xref: /openbmc/linux/fs/ocfs2/journal.c (revision c161f89b)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 DEFINE_SPINLOCK(trans_inc_lock);
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 				       struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 				      int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 				 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 				 int slot);
69 static int ocfs2_commit_thread(void *arg);
70 
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 	int status = 0;
74 	unsigned int flushed;
75 	unsigned long old_id;
76 	struct ocfs2_journal *journal = NULL;
77 
78 	mlog_entry_void();
79 
80 	journal = osb->journal;
81 
82 	/* Flush all pending commits and checkpoint the journal. */
83 	down_write(&journal->j_trans_barrier);
84 
85 	if (atomic_read(&journal->j_num_trans) == 0) {
86 		up_write(&journal->j_trans_barrier);
87 		mlog(0, "No transactions for me to flush!\n");
88 		goto finally;
89 	}
90 
91 	journal_lock_updates(journal->j_journal);
92 	status = journal_flush(journal->j_journal);
93 	journal_unlock_updates(journal->j_journal);
94 	if (status < 0) {
95 		up_write(&journal->j_trans_barrier);
96 		mlog_errno(status);
97 		goto finally;
98 	}
99 
100 	old_id = ocfs2_inc_trans_id(journal);
101 
102 	flushed = atomic_read(&journal->j_num_trans);
103 	atomic_set(&journal->j_num_trans, 0);
104 	up_write(&journal->j_trans_barrier);
105 
106 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 	     journal->j_trans_id, flushed);
108 
109 	ocfs2_kick_vote_thread(osb);
110 	wake_up(&journal->j_checkpointed);
111 finally:
112 	mlog_exit(status);
113 	return status;
114 }
115 
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 	struct ocfs2_journal_handle *retval = NULL;
119 
120 	retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
121 	if (!retval) {
122 		mlog(ML_ERROR, "Failed to allocate memory for journal "
123 		     "handle!\n");
124 		return NULL;
125 	}
126 
127 	retval->num_locks = 0;
128 	retval->k_handle = NULL;
129 
130 	INIT_LIST_HEAD(&retval->locks);
131 	INIT_LIST_HEAD(&retval->inode_list);
132 	retval->journal = osb->journal;
133 
134 	return retval;
135 }
136 
137 /* pass it NULL and it will allocate a new handle object for you.  If
138  * you pass it a handle however, it may still return error, in which
139  * case it has free'd the passed handle for you. */
140 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
141 					       struct ocfs2_journal_handle *handle,
142 					       int max_buffs)
143 {
144 	int ret;
145 	journal_t *journal = osb->journal->j_journal;
146 
147 	mlog_entry("(max_buffs = %d)\n", max_buffs);
148 
149 	BUG_ON(!osb || !osb->journal->j_journal);
150 
151 	if (ocfs2_is_hard_readonly(osb)) {
152 		ret = -EROFS;
153 		goto done_free;
154 	}
155 
156 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
157 	BUG_ON(max_buffs <= 0);
158 
159 	/* JBD might support this, but our journalling code doesn't yet. */
160 	if (journal_current_handle()) {
161 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
162 		BUG();
163 	}
164 
165 	if (!handle)
166 		handle = ocfs2_alloc_handle(osb);
167 	if (!handle) {
168 		ret = -ENOMEM;
169 		mlog(ML_ERROR, "Failed to allocate memory for journal "
170 		     "handle!\n");
171 		goto done_free;
172 	}
173 
174 	down_read(&osb->journal->j_trans_barrier);
175 
176 	/* actually start the transaction now */
177 	handle->k_handle = journal_start(journal, max_buffs);
178 	if (IS_ERR(handle->k_handle)) {
179 		up_read(&osb->journal->j_trans_barrier);
180 
181 		ret = PTR_ERR(handle->k_handle);
182 		handle->k_handle = NULL;
183 		mlog_errno(ret);
184 
185 		if (is_journal_aborted(journal)) {
186 			ocfs2_abort(osb->sb, "Detected aborted journal");
187 			ret = -EROFS;
188 		}
189 		goto done_free;
190 	}
191 
192 	atomic_inc(&(osb->journal->j_num_trans));
193 
194 	mlog_exit_ptr(handle);
195 	return handle;
196 
197 done_free:
198 	if (handle)
199 		ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
200 
201 	mlog_exit(ret);
202 	return ERR_PTR(ret);
203 }
204 
205 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
206 			    struct inode *inode)
207 {
208 	BUG_ON(!handle);
209 	BUG_ON(!inode);
210 
211 	atomic_inc(&inode->i_count);
212 
213 	/* we're obviously changing it... */
214 	mutex_lock(&inode->i_mutex);
215 
216 	/* sanity check */
217 	BUG_ON(OCFS2_I(inode)->ip_handle);
218 	BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
219 
220 	OCFS2_I(inode)->ip_handle = handle;
221 	list_move_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
222 }
223 
224 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
225 {
226 	struct list_head *p, *n;
227 	struct inode *inode;
228 	struct ocfs2_inode_info *oi;
229 
230 	list_for_each_safe(p, n, &handle->inode_list) {
231 		oi = list_entry(p, struct ocfs2_inode_info,
232 				ip_handle_list);
233 		inode = &oi->vfs_inode;
234 
235 		OCFS2_I(inode)->ip_handle = NULL;
236 		list_del_init(&OCFS2_I(inode)->ip_handle_list);
237 
238 		mutex_unlock(&inode->i_mutex);
239 		iput(inode);
240 	}
241 }
242 
243 /* This is trivial so we do it out of the main commit
244  * paths. Beware, it can be called from start_trans too! */
245 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
246 {
247 	mlog_entry_void();
248 
249 	ocfs2_handle_unlock_inodes(handle);
250 	/* You are allowed to add journal locks before the transaction
251 	 * has started. */
252 	ocfs2_handle_cleanup_locks(handle->journal, handle);
253 
254 	kfree(handle);
255 
256 	mlog_exit_void();
257 }
258 
259 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
260 {
261 	handle_t *jbd_handle;
262 	int retval;
263 	struct ocfs2_journal *journal = handle->journal;
264 
265 	mlog_entry_void();
266 
267 	BUG_ON(!handle);
268 
269 	if (!handle->k_handle) {
270 		ocfs2_commit_unstarted_handle(handle);
271 		mlog_exit_void();
272 		return;
273 	}
274 
275 	/* release inode semaphores we took during this transaction */
276 	ocfs2_handle_unlock_inodes(handle);
277 
278 	/* ocfs2_extend_trans may have had to call journal_restart
279 	 * which will always commit the transaction, but may return
280 	 * error for any number of reasons. If this is the case, we
281 	 * clear k_handle as it's not valid any more. */
282 	if (handle->k_handle) {
283 		jbd_handle = handle->k_handle;
284 
285 		/* actually stop the transaction. if we've set h_sync,
286 		 * it'll have been committed when we return */
287 		retval = journal_stop(jbd_handle);
288 		if (retval < 0) {
289 			mlog_errno(retval);
290 			mlog(ML_ERROR, "Could not commit transaction\n");
291 			BUG();
292 		}
293 
294 		handle->k_handle = NULL; /* it's been free'd in journal_stop */
295 	}
296 
297 	ocfs2_handle_cleanup_locks(journal, handle);
298 
299 	up_read(&journal->j_trans_barrier);
300 
301 	kfree(handle);
302 	mlog_exit_void();
303 }
304 
305 /*
306  * 'nblocks' is what you want to add to the current
307  * transaction. extend_trans will either extend the current handle by
308  * nblocks, or commit it and start a new one with nblocks credits.
309  *
310  * WARNING: This will not release any semaphores or disk locks taken
311  * during the transaction, so make sure they were taken *before*
312  * start_trans or we'll have ordering deadlocks.
313  *
314  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
315  * good because transaction ids haven't yet been recorded on the
316  * cluster locks associated with this handle.
317  */
318 int ocfs2_extend_trans(handle_t *handle, int nblocks)
319 {
320 	int status;
321 
322 	BUG_ON(!handle);
323 	BUG_ON(!nblocks);
324 
325 	mlog_entry_void();
326 
327 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
328 
329 	status = journal_extend(handle, nblocks);
330 	if (status < 0) {
331 		mlog_errno(status);
332 		goto bail;
333 	}
334 
335 	if (status > 0) {
336 		mlog(0, "journal_extend failed, trying journal_restart\n");
337 		status = journal_restart(handle, nblocks);
338 		if (status < 0) {
339 			mlog_errno(status);
340 			goto bail;
341 		}
342 	}
343 
344 	status = 0;
345 bail:
346 
347 	mlog_exit(status);
348 	return status;
349 }
350 
351 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
352 			 struct inode *inode,
353 			 struct buffer_head *bh,
354 			 int type)
355 {
356 	int status;
357 
358 	BUG_ON(!inode);
359 	BUG_ON(!handle);
360 	BUG_ON(!bh);
361 
362 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
363 		   (unsigned long long)bh->b_blocknr, type,
364 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
365 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
366 		   "OCFS2_JOURNAL_ACCESS_WRITE",
367 		   bh->b_size);
368 
369 	/* we can safely remove this assertion after testing. */
370 	if (!buffer_uptodate(bh)) {
371 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
372 		mlog(ML_ERROR, "b_blocknr=%llu\n",
373 		     (unsigned long long)bh->b_blocknr);
374 		BUG();
375 	}
376 
377 	/* Set the current transaction information on the inode so
378 	 * that the locking code knows whether it can drop it's locks
379 	 * on this inode or not. We're protected from the commit
380 	 * thread updating the current transaction id until
381 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
382 	 * j_trans_barrier for us. */
383 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
384 
385 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
386 	switch (type) {
387 	case OCFS2_JOURNAL_ACCESS_CREATE:
388 	case OCFS2_JOURNAL_ACCESS_WRITE:
389 		status = journal_get_write_access(handle->k_handle, bh);
390 		break;
391 
392 	case OCFS2_JOURNAL_ACCESS_UNDO:
393 		status = journal_get_undo_access(handle->k_handle, bh);
394 		break;
395 
396 	default:
397 		status = -EINVAL;
398 		mlog(ML_ERROR, "Uknown access type!\n");
399 	}
400 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
401 
402 	if (status < 0)
403 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
404 		     status, type);
405 
406 	mlog_exit(status);
407 	return status;
408 }
409 
410 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
411 			struct buffer_head *bh)
412 {
413 	int status;
414 
415 	mlog_entry("(bh->b_blocknr=%llu)\n",
416 		   (unsigned long long)bh->b_blocknr);
417 
418 	status = journal_dirty_metadata(handle->k_handle, bh);
419 	if (status < 0)
420 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
421 		     "(bh->b_blocknr=%llu)\n",
422 		     (unsigned long long)bh->b_blocknr);
423 
424 	mlog_exit(status);
425 	return status;
426 }
427 
428 int ocfs2_journal_dirty_data(handle_t *handle,
429 			     struct buffer_head *bh)
430 {
431 	int err = journal_dirty_data(handle, bh);
432 	if (err)
433 		mlog_errno(err);
434 	/* TODO: When we can handle it, abort the handle and go RO on
435 	 * error here. */
436 
437 	return err;
438 }
439 
440 /* We always assume you're adding a metadata lock at level 'ex' */
441 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
442 			  struct inode *inode)
443 {
444 	int status;
445 	struct ocfs2_journal_lock *lock;
446 
447 	BUG_ON(!inode);
448 
449 	lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
450 	if (!lock) {
451 		status = -ENOMEM;
452 		mlog_errno(-ENOMEM);
453 		goto bail;
454 	}
455 
456 	if (!igrab(inode))
457 		BUG();
458 	lock->jl_inode = inode;
459 
460 	list_add_tail(&(lock->jl_lock_list), &(handle->locks));
461 	handle->num_locks++;
462 
463 	status = 0;
464 bail:
465 	mlog_exit(status);
466 	return status;
467 }
468 
469 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
470 				       struct ocfs2_journal_handle *handle)
471 {
472 	struct list_head *p, *n;
473 	struct ocfs2_journal_lock *lock;
474 	struct inode *inode;
475 
476 	list_for_each_safe(p, n, &(handle->locks)) {
477 		lock = list_entry(p, struct ocfs2_journal_lock,
478 				  jl_lock_list);
479 		list_del(&lock->jl_lock_list);
480 		handle->num_locks--;
481 
482 		inode = lock->jl_inode;
483 		ocfs2_meta_unlock(inode, 1);
484 		if (atomic_read(&inode->i_count) == 1)
485 			mlog(ML_ERROR,
486 			     "Inode %llu, I'm doing a last iput for!",
487 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
488 		iput(inode);
489 		kmem_cache_free(ocfs2_lock_cache, lock);
490 	}
491 }
492 
493 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
494 
495 void ocfs2_set_journal_params(struct ocfs2_super *osb)
496 {
497 	journal_t *journal = osb->journal->j_journal;
498 
499 	spin_lock(&journal->j_state_lock);
500 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
501 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
502 		journal->j_flags |= JFS_BARRIER;
503 	else
504 		journal->j_flags &= ~JFS_BARRIER;
505 	spin_unlock(&journal->j_state_lock);
506 }
507 
508 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
509 {
510 	int status = -1;
511 	struct inode *inode = NULL; /* the journal inode */
512 	journal_t *j_journal = NULL;
513 	struct ocfs2_dinode *di = NULL;
514 	struct buffer_head *bh = NULL;
515 	struct ocfs2_super *osb;
516 	int meta_lock = 0;
517 
518 	mlog_entry_void();
519 
520 	BUG_ON(!journal);
521 
522 	osb = journal->j_osb;
523 
524 	/* already have the inode for our journal */
525 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
526 					    osb->slot_num);
527 	if (inode == NULL) {
528 		status = -EACCES;
529 		mlog_errno(status);
530 		goto done;
531 	}
532 	if (is_bad_inode(inode)) {
533 		mlog(ML_ERROR, "access error (bad inode)\n");
534 		iput(inode);
535 		inode = NULL;
536 		status = -EACCES;
537 		goto done;
538 	}
539 
540 	SET_INODE_JOURNAL(inode);
541 	OCFS2_I(inode)->ip_open_count++;
542 
543 	/* Skip recovery waits here - journal inode metadata never
544 	 * changes in a live cluster so it can be considered an
545 	 * exception to the rule. */
546 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
547 				      OCFS2_META_LOCK_RECOVERY);
548 	if (status < 0) {
549 		if (status != -ERESTARTSYS)
550 			mlog(ML_ERROR, "Could not get lock on journal!\n");
551 		goto done;
552 	}
553 
554 	meta_lock = 1;
555 	di = (struct ocfs2_dinode *)bh->b_data;
556 
557 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
558 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
559 		     inode->i_size);
560 		status = -EINVAL;
561 		goto done;
562 	}
563 
564 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
565 	mlog(0, "inode->i_blocks = %llu\n",
566 			(unsigned long long)inode->i_blocks);
567 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
568 
569 	/* call the kernels journal init function now */
570 	j_journal = journal_init_inode(inode);
571 	if (j_journal == NULL) {
572 		mlog(ML_ERROR, "Linux journal layer error\n");
573 		status = -EINVAL;
574 		goto done;
575 	}
576 
577 	mlog(0, "Returned from journal_init_inode\n");
578 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
579 
580 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
581 		  OCFS2_JOURNAL_DIRTY_FL);
582 
583 	journal->j_journal = j_journal;
584 	journal->j_inode = inode;
585 	journal->j_bh = bh;
586 
587 	ocfs2_set_journal_params(osb);
588 
589 	journal->j_state = OCFS2_JOURNAL_LOADED;
590 
591 	status = 0;
592 done:
593 	if (status < 0) {
594 		if (meta_lock)
595 			ocfs2_meta_unlock(inode, 1);
596 		if (bh != NULL)
597 			brelse(bh);
598 		if (inode) {
599 			OCFS2_I(inode)->ip_open_count--;
600 			iput(inode);
601 		}
602 	}
603 
604 	mlog_exit(status);
605 	return status;
606 }
607 
608 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
609 				      int dirty)
610 {
611 	int status;
612 	unsigned int flags;
613 	struct ocfs2_journal *journal = osb->journal;
614 	struct buffer_head *bh = journal->j_bh;
615 	struct ocfs2_dinode *fe;
616 
617 	mlog_entry_void();
618 
619 	fe = (struct ocfs2_dinode *)bh->b_data;
620 	if (!OCFS2_IS_VALID_DINODE(fe)) {
621 		/* This is called from startup/shutdown which will
622 		 * handle the errors in a specific manner, so no need
623 		 * to call ocfs2_error() here. */
624 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
625 		     "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
626 		     fe->i_signature);
627 		status = -EIO;
628 		goto out;
629 	}
630 
631 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
632 	if (dirty)
633 		flags |= OCFS2_JOURNAL_DIRTY_FL;
634 	else
635 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
636 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
637 
638 	status = ocfs2_write_block(osb, bh, journal->j_inode);
639 	if (status < 0)
640 		mlog_errno(status);
641 
642 out:
643 	mlog_exit(status);
644 	return status;
645 }
646 
647 /*
648  * If the journal has been kmalloc'd it needs to be freed after this
649  * call.
650  */
651 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
652 {
653 	struct ocfs2_journal *journal = NULL;
654 	int status = 0;
655 	struct inode *inode = NULL;
656 	int num_running_trans = 0;
657 
658 	mlog_entry_void();
659 
660 	BUG_ON(!osb);
661 
662 	journal = osb->journal;
663 	if (!journal)
664 		goto done;
665 
666 	inode = journal->j_inode;
667 
668 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
669 		goto done;
670 
671 	/* need to inc inode use count as journal_destroy will iput. */
672 	if (!igrab(inode))
673 		BUG();
674 
675 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
676 	if (num_running_trans > 0)
677 		mlog(0, "Shutting down journal: must wait on %d "
678 		     "running transactions!\n",
679 		     num_running_trans);
680 
681 	/* Do a commit_cache here. It will flush our journal, *and*
682 	 * release any locks that are still held.
683 	 * set the SHUTDOWN flag and release the trans lock.
684 	 * the commit thread will take the trans lock for us below. */
685 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
686 
687 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
688 	 * drop the trans_lock (which we want to hold until we
689 	 * completely destroy the journal. */
690 	if (osb->commit_task) {
691 		/* Wait for the commit thread */
692 		mlog(0, "Waiting for ocfs2commit to exit....\n");
693 		kthread_stop(osb->commit_task);
694 		osb->commit_task = NULL;
695 	}
696 
697 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
698 
699 	status = ocfs2_journal_toggle_dirty(osb, 0);
700 	if (status < 0)
701 		mlog_errno(status);
702 
703 	/* Shutdown the kernel journal system */
704 	journal_destroy(journal->j_journal);
705 
706 	OCFS2_I(inode)->ip_open_count--;
707 
708 	/* unlock our journal */
709 	ocfs2_meta_unlock(inode, 1);
710 
711 	brelse(journal->j_bh);
712 	journal->j_bh = NULL;
713 
714 	journal->j_state = OCFS2_JOURNAL_FREE;
715 
716 //	up_write(&journal->j_trans_barrier);
717 done:
718 	if (inode)
719 		iput(inode);
720 	mlog_exit_void();
721 }
722 
723 static void ocfs2_clear_journal_error(struct super_block *sb,
724 				      journal_t *journal,
725 				      int slot)
726 {
727 	int olderr;
728 
729 	olderr = journal_errno(journal);
730 	if (olderr) {
731 		mlog(ML_ERROR, "File system error %d recorded in "
732 		     "journal %u.\n", olderr, slot);
733 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
734 		     sb->s_id);
735 
736 		journal_ack_err(journal);
737 		journal_clear_err(journal);
738 	}
739 }
740 
741 int ocfs2_journal_load(struct ocfs2_journal *journal)
742 {
743 	int status = 0;
744 	struct ocfs2_super *osb;
745 
746 	mlog_entry_void();
747 
748 	if (!journal)
749 		BUG();
750 
751 	osb = journal->j_osb;
752 
753 	status = journal_load(journal->j_journal);
754 	if (status < 0) {
755 		mlog(ML_ERROR, "Failed to load journal!\n");
756 		goto done;
757 	}
758 
759 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
760 
761 	status = ocfs2_journal_toggle_dirty(osb, 1);
762 	if (status < 0) {
763 		mlog_errno(status);
764 		goto done;
765 	}
766 
767 	/* Launch the commit thread */
768 	osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
769 	if (IS_ERR(osb->commit_task)) {
770 		status = PTR_ERR(osb->commit_task);
771 		osb->commit_task = NULL;
772 		mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
773 		     status);
774 		goto done;
775 	}
776 
777 done:
778 	mlog_exit(status);
779 	return status;
780 }
781 
782 
783 /* 'full' flag tells us whether we clear out all blocks or if we just
784  * mark the journal clean */
785 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
786 {
787 	int status;
788 
789 	mlog_entry_void();
790 
791 	BUG_ON(!journal);
792 
793 	status = journal_wipe(journal->j_journal, full);
794 	if (status < 0) {
795 		mlog_errno(status);
796 		goto bail;
797 	}
798 
799 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
800 	if (status < 0)
801 		mlog_errno(status);
802 
803 bail:
804 	mlog_exit(status);
805 	return status;
806 }
807 
808 /*
809  * JBD Might read a cached version of another nodes journal file. We
810  * don't want this as this file changes often and we get no
811  * notification on those changes. The only way to be sure that we've
812  * got the most up to date version of those blocks then is to force
813  * read them off disk. Just searching through the buffer cache won't
814  * work as there may be pages backing this file which are still marked
815  * up to date. We know things can't change on this file underneath us
816  * as we have the lock by now :)
817  */
818 static int ocfs2_force_read_journal(struct inode *inode)
819 {
820 	int status = 0;
821 	int i, p_blocks;
822 	u64 v_blkno, p_blkno;
823 #define CONCURRENT_JOURNAL_FILL 32
824 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
825 
826 	mlog_entry_void();
827 
828 	BUG_ON(inode->i_blocks !=
829 		     ocfs2_align_bytes_to_sectors(i_size_read(inode)));
830 
831 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
832 
833 	mlog(0, "Force reading %llu blocks\n",
834 		(unsigned long long)(inode->i_blocks >>
835 			(inode->i_sb->s_blocksize_bits - 9)));
836 
837 	v_blkno = 0;
838 	while (v_blkno <
839 	       (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
840 
841 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
842 						     1, &p_blkno,
843 						     &p_blocks);
844 		if (status < 0) {
845 			mlog_errno(status);
846 			goto bail;
847 		}
848 
849 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
850 			p_blocks = CONCURRENT_JOURNAL_FILL;
851 
852 		/* We are reading journal data which should not
853 		 * be put in the uptodate cache */
854 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
855 					   p_blkno, p_blocks, bhs, 0,
856 					   NULL);
857 		if (status < 0) {
858 			mlog_errno(status);
859 			goto bail;
860 		}
861 
862 		for(i = 0; i < p_blocks; i++) {
863 			brelse(bhs[i]);
864 			bhs[i] = NULL;
865 		}
866 
867 		v_blkno += p_blocks;
868 	}
869 
870 bail:
871 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
872 		if (bhs[i])
873 			brelse(bhs[i]);
874 	mlog_exit(status);
875 	return status;
876 }
877 
878 struct ocfs2_la_recovery_item {
879 	struct list_head	lri_list;
880 	int			lri_slot;
881 	struct ocfs2_dinode	*lri_la_dinode;
882 	struct ocfs2_dinode	*lri_tl_dinode;
883 };
884 
885 /* Does the second half of the recovery process. By this point, the
886  * node is marked clean and can actually be considered recovered,
887  * hence it's no longer in the recovery map, but there's still some
888  * cleanup we can do which shouldn't happen within the recovery thread
889  * as locking in that context becomes very difficult if we are to take
890  * recovering nodes into account.
891  *
892  * NOTE: This function can and will sleep on recovery of other nodes
893  * during cluster locking, just like any other ocfs2 process.
894  */
895 void ocfs2_complete_recovery(void *data)
896 {
897 	int ret;
898 	struct ocfs2_super *osb = data;
899 	struct ocfs2_journal *journal = osb->journal;
900 	struct ocfs2_dinode *la_dinode, *tl_dinode;
901 	struct ocfs2_la_recovery_item *item;
902 	struct list_head *p, *n;
903 	LIST_HEAD(tmp_la_list);
904 
905 	mlog_entry_void();
906 
907 	mlog(0, "completing recovery from keventd\n");
908 
909 	spin_lock(&journal->j_lock);
910 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
911 	spin_unlock(&journal->j_lock);
912 
913 	list_for_each_safe(p, n, &tmp_la_list) {
914 		item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
915 		list_del_init(&item->lri_list);
916 
917 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
918 
919 		la_dinode = item->lri_la_dinode;
920 		if (la_dinode) {
921 			mlog(0, "Clean up local alloc %llu\n",
922 			     (unsigned long long)la_dinode->i_blkno);
923 
924 			ret = ocfs2_complete_local_alloc_recovery(osb,
925 								  la_dinode);
926 			if (ret < 0)
927 				mlog_errno(ret);
928 
929 			kfree(la_dinode);
930 		}
931 
932 		tl_dinode = item->lri_tl_dinode;
933 		if (tl_dinode) {
934 			mlog(0, "Clean up truncate log %llu\n",
935 			     (unsigned long long)tl_dinode->i_blkno);
936 
937 			ret = ocfs2_complete_truncate_log_recovery(osb,
938 								   tl_dinode);
939 			if (ret < 0)
940 				mlog_errno(ret);
941 
942 			kfree(tl_dinode);
943 		}
944 
945 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
946 		if (ret < 0)
947 			mlog_errno(ret);
948 
949 		kfree(item);
950 	}
951 
952 	mlog(0, "Recovery completion\n");
953 	mlog_exit_void();
954 }
955 
956 /* NOTE: This function always eats your references to la_dinode and
957  * tl_dinode, either manually on error, or by passing them to
958  * ocfs2_complete_recovery */
959 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
960 					    int slot_num,
961 					    struct ocfs2_dinode *la_dinode,
962 					    struct ocfs2_dinode *tl_dinode)
963 {
964 	struct ocfs2_la_recovery_item *item;
965 
966 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
967 	if (!item) {
968 		/* Though we wish to avoid it, we are in fact safe in
969 		 * skipping local alloc cleanup as fsck.ocfs2 is more
970 		 * than capable of reclaiming unused space. */
971 		if (la_dinode)
972 			kfree(la_dinode);
973 
974 		if (tl_dinode)
975 			kfree(tl_dinode);
976 
977 		mlog_errno(-ENOMEM);
978 		return;
979 	}
980 
981 	INIT_LIST_HEAD(&item->lri_list);
982 	item->lri_la_dinode = la_dinode;
983 	item->lri_slot = slot_num;
984 	item->lri_tl_dinode = tl_dinode;
985 
986 	spin_lock(&journal->j_lock);
987 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
988 	queue_work(ocfs2_wq, &journal->j_recovery_work);
989 	spin_unlock(&journal->j_lock);
990 }
991 
992 /* Called by the mount code to queue recovery the last part of
993  * recovery for it's own slot. */
994 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
995 {
996 	struct ocfs2_journal *journal = osb->journal;
997 
998 	if (osb->dirty) {
999 		/* No need to queue up our truncate_log as regular
1000 		 * cleanup will catch that. */
1001 		ocfs2_queue_recovery_completion(journal,
1002 						osb->slot_num,
1003 						osb->local_alloc_copy,
1004 						NULL);
1005 		ocfs2_schedule_truncate_log_flush(osb, 0);
1006 
1007 		osb->local_alloc_copy = NULL;
1008 		osb->dirty = 0;
1009 	}
1010 }
1011 
1012 static int __ocfs2_recovery_thread(void *arg)
1013 {
1014 	int status, node_num;
1015 	struct ocfs2_super *osb = arg;
1016 
1017 	mlog_entry_void();
1018 
1019 	status = ocfs2_wait_on_mount(osb);
1020 	if (status < 0) {
1021 		goto bail;
1022 	}
1023 
1024 restart:
1025 	status = ocfs2_super_lock(osb, 1);
1026 	if (status < 0) {
1027 		mlog_errno(status);
1028 		goto bail;
1029 	}
1030 
1031 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1032 		node_num = ocfs2_node_map_first_set_bit(osb,
1033 							&osb->recovery_map);
1034 		if (node_num == O2NM_INVALID_NODE_NUM) {
1035 			mlog(0, "Out of nodes to recover.\n");
1036 			break;
1037 		}
1038 
1039 		status = ocfs2_recover_node(osb, node_num);
1040 		if (status < 0) {
1041 			mlog(ML_ERROR,
1042 			     "Error %d recovering node %d on device (%u,%u)!\n",
1043 			     status, node_num,
1044 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1045 			mlog(ML_ERROR, "Volume requires unmount.\n");
1046 			continue;
1047 		}
1048 
1049 		ocfs2_recovery_map_clear(osb, node_num);
1050 	}
1051 	ocfs2_super_unlock(osb, 1);
1052 
1053 	/* We always run recovery on our own orphan dir - the dead
1054 	 * node(s) may have voted "no" on an inode delete earlier. A
1055 	 * revote is therefore required. */
1056 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1057 					NULL);
1058 
1059 bail:
1060 	mutex_lock(&osb->recovery_lock);
1061 	if (!status &&
1062 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1063 		mutex_unlock(&osb->recovery_lock);
1064 		goto restart;
1065 	}
1066 
1067 	osb->recovery_thread_task = NULL;
1068 	mb(); /* sync with ocfs2_recovery_thread_running */
1069 	wake_up(&osb->recovery_event);
1070 
1071 	mutex_unlock(&osb->recovery_lock);
1072 
1073 	mlog_exit(status);
1074 	/* no one is callint kthread_stop() for us so the kthread() api
1075 	 * requires that we call do_exit().  And it isn't exported, but
1076 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1077 	complete_and_exit(NULL, status);
1078 	return status;
1079 }
1080 
1081 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1082 {
1083 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1084 		   node_num, osb->node_num);
1085 
1086 	mutex_lock(&osb->recovery_lock);
1087 	if (osb->disable_recovery)
1088 		goto out;
1089 
1090 	/* People waiting on recovery will wait on
1091 	 * the recovery map to empty. */
1092 	if (!ocfs2_recovery_map_set(osb, node_num))
1093 		mlog(0, "node %d already be in recovery.\n", node_num);
1094 
1095 	mlog(0, "starting recovery thread...\n");
1096 
1097 	if (osb->recovery_thread_task)
1098 		goto out;
1099 
1100 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1101 						 "ocfs2rec");
1102 	if (IS_ERR(osb->recovery_thread_task)) {
1103 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1104 		osb->recovery_thread_task = NULL;
1105 	}
1106 
1107 out:
1108 	mutex_unlock(&osb->recovery_lock);
1109 	wake_up(&osb->recovery_event);
1110 
1111 	mlog_exit_void();
1112 }
1113 
1114 /* Does the actual journal replay and marks the journal inode as
1115  * clean. Will only replay if the journal inode is marked dirty. */
1116 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1117 				int node_num,
1118 				int slot_num)
1119 {
1120 	int status;
1121 	int got_lock = 0;
1122 	unsigned int flags;
1123 	struct inode *inode = NULL;
1124 	struct ocfs2_dinode *fe;
1125 	journal_t *journal = NULL;
1126 	struct buffer_head *bh = NULL;
1127 
1128 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1129 					    slot_num);
1130 	if (inode == NULL) {
1131 		status = -EACCES;
1132 		mlog_errno(status);
1133 		goto done;
1134 	}
1135 	if (is_bad_inode(inode)) {
1136 		status = -EACCES;
1137 		iput(inode);
1138 		inode = NULL;
1139 		mlog_errno(status);
1140 		goto done;
1141 	}
1142 	SET_INODE_JOURNAL(inode);
1143 
1144 	status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1145 				      OCFS2_META_LOCK_RECOVERY);
1146 	if (status < 0) {
1147 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1148 		if (status != -ERESTARTSYS)
1149 			mlog(ML_ERROR, "Could not lock journal!\n");
1150 		goto done;
1151 	}
1152 	got_lock = 1;
1153 
1154 	fe = (struct ocfs2_dinode *) bh->b_data;
1155 
1156 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1157 
1158 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1159 		mlog(0, "No recovery required for node %d\n", node_num);
1160 		goto done;
1161 	}
1162 
1163 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1164 	     node_num, slot_num,
1165 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1166 
1167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1168 
1169 	status = ocfs2_force_read_journal(inode);
1170 	if (status < 0) {
1171 		mlog_errno(status);
1172 		goto done;
1173 	}
1174 
1175 	mlog(0, "calling journal_init_inode\n");
1176 	journal = journal_init_inode(inode);
1177 	if (journal == NULL) {
1178 		mlog(ML_ERROR, "Linux journal layer error\n");
1179 		status = -EIO;
1180 		goto done;
1181 	}
1182 
1183 	status = journal_load(journal);
1184 	if (status < 0) {
1185 		mlog_errno(status);
1186 		if (!igrab(inode))
1187 			BUG();
1188 		journal_destroy(journal);
1189 		goto done;
1190 	}
1191 
1192 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1193 
1194 	/* wipe the journal */
1195 	mlog(0, "flushing the journal.\n");
1196 	journal_lock_updates(journal);
1197 	status = journal_flush(journal);
1198 	journal_unlock_updates(journal);
1199 	if (status < 0)
1200 		mlog_errno(status);
1201 
1202 	/* This will mark the node clean */
1203 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1204 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1205 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1206 
1207 	status = ocfs2_write_block(osb, bh, inode);
1208 	if (status < 0)
1209 		mlog_errno(status);
1210 
1211 	if (!igrab(inode))
1212 		BUG();
1213 
1214 	journal_destroy(journal);
1215 
1216 done:
1217 	/* drop the lock on this nodes journal */
1218 	if (got_lock)
1219 		ocfs2_meta_unlock(inode, 1);
1220 
1221 	if (inode)
1222 		iput(inode);
1223 
1224 	if (bh)
1225 		brelse(bh);
1226 
1227 	mlog_exit(status);
1228 	return status;
1229 }
1230 
1231 /*
1232  * Do the most important parts of node recovery:
1233  *  - Replay it's journal
1234  *  - Stamp a clean local allocator file
1235  *  - Stamp a clean truncate log
1236  *  - Mark the node clean
1237  *
1238  * If this function completes without error, a node in OCFS2 can be
1239  * said to have been safely recovered. As a result, failure during the
1240  * second part of a nodes recovery process (local alloc recovery) is
1241  * far less concerning.
1242  */
1243 static int ocfs2_recover_node(struct ocfs2_super *osb,
1244 			      int node_num)
1245 {
1246 	int status = 0;
1247 	int slot_num;
1248 	struct ocfs2_slot_info *si = osb->slot_info;
1249 	struct ocfs2_dinode *la_copy = NULL;
1250 	struct ocfs2_dinode *tl_copy = NULL;
1251 
1252 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1253 		   node_num, osb->node_num);
1254 
1255 	mlog(0, "checking node %d\n", node_num);
1256 
1257 	/* Should not ever be called to recover ourselves -- in that
1258 	 * case we should've called ocfs2_journal_load instead. */
1259 	BUG_ON(osb->node_num == node_num);
1260 
1261 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1262 	if (slot_num == OCFS2_INVALID_SLOT) {
1263 		status = 0;
1264 		mlog(0, "no slot for this node, so no recovery required.\n");
1265 		goto done;
1266 	}
1267 
1268 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1269 
1270 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1271 	if (status < 0) {
1272 		mlog_errno(status);
1273 		goto done;
1274 	}
1275 
1276 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1277 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1278 	if (status < 0) {
1279 		mlog_errno(status);
1280 		goto done;
1281 	}
1282 
1283 	/* An error from begin_truncate_log_recovery is not
1284 	 * serious enough to warrant halting the rest of
1285 	 * recovery. */
1286 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1287 	if (status < 0)
1288 		mlog_errno(status);
1289 
1290 	/* Likewise, this would be a strange but ultimately not so
1291 	 * harmful place to get an error... */
1292 	ocfs2_clear_slot(si, slot_num);
1293 	status = ocfs2_update_disk_slots(osb, si);
1294 	if (status < 0)
1295 		mlog_errno(status);
1296 
1297 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1298 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1299 					tl_copy);
1300 
1301 	status = 0;
1302 done:
1303 
1304 	mlog_exit(status);
1305 	return status;
1306 }
1307 
1308 /* Test node liveness by trylocking his journal. If we get the lock,
1309  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1310  * still alive (we couldn't get the lock) and < 0 on error. */
1311 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1312 				 int slot_num)
1313 {
1314 	int status, flags;
1315 	struct inode *inode = NULL;
1316 
1317 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1318 					    slot_num);
1319 	if (inode == NULL) {
1320 		mlog(ML_ERROR, "access error\n");
1321 		status = -EACCES;
1322 		goto bail;
1323 	}
1324 	if (is_bad_inode(inode)) {
1325 		mlog(ML_ERROR, "access error (bad inode)\n");
1326 		iput(inode);
1327 		inode = NULL;
1328 		status = -EACCES;
1329 		goto bail;
1330 	}
1331 	SET_INODE_JOURNAL(inode);
1332 
1333 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1334 	status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1335 	if (status < 0) {
1336 		if (status != -EAGAIN)
1337 			mlog_errno(status);
1338 		goto bail;
1339 	}
1340 
1341 	ocfs2_meta_unlock(inode, 1);
1342 bail:
1343 	if (inode)
1344 		iput(inode);
1345 
1346 	return status;
1347 }
1348 
1349 /* Call this underneath ocfs2_super_lock. It also assumes that the
1350  * slot info struct has been updated from disk. */
1351 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1352 {
1353 	int status, i, node_num;
1354 	struct ocfs2_slot_info *si = osb->slot_info;
1355 
1356 	/* This is called with the super block cluster lock, so we
1357 	 * know that the slot map can't change underneath us. */
1358 
1359 	spin_lock(&si->si_lock);
1360 	for(i = 0; i < si->si_num_slots; i++) {
1361 		if (i == osb->slot_num)
1362 			continue;
1363 		if (ocfs2_is_empty_slot(si, i))
1364 			continue;
1365 
1366 		node_num = si->si_global_node_nums[i];
1367 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1368 			continue;
1369 		spin_unlock(&si->si_lock);
1370 
1371 		/* Ok, we have a slot occupied by another node which
1372 		 * is not in the recovery map. We trylock his journal
1373 		 * file here to test if he's alive. */
1374 		status = ocfs2_trylock_journal(osb, i);
1375 		if (!status) {
1376 			/* Since we're called from mount, we know that
1377 			 * the recovery thread can't race us on
1378 			 * setting / checking the recovery bits. */
1379 			ocfs2_recovery_thread(osb, node_num);
1380 		} else if ((status < 0) && (status != -EAGAIN)) {
1381 			mlog_errno(status);
1382 			goto bail;
1383 		}
1384 
1385 		spin_lock(&si->si_lock);
1386 	}
1387 	spin_unlock(&si->si_lock);
1388 
1389 	status = 0;
1390 bail:
1391 	mlog_exit(status);
1392 	return status;
1393 }
1394 
1395 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1396 			       int slot,
1397 			       struct inode **head)
1398 {
1399 	int status;
1400 	struct inode *orphan_dir_inode = NULL;
1401 	struct inode *iter;
1402 	unsigned long offset, blk, local;
1403 	struct buffer_head *bh = NULL;
1404 	struct ocfs2_dir_entry *de;
1405 	struct super_block *sb = osb->sb;
1406 
1407 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1408 						       ORPHAN_DIR_SYSTEM_INODE,
1409 						       slot);
1410 	if  (!orphan_dir_inode) {
1411 		status = -ENOENT;
1412 		mlog_errno(status);
1413 		return status;
1414 	}
1415 
1416 	mutex_lock(&orphan_dir_inode->i_mutex);
1417 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1418 	if (status < 0) {
1419 		mlog_errno(status);
1420 		goto out;
1421 	}
1422 
1423 	offset = 0;
1424 	iter = NULL;
1425 	while(offset < i_size_read(orphan_dir_inode)) {
1426 		blk = offset >> sb->s_blocksize_bits;
1427 
1428 		bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1429 		if (!bh)
1430 			status = -EINVAL;
1431 		if (status < 0) {
1432 			if (bh)
1433 				brelse(bh);
1434 			mlog_errno(status);
1435 			goto out_unlock;
1436 		}
1437 
1438 		local = 0;
1439 		while(offset < i_size_read(orphan_dir_inode)
1440 		      && local < sb->s_blocksize) {
1441 			de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1442 
1443 			if (!ocfs2_check_dir_entry(orphan_dir_inode,
1444 						  de, bh, local)) {
1445 				status = -EINVAL;
1446 				mlog_errno(status);
1447 				brelse(bh);
1448 				goto out_unlock;
1449 			}
1450 
1451 			local += le16_to_cpu(de->rec_len);
1452 			offset += le16_to_cpu(de->rec_len);
1453 
1454 			/* I guess we silently fail on no inode? */
1455 			if (!le64_to_cpu(de->inode))
1456 				continue;
1457 			if (de->file_type > OCFS2_FT_MAX) {
1458 				mlog(ML_ERROR,
1459 				     "block %llu contains invalid de: "
1460 				     "inode = %llu, rec_len = %u, "
1461 				     "name_len = %u, file_type = %u, "
1462 				     "name='%.*s'\n",
1463 				     (unsigned long long)bh->b_blocknr,
1464 				     (unsigned long long)le64_to_cpu(de->inode),
1465 				     le16_to_cpu(de->rec_len),
1466 				     de->name_len,
1467 				     de->file_type,
1468 				     de->name_len,
1469 				     de->name);
1470 				continue;
1471 			}
1472 			if (de->name_len == 1 && !strncmp(".", de->name, 1))
1473 				continue;
1474 			if (de->name_len == 2 && !strncmp("..", de->name, 2))
1475 				continue;
1476 
1477 			iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1478 					  OCFS2_FI_FLAG_NOLOCK);
1479 			if (IS_ERR(iter))
1480 				continue;
1481 
1482 			mlog(0, "queue orphan %llu\n",
1483 			     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1484 			/* No locking is required for the next_orphan
1485 			 * queue as there is only ever a single
1486 			 * process doing orphan recovery. */
1487 			OCFS2_I(iter)->ip_next_orphan = *head;
1488 			*head = iter;
1489 		}
1490 		brelse(bh);
1491 	}
1492 
1493 out_unlock:
1494 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1495 out:
1496 	mutex_unlock(&orphan_dir_inode->i_mutex);
1497 	iput(orphan_dir_inode);
1498 	return status;
1499 }
1500 
1501 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1502 					      int slot)
1503 {
1504 	int ret;
1505 
1506 	spin_lock(&osb->osb_lock);
1507 	ret = !osb->osb_orphan_wipes[slot];
1508 	spin_unlock(&osb->osb_lock);
1509 	return ret;
1510 }
1511 
1512 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1513 					     int slot)
1514 {
1515 	spin_lock(&osb->osb_lock);
1516 	/* Mark ourselves such that new processes in delete_inode()
1517 	 * know to quit early. */
1518 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1519 	while (osb->osb_orphan_wipes[slot]) {
1520 		/* If any processes are already in the middle of an
1521 		 * orphan wipe on this dir, then we need to wait for
1522 		 * them. */
1523 		spin_unlock(&osb->osb_lock);
1524 		wait_event_interruptible(osb->osb_wipe_event,
1525 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1526 		spin_lock(&osb->osb_lock);
1527 	}
1528 	spin_unlock(&osb->osb_lock);
1529 }
1530 
1531 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1532 					      int slot)
1533 {
1534 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1535 }
1536 
1537 /*
1538  * Orphan recovery. Each mounted node has it's own orphan dir which we
1539  * must run during recovery. Our strategy here is to build a list of
1540  * the inodes in the orphan dir and iget/iput them. The VFS does
1541  * (most) of the rest of the work.
1542  *
1543  * Orphan recovery can happen at any time, not just mount so we have a
1544  * couple of extra considerations.
1545  *
1546  * - We grab as many inodes as we can under the orphan dir lock -
1547  *   doing iget() outside the orphan dir risks getting a reference on
1548  *   an invalid inode.
1549  * - We must be sure not to deadlock with other processes on the
1550  *   system wanting to run delete_inode(). This can happen when they go
1551  *   to lock the orphan dir and the orphan recovery process attempts to
1552  *   iget() inside the orphan dir lock. This can be avoided by
1553  *   advertising our state to ocfs2_delete_inode().
1554  */
1555 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1556 				 int slot)
1557 {
1558 	int ret = 0;
1559 	struct inode *inode = NULL;
1560 	struct inode *iter;
1561 	struct ocfs2_inode_info *oi;
1562 
1563 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1564 
1565 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1566 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1567 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1568 
1569 	/* Error here should be noted, but we want to continue with as
1570 	 * many queued inodes as we've got. */
1571 	if (ret)
1572 		mlog_errno(ret);
1573 
1574 	while (inode) {
1575 		oi = OCFS2_I(inode);
1576 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1577 
1578 		iter = oi->ip_next_orphan;
1579 
1580 		spin_lock(&oi->ip_lock);
1581 		/* Delete voting may have set these on the assumption
1582 		 * that the other node would wipe them successfully.
1583 		 * If they are still in the node's orphan dir, we need
1584 		 * to reset that state. */
1585 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1586 
1587 		/* Set the proper information to get us going into
1588 		 * ocfs2_delete_inode. */
1589 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1590 		oi->ip_orphaned_slot = slot;
1591 		spin_unlock(&oi->ip_lock);
1592 
1593 		iput(inode);
1594 
1595 		inode = iter;
1596 	}
1597 
1598 	return ret;
1599 }
1600 
1601 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1602 {
1603 	/* This check is good because ocfs2 will wait on our recovery
1604 	 * thread before changing it to something other than MOUNTED
1605 	 * or DISABLED. */
1606 	wait_event(osb->osb_mount_event,
1607 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1608 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1609 
1610 	/* If there's an error on mount, then we may never get to the
1611 	 * MOUNTED flag, but this is set right before
1612 	 * dismount_volume() so we can trust it. */
1613 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1614 		mlog(0, "mount error, exiting!\n");
1615 		return -EBUSY;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static int ocfs2_commit_thread(void *arg)
1622 {
1623 	int status;
1624 	struct ocfs2_super *osb = arg;
1625 	struct ocfs2_journal *journal = osb->journal;
1626 
1627 	/* we can trust j_num_trans here because _should_stop() is only set in
1628 	 * shutdown and nobody other than ourselves should be able to start
1629 	 * transactions.  committing on shutdown might take a few iterations
1630 	 * as final transactions put deleted inodes on the list */
1631 	while (!(kthread_should_stop() &&
1632 		 atomic_read(&journal->j_num_trans) == 0)) {
1633 
1634 		wait_event_interruptible(osb->checkpoint_event,
1635 					 atomic_read(&journal->j_num_trans)
1636 					 || kthread_should_stop());
1637 
1638 		status = ocfs2_commit_cache(osb);
1639 		if (status < 0)
1640 			mlog_errno(status);
1641 
1642 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1643 			mlog(ML_KTHREAD,
1644 			     "commit_thread: %u transactions pending on "
1645 			     "shutdown\n",
1646 			     atomic_read(&journal->j_num_trans));
1647 		}
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 /* Look for a dirty journal without taking any cluster locks. Used for
1654  * hard readonly access to determine whether the file system journals
1655  * require recovery. */
1656 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1657 {
1658 	int ret = 0;
1659 	unsigned int slot;
1660 	struct buffer_head *di_bh;
1661 	struct ocfs2_dinode *di;
1662 	struct inode *journal = NULL;
1663 
1664 	for(slot = 0; slot < osb->max_slots; slot++) {
1665 		journal = ocfs2_get_system_file_inode(osb,
1666 						      JOURNAL_SYSTEM_INODE,
1667 						      slot);
1668 		if (!journal || is_bad_inode(journal)) {
1669 			ret = -EACCES;
1670 			mlog_errno(ret);
1671 			goto out;
1672 		}
1673 
1674 		di_bh = NULL;
1675 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1676 				       0, journal);
1677 		if (ret < 0) {
1678 			mlog_errno(ret);
1679 			goto out;
1680 		}
1681 
1682 		di = (struct ocfs2_dinode *) di_bh->b_data;
1683 
1684 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1685 		    OCFS2_JOURNAL_DIRTY_FL)
1686 			ret = -EROFS;
1687 
1688 		brelse(di_bh);
1689 		if (ret)
1690 			break;
1691 	}
1692 
1693 out:
1694 	if (journal)
1695 		iput(journal);
1696 
1697 	return ret;
1698 }
1699