1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 #include <linux/delay.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 #include "file.h" 54 #include "namei.h" 55 56 #include "buffer_head_io.h" 57 #include "ocfs2_trace.h" 58 59 DEFINE_SPINLOCK(trans_inc_lock); 60 61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 62 63 static int ocfs2_force_read_journal(struct inode *inode); 64 static int ocfs2_recover_node(struct ocfs2_super *osb, 65 int node_num, int slot_num); 66 static int __ocfs2_recovery_thread(void *arg); 67 static int ocfs2_commit_cache(struct ocfs2_super *osb); 68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 70 int dirty, int replayed); 71 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 72 int slot_num); 73 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 74 int slot, 75 enum ocfs2_orphan_reco_type orphan_reco_type); 76 static int ocfs2_commit_thread(void *arg); 77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 78 int slot_num, 79 struct ocfs2_dinode *la_dinode, 80 struct ocfs2_dinode *tl_dinode, 81 struct ocfs2_quota_recovery *qrec, 82 enum ocfs2_orphan_reco_type orphan_reco_type); 83 84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 0); 87 } 88 89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 90 { 91 return __ocfs2_wait_on_mount(osb, 1); 92 } 93 94 /* 95 * This replay_map is to track online/offline slots, so we could recover 96 * offline slots during recovery and mount 97 */ 98 99 enum ocfs2_replay_state { 100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 102 REPLAY_DONE /* Replay was already queued */ 103 }; 104 105 struct ocfs2_replay_map { 106 unsigned int rm_slots; 107 enum ocfs2_replay_state rm_state; 108 unsigned char rm_replay_slots[0]; 109 }; 110 111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 112 { 113 if (!osb->replay_map) 114 return; 115 116 /* If we've already queued the replay, we don't have any more to do */ 117 if (osb->replay_map->rm_state == REPLAY_DONE) 118 return; 119 120 osb->replay_map->rm_state = state; 121 } 122 123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 124 { 125 struct ocfs2_replay_map *replay_map; 126 int i, node_num; 127 128 /* If replay map is already set, we don't do it again */ 129 if (osb->replay_map) 130 return 0; 131 132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 133 (osb->max_slots * sizeof(char)), GFP_KERNEL); 134 135 if (!replay_map) { 136 mlog_errno(-ENOMEM); 137 return -ENOMEM; 138 } 139 140 spin_lock(&osb->osb_lock); 141 142 replay_map->rm_slots = osb->max_slots; 143 replay_map->rm_state = REPLAY_UNNEEDED; 144 145 /* set rm_replay_slots for offline slot(s) */ 146 for (i = 0; i < replay_map->rm_slots; i++) { 147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 148 replay_map->rm_replay_slots[i] = 1; 149 } 150 151 osb->replay_map = replay_map; 152 spin_unlock(&osb->osb_lock); 153 return 0; 154 } 155 156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 157 enum ocfs2_orphan_reco_type orphan_reco_type) 158 { 159 struct ocfs2_replay_map *replay_map = osb->replay_map; 160 int i; 161 162 if (!replay_map) 163 return; 164 165 if (replay_map->rm_state != REPLAY_NEEDED) 166 return; 167 168 for (i = 0; i < replay_map->rm_slots; i++) 169 if (replay_map->rm_replay_slots[i]) 170 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 171 NULL, NULL, 172 orphan_reco_type); 173 replay_map->rm_state = REPLAY_DONE; 174 } 175 176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 177 { 178 struct ocfs2_replay_map *replay_map = osb->replay_map; 179 180 if (!osb->replay_map) 181 return; 182 183 kfree(replay_map); 184 osb->replay_map = NULL; 185 } 186 187 int ocfs2_recovery_init(struct ocfs2_super *osb) 188 { 189 struct ocfs2_recovery_map *rm; 190 191 mutex_init(&osb->recovery_lock); 192 osb->disable_recovery = 0; 193 osb->recovery_thread_task = NULL; 194 init_waitqueue_head(&osb->recovery_event); 195 196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 197 osb->max_slots * sizeof(unsigned int), 198 GFP_KERNEL); 199 if (!rm) { 200 mlog_errno(-ENOMEM); 201 return -ENOMEM; 202 } 203 204 rm->rm_entries = (unsigned int *)((char *)rm + 205 sizeof(struct ocfs2_recovery_map)); 206 osb->recovery_map = rm; 207 208 return 0; 209 } 210 211 /* we can't grab the goofy sem lock from inside wait_event, so we use 212 * memory barriers to make sure that we'll see the null task before 213 * being woken up */ 214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 215 { 216 mb(); 217 return osb->recovery_thread_task != NULL; 218 } 219 220 void ocfs2_recovery_exit(struct ocfs2_super *osb) 221 { 222 struct ocfs2_recovery_map *rm; 223 224 /* disable any new recovery threads and wait for any currently 225 * running ones to exit. Do this before setting the vol_state. */ 226 mutex_lock(&osb->recovery_lock); 227 osb->disable_recovery = 1; 228 mutex_unlock(&osb->recovery_lock); 229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 230 231 /* At this point, we know that no more recovery threads can be 232 * launched, so wait for any recovery completion work to 233 * complete. */ 234 flush_workqueue(osb->ocfs2_wq); 235 236 /* 237 * Now that recovery is shut down, and the osb is about to be 238 * freed, the osb_lock is not taken here. 239 */ 240 rm = osb->recovery_map; 241 /* XXX: Should we bug if there are dirty entries? */ 242 243 kfree(rm); 244 } 245 246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 int i; 250 struct ocfs2_recovery_map *rm = osb->recovery_map; 251 252 assert_spin_locked(&osb->osb_lock); 253 254 for (i = 0; i < rm->rm_used; i++) { 255 if (rm->rm_entries[i] == node_num) 256 return 1; 257 } 258 259 return 0; 260 } 261 262 /* Behaves like test-and-set. Returns the previous value */ 263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 264 unsigned int node_num) 265 { 266 struct ocfs2_recovery_map *rm = osb->recovery_map; 267 268 spin_lock(&osb->osb_lock); 269 if (__ocfs2_recovery_map_test(osb, node_num)) { 270 spin_unlock(&osb->osb_lock); 271 return 1; 272 } 273 274 /* XXX: Can this be exploited? Not from o2dlm... */ 275 BUG_ON(rm->rm_used >= osb->max_slots); 276 277 rm->rm_entries[rm->rm_used] = node_num; 278 rm->rm_used++; 279 spin_unlock(&osb->osb_lock); 280 281 return 0; 282 } 283 284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 285 unsigned int node_num) 286 { 287 int i; 288 struct ocfs2_recovery_map *rm = osb->recovery_map; 289 290 spin_lock(&osb->osb_lock); 291 292 for (i = 0; i < rm->rm_used; i++) { 293 if (rm->rm_entries[i] == node_num) 294 break; 295 } 296 297 if (i < rm->rm_used) { 298 /* XXX: be careful with the pointer math */ 299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 300 (rm->rm_used - i - 1) * sizeof(unsigned int)); 301 rm->rm_used--; 302 } 303 304 spin_unlock(&osb->osb_lock); 305 } 306 307 static int ocfs2_commit_cache(struct ocfs2_super *osb) 308 { 309 int status = 0; 310 unsigned int flushed; 311 struct ocfs2_journal *journal = NULL; 312 313 journal = osb->journal; 314 315 /* Flush all pending commits and checkpoint the journal. */ 316 down_write(&journal->j_trans_barrier); 317 318 flushed = atomic_read(&journal->j_num_trans); 319 trace_ocfs2_commit_cache_begin(flushed); 320 if (flushed == 0) { 321 up_write(&journal->j_trans_barrier); 322 goto finally; 323 } 324 325 jbd2_journal_lock_updates(journal->j_journal); 326 status = jbd2_journal_flush(journal->j_journal); 327 jbd2_journal_unlock_updates(journal->j_journal); 328 if (status < 0) { 329 up_write(&journal->j_trans_barrier); 330 mlog_errno(status); 331 goto finally; 332 } 333 334 ocfs2_inc_trans_id(journal); 335 336 flushed = atomic_read(&journal->j_num_trans); 337 atomic_set(&journal->j_num_trans, 0); 338 up_write(&journal->j_trans_barrier); 339 340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 341 342 ocfs2_wake_downconvert_thread(osb); 343 wake_up(&journal->j_checkpointed); 344 finally: 345 return status; 346 } 347 348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 349 { 350 journal_t *journal = osb->journal->j_journal; 351 handle_t *handle; 352 353 BUG_ON(!osb || !osb->journal->j_journal); 354 355 if (ocfs2_is_hard_readonly(osb)) 356 return ERR_PTR(-EROFS); 357 358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 359 BUG_ON(max_buffs <= 0); 360 361 /* Nested transaction? Just return the handle... */ 362 if (journal_current_handle()) 363 return jbd2_journal_start(journal, max_buffs); 364 365 sb_start_intwrite(osb->sb); 366 367 down_read(&osb->journal->j_trans_barrier); 368 369 handle = jbd2_journal_start(journal, max_buffs); 370 if (IS_ERR(handle)) { 371 up_read(&osb->journal->j_trans_barrier); 372 sb_end_intwrite(osb->sb); 373 374 mlog_errno(PTR_ERR(handle)); 375 376 if (is_journal_aborted(journal)) { 377 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 378 handle = ERR_PTR(-EROFS); 379 } 380 } else { 381 if (!ocfs2_mount_local(osb)) 382 atomic_inc(&(osb->journal->j_num_trans)); 383 } 384 385 return handle; 386 } 387 388 int ocfs2_commit_trans(struct ocfs2_super *osb, 389 handle_t *handle) 390 { 391 int ret, nested; 392 struct ocfs2_journal *journal = osb->journal; 393 394 BUG_ON(!handle); 395 396 nested = handle->h_ref > 1; 397 ret = jbd2_journal_stop(handle); 398 if (ret < 0) 399 mlog_errno(ret); 400 401 if (!nested) { 402 up_read(&journal->j_trans_barrier); 403 sb_end_intwrite(osb->sb); 404 } 405 406 return ret; 407 } 408 409 /* 410 * 'nblocks' is what you want to add to the current transaction. 411 * 412 * This might call jbd2_journal_restart() which will commit dirty buffers 413 * and then restart the transaction. Before calling 414 * ocfs2_extend_trans(), any changed blocks should have been 415 * dirtied. After calling it, all blocks which need to be changed must 416 * go through another set of journal_access/journal_dirty calls. 417 * 418 * WARNING: This will not release any semaphores or disk locks taken 419 * during the transaction, so make sure they were taken *before* 420 * start_trans or we'll have ordering deadlocks. 421 * 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 423 * good because transaction ids haven't yet been recorded on the 424 * cluster locks associated with this handle. 425 */ 426 int ocfs2_extend_trans(handle_t *handle, int nblocks) 427 { 428 int status, old_nblocks; 429 430 BUG_ON(!handle); 431 BUG_ON(nblocks < 0); 432 433 if (!nblocks) 434 return 0; 435 436 old_nblocks = handle->h_buffer_credits; 437 438 trace_ocfs2_extend_trans(old_nblocks, nblocks); 439 440 #ifdef CONFIG_OCFS2_DEBUG_FS 441 status = 1; 442 #else 443 status = jbd2_journal_extend(handle, nblocks); 444 if (status < 0) { 445 mlog_errno(status); 446 goto bail; 447 } 448 #endif 449 450 if (status > 0) { 451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 452 status = jbd2_journal_restart(handle, 453 old_nblocks + nblocks); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 } 459 460 status = 0; 461 bail: 462 return status; 463 } 464 465 /* 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 467 * If that fails, restart the transaction & regain write access for the 468 * buffer head which is used for metadata modifications. 469 * Taken from Ext4: extend_or_restart_transaction() 470 */ 471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 472 { 473 int status, old_nblks; 474 475 BUG_ON(!handle); 476 477 old_nblks = handle->h_buffer_credits; 478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 479 480 if (old_nblks < thresh) 481 return 0; 482 483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 484 if (status < 0) { 485 mlog_errno(status); 486 goto bail; 487 } 488 489 if (status > 0) { 490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 491 if (status < 0) 492 mlog_errno(status); 493 } 494 495 bail: 496 return status; 497 } 498 499 500 struct ocfs2_triggers { 501 struct jbd2_buffer_trigger_type ot_triggers; 502 int ot_offset; 503 }; 504 505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 506 { 507 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 508 } 509 510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 511 struct buffer_head *bh, 512 void *data, size_t size) 513 { 514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 515 516 /* 517 * We aren't guaranteed to have the superblock here, so we 518 * must unconditionally compute the ecc data. 519 * __ocfs2_journal_access() will only set the triggers if 520 * metaecc is enabled. 521 */ 522 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 523 } 524 525 /* 526 * Quota blocks have their own trigger because the struct ocfs2_block_check 527 * offset depends on the blocksize. 528 */ 529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 530 struct buffer_head *bh, 531 void *data, size_t size) 532 { 533 struct ocfs2_disk_dqtrailer *dqt = 534 ocfs2_block_dqtrailer(size, data); 535 536 /* 537 * We aren't guaranteed to have the superblock here, so we 538 * must unconditionally compute the ecc data. 539 * __ocfs2_journal_access() will only set the triggers if 540 * metaecc is enabled. 541 */ 542 ocfs2_block_check_compute(data, size, &dqt->dq_check); 543 } 544 545 /* 546 * Directory blocks also have their own trigger because the 547 * struct ocfs2_block_check offset depends on the blocksize. 548 */ 549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 550 struct buffer_head *bh, 551 void *data, size_t size) 552 { 553 struct ocfs2_dir_block_trailer *trailer = 554 ocfs2_dir_trailer_from_size(size, data); 555 556 /* 557 * We aren't guaranteed to have the superblock here, so we 558 * must unconditionally compute the ecc data. 559 * __ocfs2_journal_access() will only set the triggers if 560 * metaecc is enabled. 561 */ 562 ocfs2_block_check_compute(data, size, &trailer->db_check); 563 } 564 565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh) 567 { 568 mlog(ML_ERROR, 569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 570 "bh->b_blocknr = %llu\n", 571 (unsigned long)bh, 572 (unsigned long long)bh->b_blocknr); 573 574 ocfs2_error(bh->b_bdev->bd_super, 575 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 576 } 577 578 static struct ocfs2_triggers di_triggers = { 579 .ot_triggers = { 580 .t_frozen = ocfs2_frozen_trigger, 581 .t_abort = ocfs2_abort_trigger, 582 }, 583 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 584 }; 585 586 static struct ocfs2_triggers eb_triggers = { 587 .ot_triggers = { 588 .t_frozen = ocfs2_frozen_trigger, 589 .t_abort = ocfs2_abort_trigger, 590 }, 591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 592 }; 593 594 static struct ocfs2_triggers rb_triggers = { 595 .ot_triggers = { 596 .t_frozen = ocfs2_frozen_trigger, 597 .t_abort = ocfs2_abort_trigger, 598 }, 599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 600 }; 601 602 static struct ocfs2_triggers gd_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 608 }; 609 610 static struct ocfs2_triggers db_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_db_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers xb_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 623 }; 624 625 static struct ocfs2_triggers dq_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_dq_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 }; 631 632 static struct ocfs2_triggers dr_triggers = { 633 .ot_triggers = { 634 .t_frozen = ocfs2_frozen_trigger, 635 .t_abort = ocfs2_abort_trigger, 636 }, 637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 638 }; 639 640 static struct ocfs2_triggers dl_triggers = { 641 .ot_triggers = { 642 .t_frozen = ocfs2_frozen_trigger, 643 .t_abort = ocfs2_abort_trigger, 644 }, 645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 646 }; 647 648 static int __ocfs2_journal_access(handle_t *handle, 649 struct ocfs2_caching_info *ci, 650 struct buffer_head *bh, 651 struct ocfs2_triggers *triggers, 652 int type) 653 { 654 int status; 655 struct ocfs2_super *osb = 656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 657 658 BUG_ON(!ci || !ci->ci_ops); 659 BUG_ON(!handle); 660 BUG_ON(!bh); 661 662 trace_ocfs2_journal_access( 663 (unsigned long long)ocfs2_metadata_cache_owner(ci), 664 (unsigned long long)bh->b_blocknr, type, bh->b_size); 665 666 /* we can safely remove this assertion after testing. */ 667 if (!buffer_uptodate(bh)) { 668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 669 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 670 (unsigned long long)bh->b_blocknr, bh->b_state); 671 672 lock_buffer(bh); 673 /* 674 * A previous transaction with a couple of buffer heads fail 675 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 676 * For current transaction, the bh is just among those error 677 * bhs which previous transaction handle. We can't just clear 678 * its BH_Write_EIO and reuse directly, since other bhs are 679 * not written to disk yet and that will cause metadata 680 * inconsistency. So we should set fs read-only to avoid 681 * further damage. 682 */ 683 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 684 unlock_buffer(bh); 685 return ocfs2_error(osb->sb, "A previous attempt to " 686 "write this buffer head failed\n"); 687 } 688 unlock_buffer(bh); 689 } 690 691 /* Set the current transaction information on the ci so 692 * that the locking code knows whether it can drop it's locks 693 * on this ci or not. We're protected from the commit 694 * thread updating the current transaction id until 695 * ocfs2_commit_trans() because ocfs2_start_trans() took 696 * j_trans_barrier for us. */ 697 ocfs2_set_ci_lock_trans(osb->journal, ci); 698 699 ocfs2_metadata_cache_io_lock(ci); 700 switch (type) { 701 case OCFS2_JOURNAL_ACCESS_CREATE: 702 case OCFS2_JOURNAL_ACCESS_WRITE: 703 status = jbd2_journal_get_write_access(handle, bh); 704 break; 705 706 case OCFS2_JOURNAL_ACCESS_UNDO: 707 status = jbd2_journal_get_undo_access(handle, bh); 708 break; 709 710 default: 711 status = -EINVAL; 712 mlog(ML_ERROR, "Unknown access type!\n"); 713 } 714 if (!status && ocfs2_meta_ecc(osb) && triggers) 715 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 716 ocfs2_metadata_cache_io_unlock(ci); 717 718 if (status < 0) 719 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 720 status, type); 721 722 return status; 723 } 724 725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 726 struct buffer_head *bh, int type) 727 { 728 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 729 } 730 731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 732 struct buffer_head *bh, int type) 733 { 734 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 735 } 736 737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 738 struct buffer_head *bh, int type) 739 { 740 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 741 type); 742 } 743 744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 745 struct buffer_head *bh, int type) 746 { 747 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 748 } 749 750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 751 struct buffer_head *bh, int type) 752 { 753 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 754 } 755 756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 757 struct buffer_head *bh, int type) 758 { 759 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 760 } 761 762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 763 struct buffer_head *bh, int type) 764 { 765 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 766 } 767 768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 769 struct buffer_head *bh, int type) 770 { 771 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 772 } 773 774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 775 struct buffer_head *bh, int type) 776 { 777 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 778 } 779 780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 781 struct buffer_head *bh, int type) 782 { 783 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 784 } 785 786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 787 { 788 int status; 789 790 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 791 792 status = jbd2_journal_dirty_metadata(handle, bh); 793 if (status) { 794 mlog_errno(status); 795 if (!is_handle_aborted(handle)) { 796 journal_t *journal = handle->h_transaction->t_journal; 797 struct super_block *sb = bh->b_bdev->bd_super; 798 799 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 800 "Aborting transaction and journal.\n"); 801 handle->h_err = status; 802 jbd2_journal_abort_handle(handle); 803 jbd2_journal_abort(journal, status); 804 ocfs2_abort(sb, "Journal already aborted.\n"); 805 } 806 } 807 } 808 809 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 810 811 void ocfs2_set_journal_params(struct ocfs2_super *osb) 812 { 813 journal_t *journal = osb->journal->j_journal; 814 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 815 816 if (osb->osb_commit_interval) 817 commit_interval = osb->osb_commit_interval; 818 819 write_lock(&journal->j_state_lock); 820 journal->j_commit_interval = commit_interval; 821 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 822 journal->j_flags |= JBD2_BARRIER; 823 else 824 journal->j_flags &= ~JBD2_BARRIER; 825 write_unlock(&journal->j_state_lock); 826 } 827 828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 829 { 830 int status = -1; 831 struct inode *inode = NULL; /* the journal inode */ 832 journal_t *j_journal = NULL; 833 struct ocfs2_dinode *di = NULL; 834 struct buffer_head *bh = NULL; 835 struct ocfs2_super *osb; 836 int inode_lock = 0; 837 838 BUG_ON(!journal); 839 840 osb = journal->j_osb; 841 842 /* already have the inode for our journal */ 843 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 844 osb->slot_num); 845 if (inode == NULL) { 846 status = -EACCES; 847 mlog_errno(status); 848 goto done; 849 } 850 if (is_bad_inode(inode)) { 851 mlog(ML_ERROR, "access error (bad inode)\n"); 852 iput(inode); 853 inode = NULL; 854 status = -EACCES; 855 goto done; 856 } 857 858 SET_INODE_JOURNAL(inode); 859 OCFS2_I(inode)->ip_open_count++; 860 861 /* Skip recovery waits here - journal inode metadata never 862 * changes in a live cluster so it can be considered an 863 * exception to the rule. */ 864 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 865 if (status < 0) { 866 if (status != -ERESTARTSYS) 867 mlog(ML_ERROR, "Could not get lock on journal!\n"); 868 goto done; 869 } 870 871 inode_lock = 1; 872 di = (struct ocfs2_dinode *)bh->b_data; 873 874 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 875 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 876 i_size_read(inode)); 877 status = -EINVAL; 878 goto done; 879 } 880 881 trace_ocfs2_journal_init(i_size_read(inode), 882 (unsigned long long)inode->i_blocks, 883 OCFS2_I(inode)->ip_clusters); 884 885 /* call the kernels journal init function now */ 886 j_journal = jbd2_journal_init_inode(inode); 887 if (j_journal == NULL) { 888 mlog(ML_ERROR, "Linux journal layer error\n"); 889 status = -EINVAL; 890 goto done; 891 } 892 893 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 894 895 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 896 OCFS2_JOURNAL_DIRTY_FL); 897 898 journal->j_journal = j_journal; 899 journal->j_inode = inode; 900 journal->j_bh = bh; 901 902 ocfs2_set_journal_params(osb); 903 904 journal->j_state = OCFS2_JOURNAL_LOADED; 905 906 status = 0; 907 done: 908 if (status < 0) { 909 if (inode_lock) 910 ocfs2_inode_unlock(inode, 1); 911 brelse(bh); 912 if (inode) { 913 OCFS2_I(inode)->ip_open_count--; 914 iput(inode); 915 } 916 } 917 918 return status; 919 } 920 921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 922 { 923 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 924 } 925 926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 927 { 928 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 929 } 930 931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 932 int dirty, int replayed) 933 { 934 int status; 935 unsigned int flags; 936 struct ocfs2_journal *journal = osb->journal; 937 struct buffer_head *bh = journal->j_bh; 938 struct ocfs2_dinode *fe; 939 940 fe = (struct ocfs2_dinode *)bh->b_data; 941 942 /* The journal bh on the osb always comes from ocfs2_journal_init() 943 * and was validated there inside ocfs2_inode_lock_full(). It's a 944 * code bug if we mess it up. */ 945 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 946 947 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 948 if (dirty) 949 flags |= OCFS2_JOURNAL_DIRTY_FL; 950 else 951 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 952 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 953 954 if (replayed) 955 ocfs2_bump_recovery_generation(fe); 956 957 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 958 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 959 if (status < 0) 960 mlog_errno(status); 961 962 return status; 963 } 964 965 /* 966 * If the journal has been kmalloc'd it needs to be freed after this 967 * call. 968 */ 969 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 970 { 971 struct ocfs2_journal *journal = NULL; 972 int status = 0; 973 struct inode *inode = NULL; 974 int num_running_trans = 0; 975 976 BUG_ON(!osb); 977 978 journal = osb->journal; 979 if (!journal) 980 goto done; 981 982 inode = journal->j_inode; 983 984 if (journal->j_state != OCFS2_JOURNAL_LOADED) 985 goto done; 986 987 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 988 if (!igrab(inode)) 989 BUG(); 990 991 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 992 trace_ocfs2_journal_shutdown(num_running_trans); 993 994 /* Do a commit_cache here. It will flush our journal, *and* 995 * release any locks that are still held. 996 * set the SHUTDOWN flag and release the trans lock. 997 * the commit thread will take the trans lock for us below. */ 998 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 999 1000 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1001 * drop the trans_lock (which we want to hold until we 1002 * completely destroy the journal. */ 1003 if (osb->commit_task) { 1004 /* Wait for the commit thread */ 1005 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1006 kthread_stop(osb->commit_task); 1007 osb->commit_task = NULL; 1008 } 1009 1010 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1011 1012 if (ocfs2_mount_local(osb)) { 1013 jbd2_journal_lock_updates(journal->j_journal); 1014 status = jbd2_journal_flush(journal->j_journal); 1015 jbd2_journal_unlock_updates(journal->j_journal); 1016 if (status < 0) 1017 mlog_errno(status); 1018 } 1019 1020 if (status == 0) { 1021 /* 1022 * Do not toggle if flush was unsuccessful otherwise 1023 * will leave dirty metadata in a "clean" journal 1024 */ 1025 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1026 if (status < 0) 1027 mlog_errno(status); 1028 } 1029 1030 /* Shutdown the kernel journal system */ 1031 jbd2_journal_destroy(journal->j_journal); 1032 journal->j_journal = NULL; 1033 1034 OCFS2_I(inode)->ip_open_count--; 1035 1036 /* unlock our journal */ 1037 ocfs2_inode_unlock(inode, 1); 1038 1039 brelse(journal->j_bh); 1040 journal->j_bh = NULL; 1041 1042 journal->j_state = OCFS2_JOURNAL_FREE; 1043 1044 // up_write(&journal->j_trans_barrier); 1045 done: 1046 iput(inode); 1047 } 1048 1049 static void ocfs2_clear_journal_error(struct super_block *sb, 1050 journal_t *journal, 1051 int slot) 1052 { 1053 int olderr; 1054 1055 olderr = jbd2_journal_errno(journal); 1056 if (olderr) { 1057 mlog(ML_ERROR, "File system error %d recorded in " 1058 "journal %u.\n", olderr, slot); 1059 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1060 sb->s_id); 1061 1062 jbd2_journal_ack_err(journal); 1063 jbd2_journal_clear_err(journal); 1064 } 1065 } 1066 1067 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1068 { 1069 int status = 0; 1070 struct ocfs2_super *osb; 1071 1072 BUG_ON(!journal); 1073 1074 osb = journal->j_osb; 1075 1076 status = jbd2_journal_load(journal->j_journal); 1077 if (status < 0) { 1078 mlog(ML_ERROR, "Failed to load journal!\n"); 1079 goto done; 1080 } 1081 1082 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1083 1084 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1085 if (status < 0) { 1086 mlog_errno(status); 1087 goto done; 1088 } 1089 1090 /* Launch the commit thread */ 1091 if (!local) { 1092 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1093 "ocfs2cmt-%s", osb->uuid_str); 1094 if (IS_ERR(osb->commit_task)) { 1095 status = PTR_ERR(osb->commit_task); 1096 osb->commit_task = NULL; 1097 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1098 "error=%d", status); 1099 goto done; 1100 } 1101 } else 1102 osb->commit_task = NULL; 1103 1104 done: 1105 return status; 1106 } 1107 1108 1109 /* 'full' flag tells us whether we clear out all blocks or if we just 1110 * mark the journal clean */ 1111 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1112 { 1113 int status; 1114 1115 BUG_ON(!journal); 1116 1117 status = jbd2_journal_wipe(journal->j_journal, full); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto bail; 1121 } 1122 1123 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1124 if (status < 0) 1125 mlog_errno(status); 1126 1127 bail: 1128 return status; 1129 } 1130 1131 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1132 { 1133 int empty; 1134 struct ocfs2_recovery_map *rm = osb->recovery_map; 1135 1136 spin_lock(&osb->osb_lock); 1137 empty = (rm->rm_used == 0); 1138 spin_unlock(&osb->osb_lock); 1139 1140 return empty; 1141 } 1142 1143 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1144 { 1145 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1146 } 1147 1148 /* 1149 * JBD Might read a cached version of another nodes journal file. We 1150 * don't want this as this file changes often and we get no 1151 * notification on those changes. The only way to be sure that we've 1152 * got the most up to date version of those blocks then is to force 1153 * read them off disk. Just searching through the buffer cache won't 1154 * work as there may be pages backing this file which are still marked 1155 * up to date. We know things can't change on this file underneath us 1156 * as we have the lock by now :) 1157 */ 1158 static int ocfs2_force_read_journal(struct inode *inode) 1159 { 1160 int status = 0; 1161 int i; 1162 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1163 struct buffer_head *bh = NULL; 1164 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1165 1166 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1167 v_blkno = 0; 1168 while (v_blkno < num_blocks) { 1169 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1170 &p_blkno, &p_blocks, NULL); 1171 if (status < 0) { 1172 mlog_errno(status); 1173 goto bail; 1174 } 1175 1176 for (i = 0; i < p_blocks; i++, p_blkno++) { 1177 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1178 osb->sb->s_blocksize); 1179 /* block not cached. */ 1180 if (!bh) 1181 continue; 1182 1183 brelse(bh); 1184 bh = NULL; 1185 /* We are reading journal data which should not 1186 * be put in the uptodate cache. 1187 */ 1188 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1189 if (status < 0) { 1190 mlog_errno(status); 1191 goto bail; 1192 } 1193 1194 brelse(bh); 1195 bh = NULL; 1196 } 1197 1198 v_blkno += p_blocks; 1199 } 1200 1201 bail: 1202 return status; 1203 } 1204 1205 struct ocfs2_la_recovery_item { 1206 struct list_head lri_list; 1207 int lri_slot; 1208 struct ocfs2_dinode *lri_la_dinode; 1209 struct ocfs2_dinode *lri_tl_dinode; 1210 struct ocfs2_quota_recovery *lri_qrec; 1211 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1212 }; 1213 1214 /* Does the second half of the recovery process. By this point, the 1215 * node is marked clean and can actually be considered recovered, 1216 * hence it's no longer in the recovery map, but there's still some 1217 * cleanup we can do which shouldn't happen within the recovery thread 1218 * as locking in that context becomes very difficult if we are to take 1219 * recovering nodes into account. 1220 * 1221 * NOTE: This function can and will sleep on recovery of other nodes 1222 * during cluster locking, just like any other ocfs2 process. 1223 */ 1224 void ocfs2_complete_recovery(struct work_struct *work) 1225 { 1226 int ret = 0; 1227 struct ocfs2_journal *journal = 1228 container_of(work, struct ocfs2_journal, j_recovery_work); 1229 struct ocfs2_super *osb = journal->j_osb; 1230 struct ocfs2_dinode *la_dinode, *tl_dinode; 1231 struct ocfs2_la_recovery_item *item, *n; 1232 struct ocfs2_quota_recovery *qrec; 1233 enum ocfs2_orphan_reco_type orphan_reco_type; 1234 LIST_HEAD(tmp_la_list); 1235 1236 trace_ocfs2_complete_recovery( 1237 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1238 1239 spin_lock(&journal->j_lock); 1240 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1241 spin_unlock(&journal->j_lock); 1242 1243 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1244 list_del_init(&item->lri_list); 1245 1246 ocfs2_wait_on_quotas(osb); 1247 1248 la_dinode = item->lri_la_dinode; 1249 tl_dinode = item->lri_tl_dinode; 1250 qrec = item->lri_qrec; 1251 orphan_reco_type = item->lri_orphan_reco_type; 1252 1253 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1254 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1255 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1256 qrec); 1257 1258 if (la_dinode) { 1259 ret = ocfs2_complete_local_alloc_recovery(osb, 1260 la_dinode); 1261 if (ret < 0) 1262 mlog_errno(ret); 1263 1264 kfree(la_dinode); 1265 } 1266 1267 if (tl_dinode) { 1268 ret = ocfs2_complete_truncate_log_recovery(osb, 1269 tl_dinode); 1270 if (ret < 0) 1271 mlog_errno(ret); 1272 1273 kfree(tl_dinode); 1274 } 1275 1276 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1277 orphan_reco_type); 1278 if (ret < 0) 1279 mlog_errno(ret); 1280 1281 if (qrec) { 1282 ret = ocfs2_finish_quota_recovery(osb, qrec, 1283 item->lri_slot); 1284 if (ret < 0) 1285 mlog_errno(ret); 1286 /* Recovery info is already freed now */ 1287 } 1288 1289 kfree(item); 1290 } 1291 1292 trace_ocfs2_complete_recovery_end(ret); 1293 } 1294 1295 /* NOTE: This function always eats your references to la_dinode and 1296 * tl_dinode, either manually on error, or by passing them to 1297 * ocfs2_complete_recovery */ 1298 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1299 int slot_num, 1300 struct ocfs2_dinode *la_dinode, 1301 struct ocfs2_dinode *tl_dinode, 1302 struct ocfs2_quota_recovery *qrec, 1303 enum ocfs2_orphan_reco_type orphan_reco_type) 1304 { 1305 struct ocfs2_la_recovery_item *item; 1306 1307 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1308 if (!item) { 1309 /* Though we wish to avoid it, we are in fact safe in 1310 * skipping local alloc cleanup as fsck.ocfs2 is more 1311 * than capable of reclaiming unused space. */ 1312 kfree(la_dinode); 1313 kfree(tl_dinode); 1314 1315 if (qrec) 1316 ocfs2_free_quota_recovery(qrec); 1317 1318 mlog_errno(-ENOMEM); 1319 return; 1320 } 1321 1322 INIT_LIST_HEAD(&item->lri_list); 1323 item->lri_la_dinode = la_dinode; 1324 item->lri_slot = slot_num; 1325 item->lri_tl_dinode = tl_dinode; 1326 item->lri_qrec = qrec; 1327 item->lri_orphan_reco_type = orphan_reco_type; 1328 1329 spin_lock(&journal->j_lock); 1330 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1331 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1332 spin_unlock(&journal->j_lock); 1333 } 1334 1335 /* Called by the mount code to queue recovery the last part of 1336 * recovery for it's own and offline slot(s). */ 1337 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1338 { 1339 struct ocfs2_journal *journal = osb->journal; 1340 1341 if (ocfs2_is_hard_readonly(osb)) 1342 return; 1343 1344 /* No need to queue up our truncate_log as regular cleanup will catch 1345 * that */ 1346 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1347 osb->local_alloc_copy, NULL, NULL, 1348 ORPHAN_NEED_TRUNCATE); 1349 ocfs2_schedule_truncate_log_flush(osb, 0); 1350 1351 osb->local_alloc_copy = NULL; 1352 1353 /* queue to recover orphan slots for all offline slots */ 1354 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1355 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1356 ocfs2_free_replay_slots(osb); 1357 } 1358 1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1360 { 1361 if (osb->quota_rec) { 1362 ocfs2_queue_recovery_completion(osb->journal, 1363 osb->slot_num, 1364 NULL, 1365 NULL, 1366 osb->quota_rec, 1367 ORPHAN_NEED_TRUNCATE); 1368 osb->quota_rec = NULL; 1369 } 1370 } 1371 1372 static int __ocfs2_recovery_thread(void *arg) 1373 { 1374 int status, node_num, slot_num; 1375 struct ocfs2_super *osb = arg; 1376 struct ocfs2_recovery_map *rm = osb->recovery_map; 1377 int *rm_quota = NULL; 1378 int rm_quota_used = 0, i; 1379 struct ocfs2_quota_recovery *qrec; 1380 1381 /* Whether the quota supported. */ 1382 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1383 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1384 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1385 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1386 1387 status = ocfs2_wait_on_mount(osb); 1388 if (status < 0) { 1389 goto bail; 1390 } 1391 1392 if (quota_enabled) { 1393 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1394 if (!rm_quota) { 1395 status = -ENOMEM; 1396 goto bail; 1397 } 1398 } 1399 restart: 1400 status = ocfs2_super_lock(osb, 1); 1401 if (status < 0) { 1402 mlog_errno(status); 1403 goto bail; 1404 } 1405 1406 status = ocfs2_compute_replay_slots(osb); 1407 if (status < 0) 1408 mlog_errno(status); 1409 1410 /* queue recovery for our own slot */ 1411 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1412 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1413 1414 spin_lock(&osb->osb_lock); 1415 while (rm->rm_used) { 1416 /* It's always safe to remove entry zero, as we won't 1417 * clear it until ocfs2_recover_node() has succeeded. */ 1418 node_num = rm->rm_entries[0]; 1419 spin_unlock(&osb->osb_lock); 1420 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1421 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1422 if (slot_num == -ENOENT) { 1423 status = 0; 1424 goto skip_recovery; 1425 } 1426 1427 /* It is a bit subtle with quota recovery. We cannot do it 1428 * immediately because we have to obtain cluster locks from 1429 * quota files and we also don't want to just skip it because 1430 * then quota usage would be out of sync until some node takes 1431 * the slot. So we remember which nodes need quota recovery 1432 * and when everything else is done, we recover quotas. */ 1433 if (quota_enabled) { 1434 for (i = 0; i < rm_quota_used 1435 && rm_quota[i] != slot_num; i++) 1436 ; 1437 1438 if (i == rm_quota_used) 1439 rm_quota[rm_quota_used++] = slot_num; 1440 } 1441 1442 status = ocfs2_recover_node(osb, node_num, slot_num); 1443 skip_recovery: 1444 if (!status) { 1445 ocfs2_recovery_map_clear(osb, node_num); 1446 } else { 1447 mlog(ML_ERROR, 1448 "Error %d recovering node %d on device (%u,%u)!\n", 1449 status, node_num, 1450 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1451 mlog(ML_ERROR, "Volume requires unmount.\n"); 1452 } 1453 1454 spin_lock(&osb->osb_lock); 1455 } 1456 spin_unlock(&osb->osb_lock); 1457 trace_ocfs2_recovery_thread_end(status); 1458 1459 /* Refresh all journal recovery generations from disk */ 1460 status = ocfs2_check_journals_nolocks(osb); 1461 status = (status == -EROFS) ? 0 : status; 1462 if (status < 0) 1463 mlog_errno(status); 1464 1465 /* Now it is right time to recover quotas... We have to do this under 1466 * superblock lock so that no one can start using the slot (and crash) 1467 * before we recover it */ 1468 if (quota_enabled) { 1469 for (i = 0; i < rm_quota_used; i++) { 1470 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1471 if (IS_ERR(qrec)) { 1472 status = PTR_ERR(qrec); 1473 mlog_errno(status); 1474 continue; 1475 } 1476 ocfs2_queue_recovery_completion(osb->journal, 1477 rm_quota[i], 1478 NULL, NULL, qrec, 1479 ORPHAN_NEED_TRUNCATE); 1480 } 1481 } 1482 1483 ocfs2_super_unlock(osb, 1); 1484 1485 /* queue recovery for offline slots */ 1486 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1487 1488 bail: 1489 mutex_lock(&osb->recovery_lock); 1490 if (!status && !ocfs2_recovery_completed(osb)) { 1491 mutex_unlock(&osb->recovery_lock); 1492 goto restart; 1493 } 1494 1495 ocfs2_free_replay_slots(osb); 1496 osb->recovery_thread_task = NULL; 1497 mb(); /* sync with ocfs2_recovery_thread_running */ 1498 wake_up(&osb->recovery_event); 1499 1500 mutex_unlock(&osb->recovery_lock); 1501 1502 if (quota_enabled) 1503 kfree(rm_quota); 1504 1505 /* no one is callint kthread_stop() for us so the kthread() api 1506 * requires that we call do_exit(). And it isn't exported, but 1507 * complete_and_exit() seems to be a minimal wrapper around it. */ 1508 complete_and_exit(NULL, status); 1509 } 1510 1511 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1512 { 1513 mutex_lock(&osb->recovery_lock); 1514 1515 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1516 osb->disable_recovery, osb->recovery_thread_task, 1517 osb->disable_recovery ? 1518 -1 : ocfs2_recovery_map_set(osb, node_num)); 1519 1520 if (osb->disable_recovery) 1521 goto out; 1522 1523 if (osb->recovery_thread_task) 1524 goto out; 1525 1526 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1527 "ocfs2rec-%s", osb->uuid_str); 1528 if (IS_ERR(osb->recovery_thread_task)) { 1529 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1530 osb->recovery_thread_task = NULL; 1531 } 1532 1533 out: 1534 mutex_unlock(&osb->recovery_lock); 1535 wake_up(&osb->recovery_event); 1536 } 1537 1538 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1539 int slot_num, 1540 struct buffer_head **bh, 1541 struct inode **ret_inode) 1542 { 1543 int status = -EACCES; 1544 struct inode *inode = NULL; 1545 1546 BUG_ON(slot_num >= osb->max_slots); 1547 1548 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1549 slot_num); 1550 if (!inode || is_bad_inode(inode)) { 1551 mlog_errno(status); 1552 goto bail; 1553 } 1554 SET_INODE_JOURNAL(inode); 1555 1556 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1557 if (status < 0) { 1558 mlog_errno(status); 1559 goto bail; 1560 } 1561 1562 status = 0; 1563 1564 bail: 1565 if (inode) { 1566 if (status || !ret_inode) 1567 iput(inode); 1568 else 1569 *ret_inode = inode; 1570 } 1571 return status; 1572 } 1573 1574 /* Does the actual journal replay and marks the journal inode as 1575 * clean. Will only replay if the journal inode is marked dirty. */ 1576 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1577 int node_num, 1578 int slot_num) 1579 { 1580 int status; 1581 int got_lock = 0; 1582 unsigned int flags; 1583 struct inode *inode = NULL; 1584 struct ocfs2_dinode *fe; 1585 journal_t *journal = NULL; 1586 struct buffer_head *bh = NULL; 1587 u32 slot_reco_gen; 1588 1589 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1590 if (status) { 1591 mlog_errno(status); 1592 goto done; 1593 } 1594 1595 fe = (struct ocfs2_dinode *)bh->b_data; 1596 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1597 brelse(bh); 1598 bh = NULL; 1599 1600 /* 1601 * As the fs recovery is asynchronous, there is a small chance that 1602 * another node mounted (and recovered) the slot before the recovery 1603 * thread could get the lock. To handle that, we dirty read the journal 1604 * inode for that slot to get the recovery generation. If it is 1605 * different than what we expected, the slot has been recovered. 1606 * If not, it needs recovery. 1607 */ 1608 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1609 trace_ocfs2_replay_journal_recovered(slot_num, 1610 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1611 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1612 status = -EBUSY; 1613 goto done; 1614 } 1615 1616 /* Continue with recovery as the journal has not yet been recovered */ 1617 1618 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1619 if (status < 0) { 1620 trace_ocfs2_replay_journal_lock_err(status); 1621 if (status != -ERESTARTSYS) 1622 mlog(ML_ERROR, "Could not lock journal!\n"); 1623 goto done; 1624 } 1625 got_lock = 1; 1626 1627 fe = (struct ocfs2_dinode *) bh->b_data; 1628 1629 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1630 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1631 1632 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1633 trace_ocfs2_replay_journal_skip(node_num); 1634 /* Refresh recovery generation for the slot */ 1635 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1636 goto done; 1637 } 1638 1639 /* we need to run complete recovery for offline orphan slots */ 1640 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1641 1642 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1643 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1644 MINOR(osb->sb->s_dev)); 1645 1646 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1647 1648 status = ocfs2_force_read_journal(inode); 1649 if (status < 0) { 1650 mlog_errno(status); 1651 goto done; 1652 } 1653 1654 journal = jbd2_journal_init_inode(inode); 1655 if (journal == NULL) { 1656 mlog(ML_ERROR, "Linux journal layer error\n"); 1657 status = -EIO; 1658 goto done; 1659 } 1660 1661 status = jbd2_journal_load(journal); 1662 if (status < 0) { 1663 mlog_errno(status); 1664 if (!igrab(inode)) 1665 BUG(); 1666 jbd2_journal_destroy(journal); 1667 goto done; 1668 } 1669 1670 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1671 1672 /* wipe the journal */ 1673 jbd2_journal_lock_updates(journal); 1674 status = jbd2_journal_flush(journal); 1675 jbd2_journal_unlock_updates(journal); 1676 if (status < 0) 1677 mlog_errno(status); 1678 1679 /* This will mark the node clean */ 1680 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1681 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1682 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1683 1684 /* Increment recovery generation to indicate successful recovery */ 1685 ocfs2_bump_recovery_generation(fe); 1686 osb->slot_recovery_generations[slot_num] = 1687 ocfs2_get_recovery_generation(fe); 1688 1689 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1690 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1691 if (status < 0) 1692 mlog_errno(status); 1693 1694 if (!igrab(inode)) 1695 BUG(); 1696 1697 jbd2_journal_destroy(journal); 1698 1699 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1700 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1701 MINOR(osb->sb->s_dev)); 1702 done: 1703 /* drop the lock on this nodes journal */ 1704 if (got_lock) 1705 ocfs2_inode_unlock(inode, 1); 1706 1707 iput(inode); 1708 brelse(bh); 1709 1710 return status; 1711 } 1712 1713 /* 1714 * Do the most important parts of node recovery: 1715 * - Replay it's journal 1716 * - Stamp a clean local allocator file 1717 * - Stamp a clean truncate log 1718 * - Mark the node clean 1719 * 1720 * If this function completes without error, a node in OCFS2 can be 1721 * said to have been safely recovered. As a result, failure during the 1722 * second part of a nodes recovery process (local alloc recovery) is 1723 * far less concerning. 1724 */ 1725 static int ocfs2_recover_node(struct ocfs2_super *osb, 1726 int node_num, int slot_num) 1727 { 1728 int status = 0; 1729 struct ocfs2_dinode *la_copy = NULL; 1730 struct ocfs2_dinode *tl_copy = NULL; 1731 1732 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1733 1734 /* Should not ever be called to recover ourselves -- in that 1735 * case we should've called ocfs2_journal_load instead. */ 1736 BUG_ON(osb->node_num == node_num); 1737 1738 status = ocfs2_replay_journal(osb, node_num, slot_num); 1739 if (status < 0) { 1740 if (status == -EBUSY) { 1741 trace_ocfs2_recover_node_skip(slot_num, node_num); 1742 status = 0; 1743 goto done; 1744 } 1745 mlog_errno(status); 1746 goto done; 1747 } 1748 1749 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1750 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1751 if (status < 0) { 1752 mlog_errno(status); 1753 goto done; 1754 } 1755 1756 /* An error from begin_truncate_log_recovery is not 1757 * serious enough to warrant halting the rest of 1758 * recovery. */ 1759 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1760 if (status < 0) 1761 mlog_errno(status); 1762 1763 /* Likewise, this would be a strange but ultimately not so 1764 * harmful place to get an error... */ 1765 status = ocfs2_clear_slot(osb, slot_num); 1766 if (status < 0) 1767 mlog_errno(status); 1768 1769 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1770 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1771 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1772 1773 status = 0; 1774 done: 1775 1776 return status; 1777 } 1778 1779 /* Test node liveness by trylocking his journal. If we get the lock, 1780 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1781 * still alive (we couldn't get the lock) and < 0 on error. */ 1782 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1783 int slot_num) 1784 { 1785 int status, flags; 1786 struct inode *inode = NULL; 1787 1788 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1789 slot_num); 1790 if (inode == NULL) { 1791 mlog(ML_ERROR, "access error\n"); 1792 status = -EACCES; 1793 goto bail; 1794 } 1795 if (is_bad_inode(inode)) { 1796 mlog(ML_ERROR, "access error (bad inode)\n"); 1797 iput(inode); 1798 inode = NULL; 1799 status = -EACCES; 1800 goto bail; 1801 } 1802 SET_INODE_JOURNAL(inode); 1803 1804 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1805 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1806 if (status < 0) { 1807 if (status != -EAGAIN) 1808 mlog_errno(status); 1809 goto bail; 1810 } 1811 1812 ocfs2_inode_unlock(inode, 1); 1813 bail: 1814 iput(inode); 1815 1816 return status; 1817 } 1818 1819 /* Call this underneath ocfs2_super_lock. It also assumes that the 1820 * slot info struct has been updated from disk. */ 1821 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1822 { 1823 unsigned int node_num; 1824 int status, i; 1825 u32 gen; 1826 struct buffer_head *bh = NULL; 1827 struct ocfs2_dinode *di; 1828 1829 /* This is called with the super block cluster lock, so we 1830 * know that the slot map can't change underneath us. */ 1831 1832 for (i = 0; i < osb->max_slots; i++) { 1833 /* Read journal inode to get the recovery generation */ 1834 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1835 if (status) { 1836 mlog_errno(status); 1837 goto bail; 1838 } 1839 di = (struct ocfs2_dinode *)bh->b_data; 1840 gen = ocfs2_get_recovery_generation(di); 1841 brelse(bh); 1842 bh = NULL; 1843 1844 spin_lock(&osb->osb_lock); 1845 osb->slot_recovery_generations[i] = gen; 1846 1847 trace_ocfs2_mark_dead_nodes(i, 1848 osb->slot_recovery_generations[i]); 1849 1850 if (i == osb->slot_num) { 1851 spin_unlock(&osb->osb_lock); 1852 continue; 1853 } 1854 1855 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1856 if (status == -ENOENT) { 1857 spin_unlock(&osb->osb_lock); 1858 continue; 1859 } 1860 1861 if (__ocfs2_recovery_map_test(osb, node_num)) { 1862 spin_unlock(&osb->osb_lock); 1863 continue; 1864 } 1865 spin_unlock(&osb->osb_lock); 1866 1867 /* Ok, we have a slot occupied by another node which 1868 * is not in the recovery map. We trylock his journal 1869 * file here to test if he's alive. */ 1870 status = ocfs2_trylock_journal(osb, i); 1871 if (!status) { 1872 /* Since we're called from mount, we know that 1873 * the recovery thread can't race us on 1874 * setting / checking the recovery bits. */ 1875 ocfs2_recovery_thread(osb, node_num); 1876 } else if ((status < 0) && (status != -EAGAIN)) { 1877 mlog_errno(status); 1878 goto bail; 1879 } 1880 } 1881 1882 status = 0; 1883 bail: 1884 return status; 1885 } 1886 1887 /* 1888 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1889 * randomness to the timeout to minimize multple nodes firing the timer at the 1890 * same time. 1891 */ 1892 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1893 { 1894 unsigned long time; 1895 1896 get_random_bytes(&time, sizeof(time)); 1897 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1898 return msecs_to_jiffies(time); 1899 } 1900 1901 /* 1902 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1903 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1904 * is done to catch any orphans that are left over in orphan directories. 1905 * 1906 * It scans all slots, even ones that are in use. It does so to handle the 1907 * case described below: 1908 * 1909 * Node 1 has an inode it was using. The dentry went away due to memory 1910 * pressure. Node 1 closes the inode, but it's on the free list. The node 1911 * has the open lock. 1912 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1913 * but node 1 has no dentry and doesn't get the message. It trylocks the 1914 * open lock, sees that another node has a PR, and does nothing. 1915 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1916 * open lock, sees the PR still, and does nothing. 1917 * Basically, we have to trigger an orphan iput on node 1. The only way 1918 * for this to happen is if node 1 runs node 2's orphan dir. 1919 * 1920 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1921 * seconds. It gets an EX lock on os_lockres and checks sequence number 1922 * stored in LVB. If the sequence number has changed, it means some other 1923 * node has done the scan. This node skips the scan and tracks the 1924 * sequence number. If the sequence number didn't change, it means a scan 1925 * hasn't happened. The node queues a scan and increments the 1926 * sequence number in the LVB. 1927 */ 1928 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1929 { 1930 struct ocfs2_orphan_scan *os; 1931 int status, i; 1932 u32 seqno = 0; 1933 1934 os = &osb->osb_orphan_scan; 1935 1936 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1937 goto out; 1938 1939 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1940 atomic_read(&os->os_state)); 1941 1942 status = ocfs2_orphan_scan_lock(osb, &seqno); 1943 if (status < 0) { 1944 if (status != -EAGAIN) 1945 mlog_errno(status); 1946 goto out; 1947 } 1948 1949 /* Do no queue the tasks if the volume is being umounted */ 1950 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1951 goto unlock; 1952 1953 if (os->os_seqno != seqno) { 1954 os->os_seqno = seqno; 1955 goto unlock; 1956 } 1957 1958 for (i = 0; i < osb->max_slots; i++) 1959 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1960 NULL, ORPHAN_NO_NEED_TRUNCATE); 1961 /* 1962 * We queued a recovery on orphan slots, increment the sequence 1963 * number and update LVB so other node will skip the scan for a while 1964 */ 1965 seqno++; 1966 os->os_count++; 1967 os->os_scantime = ktime_get_seconds(); 1968 unlock: 1969 ocfs2_orphan_scan_unlock(osb, seqno); 1970 out: 1971 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1972 atomic_read(&os->os_state)); 1973 return; 1974 } 1975 1976 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1977 static void ocfs2_orphan_scan_work(struct work_struct *work) 1978 { 1979 struct ocfs2_orphan_scan *os; 1980 struct ocfs2_super *osb; 1981 1982 os = container_of(work, struct ocfs2_orphan_scan, 1983 os_orphan_scan_work.work); 1984 osb = os->os_osb; 1985 1986 mutex_lock(&os->os_lock); 1987 ocfs2_queue_orphan_scan(osb); 1988 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1989 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1990 ocfs2_orphan_scan_timeout()); 1991 mutex_unlock(&os->os_lock); 1992 } 1993 1994 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1995 { 1996 struct ocfs2_orphan_scan *os; 1997 1998 os = &osb->osb_orphan_scan; 1999 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2000 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2001 mutex_lock(&os->os_lock); 2002 cancel_delayed_work(&os->os_orphan_scan_work); 2003 mutex_unlock(&os->os_lock); 2004 } 2005 } 2006 2007 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2008 { 2009 struct ocfs2_orphan_scan *os; 2010 2011 os = &osb->osb_orphan_scan; 2012 os->os_osb = osb; 2013 os->os_count = 0; 2014 os->os_seqno = 0; 2015 mutex_init(&os->os_lock); 2016 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2017 } 2018 2019 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2020 { 2021 struct ocfs2_orphan_scan *os; 2022 2023 os = &osb->osb_orphan_scan; 2024 os->os_scantime = ktime_get_seconds(); 2025 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2026 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2027 else { 2028 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2029 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2030 ocfs2_orphan_scan_timeout()); 2031 } 2032 } 2033 2034 struct ocfs2_orphan_filldir_priv { 2035 struct dir_context ctx; 2036 struct inode *head; 2037 struct ocfs2_super *osb; 2038 enum ocfs2_orphan_reco_type orphan_reco_type; 2039 }; 2040 2041 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2042 int name_len, loff_t pos, u64 ino, 2043 unsigned type) 2044 { 2045 struct ocfs2_orphan_filldir_priv *p = 2046 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2047 struct inode *iter; 2048 2049 if (name_len == 1 && !strncmp(".", name, 1)) 2050 return 0; 2051 if (name_len == 2 && !strncmp("..", name, 2)) 2052 return 0; 2053 2054 /* do not include dio entry in case of orphan scan */ 2055 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2056 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2057 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2058 return 0; 2059 2060 /* Skip bad inodes so that recovery can continue */ 2061 iter = ocfs2_iget(p->osb, ino, 2062 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2063 if (IS_ERR(iter)) 2064 return 0; 2065 2066 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2067 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2068 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2069 2070 /* Skip inodes which are already added to recover list, since dio may 2071 * happen concurrently with unlink/rename */ 2072 if (OCFS2_I(iter)->ip_next_orphan) { 2073 iput(iter); 2074 return 0; 2075 } 2076 2077 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2078 /* No locking is required for the next_orphan queue as there 2079 * is only ever a single process doing orphan recovery. */ 2080 OCFS2_I(iter)->ip_next_orphan = p->head; 2081 p->head = iter; 2082 2083 return 0; 2084 } 2085 2086 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2087 int slot, 2088 struct inode **head, 2089 enum ocfs2_orphan_reco_type orphan_reco_type) 2090 { 2091 int status; 2092 struct inode *orphan_dir_inode = NULL; 2093 struct ocfs2_orphan_filldir_priv priv = { 2094 .ctx.actor = ocfs2_orphan_filldir, 2095 .osb = osb, 2096 .head = *head, 2097 .orphan_reco_type = orphan_reco_type 2098 }; 2099 2100 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2101 ORPHAN_DIR_SYSTEM_INODE, 2102 slot); 2103 if (!orphan_dir_inode) { 2104 status = -ENOENT; 2105 mlog_errno(status); 2106 return status; 2107 } 2108 2109 inode_lock(orphan_dir_inode); 2110 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2111 if (status < 0) { 2112 mlog_errno(status); 2113 goto out; 2114 } 2115 2116 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2117 if (status) { 2118 mlog_errno(status); 2119 goto out_cluster; 2120 } 2121 2122 *head = priv.head; 2123 2124 out_cluster: 2125 ocfs2_inode_unlock(orphan_dir_inode, 0); 2126 out: 2127 inode_unlock(orphan_dir_inode); 2128 iput(orphan_dir_inode); 2129 return status; 2130 } 2131 2132 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2133 int slot) 2134 { 2135 int ret; 2136 2137 spin_lock(&osb->osb_lock); 2138 ret = !osb->osb_orphan_wipes[slot]; 2139 spin_unlock(&osb->osb_lock); 2140 return ret; 2141 } 2142 2143 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2144 int slot) 2145 { 2146 spin_lock(&osb->osb_lock); 2147 /* Mark ourselves such that new processes in delete_inode() 2148 * know to quit early. */ 2149 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2150 while (osb->osb_orphan_wipes[slot]) { 2151 /* If any processes are already in the middle of an 2152 * orphan wipe on this dir, then we need to wait for 2153 * them. */ 2154 spin_unlock(&osb->osb_lock); 2155 wait_event_interruptible(osb->osb_wipe_event, 2156 ocfs2_orphan_recovery_can_continue(osb, slot)); 2157 spin_lock(&osb->osb_lock); 2158 } 2159 spin_unlock(&osb->osb_lock); 2160 } 2161 2162 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2163 int slot) 2164 { 2165 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2166 } 2167 2168 /* 2169 * Orphan recovery. Each mounted node has it's own orphan dir which we 2170 * must run during recovery. Our strategy here is to build a list of 2171 * the inodes in the orphan dir and iget/iput them. The VFS does 2172 * (most) of the rest of the work. 2173 * 2174 * Orphan recovery can happen at any time, not just mount so we have a 2175 * couple of extra considerations. 2176 * 2177 * - We grab as many inodes as we can under the orphan dir lock - 2178 * doing iget() outside the orphan dir risks getting a reference on 2179 * an invalid inode. 2180 * - We must be sure not to deadlock with other processes on the 2181 * system wanting to run delete_inode(). This can happen when they go 2182 * to lock the orphan dir and the orphan recovery process attempts to 2183 * iget() inside the orphan dir lock. This can be avoided by 2184 * advertising our state to ocfs2_delete_inode(). 2185 */ 2186 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2187 int slot, 2188 enum ocfs2_orphan_reco_type orphan_reco_type) 2189 { 2190 int ret = 0; 2191 struct inode *inode = NULL; 2192 struct inode *iter; 2193 struct ocfs2_inode_info *oi; 2194 struct buffer_head *di_bh = NULL; 2195 struct ocfs2_dinode *di = NULL; 2196 2197 trace_ocfs2_recover_orphans(slot); 2198 2199 ocfs2_mark_recovering_orphan_dir(osb, slot); 2200 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2201 ocfs2_clear_recovering_orphan_dir(osb, slot); 2202 2203 /* Error here should be noted, but we want to continue with as 2204 * many queued inodes as we've got. */ 2205 if (ret) 2206 mlog_errno(ret); 2207 2208 while (inode) { 2209 oi = OCFS2_I(inode); 2210 trace_ocfs2_recover_orphans_iput( 2211 (unsigned long long)oi->ip_blkno); 2212 2213 iter = oi->ip_next_orphan; 2214 oi->ip_next_orphan = NULL; 2215 2216 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2217 inode_lock(inode); 2218 ret = ocfs2_rw_lock(inode, 1); 2219 if (ret < 0) { 2220 mlog_errno(ret); 2221 goto unlock_mutex; 2222 } 2223 /* 2224 * We need to take and drop the inode lock to 2225 * force read inode from disk. 2226 */ 2227 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2228 if (ret) { 2229 mlog_errno(ret); 2230 goto unlock_rw; 2231 } 2232 2233 di = (struct ocfs2_dinode *)di_bh->b_data; 2234 2235 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2236 ret = ocfs2_truncate_file(inode, di_bh, 2237 i_size_read(inode)); 2238 if (ret < 0) { 2239 if (ret != -ENOSPC) 2240 mlog_errno(ret); 2241 goto unlock_inode; 2242 } 2243 2244 ret = ocfs2_del_inode_from_orphan(osb, inode, 2245 di_bh, 0, 0); 2246 if (ret) 2247 mlog_errno(ret); 2248 } 2249 unlock_inode: 2250 ocfs2_inode_unlock(inode, 1); 2251 brelse(di_bh); 2252 di_bh = NULL; 2253 unlock_rw: 2254 ocfs2_rw_unlock(inode, 1); 2255 unlock_mutex: 2256 inode_unlock(inode); 2257 2258 /* clear dio flag in ocfs2_inode_info */ 2259 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2260 } else { 2261 spin_lock(&oi->ip_lock); 2262 /* Set the proper information to get us going into 2263 * ocfs2_delete_inode. */ 2264 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2265 spin_unlock(&oi->ip_lock); 2266 } 2267 2268 iput(inode); 2269 inode = iter; 2270 } 2271 2272 return ret; 2273 } 2274 2275 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2276 { 2277 /* This check is good because ocfs2 will wait on our recovery 2278 * thread before changing it to something other than MOUNTED 2279 * or DISABLED. */ 2280 wait_event(osb->osb_mount_event, 2281 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2282 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2283 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2284 2285 /* If there's an error on mount, then we may never get to the 2286 * MOUNTED flag, but this is set right before 2287 * dismount_volume() so we can trust it. */ 2288 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2289 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2290 mlog(0, "mount error, exiting!\n"); 2291 return -EBUSY; 2292 } 2293 2294 return 0; 2295 } 2296 2297 static int ocfs2_commit_thread(void *arg) 2298 { 2299 int status; 2300 struct ocfs2_super *osb = arg; 2301 struct ocfs2_journal *journal = osb->journal; 2302 2303 /* we can trust j_num_trans here because _should_stop() is only set in 2304 * shutdown and nobody other than ourselves should be able to start 2305 * transactions. committing on shutdown might take a few iterations 2306 * as final transactions put deleted inodes on the list */ 2307 while (!(kthread_should_stop() && 2308 atomic_read(&journal->j_num_trans) == 0)) { 2309 2310 wait_event_interruptible(osb->checkpoint_event, 2311 atomic_read(&journal->j_num_trans) 2312 || kthread_should_stop()); 2313 2314 status = ocfs2_commit_cache(osb); 2315 if (status < 0) { 2316 static unsigned long abort_warn_time; 2317 2318 /* Warn about this once per minute */ 2319 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2320 mlog(ML_ERROR, "status = %d, journal is " 2321 "already aborted.\n", status); 2322 /* 2323 * After ocfs2_commit_cache() fails, j_num_trans has a 2324 * non-zero value. Sleep here to avoid a busy-wait 2325 * loop. 2326 */ 2327 msleep_interruptible(1000); 2328 } 2329 2330 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2331 mlog(ML_KTHREAD, 2332 "commit_thread: %u transactions pending on " 2333 "shutdown\n", 2334 atomic_read(&journal->j_num_trans)); 2335 } 2336 } 2337 2338 return 0; 2339 } 2340 2341 /* Reads all the journal inodes without taking any cluster locks. Used 2342 * for hard readonly access to determine whether any journal requires 2343 * recovery. Also used to refresh the recovery generation numbers after 2344 * a journal has been recovered by another node. 2345 */ 2346 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2347 { 2348 int ret = 0; 2349 unsigned int slot; 2350 struct buffer_head *di_bh = NULL; 2351 struct ocfs2_dinode *di; 2352 int journal_dirty = 0; 2353 2354 for(slot = 0; slot < osb->max_slots; slot++) { 2355 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2356 if (ret) { 2357 mlog_errno(ret); 2358 goto out; 2359 } 2360 2361 di = (struct ocfs2_dinode *) di_bh->b_data; 2362 2363 osb->slot_recovery_generations[slot] = 2364 ocfs2_get_recovery_generation(di); 2365 2366 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2367 OCFS2_JOURNAL_DIRTY_FL) 2368 journal_dirty = 1; 2369 2370 brelse(di_bh); 2371 di_bh = NULL; 2372 } 2373 2374 out: 2375 if (journal_dirty) 2376 ret = -EROFS; 2377 return ret; 2378 } 2379