if (status < 0) {
2192 			static unsigned long abort_warn_time;
2193 
2194 			/* Warn about this once per minute */
2195 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2196 				mlog(ML_ERROR, "status = %d, journal is "
2197 						"already aborted.\n", status);
2198 			/*
2199 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2200 			 * non-zero value.  Sleep here to avoid a busy-wait
2201 			 * loop.
2202 			 */
2203 			msleep_interruptible(1000);
2204 		}
2205 
2206 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2207 			mlog(ML_KTHREAD,
2208 			     "commit_thread: %u transactions pending on "
2209 			     "shutdown\n",
2210 			     atomic_read(&journal->j_num_trans));
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /* Reads all the journal inodes without taking any cluster locks. Used
2218  * for hard readonly access to determine whether any journal requires
2219  * recovery. Also used to refresh the recovery generation numbers after
2220  * a journal has been recovered by another node.
2221  */
2222 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2223 {
2224 	int ret = 0;
2225 	unsigned int slot;
2226 	struct buffer_head *di_bh = NULL;
2227 	struct ocfs2_dinode *di;
2228 	int journal_dirty = 0;
2229 
2230 	for(slot = 0; slot < osb->max_slots; slot++) {
2231 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2232 		if (ret) {
2233 			mlog_errno(ret);
2234 			goto out;
2235 		}
2236 
2237 		di = (struct ocfs2_dinode *) di_bh->b_data;
2238 
2239 		osb->slot_recovery_generations[slot] =
2240 					ocfs2_get_recovery_generation(di);
2241 
2242 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2243 		    OCFS2_JOURNAL_DIRTY_FL)
2244 			journal_dirty = 1;
2245 
2246 		brelse(di_bh);
2247 		di_bh = NULL;
2248 	}
2249 
2250 out:
2251 	if (journal_dirty)
2252 		ret = -EROFS;
2253 	return ret;
2254 }
2255