xref: /openbmc/linux/fs/ocfs2/journal.c (revision da1e9098)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "sysfile.h"
48 
49 #include "buffer_head_io.h"
50 
51 DEFINE_SPINLOCK(trans_inc_lock);
52 
53 static int ocfs2_force_read_journal(struct inode *inode);
54 static int ocfs2_recover_node(struct ocfs2_super *osb,
55 			      int node_num);
56 static int __ocfs2_recovery_thread(void *arg);
57 static int ocfs2_commit_cache(struct ocfs2_super *osb);
58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
60 				      int dirty, int replayed);
61 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
62 				 int slot_num);
63 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
64 				 int slot);
65 static int ocfs2_commit_thread(void *arg);
66 
67 
68 /*
69  * The recovery_list is a simple linked list of node numbers to recover.
70  * It is protected by the recovery_lock.
71  */
72 
73 struct ocfs2_recovery_map {
74 	unsigned int rm_used;
75 	unsigned int *rm_entries;
76 };
77 
78 int ocfs2_recovery_init(struct ocfs2_super *osb)
79 {
80 	struct ocfs2_recovery_map *rm;
81 
82 	mutex_init(&osb->recovery_lock);
83 	osb->disable_recovery = 0;
84 	osb->recovery_thread_task = NULL;
85 	init_waitqueue_head(&osb->recovery_event);
86 
87 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
88 		     osb->max_slots * sizeof(unsigned int),
89 		     GFP_KERNEL);
90 	if (!rm) {
91 		mlog_errno(-ENOMEM);
92 		return -ENOMEM;
93 	}
94 
95 	rm->rm_entries = (unsigned int *)((char *)rm +
96 					  sizeof(struct ocfs2_recovery_map));
97 	osb->recovery_map = rm;
98 
99 	return 0;
100 }
101 
102 /* we can't grab the goofy sem lock from inside wait_event, so we use
103  * memory barriers to make sure that we'll see the null task before
104  * being woken up */
105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
106 {
107 	mb();
108 	return osb->recovery_thread_task != NULL;
109 }
110 
111 void ocfs2_recovery_exit(struct ocfs2_super *osb)
112 {
113 	struct ocfs2_recovery_map *rm;
114 
115 	/* disable any new recovery threads and wait for any currently
116 	 * running ones to exit. Do this before setting the vol_state. */
117 	mutex_lock(&osb->recovery_lock);
118 	osb->disable_recovery = 1;
119 	mutex_unlock(&osb->recovery_lock);
120 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
121 
122 	/* At this point, we know that no more recovery threads can be
123 	 * launched, so wait for any recovery completion work to
124 	 * complete. */
125 	flush_workqueue(ocfs2_wq);
126 
127 	/*
128 	 * Now that recovery is shut down, and the osb is about to be
129 	 * freed,  the osb_lock is not taken here.
130 	 */
131 	rm = osb->recovery_map;
132 	/* XXX: Should we bug if there are dirty entries? */
133 
134 	kfree(rm);
135 }
136 
137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
138 				     unsigned int node_num)
139 {
140 	int i;
141 	struct ocfs2_recovery_map *rm = osb->recovery_map;
142 
143 	assert_spin_locked(&osb->osb_lock);
144 
145 	for (i = 0; i < rm->rm_used; i++) {
146 		if (rm->rm_entries[i] == node_num)
147 			return 1;
148 	}
149 
150 	return 0;
151 }
152 
153 /* Behaves like test-and-set.  Returns the previous value */
154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
155 				  unsigned int node_num)
156 {
157 	struct ocfs2_recovery_map *rm = osb->recovery_map;
158 
159 	spin_lock(&osb->osb_lock);
160 	if (__ocfs2_recovery_map_test(osb, node_num)) {
161 		spin_unlock(&osb->osb_lock);
162 		return 1;
163 	}
164 
165 	/* XXX: Can this be exploited? Not from o2dlm... */
166 	BUG_ON(rm->rm_used >= osb->max_slots);
167 
168 	rm->rm_entries[rm->rm_used] = node_num;
169 	rm->rm_used++;
170 	spin_unlock(&osb->osb_lock);
171 
172 	return 0;
173 }
174 
175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
176 				     unsigned int node_num)
177 {
178 	int i;
179 	struct ocfs2_recovery_map *rm = osb->recovery_map;
180 
181 	spin_lock(&osb->osb_lock);
182 
183 	for (i = 0; i < rm->rm_used; i++) {
184 		if (rm->rm_entries[i] == node_num)
185 			break;
186 	}
187 
188 	if (i < rm->rm_used) {
189 		/* XXX: be careful with the pointer math */
190 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
191 			(rm->rm_used - i - 1) * sizeof(unsigned int));
192 		rm->rm_used--;
193 	}
194 
195 	spin_unlock(&osb->osb_lock);
196 }
197 
198 static int ocfs2_commit_cache(struct ocfs2_super *osb)
199 {
200 	int status = 0;
201 	unsigned int flushed;
202 	unsigned long old_id;
203 	struct ocfs2_journal *journal = NULL;
204 
205 	mlog_entry_void();
206 
207 	journal = osb->journal;
208 
209 	/* Flush all pending commits and checkpoint the journal. */
210 	down_write(&journal->j_trans_barrier);
211 
212 	if (atomic_read(&journal->j_num_trans) == 0) {
213 		up_write(&journal->j_trans_barrier);
214 		mlog(0, "No transactions for me to flush!\n");
215 		goto finally;
216 	}
217 
218 	jbd2_journal_lock_updates(journal->j_journal);
219 	status = jbd2_journal_flush(journal->j_journal);
220 	jbd2_journal_unlock_updates(journal->j_journal);
221 	if (status < 0) {
222 		up_write(&journal->j_trans_barrier);
223 		mlog_errno(status);
224 		goto finally;
225 	}
226 
227 	old_id = ocfs2_inc_trans_id(journal);
228 
229 	flushed = atomic_read(&journal->j_num_trans);
230 	atomic_set(&journal->j_num_trans, 0);
231 	up_write(&journal->j_trans_barrier);
232 
233 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
234 	     journal->j_trans_id, flushed);
235 
236 	ocfs2_wake_downconvert_thread(osb);
237 	wake_up(&journal->j_checkpointed);
238 finally:
239 	mlog_exit(status);
240 	return status;
241 }
242 
243 /* pass it NULL and it will allocate a new handle object for you.  If
244  * you pass it a handle however, it may still return error, in which
245  * case it has free'd the passed handle for you. */
246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
247 {
248 	journal_t *journal = osb->journal->j_journal;
249 	handle_t *handle;
250 
251 	BUG_ON(!osb || !osb->journal->j_journal);
252 
253 	if (ocfs2_is_hard_readonly(osb))
254 		return ERR_PTR(-EROFS);
255 
256 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
257 	BUG_ON(max_buffs <= 0);
258 
259 	/* JBD might support this, but our journalling code doesn't yet. */
260 	if (journal_current_handle()) {
261 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
262 		BUG();
263 	}
264 
265 	down_read(&osb->journal->j_trans_barrier);
266 
267 	handle = jbd2_journal_start(journal, max_buffs);
268 	if (IS_ERR(handle)) {
269 		up_read(&osb->journal->j_trans_barrier);
270 
271 		mlog_errno(PTR_ERR(handle));
272 
273 		if (is_journal_aborted(journal)) {
274 			ocfs2_abort(osb->sb, "Detected aborted journal");
275 			handle = ERR_PTR(-EROFS);
276 		}
277 	} else {
278 		if (!ocfs2_mount_local(osb))
279 			atomic_inc(&(osb->journal->j_num_trans));
280 	}
281 
282 	return handle;
283 }
284 
285 int ocfs2_commit_trans(struct ocfs2_super *osb,
286 		       handle_t *handle)
287 {
288 	int ret;
289 	struct ocfs2_journal *journal = osb->journal;
290 
291 	BUG_ON(!handle);
292 
293 	ret = jbd2_journal_stop(handle);
294 	if (ret < 0)
295 		mlog_errno(ret);
296 
297 	up_read(&journal->j_trans_barrier);
298 
299 	return ret;
300 }
301 
302 /*
303  * 'nblocks' is what you want to add to the current
304  * transaction. extend_trans will either extend the current handle by
305  * nblocks, or commit it and start a new one with nblocks credits.
306  *
307  * This might call jbd2_journal_restart() which will commit dirty buffers
308  * and then restart the transaction. Before calling
309  * ocfs2_extend_trans(), any changed blocks should have been
310  * dirtied. After calling it, all blocks which need to be changed must
311  * go through another set of journal_access/journal_dirty calls.
312  *
313  * WARNING: This will not release any semaphores or disk locks taken
314  * during the transaction, so make sure they were taken *before*
315  * start_trans or we'll have ordering deadlocks.
316  *
317  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
318  * good because transaction ids haven't yet been recorded on the
319  * cluster locks associated with this handle.
320  */
321 int ocfs2_extend_trans(handle_t *handle, int nblocks)
322 {
323 	int status;
324 
325 	BUG_ON(!handle);
326 	BUG_ON(!nblocks);
327 
328 	mlog_entry_void();
329 
330 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
331 
332 #ifdef CONFIG_OCFS2_DEBUG_FS
333 	status = 1;
334 #else
335 	status = jbd2_journal_extend(handle, nblocks);
336 	if (status < 0) {
337 		mlog_errno(status);
338 		goto bail;
339 	}
340 #endif
341 
342 	if (status > 0) {
343 		mlog(0,
344 		     "jbd2_journal_extend failed, trying "
345 		     "jbd2_journal_restart\n");
346 		status = jbd2_journal_restart(handle, nblocks);
347 		if (status < 0) {
348 			mlog_errno(status);
349 			goto bail;
350 		}
351 	}
352 
353 	status = 0;
354 bail:
355 
356 	mlog_exit(status);
357 	return status;
358 }
359 
360 int ocfs2_journal_access(handle_t *handle,
361 			 struct inode *inode,
362 			 struct buffer_head *bh,
363 			 int type)
364 {
365 	int status;
366 
367 	BUG_ON(!inode);
368 	BUG_ON(!handle);
369 	BUG_ON(!bh);
370 
371 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
372 		   (unsigned long long)bh->b_blocknr, type,
373 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
374 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
375 		   "OCFS2_JOURNAL_ACCESS_WRITE",
376 		   bh->b_size);
377 
378 	/* we can safely remove this assertion after testing. */
379 	if (!buffer_uptodate(bh)) {
380 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
381 		mlog(ML_ERROR, "b_blocknr=%llu\n",
382 		     (unsigned long long)bh->b_blocknr);
383 		BUG();
384 	}
385 
386 	/* Set the current transaction information on the inode so
387 	 * that the locking code knows whether it can drop it's locks
388 	 * on this inode or not. We're protected from the commit
389 	 * thread updating the current transaction id until
390 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
391 	 * j_trans_barrier for us. */
392 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
393 
394 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
395 	switch (type) {
396 	case OCFS2_JOURNAL_ACCESS_CREATE:
397 	case OCFS2_JOURNAL_ACCESS_WRITE:
398 		status = jbd2_journal_get_write_access(handle, bh);
399 		break;
400 
401 	case OCFS2_JOURNAL_ACCESS_UNDO:
402 		status = jbd2_journal_get_undo_access(handle, bh);
403 		break;
404 
405 	default:
406 		status = -EINVAL;
407 		mlog(ML_ERROR, "Uknown access type!\n");
408 	}
409 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
410 
411 	if (status < 0)
412 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
413 		     status, type);
414 
415 	mlog_exit(status);
416 	return status;
417 }
418 
419 int ocfs2_journal_dirty(handle_t *handle,
420 			struct buffer_head *bh)
421 {
422 	int status;
423 
424 	mlog_entry("(bh->b_blocknr=%llu)\n",
425 		   (unsigned long long)bh->b_blocknr);
426 
427 	status = jbd2_journal_dirty_metadata(handle, bh);
428 	if (status < 0)
429 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
430 		     "(bh->b_blocknr=%llu)\n",
431 		     (unsigned long long)bh->b_blocknr);
432 
433 	mlog_exit(status);
434 	return status;
435 }
436 
437 #ifdef CONFIG_OCFS2_COMPAT_JBD
438 int ocfs2_journal_dirty_data(handle_t *handle,
439 			     struct buffer_head *bh)
440 {
441 	int err = journal_dirty_data(handle, bh);
442 	if (err)
443 		mlog_errno(err);
444 	/* TODO: When we can handle it, abort the handle and go RO on
445 	 * error here. */
446 
447 	return err;
448 }
449 #endif
450 
451 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
452 
453 void ocfs2_set_journal_params(struct ocfs2_super *osb)
454 {
455 	journal_t *journal = osb->journal->j_journal;
456 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
457 
458 	if (osb->osb_commit_interval)
459 		commit_interval = osb->osb_commit_interval;
460 
461 	spin_lock(&journal->j_state_lock);
462 	journal->j_commit_interval = commit_interval;
463 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
464 		journal->j_flags |= JBD2_BARRIER;
465 	else
466 		journal->j_flags &= ~JBD2_BARRIER;
467 	spin_unlock(&journal->j_state_lock);
468 }
469 
470 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
471 {
472 	int status = -1;
473 	struct inode *inode = NULL; /* the journal inode */
474 	journal_t *j_journal = NULL;
475 	struct ocfs2_dinode *di = NULL;
476 	struct buffer_head *bh = NULL;
477 	struct ocfs2_super *osb;
478 	int inode_lock = 0;
479 
480 	mlog_entry_void();
481 
482 	BUG_ON(!journal);
483 
484 	osb = journal->j_osb;
485 
486 	/* already have the inode for our journal */
487 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
488 					    osb->slot_num);
489 	if (inode == NULL) {
490 		status = -EACCES;
491 		mlog_errno(status);
492 		goto done;
493 	}
494 	if (is_bad_inode(inode)) {
495 		mlog(ML_ERROR, "access error (bad inode)\n");
496 		iput(inode);
497 		inode = NULL;
498 		status = -EACCES;
499 		goto done;
500 	}
501 
502 	SET_INODE_JOURNAL(inode);
503 	OCFS2_I(inode)->ip_open_count++;
504 
505 	/* Skip recovery waits here - journal inode metadata never
506 	 * changes in a live cluster so it can be considered an
507 	 * exception to the rule. */
508 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
509 	if (status < 0) {
510 		if (status != -ERESTARTSYS)
511 			mlog(ML_ERROR, "Could not get lock on journal!\n");
512 		goto done;
513 	}
514 
515 	inode_lock = 1;
516 	di = (struct ocfs2_dinode *)bh->b_data;
517 
518 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
519 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
520 		     inode->i_size);
521 		status = -EINVAL;
522 		goto done;
523 	}
524 
525 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
526 	mlog(0, "inode->i_blocks = %llu\n",
527 			(unsigned long long)inode->i_blocks);
528 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
529 
530 	/* call the kernels journal init function now */
531 	j_journal = jbd2_journal_init_inode(inode);
532 	if (j_journal == NULL) {
533 		mlog(ML_ERROR, "Linux journal layer error\n");
534 		status = -EINVAL;
535 		goto done;
536 	}
537 
538 	mlog(0, "Returned from jbd2_journal_init_inode\n");
539 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
540 
541 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
542 		  OCFS2_JOURNAL_DIRTY_FL);
543 
544 	journal->j_journal = j_journal;
545 	journal->j_inode = inode;
546 	journal->j_bh = bh;
547 
548 	ocfs2_set_journal_params(osb);
549 
550 	journal->j_state = OCFS2_JOURNAL_LOADED;
551 
552 	status = 0;
553 done:
554 	if (status < 0) {
555 		if (inode_lock)
556 			ocfs2_inode_unlock(inode, 1);
557 		brelse(bh);
558 		if (inode) {
559 			OCFS2_I(inode)->ip_open_count--;
560 			iput(inode);
561 		}
562 	}
563 
564 	mlog_exit(status);
565 	return status;
566 }
567 
568 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
569 {
570 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
571 }
572 
573 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
574 {
575 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
576 }
577 
578 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
579 				      int dirty, int replayed)
580 {
581 	int status;
582 	unsigned int flags;
583 	struct ocfs2_journal *journal = osb->journal;
584 	struct buffer_head *bh = journal->j_bh;
585 	struct ocfs2_dinode *fe;
586 
587 	mlog_entry_void();
588 
589 	fe = (struct ocfs2_dinode *)bh->b_data;
590 	if (!OCFS2_IS_VALID_DINODE(fe)) {
591 		/* This is called from startup/shutdown which will
592 		 * handle the errors in a specific manner, so no need
593 		 * to call ocfs2_error() here. */
594 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
595 		     "signature: %.*s",
596 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
597 		     fe->i_signature);
598 		status = -EIO;
599 		goto out;
600 	}
601 
602 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
603 	if (dirty)
604 		flags |= OCFS2_JOURNAL_DIRTY_FL;
605 	else
606 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
607 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
608 
609 	if (replayed)
610 		ocfs2_bump_recovery_generation(fe);
611 
612 	status = ocfs2_write_block(osb, bh, journal->j_inode);
613 	if (status < 0)
614 		mlog_errno(status);
615 
616 out:
617 	mlog_exit(status);
618 	return status;
619 }
620 
621 /*
622  * If the journal has been kmalloc'd it needs to be freed after this
623  * call.
624  */
625 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
626 {
627 	struct ocfs2_journal *journal = NULL;
628 	int status = 0;
629 	struct inode *inode = NULL;
630 	int num_running_trans = 0;
631 
632 	mlog_entry_void();
633 
634 	BUG_ON(!osb);
635 
636 	journal = osb->journal;
637 	if (!journal)
638 		goto done;
639 
640 	inode = journal->j_inode;
641 
642 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
643 		goto done;
644 
645 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
646 	if (!igrab(inode))
647 		BUG();
648 
649 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
650 	if (num_running_trans > 0)
651 		mlog(0, "Shutting down journal: must wait on %d "
652 		     "running transactions!\n",
653 		     num_running_trans);
654 
655 	/* Do a commit_cache here. It will flush our journal, *and*
656 	 * release any locks that are still held.
657 	 * set the SHUTDOWN flag and release the trans lock.
658 	 * the commit thread will take the trans lock for us below. */
659 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
660 
661 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
662 	 * drop the trans_lock (which we want to hold until we
663 	 * completely destroy the journal. */
664 	if (osb->commit_task) {
665 		/* Wait for the commit thread */
666 		mlog(0, "Waiting for ocfs2commit to exit....\n");
667 		kthread_stop(osb->commit_task);
668 		osb->commit_task = NULL;
669 	}
670 
671 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
672 
673 	if (ocfs2_mount_local(osb)) {
674 		jbd2_journal_lock_updates(journal->j_journal);
675 		status = jbd2_journal_flush(journal->j_journal);
676 		jbd2_journal_unlock_updates(journal->j_journal);
677 		if (status < 0)
678 			mlog_errno(status);
679 	}
680 
681 	if (status == 0) {
682 		/*
683 		 * Do not toggle if flush was unsuccessful otherwise
684 		 * will leave dirty metadata in a "clean" journal
685 		 */
686 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
687 		if (status < 0)
688 			mlog_errno(status);
689 	}
690 
691 	/* Shutdown the kernel journal system */
692 	jbd2_journal_destroy(journal->j_journal);
693 
694 	OCFS2_I(inode)->ip_open_count--;
695 
696 	/* unlock our journal */
697 	ocfs2_inode_unlock(inode, 1);
698 
699 	brelse(journal->j_bh);
700 	journal->j_bh = NULL;
701 
702 	journal->j_state = OCFS2_JOURNAL_FREE;
703 
704 //	up_write(&journal->j_trans_barrier);
705 done:
706 	if (inode)
707 		iput(inode);
708 	mlog_exit_void();
709 }
710 
711 static void ocfs2_clear_journal_error(struct super_block *sb,
712 				      journal_t *journal,
713 				      int slot)
714 {
715 	int olderr;
716 
717 	olderr = jbd2_journal_errno(journal);
718 	if (olderr) {
719 		mlog(ML_ERROR, "File system error %d recorded in "
720 		     "journal %u.\n", olderr, slot);
721 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
722 		     sb->s_id);
723 
724 		jbd2_journal_ack_err(journal);
725 		jbd2_journal_clear_err(journal);
726 	}
727 }
728 
729 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
730 {
731 	int status = 0;
732 	struct ocfs2_super *osb;
733 
734 	mlog_entry_void();
735 
736 	BUG_ON(!journal);
737 
738 	osb = journal->j_osb;
739 
740 	status = jbd2_journal_load(journal->j_journal);
741 	if (status < 0) {
742 		mlog(ML_ERROR, "Failed to load journal!\n");
743 		goto done;
744 	}
745 
746 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
747 
748 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
749 	if (status < 0) {
750 		mlog_errno(status);
751 		goto done;
752 	}
753 
754 	/* Launch the commit thread */
755 	if (!local) {
756 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
757 					       "ocfs2cmt");
758 		if (IS_ERR(osb->commit_task)) {
759 			status = PTR_ERR(osb->commit_task);
760 			osb->commit_task = NULL;
761 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
762 			     "error=%d", status);
763 			goto done;
764 		}
765 	} else
766 		osb->commit_task = NULL;
767 
768 done:
769 	mlog_exit(status);
770 	return status;
771 }
772 
773 
774 /* 'full' flag tells us whether we clear out all blocks or if we just
775  * mark the journal clean */
776 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
777 {
778 	int status;
779 
780 	mlog_entry_void();
781 
782 	BUG_ON(!journal);
783 
784 	status = jbd2_journal_wipe(journal->j_journal, full);
785 	if (status < 0) {
786 		mlog_errno(status);
787 		goto bail;
788 	}
789 
790 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
791 	if (status < 0)
792 		mlog_errno(status);
793 
794 bail:
795 	mlog_exit(status);
796 	return status;
797 }
798 
799 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
800 {
801 	int empty;
802 	struct ocfs2_recovery_map *rm = osb->recovery_map;
803 
804 	spin_lock(&osb->osb_lock);
805 	empty = (rm->rm_used == 0);
806 	spin_unlock(&osb->osb_lock);
807 
808 	return empty;
809 }
810 
811 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
812 {
813 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
814 }
815 
816 /*
817  * JBD Might read a cached version of another nodes journal file. We
818  * don't want this as this file changes often and we get no
819  * notification on those changes. The only way to be sure that we've
820  * got the most up to date version of those blocks then is to force
821  * read them off disk. Just searching through the buffer cache won't
822  * work as there may be pages backing this file which are still marked
823  * up to date. We know things can't change on this file underneath us
824  * as we have the lock by now :)
825  */
826 static int ocfs2_force_read_journal(struct inode *inode)
827 {
828 	int status = 0;
829 	int i;
830 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
831 #define CONCURRENT_JOURNAL_FILL 32ULL
832 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
833 
834 	mlog_entry_void();
835 
836 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
837 
838 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
839 	v_blkno = 0;
840 	while (v_blkno < num_blocks) {
841 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
842 						     &p_blkno, &p_blocks, NULL);
843 		if (status < 0) {
844 			mlog_errno(status);
845 			goto bail;
846 		}
847 
848 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
849 			p_blocks = CONCURRENT_JOURNAL_FILL;
850 
851 		/* We are reading journal data which should not
852 		 * be put in the uptodate cache */
853 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
854 						p_blkno, p_blocks, bhs);
855 		if (status < 0) {
856 			mlog_errno(status);
857 			goto bail;
858 		}
859 
860 		for(i = 0; i < p_blocks; i++) {
861 			brelse(bhs[i]);
862 			bhs[i] = NULL;
863 		}
864 
865 		v_blkno += p_blocks;
866 	}
867 
868 bail:
869 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
870 		brelse(bhs[i]);
871 	mlog_exit(status);
872 	return status;
873 }
874 
875 struct ocfs2_la_recovery_item {
876 	struct list_head	lri_list;
877 	int			lri_slot;
878 	struct ocfs2_dinode	*lri_la_dinode;
879 	struct ocfs2_dinode	*lri_tl_dinode;
880 };
881 
882 /* Does the second half of the recovery process. By this point, the
883  * node is marked clean and can actually be considered recovered,
884  * hence it's no longer in the recovery map, but there's still some
885  * cleanup we can do which shouldn't happen within the recovery thread
886  * as locking in that context becomes very difficult if we are to take
887  * recovering nodes into account.
888  *
889  * NOTE: This function can and will sleep on recovery of other nodes
890  * during cluster locking, just like any other ocfs2 process.
891  */
892 void ocfs2_complete_recovery(struct work_struct *work)
893 {
894 	int ret;
895 	struct ocfs2_journal *journal =
896 		container_of(work, struct ocfs2_journal, j_recovery_work);
897 	struct ocfs2_super *osb = journal->j_osb;
898 	struct ocfs2_dinode *la_dinode, *tl_dinode;
899 	struct ocfs2_la_recovery_item *item, *n;
900 	LIST_HEAD(tmp_la_list);
901 
902 	mlog_entry_void();
903 
904 	mlog(0, "completing recovery from keventd\n");
905 
906 	spin_lock(&journal->j_lock);
907 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
908 	spin_unlock(&journal->j_lock);
909 
910 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
911 		list_del_init(&item->lri_list);
912 
913 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
914 
915 		la_dinode = item->lri_la_dinode;
916 		if (la_dinode) {
917 			mlog(0, "Clean up local alloc %llu\n",
918 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
919 
920 			ret = ocfs2_complete_local_alloc_recovery(osb,
921 								  la_dinode);
922 			if (ret < 0)
923 				mlog_errno(ret);
924 
925 			kfree(la_dinode);
926 		}
927 
928 		tl_dinode = item->lri_tl_dinode;
929 		if (tl_dinode) {
930 			mlog(0, "Clean up truncate log %llu\n",
931 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
932 
933 			ret = ocfs2_complete_truncate_log_recovery(osb,
934 								   tl_dinode);
935 			if (ret < 0)
936 				mlog_errno(ret);
937 
938 			kfree(tl_dinode);
939 		}
940 
941 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
942 		if (ret < 0)
943 			mlog_errno(ret);
944 
945 		kfree(item);
946 	}
947 
948 	mlog(0, "Recovery completion\n");
949 	mlog_exit_void();
950 }
951 
952 /* NOTE: This function always eats your references to la_dinode and
953  * tl_dinode, either manually on error, or by passing them to
954  * ocfs2_complete_recovery */
955 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
956 					    int slot_num,
957 					    struct ocfs2_dinode *la_dinode,
958 					    struct ocfs2_dinode *tl_dinode)
959 {
960 	struct ocfs2_la_recovery_item *item;
961 
962 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
963 	if (!item) {
964 		/* Though we wish to avoid it, we are in fact safe in
965 		 * skipping local alloc cleanup as fsck.ocfs2 is more
966 		 * than capable of reclaiming unused space. */
967 		if (la_dinode)
968 			kfree(la_dinode);
969 
970 		if (tl_dinode)
971 			kfree(tl_dinode);
972 
973 		mlog_errno(-ENOMEM);
974 		return;
975 	}
976 
977 	INIT_LIST_HEAD(&item->lri_list);
978 	item->lri_la_dinode = la_dinode;
979 	item->lri_slot = slot_num;
980 	item->lri_tl_dinode = tl_dinode;
981 
982 	spin_lock(&journal->j_lock);
983 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
984 	queue_work(ocfs2_wq, &journal->j_recovery_work);
985 	spin_unlock(&journal->j_lock);
986 }
987 
988 /* Called by the mount code to queue recovery the last part of
989  * recovery for it's own slot. */
990 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
991 {
992 	struct ocfs2_journal *journal = osb->journal;
993 
994 	if (osb->dirty) {
995 		/* No need to queue up our truncate_log as regular
996 		 * cleanup will catch that. */
997 		ocfs2_queue_recovery_completion(journal,
998 						osb->slot_num,
999 						osb->local_alloc_copy,
1000 						NULL);
1001 		ocfs2_schedule_truncate_log_flush(osb, 0);
1002 
1003 		osb->local_alloc_copy = NULL;
1004 		osb->dirty = 0;
1005 	}
1006 }
1007 
1008 static int __ocfs2_recovery_thread(void *arg)
1009 {
1010 	int status, node_num;
1011 	struct ocfs2_super *osb = arg;
1012 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1013 
1014 	mlog_entry_void();
1015 
1016 	status = ocfs2_wait_on_mount(osb);
1017 	if (status < 0) {
1018 		goto bail;
1019 	}
1020 
1021 restart:
1022 	status = ocfs2_super_lock(osb, 1);
1023 	if (status < 0) {
1024 		mlog_errno(status);
1025 		goto bail;
1026 	}
1027 
1028 	spin_lock(&osb->osb_lock);
1029 	while (rm->rm_used) {
1030 		/* It's always safe to remove entry zero, as we won't
1031 		 * clear it until ocfs2_recover_node() has succeeded. */
1032 		node_num = rm->rm_entries[0];
1033 		spin_unlock(&osb->osb_lock);
1034 
1035 		status = ocfs2_recover_node(osb, node_num);
1036 		if (!status) {
1037 			ocfs2_recovery_map_clear(osb, node_num);
1038 		} else {
1039 			mlog(ML_ERROR,
1040 			     "Error %d recovering node %d on device (%u,%u)!\n",
1041 			     status, node_num,
1042 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1043 			mlog(ML_ERROR, "Volume requires unmount.\n");
1044 		}
1045 
1046 		spin_lock(&osb->osb_lock);
1047 	}
1048 	spin_unlock(&osb->osb_lock);
1049 	mlog(0, "All nodes recovered\n");
1050 
1051 	/* Refresh all journal recovery generations from disk */
1052 	status = ocfs2_check_journals_nolocks(osb);
1053 	status = (status == -EROFS) ? 0 : status;
1054 	if (status < 0)
1055 		mlog_errno(status);
1056 
1057 	ocfs2_super_unlock(osb, 1);
1058 
1059 	/* We always run recovery on our own orphan dir - the dead
1060 	 * node(s) may have disallowd a previos inode delete. Re-processing
1061 	 * is therefore required. */
1062 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1063 					NULL);
1064 
1065 bail:
1066 	mutex_lock(&osb->recovery_lock);
1067 	if (!status && !ocfs2_recovery_completed(osb)) {
1068 		mutex_unlock(&osb->recovery_lock);
1069 		goto restart;
1070 	}
1071 
1072 	osb->recovery_thread_task = NULL;
1073 	mb(); /* sync with ocfs2_recovery_thread_running */
1074 	wake_up(&osb->recovery_event);
1075 
1076 	mutex_unlock(&osb->recovery_lock);
1077 
1078 	mlog_exit(status);
1079 	/* no one is callint kthread_stop() for us so the kthread() api
1080 	 * requires that we call do_exit().  And it isn't exported, but
1081 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1082 	complete_and_exit(NULL, status);
1083 	return status;
1084 }
1085 
1086 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1087 {
1088 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1089 		   node_num, osb->node_num);
1090 
1091 	mutex_lock(&osb->recovery_lock);
1092 	if (osb->disable_recovery)
1093 		goto out;
1094 
1095 	/* People waiting on recovery will wait on
1096 	 * the recovery map to empty. */
1097 	if (ocfs2_recovery_map_set(osb, node_num))
1098 		mlog(0, "node %d already in recovery map.\n", node_num);
1099 
1100 	mlog(0, "starting recovery thread...\n");
1101 
1102 	if (osb->recovery_thread_task)
1103 		goto out;
1104 
1105 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1106 						 "ocfs2rec");
1107 	if (IS_ERR(osb->recovery_thread_task)) {
1108 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1109 		osb->recovery_thread_task = NULL;
1110 	}
1111 
1112 out:
1113 	mutex_unlock(&osb->recovery_lock);
1114 	wake_up(&osb->recovery_event);
1115 
1116 	mlog_exit_void();
1117 }
1118 
1119 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1120 				    int slot_num,
1121 				    struct buffer_head **bh,
1122 				    struct inode **ret_inode)
1123 {
1124 	int status = -EACCES;
1125 	struct inode *inode = NULL;
1126 
1127 	BUG_ON(slot_num >= osb->max_slots);
1128 
1129 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1130 					    slot_num);
1131 	if (!inode || is_bad_inode(inode)) {
1132 		mlog_errno(status);
1133 		goto bail;
1134 	}
1135 	SET_INODE_JOURNAL(inode);
1136 
1137 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, bh, 0, inode);
1138 	if (status < 0) {
1139 		mlog_errno(status);
1140 		goto bail;
1141 	}
1142 
1143 	status = 0;
1144 
1145 bail:
1146 	if (inode) {
1147 		if (status || !ret_inode)
1148 			iput(inode);
1149 		else
1150 			*ret_inode = inode;
1151 	}
1152 	return status;
1153 }
1154 
1155 /* Does the actual journal replay and marks the journal inode as
1156  * clean. Will only replay if the journal inode is marked dirty. */
1157 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1158 				int node_num,
1159 				int slot_num)
1160 {
1161 	int status;
1162 	int got_lock = 0;
1163 	unsigned int flags;
1164 	struct inode *inode = NULL;
1165 	struct ocfs2_dinode *fe;
1166 	journal_t *journal = NULL;
1167 	struct buffer_head *bh = NULL;
1168 	u32 slot_reco_gen;
1169 
1170 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1171 	if (status) {
1172 		mlog_errno(status);
1173 		goto done;
1174 	}
1175 
1176 	fe = (struct ocfs2_dinode *)bh->b_data;
1177 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1178 	brelse(bh);
1179 	bh = NULL;
1180 
1181 	/*
1182 	 * As the fs recovery is asynchronous, there is a small chance that
1183 	 * another node mounted (and recovered) the slot before the recovery
1184 	 * thread could get the lock. To handle that, we dirty read the journal
1185 	 * inode for that slot to get the recovery generation. If it is
1186 	 * different than what we expected, the slot has been recovered.
1187 	 * If not, it needs recovery.
1188 	 */
1189 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1190 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1191 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1192 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1193 		status = -EBUSY;
1194 		goto done;
1195 	}
1196 
1197 	/* Continue with recovery as the journal has not yet been recovered */
1198 
1199 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1200 	if (status < 0) {
1201 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1202 		if (status != -ERESTARTSYS)
1203 			mlog(ML_ERROR, "Could not lock journal!\n");
1204 		goto done;
1205 	}
1206 	got_lock = 1;
1207 
1208 	fe = (struct ocfs2_dinode *) bh->b_data;
1209 
1210 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1211 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1212 
1213 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1214 		mlog(0, "No recovery required for node %d\n", node_num);
1215 		/* Refresh recovery generation for the slot */
1216 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1217 		goto done;
1218 	}
1219 
1220 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1221 	     node_num, slot_num,
1222 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1223 
1224 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1225 
1226 	status = ocfs2_force_read_journal(inode);
1227 	if (status < 0) {
1228 		mlog_errno(status);
1229 		goto done;
1230 	}
1231 
1232 	mlog(0, "calling journal_init_inode\n");
1233 	journal = jbd2_journal_init_inode(inode);
1234 	if (journal == NULL) {
1235 		mlog(ML_ERROR, "Linux journal layer error\n");
1236 		status = -EIO;
1237 		goto done;
1238 	}
1239 
1240 	status = jbd2_journal_load(journal);
1241 	if (status < 0) {
1242 		mlog_errno(status);
1243 		if (!igrab(inode))
1244 			BUG();
1245 		jbd2_journal_destroy(journal);
1246 		goto done;
1247 	}
1248 
1249 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1250 
1251 	/* wipe the journal */
1252 	mlog(0, "flushing the journal.\n");
1253 	jbd2_journal_lock_updates(journal);
1254 	status = jbd2_journal_flush(journal);
1255 	jbd2_journal_unlock_updates(journal);
1256 	if (status < 0)
1257 		mlog_errno(status);
1258 
1259 	/* This will mark the node clean */
1260 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1261 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1262 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1263 
1264 	/* Increment recovery generation to indicate successful recovery */
1265 	ocfs2_bump_recovery_generation(fe);
1266 	osb->slot_recovery_generations[slot_num] =
1267 					ocfs2_get_recovery_generation(fe);
1268 
1269 	status = ocfs2_write_block(osb, bh, inode);
1270 	if (status < 0)
1271 		mlog_errno(status);
1272 
1273 	if (!igrab(inode))
1274 		BUG();
1275 
1276 	jbd2_journal_destroy(journal);
1277 
1278 done:
1279 	/* drop the lock on this nodes journal */
1280 	if (got_lock)
1281 		ocfs2_inode_unlock(inode, 1);
1282 
1283 	if (inode)
1284 		iput(inode);
1285 
1286 	brelse(bh);
1287 
1288 	mlog_exit(status);
1289 	return status;
1290 }
1291 
1292 /*
1293  * Do the most important parts of node recovery:
1294  *  - Replay it's journal
1295  *  - Stamp a clean local allocator file
1296  *  - Stamp a clean truncate log
1297  *  - Mark the node clean
1298  *
1299  * If this function completes without error, a node in OCFS2 can be
1300  * said to have been safely recovered. As a result, failure during the
1301  * second part of a nodes recovery process (local alloc recovery) is
1302  * far less concerning.
1303  */
1304 static int ocfs2_recover_node(struct ocfs2_super *osb,
1305 			      int node_num)
1306 {
1307 	int status = 0;
1308 	int slot_num;
1309 	struct ocfs2_dinode *la_copy = NULL;
1310 	struct ocfs2_dinode *tl_copy = NULL;
1311 
1312 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1313 		   node_num, osb->node_num);
1314 
1315 	mlog(0, "checking node %d\n", node_num);
1316 
1317 	/* Should not ever be called to recover ourselves -- in that
1318 	 * case we should've called ocfs2_journal_load instead. */
1319 	BUG_ON(osb->node_num == node_num);
1320 
1321 	slot_num = ocfs2_node_num_to_slot(osb, node_num);
1322 	if (slot_num == -ENOENT) {
1323 		status = 0;
1324 		mlog(0, "no slot for this node, so no recovery required.\n");
1325 		goto done;
1326 	}
1327 
1328 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1329 
1330 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1331 	if (status < 0) {
1332 		if (status == -EBUSY) {
1333 			mlog(0, "Skipping recovery for slot %u (node %u) "
1334 			     "as another node has recovered it\n", slot_num,
1335 			     node_num);
1336 			status = 0;
1337 			goto done;
1338 		}
1339 		mlog_errno(status);
1340 		goto done;
1341 	}
1342 
1343 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1344 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1345 	if (status < 0) {
1346 		mlog_errno(status);
1347 		goto done;
1348 	}
1349 
1350 	/* An error from begin_truncate_log_recovery is not
1351 	 * serious enough to warrant halting the rest of
1352 	 * recovery. */
1353 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1354 	if (status < 0)
1355 		mlog_errno(status);
1356 
1357 	/* Likewise, this would be a strange but ultimately not so
1358 	 * harmful place to get an error... */
1359 	status = ocfs2_clear_slot(osb, slot_num);
1360 	if (status < 0)
1361 		mlog_errno(status);
1362 
1363 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1364 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1365 					tl_copy);
1366 
1367 	status = 0;
1368 done:
1369 
1370 	mlog_exit(status);
1371 	return status;
1372 }
1373 
1374 /* Test node liveness by trylocking his journal. If we get the lock,
1375  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1376  * still alive (we couldn't get the lock) and < 0 on error. */
1377 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1378 				 int slot_num)
1379 {
1380 	int status, flags;
1381 	struct inode *inode = NULL;
1382 
1383 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1384 					    slot_num);
1385 	if (inode == NULL) {
1386 		mlog(ML_ERROR, "access error\n");
1387 		status = -EACCES;
1388 		goto bail;
1389 	}
1390 	if (is_bad_inode(inode)) {
1391 		mlog(ML_ERROR, "access error (bad inode)\n");
1392 		iput(inode);
1393 		inode = NULL;
1394 		status = -EACCES;
1395 		goto bail;
1396 	}
1397 	SET_INODE_JOURNAL(inode);
1398 
1399 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1400 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1401 	if (status < 0) {
1402 		if (status != -EAGAIN)
1403 			mlog_errno(status);
1404 		goto bail;
1405 	}
1406 
1407 	ocfs2_inode_unlock(inode, 1);
1408 bail:
1409 	if (inode)
1410 		iput(inode);
1411 
1412 	return status;
1413 }
1414 
1415 /* Call this underneath ocfs2_super_lock. It also assumes that the
1416  * slot info struct has been updated from disk. */
1417 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1418 {
1419 	unsigned int node_num;
1420 	int status, i;
1421 	u32 gen;
1422 	struct buffer_head *bh = NULL;
1423 	struct ocfs2_dinode *di;
1424 
1425 	/* This is called with the super block cluster lock, so we
1426 	 * know that the slot map can't change underneath us. */
1427 
1428 	for (i = 0; i < osb->max_slots; i++) {
1429 		/* Read journal inode to get the recovery generation */
1430 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1431 		if (status) {
1432 			mlog_errno(status);
1433 			goto bail;
1434 		}
1435 		di = (struct ocfs2_dinode *)bh->b_data;
1436 		gen = ocfs2_get_recovery_generation(di);
1437 		brelse(bh);
1438 		bh = NULL;
1439 
1440 		spin_lock(&osb->osb_lock);
1441 		osb->slot_recovery_generations[i] = gen;
1442 
1443 		mlog(0, "Slot %u recovery generation is %u\n", i,
1444 		     osb->slot_recovery_generations[i]);
1445 
1446 		if (i == osb->slot_num) {
1447 			spin_unlock(&osb->osb_lock);
1448 			continue;
1449 		}
1450 
1451 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1452 		if (status == -ENOENT) {
1453 			spin_unlock(&osb->osb_lock);
1454 			continue;
1455 		}
1456 
1457 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1458 			spin_unlock(&osb->osb_lock);
1459 			continue;
1460 		}
1461 		spin_unlock(&osb->osb_lock);
1462 
1463 		/* Ok, we have a slot occupied by another node which
1464 		 * is not in the recovery map. We trylock his journal
1465 		 * file here to test if he's alive. */
1466 		status = ocfs2_trylock_journal(osb, i);
1467 		if (!status) {
1468 			/* Since we're called from mount, we know that
1469 			 * the recovery thread can't race us on
1470 			 * setting / checking the recovery bits. */
1471 			ocfs2_recovery_thread(osb, node_num);
1472 		} else if ((status < 0) && (status != -EAGAIN)) {
1473 			mlog_errno(status);
1474 			goto bail;
1475 		}
1476 	}
1477 
1478 	status = 0;
1479 bail:
1480 	mlog_exit(status);
1481 	return status;
1482 }
1483 
1484 struct ocfs2_orphan_filldir_priv {
1485 	struct inode		*head;
1486 	struct ocfs2_super	*osb;
1487 };
1488 
1489 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1490 				loff_t pos, u64 ino, unsigned type)
1491 {
1492 	struct ocfs2_orphan_filldir_priv *p = priv;
1493 	struct inode *iter;
1494 
1495 	if (name_len == 1 && !strncmp(".", name, 1))
1496 		return 0;
1497 	if (name_len == 2 && !strncmp("..", name, 2))
1498 		return 0;
1499 
1500 	/* Skip bad inodes so that recovery can continue */
1501 	iter = ocfs2_iget(p->osb, ino,
1502 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1503 	if (IS_ERR(iter))
1504 		return 0;
1505 
1506 	mlog(0, "queue orphan %llu\n",
1507 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1508 	/* No locking is required for the next_orphan queue as there
1509 	 * is only ever a single process doing orphan recovery. */
1510 	OCFS2_I(iter)->ip_next_orphan = p->head;
1511 	p->head = iter;
1512 
1513 	return 0;
1514 }
1515 
1516 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1517 			       int slot,
1518 			       struct inode **head)
1519 {
1520 	int status;
1521 	struct inode *orphan_dir_inode = NULL;
1522 	struct ocfs2_orphan_filldir_priv priv;
1523 	loff_t pos = 0;
1524 
1525 	priv.osb = osb;
1526 	priv.head = *head;
1527 
1528 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1529 						       ORPHAN_DIR_SYSTEM_INODE,
1530 						       slot);
1531 	if  (!orphan_dir_inode) {
1532 		status = -ENOENT;
1533 		mlog_errno(status);
1534 		return status;
1535 	}
1536 
1537 	mutex_lock(&orphan_dir_inode->i_mutex);
1538 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1539 	if (status < 0) {
1540 		mlog_errno(status);
1541 		goto out;
1542 	}
1543 
1544 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1545 				   ocfs2_orphan_filldir);
1546 	if (status) {
1547 		mlog_errno(status);
1548 		goto out_cluster;
1549 	}
1550 
1551 	*head = priv.head;
1552 
1553 out_cluster:
1554 	ocfs2_inode_unlock(orphan_dir_inode, 0);
1555 out:
1556 	mutex_unlock(&orphan_dir_inode->i_mutex);
1557 	iput(orphan_dir_inode);
1558 	return status;
1559 }
1560 
1561 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1562 					      int slot)
1563 {
1564 	int ret;
1565 
1566 	spin_lock(&osb->osb_lock);
1567 	ret = !osb->osb_orphan_wipes[slot];
1568 	spin_unlock(&osb->osb_lock);
1569 	return ret;
1570 }
1571 
1572 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1573 					     int slot)
1574 {
1575 	spin_lock(&osb->osb_lock);
1576 	/* Mark ourselves such that new processes in delete_inode()
1577 	 * know to quit early. */
1578 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1579 	while (osb->osb_orphan_wipes[slot]) {
1580 		/* If any processes are already in the middle of an
1581 		 * orphan wipe on this dir, then we need to wait for
1582 		 * them. */
1583 		spin_unlock(&osb->osb_lock);
1584 		wait_event_interruptible(osb->osb_wipe_event,
1585 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1586 		spin_lock(&osb->osb_lock);
1587 	}
1588 	spin_unlock(&osb->osb_lock);
1589 }
1590 
1591 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1592 					      int slot)
1593 {
1594 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1595 }
1596 
1597 /*
1598  * Orphan recovery. Each mounted node has it's own orphan dir which we
1599  * must run during recovery. Our strategy here is to build a list of
1600  * the inodes in the orphan dir and iget/iput them. The VFS does
1601  * (most) of the rest of the work.
1602  *
1603  * Orphan recovery can happen at any time, not just mount so we have a
1604  * couple of extra considerations.
1605  *
1606  * - We grab as many inodes as we can under the orphan dir lock -
1607  *   doing iget() outside the orphan dir risks getting a reference on
1608  *   an invalid inode.
1609  * - We must be sure not to deadlock with other processes on the
1610  *   system wanting to run delete_inode(). This can happen when they go
1611  *   to lock the orphan dir and the orphan recovery process attempts to
1612  *   iget() inside the orphan dir lock. This can be avoided by
1613  *   advertising our state to ocfs2_delete_inode().
1614  */
1615 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1616 				 int slot)
1617 {
1618 	int ret = 0;
1619 	struct inode *inode = NULL;
1620 	struct inode *iter;
1621 	struct ocfs2_inode_info *oi;
1622 
1623 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1624 
1625 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1626 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1627 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1628 
1629 	/* Error here should be noted, but we want to continue with as
1630 	 * many queued inodes as we've got. */
1631 	if (ret)
1632 		mlog_errno(ret);
1633 
1634 	while (inode) {
1635 		oi = OCFS2_I(inode);
1636 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1637 
1638 		iter = oi->ip_next_orphan;
1639 
1640 		spin_lock(&oi->ip_lock);
1641 		/* The remote delete code may have set these on the
1642 		 * assumption that the other node would wipe them
1643 		 * successfully.  If they are still in the node's
1644 		 * orphan dir, we need to reset that state. */
1645 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1646 
1647 		/* Set the proper information to get us going into
1648 		 * ocfs2_delete_inode. */
1649 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1650 		spin_unlock(&oi->ip_lock);
1651 
1652 		iput(inode);
1653 
1654 		inode = iter;
1655 	}
1656 
1657 	return ret;
1658 }
1659 
1660 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1661 {
1662 	/* This check is good because ocfs2 will wait on our recovery
1663 	 * thread before changing it to something other than MOUNTED
1664 	 * or DISABLED. */
1665 	wait_event(osb->osb_mount_event,
1666 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1667 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1668 
1669 	/* If there's an error on mount, then we may never get to the
1670 	 * MOUNTED flag, but this is set right before
1671 	 * dismount_volume() so we can trust it. */
1672 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1673 		mlog(0, "mount error, exiting!\n");
1674 		return -EBUSY;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int ocfs2_commit_thread(void *arg)
1681 {
1682 	int status;
1683 	struct ocfs2_super *osb = arg;
1684 	struct ocfs2_journal *journal = osb->journal;
1685 
1686 	/* we can trust j_num_trans here because _should_stop() is only set in
1687 	 * shutdown and nobody other than ourselves should be able to start
1688 	 * transactions.  committing on shutdown might take a few iterations
1689 	 * as final transactions put deleted inodes on the list */
1690 	while (!(kthread_should_stop() &&
1691 		 atomic_read(&journal->j_num_trans) == 0)) {
1692 
1693 		wait_event_interruptible(osb->checkpoint_event,
1694 					 atomic_read(&journal->j_num_trans)
1695 					 || kthread_should_stop());
1696 
1697 		status = ocfs2_commit_cache(osb);
1698 		if (status < 0)
1699 			mlog_errno(status);
1700 
1701 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1702 			mlog(ML_KTHREAD,
1703 			     "commit_thread: %u transactions pending on "
1704 			     "shutdown\n",
1705 			     atomic_read(&journal->j_num_trans));
1706 		}
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /* Reads all the journal inodes without taking any cluster locks. Used
1713  * for hard readonly access to determine whether any journal requires
1714  * recovery. Also used to refresh the recovery generation numbers after
1715  * a journal has been recovered by another node.
1716  */
1717 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1718 {
1719 	int ret = 0;
1720 	unsigned int slot;
1721 	struct buffer_head *di_bh = NULL;
1722 	struct ocfs2_dinode *di;
1723 	int journal_dirty = 0;
1724 
1725 	for(slot = 0; slot < osb->max_slots; slot++) {
1726 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1727 		if (ret) {
1728 			mlog_errno(ret);
1729 			goto out;
1730 		}
1731 
1732 		di = (struct ocfs2_dinode *) di_bh->b_data;
1733 
1734 		osb->slot_recovery_generations[slot] =
1735 					ocfs2_get_recovery_generation(di);
1736 
1737 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1738 		    OCFS2_JOURNAL_DIRTY_FL)
1739 			journal_dirty = 1;
1740 
1741 		brelse(di_bh);
1742 		di_bh = NULL;
1743 	}
1744 
1745 out:
1746 	if (journal_dirty)
1747 		ret = -EROFS;
1748 	return ret;
1749 }
1750